/*- * Copyright (c) 2003-04 3ware, Inc. * Copyright (c) 2000 Michael Smith * Copyright (c) 2000 BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ * $DragonFly: src/sys/dev/raid/twa/twa_freebsd.c,v 1.2 2004/05/19 22:52:48 dillon Exp $ */ /* * 3ware driver for 9000 series storage controllers. * * Author: Vinod Kashyap */ #include "twa_includes.h" static void twa_setup_data_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error); static void twa_setup_request_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error); MALLOC_DEFINE(TWA_MALLOC_CLASS, "twa commands", "twa commands"); static d_open_t twa_open; static d_close_t twa_close; static d_ioctl_t twa_ioctl_wrapper; static struct cdevsw twa_cdevsw = { "twa", TWA_CDEV_MAJOR, 0, NULL, 0, twa_open, twa_close, noread, nowrite, twa_ioctl_wrapper, nopoll, nommap, nostrategy, nodump, nopsize, }; static devclass_t twa_devclass; /* * Function name: twa_open * Description: Called when the controller is opened. * Simply marks the controller as open. * * Input: dev -- control device corresponding to the ctlr * flags -- mode of open * fmt -- device type (character/block etc.) * proc -- current process * Output: None * Return value: 0 -- success * non-zero-- failure */ static int twa_open(dev_t dev, int flags, int fmt, d_thread_t *proc) { int unit = minor(dev); struct twa_softc *sc = devclass_get_softc(twa_devclass, unit); sc->twa_state |= TWA_STATE_OPEN; return(0); } /* * Function name: twa_close * Description: Called when the controller is closed. * Simply marks the controller as not open. * * Input: dev -- control device corresponding to the ctlr * flags -- mode of corresponding open * fmt -- device type (character/block etc.) * proc -- current process * Output: None * Return value: 0 -- success * non-zero-- failure */ static int twa_close(dev_t dev, int flags, int fmt, d_thread_t *proc) { int unit = minor(dev); struct twa_softc *sc = devclass_get_softc(twa_devclass, unit); sc->twa_state &= ~TWA_STATE_OPEN; return(0); } /* * Function name: twa_ioctl_wrapper * Description: Called when an ioctl is posted to the controller. * Simply calls the ioctl handler. * * Input: dev -- control device corresponding to the ctlr * cmd -- ioctl cmd * buf -- ptr to buffer in kernel memory, which is * a copy of the input buffer in user-space * flags -- mode of corresponding open * proc -- current process * Output: buf -- ptr to buffer in kernel memory, which will * be copied to the output buffer in user-space * Return value: 0 -- success * non-zero-- failure */ static int twa_ioctl_wrapper(dev_t dev, u_long cmd, caddr_t buf, int flags, d_thread_t *proc) { struct twa_softc *sc = (struct twa_softc *)(dev->si_drv1); return(twa_ioctl(sc, cmd, buf)); } static int twa_probe (device_t dev); static int twa_attach (device_t dev); static void twa_free (struct twa_softc *sc); static int twa_detach (device_t dev); static int twa_shutdown (device_t dev); static int twa_suspend (device_t dev); static int twa_resume (device_t dev); static void twa_pci_intr(void *arg); static void twa_intrhook (void *arg); static device_method_t twa_methods[] = { /* Device interface */ DEVMETHOD(device_probe, twa_probe), DEVMETHOD(device_attach, twa_attach), DEVMETHOD(device_detach, twa_detach), DEVMETHOD(device_shutdown, twa_shutdown), DEVMETHOD(device_suspend, twa_suspend), DEVMETHOD(device_resume, twa_resume), DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), {0, 0} }; static driver_t twa_pci_driver = { "twa", twa_methods, sizeof(struct twa_softc) }; DRIVER_MODULE(twa, pci, twa_pci_driver, twa_devclass, 0, 0); /* * Function name: twa_probe * Description: Called at driver load time. Claims 9000 ctlrs. * * Input: dev -- bus device corresponding to the ctlr * Output: None * Return value: <= 0 -- success * > 0 -- failure */ static int twa_probe(device_t dev) { static u_int8_t first_ctlr = 1; twa_dbg_print(3, "entered"); if ((pci_get_vendor(dev) == TWA_VENDOR_ID) && (pci_get_device(dev) == TWA_DEVICE_ID_9K)) { device_set_desc(dev, TWA_DEVICE_NAME); /* Print the driver version only once. */ if (first_ctlr) { printf("3ware device driver for 9000 series storage controllers, version: %s\n", TWA_DRIVER_VERSION_STRING); first_ctlr = 0; } return(0); } return(ENXIO); } /* * Function name: twa_attach * Description: Allocates pci resources; updates sc; adds a node to the * sysctl tree to expose the driver version; makes calls * to initialize ctlr, and to attach to CAM. * * Input: dev -- bus device corresponding to the ctlr * Output: None * Return value: 0 -- success * non-zero-- failure */ static int twa_attach(device_t dev) { struct twa_softc *sc = device_get_softc(dev); u_int32_t command; int res_id; int error; dev_t xdev; twa_dbg_dprint_enter(3, sc); /* Initialize the softc structure. */ sc->twa_bus_dev = dev; sysctl_ctx_init(&sc->twa_sysctl_ctx); sc->twa_sysctl_tree = SYSCTL_ADD_NODE(&sc->twa_sysctl_ctx, SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, device_get_nameunit(dev), CTLFLAG_RD, 0, ""); if (sc->twa_sysctl_tree == NULL) { twa_printf(sc, "Cannot add sysctl tree node.\n"); return(ENXIO); } SYSCTL_ADD_STRING(&sc->twa_sysctl_ctx, SYSCTL_CHILDREN(sc->twa_sysctl_tree), OID_AUTO, "driver_version", CTLFLAG_RD, TWA_DRIVER_VERSION_STRING, 0, "TWA driver version"); /* Make sure we are going to be able to talk to this board. */ command = pci_read_config(dev, PCIR_COMMAND, 2); if ((command & PCIM_CMD_PORTEN) == 0) { twa_printf(sc, "Register window not available.\n"); return(ENXIO); } /* Force the busmaster enable bit on, in case the BIOS forgot. */ command |= PCIM_CMD_BUSMASTEREN; pci_write_config(dev, PCIR_COMMAND, command, 2); /* Allocate the PCI register window. */ res_id = TWA_IO_CONFIG_REG; if ((sc->twa_io_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &res_id, 0, ~0, 1, RF_ACTIVE)) == NULL) { twa_printf(sc, "can't allocate register window.\n"); twa_free(sc); return(ENXIO); } sc->twa_bus_tag = rman_get_bustag(sc->twa_io_res); sc->twa_bus_handle = rman_get_bushandle(sc->twa_io_res); /* Allocate and connect our interrupt. */ res_id = 0; if ((sc->twa_irq_res = bus_alloc_resource(sc->twa_bus_dev, SYS_RES_IRQ, &res_id, 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE)) == NULL) { twa_printf(sc, "Can't allocate interrupt.\n"); twa_free(sc); return(ENXIO); } if (bus_setup_intr(sc->twa_bus_dev, sc->twa_irq_res, INTR_TYPE_CAM, twa_pci_intr, sc, &sc->twa_intr_handle)) { twa_printf(sc, "Can't set up interrupt.\n"); twa_free(sc); return(ENXIO); } /* Initialize the driver for this controller. */ if ((error = twa_setup(sc))) { twa_free(sc); return(error); } /* Print some information about the controller and configuration. */ twa_describe_controller(sc); /* Create the control device. */ cdevsw_add(&twa_cdevsw, -1, device_get_unit(sc->twa_bus_dev)); xdev = make_dev(&twa_cdevsw, device_get_unit(sc->twa_bus_dev), UID_ROOT, GID_OPERATOR, S_IRUSR | S_IWUSR, "twa%d", device_get_unit(sc->twa_bus_dev)); xdev->si_drv1 = sc; /* * Schedule ourselves to bring the controller up once interrupts are * available. This isn't strictly necessary, since we disable * interrupts while probing the controller, but it is more in keeping * with common practice for other disk devices. */ sc->twa_ich.ich_func = twa_intrhook; sc->twa_ich.ich_arg = sc; if (config_intrhook_establish(&sc->twa_ich) != 0) { twa_printf(sc, "Can't establish configuration hook.\n"); twa_free(sc); return(ENXIO); } if ((error = twa_cam_setup(sc))) { twa_free(sc); return(error); } return(0); } /* * Function name: twa_free * Description: Performs clean-up at the time of going down. * * Input: sc -- ptr to per ctlr structure * Output: None * Return value: None */ static void twa_free(struct twa_softc *sc) { struct twa_request *tr; twa_dbg_dprint_enter(3, sc); /* Detach from CAM */ twa_cam_detach(sc); /* Destroy dma handles. */ bus_dmamap_unload(sc->twa_dma_tag, sc->twa_cmd_map); while ((tr = twa_dequeue_free(sc)) != NULL) bus_dmamap_destroy(sc->twa_dma_tag, tr->tr_dma_map); /* Free all memory allocated so far. */ if (sc->twa_req_buf) free(sc->twa_req_buf, TWA_MALLOC_CLASS); if (sc->twa_cmd_pkt_buf) bus_dmamem_free(sc->twa_dma_tag, sc->twa_cmd_pkt_buf, sc->twa_cmd_map); if (sc->twa_aen_queue[0]) free (sc->twa_aen_queue[0], M_DEVBUF); /* Destroy the data-transfer DMA tag. */ if (sc->twa_dma_tag) bus_dma_tag_destroy(sc->twa_dma_tag); /* Disconnect the interrupt handler. */ if (sc->twa_intr_handle) bus_teardown_intr(sc->twa_bus_dev, sc->twa_irq_res, sc->twa_intr_handle); if (sc->twa_irq_res != NULL) bus_release_resource(sc->twa_bus_dev, SYS_RES_IRQ, 0, sc->twa_irq_res); /* Release the register window mapping. */ if (sc->twa_io_res != NULL) bus_release_resource(sc->twa_bus_dev, SYS_RES_IOPORT, TWA_IO_CONFIG_REG, sc->twa_io_res); cdevsw_remove(&twa_cdevsw, -1, device_get_unit(sc->twa_bus_dev)); sysctl_ctx_free(&sc->twa_sysctl_ctx); } /* * Function name: twa_detach * Description: Called when the controller is being detached from * the pci bus. * * Input: dev -- bus device corresponding to the ctlr * Output: None * Return value: 0 -- success * non-zero-- failure */ static int twa_detach(device_t dev) { struct twa_softc *sc = device_get_softc(dev); int s; int error; twa_dbg_dprint_enter(3, sc); error = EBUSY; s = splcam(); if (sc->twa_state & TWA_STATE_OPEN) goto out; /* Shut the controller down. */ if ((error = twa_shutdown(dev))) goto out; /* Free all resources associated with this controller. */ twa_free(sc); error = 0; out: splx(s); return(error); } /* * Function name: twa_shutdown * Description: Called at unload/shutdown time. Lets the controller * know that we are going down. * * Input: dev -- bus device corresponding to the ctlr * Output: None * Return value: 0 -- success * non-zero-- failure */ static int twa_shutdown(device_t dev) { struct twa_softc *sc = device_get_softc(dev); int s; int error = 0; twa_dbg_dprint_enter(3, sc); s = splcam(); /* Disconnect from the controller. */ error = twa_deinit_ctlr(sc); splx(s); return(error); } /* * Function name: twa_suspend * Description: Called to suspend I/O before hot-swapping PCI ctlrs. * Doesn't do much as of now. * * Input: dev -- bus device corresponding to the ctlr * Output: None * Return value: 0 -- success * non-zero-- failure */ static int twa_suspend(device_t dev) { struct twa_softc *sc = device_get_softc(dev); int s; twa_dbg_dprint_enter(3, sc); s = splcam(); sc->twa_state |= TWA_STATE_SUSPEND; twa_disable_interrupts(sc); splx(s); return(1); } /* * Function name: twa_resume * Description: Called to resume I/O after hot-swapping PCI ctlrs. * Doesn't do much as of now. * * Input: dev -- bus device corresponding to the ctlr * Output: None * Return value: 0 -- success * non-zero-- failure */ static int twa_resume(device_t dev) { struct twa_softc *sc = device_get_softc(dev); twa_dbg_dprint_enter(3, sc); sc->twa_state &= ~TWA_STATE_SUSPEND; twa_enable_interrupts(sc); return(1); } /* * Function name: twa_pci_intr * Description: Interrupt handler. Wrapper for twa_interrupt. * * Input: arg -- ptr to per ctlr structure * Output: None * Return value: None */ static void twa_pci_intr(void *arg) { struct twa_softc *sc = (struct twa_softc *)arg; twa_interrupt(sc); } /* * Function name: twa_intrhook * Description: Callback for us to enable interrupts. * * Input: arg -- ptr to per ctlr structure * Output: None * Return value: None */ static void twa_intrhook(void *arg) { struct twa_softc *sc = (struct twa_softc *)arg; twa_dbg_dprint(4, sc, "twa_intrhook Entered"); /* Pull ourselves off the intrhook chain. */ config_intrhook_disestablish(&sc->twa_ich); /* Enable interrupts. */ twa_enable_interrupts(sc); } /* * Function name: twa_write_pci_config * Description: Writes to the PCI config space. * * Input: sc -- ptr to per ctlr structure * value -- value to be written * size -- # of bytes to be written * Output: None * Return value: None */ void twa_write_pci_config(struct twa_softc *sc, u_int32_t value, int size) { pci_write_config(sc->twa_bus_dev, PCIR_STATUS, value, size); } /* * Function name: twa_alloc_req_pkts * Description: Allocates memory for, and initializes request pkts, * and queues them in the free queue. * * Input: sc -- ptr to per ctlr structure * num_reqs-- # of request pkts to allocate and initialize. * Output: None * Return value: 0 -- success * non-zero-- failure */ int twa_alloc_req_pkts(struct twa_softc *sc, int num_reqs) { struct twa_request *tr; int i; if ((sc->twa_req_buf = malloc(num_reqs * sizeof(struct twa_request), TWA_MALLOC_CLASS, M_NOWAIT)) == NULL) return(ENOMEM); /* Allocate the bus DMA tag appropriate for PCI. */ if (bus_dma_tag_create(NULL, /* parent */ TWA_ALIGNMENT, /* alignment */ 0, /* boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR + 1, /* highaddr */ NULL, NULL, /* filter, filterarg */ TWA_Q_LENGTH * (sizeof(struct twa_command_packet)),/* maxsize */ TWA_MAX_SG_ELEMENTS, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ &sc->twa_dma_tag /* tag */)) { twa_printf(sc, "Can't allocate DMA tag.\n"); return(ENOMEM); } /* Allocate memory for cmd pkts. */ if (bus_dmamem_alloc(sc->twa_dma_tag, (void *)(&(sc->twa_cmd_pkt_buf)), BUS_DMA_WAITOK, &(sc->twa_cmd_map))) return(ENOMEM); bus_dmamap_load(sc->twa_dma_tag, sc->twa_cmd_map, sc->twa_cmd_pkt_buf, num_reqs * sizeof(struct twa_command_packet), twa_setup_request_dmamap, sc, 0); bzero(sc->twa_req_buf, num_reqs * sizeof(struct twa_request)); bzero(sc->twa_cmd_pkt_buf, num_reqs * sizeof(struct twa_command_packet)); for (i = 0; i < num_reqs; i++) { tr = &(sc->twa_req_buf[i]); tr->tr_command = &(sc->twa_cmd_pkt_buf[i]); tr->tr_cmd_phys = sc->twa_cmd_pkt_phys + (i * sizeof(struct twa_command_packet)); tr->tr_request_id = i; tr->tr_sc = sc; sc->twa_lookup[i] = tr; /* * Create a map for data buffers. maxsize (256 * 1024) used in * bus_dma_tag_create above should suffice the bounce page needs * for data buffers, since the max I/O size we support is 128KB. * If we supported I/O's bigger than 256KB, we would have to * create a second dma_tag, with the appropriate maxsize. */ if (bus_dmamap_create(sc->twa_dma_tag, 0, &tr->tr_dma_map)) return(ENOMEM); /* Insert request into the free queue. */ twa_release_request(tr); } return(0); } /* * Function name: twa_fillin_sgl * Description: Fills in the scatter/gather list. * * Input: sgl -- ptr to sg list * segs -- ptr to fill the sg list from * nsegments--# of segments * Output: None * Return value: None */ static void twa_fillin_sgl(struct twa_sg *sgl, bus_dma_segment_t *segs, int nsegments) { int i; for (i = 0; i < nsegments; i++) { sgl[i].address = segs[i].ds_addr; sgl[i].length = segs[i].ds_len; } } /* * Function name: twa_setup_data_dmamap * Description: Callback of bus_dmamap_load for the buffer associated * with data. Updates the cmd pkt (size/sgl_entries * fields, as applicable) to reflect the number of sg * elements. * * Input: arg -- ptr to request pkt * segs -- ptr to a list of segment descriptors * nsegments--# of segments * error -- 0 if no errors encountered before callback, * non-zero if errors were encountered * Output: None * Return value: None */ static void twa_setup_data_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error) { struct twa_request *tr = (struct twa_request *)arg; struct twa_command_packet *cmdpkt = tr->tr_command; struct twa_command_9k *cmd9k; union twa_command_7k *cmd7k; u_int8_t sgl_offset; twa_dbg_dprint_enter(10, tr->tr_sc); if ((tr->tr_flags & TWA_CMD_IN_PROGRESS) && (tr->tr_cmd_pkt_type & TWA_CMD_PKT_TYPE_EXTERNAL)) twa_allow_new_requests(tr->tr_sc, (void *)(tr->tr_private)); if (error == EFBIG) { tr->tr_error = error; goto out; } if (tr->tr_cmd_pkt_type & TWA_CMD_PKT_TYPE_9K) { cmd9k = &(cmdpkt->command.cmd_pkt_9k); twa_fillin_sgl(&(cmd9k->sg_list[0]), segs, nsegments); cmd9k->sgl_entries += nsegments - 1; } else { /* It's a 7000 command packet. */ cmd7k = &(cmdpkt->command.cmd_pkt_7k); if ((sgl_offset = cmdpkt->command.cmd_pkt_7k.generic.sgl_offset)) twa_fillin_sgl((struct twa_sg *) (((u_int32_t *)cmd7k) + sgl_offset), segs, nsegments); /* Modify the size field, based on sg address size. */ cmd7k->generic.size += ((TWA_64BIT_ADDRESSES ? 3 : 2) * nsegments); } if (tr->tr_flags & TWA_CMD_DATA_IN) bus_dmamap_sync(tr->tr_sc->twa_dma_tag, tr->tr_dma_map, BUS_DMASYNC_PREREAD); if (tr->tr_flags & TWA_CMD_DATA_OUT) { /* * If we're using an alignment buffer, and we're * writing data, copy the real data out. */ if (tr->tr_flags & TWA_CMD_DATA_COPY_NEEDED) bcopy(tr->tr_real_data, tr->tr_data, tr->tr_real_length); bus_dmamap_sync(tr->tr_sc->twa_dma_tag, tr->tr_dma_map, BUS_DMASYNC_PREWRITE); } error = twa_submit_io(tr); out: if (error) { twa_unmap_request(tr); /* * If the caller had been returned EINPROGRESS, and he has * registered a callback for handling completion, the callback * will never get called because we were unable to submit the * request. So, free up the request right here. */ if ((tr->tr_flags & TWA_CMD_IN_PROGRESS) && (tr->tr_callback)) twa_release_request(tr); } } /* * Function name: twa_setup_request_dmamap * Description: Callback of bus_dmamap_load for the buffer associated * with a cmd pkt. * * Input: arg -- ptr to request pkt * segs -- ptr to a list of segment descriptors * nsegments--# of segments * error -- 0 if no errors encountered before callback, * non-zero if errors were encountered * Output: None * Return value: None */ static void twa_setup_request_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error) { struct twa_softc *sc = (struct twa_softc *)arg; twa_dbg_dprint_enter(10, sc); sc->twa_cmd_pkt_phys = segs[0].ds_addr; } /* * Function name: twa_map_request * Description: Maps a cmd pkt and data associated with it, into * DMA'able memory. * * Input: tr -- ptr to request pkt * Output: None * Return value: 0 -- success * non-zero-- failure */ int twa_map_request(struct twa_request *tr) { struct twa_softc *sc = tr->tr_sc; int error = 0; twa_dbg_dprint_enter(10, sc); /* If the command involves data, map that too. */ if (tr->tr_data != NULL) { /* * It's sufficient for the data pointer to be 4-byte aligned * to work with 9000. However, if 4-byte aligned addresses * are passed to bus_dmamap_load, we can get back sg elements * that are not 512-byte multiples in size. So, we will let * only those buffers that are 512-byte aligned to pass * through, and bounce the rest, so as to make sure that we * always get back sg elements that are 512-byte multiples * in size. */ if (((vm_offset_t)tr->tr_data % 512) || (tr->tr_length % 512)) { tr->tr_flags |= TWA_CMD_DATA_COPY_NEEDED; tr->tr_real_data = tr->tr_data; /* save original data pointer */ tr->tr_real_length = tr->tr_length; /* save original data length */ tr->tr_length = (tr->tr_length + 511) & ~511; tr->tr_data = malloc(tr->tr_length, TWA_MALLOC_CLASS, M_NOWAIT); if (tr->tr_data == NULL) { twa_printf(sc, "%s: malloc failed\n", __func__); tr->tr_data = tr->tr_real_data; /* restore original data pointer */ tr->tr_length = tr->tr_real_length; /* restore original data length */ return(ENOMEM); } } /* * Map the data buffer into bus space and build the s/g list. */ if ((error = bus_dmamap_load(sc->twa_dma_tag, tr->tr_dma_map, tr->tr_data, tr->tr_length, twa_setup_data_dmamap, tr, BUS_DMA_WAITOK))) { if (error == EINPROGRESS) { tr->tr_flags |= TWA_CMD_IN_PROGRESS; if (tr->tr_cmd_pkt_type & TWA_CMD_PKT_TYPE_EXTERNAL) twa_disallow_new_requests(sc); error = 0; } else { /* Free alignment buffer if it was used. */ if (tr->tr_flags & TWA_CMD_DATA_COPY_NEEDED) { free(tr->tr_data, TWA_MALLOC_CLASS); tr->tr_data = tr->tr_real_data; /* restore 'real' data pointer */ tr->tr_length = tr->tr_real_length;/* restore 'real' data length */ } } } else error = tr->tr_error; } else if ((error = twa_submit_io(tr))) twa_unmap_request(tr); return(error); } /* * Function name: twa_unmap_request * Description: Undoes the mapping done by twa_map_request. * * Input: tr -- ptr to request pkt * Output: None * Return value: None */ void twa_unmap_request(struct twa_request *tr) { struct twa_softc *sc = tr->tr_sc; u_int8_t cmd_status; twa_dbg_dprint_enter(10, sc); /* If the command involved data, unmap that too. */ if (tr->tr_data != NULL) { if (tr->tr_cmd_pkt_type & TWA_CMD_PKT_TYPE_9K) cmd_status = tr->tr_command->command.cmd_pkt_9k.status; else cmd_status = tr->tr_command->command.cmd_pkt_7k.generic.status; if (tr->tr_flags & TWA_CMD_DATA_IN) { bus_dmamap_sync(sc->twa_dma_tag, tr->tr_dma_map, BUS_DMASYNC_POSTREAD); /* * If we are using a bounce buffer, and we are reading * data, copy the real data in. */ if (tr->tr_flags & TWA_CMD_DATA_COPY_NEEDED) if (cmd_status == 0) bcopy(tr->tr_data, tr->tr_real_data, tr->tr_real_length); } if (tr->tr_flags & TWA_CMD_DATA_OUT) bus_dmamap_sync(sc->twa_dma_tag, tr->tr_dma_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->twa_dma_tag, tr->tr_dma_map); } /* Free alignment buffer if it was used. */ if (tr->tr_flags & TWA_CMD_DATA_COPY_NEEDED) { free(tr->tr_data, TWA_MALLOC_CLASS); tr->tr_data = tr->tr_real_data; /* restore 'real' data pointer */ tr->tr_length = tr->tr_real_length;/* restore 'real' data length */ } } #ifdef TWA_DEBUG void twa_report(void); void twa_reset_stats(void); void twa_print_request(struct twa_request *tr, int req_type); /* * Function name: twa_report * Description: For being called from ddb. Prints controller stats, * and requests, if any, that are in the wrong queue. * * Input: None * Output: None * Return value: None */ void twa_report(void) { struct twa_softc *sc; struct twa_request *tr; int s; int i; s = splcam(); for (i = 0; (sc = devclass_get_softc(twa_devclass, i)) != NULL; i++) { twa_print_controller(sc); TAILQ_FOREACH(tr, &sc->twa_busy, tr_link) twa_print_request(tr, TWA_CMD_BUSY); TAILQ_FOREACH(tr, &sc->twa_complete, tr_link) twa_print_request(tr, TWA_CMD_COMPLETE); } splx(s); } /* * Function name: twa_reset_stats * Description: For being called from ddb. * Resets some controller stats. * * Input: None * Output: None * Return value: None */ void twa_reset_stats(void) { struct twa_softc *sc; int s; int i; s = splcam(); for (i = 0; (sc = devclass_get_softc(twa_devclass, i)) != NULL; i++) { sc->twa_qstats[TWAQ_FREE].q_max = 0; sc->twa_qstats[TWAQ_BUSY].q_max = 0; sc->twa_qstats[TWAQ_PENDING].q_max = 0; sc->twa_qstats[TWAQ_COMPLETE].q_max = 0; } splx(s); } /* * Function name: twa_print_request * Description: Prints a given request if it's in the wrong queue. * * Input: tr -- ptr to request pkt * req_type-- expected status of the given request * Output: None * Return value: None */ void twa_print_request(struct twa_request *tr, int req_type) { struct twa_softc *sc = tr->tr_sc; struct twa_command_packet *cmdpkt = tr->tr_command; struct twa_command_9k *cmd9k; union twa_command_7k *cmd7k; u_int8_t *cdb; int cmd_phys_addr; if (tr->tr_status != req_type) { twa_printf(sc, "Invalid %s request %p in queue! req_type = %x, queue_type = %x\n", (tr->tr_cmd_pkt_type & TWA_CMD_PKT_TYPE_INTERNAL) ? "INTERNAL" : "EXTERNAL", tr, tr->tr_status, req_type); if (tr->tr_cmd_pkt_type & TWA_CMD_PKT_TYPE_9K) { cmd9k = &(cmdpkt->command.cmd_pkt_9k); cmd_phys_addr = cmd9k->sg_list[0].address; twa_printf(sc, "9K cmd = %x %x %x %x %x %x %x %x %x\n", cmd9k->command.opcode, cmd9k->command.reserved, cmd9k->unit, cmd9k->request_id, cmd9k->status, cmd9k->sgl_offset, cmd9k->sgl_entries, cmd_phys_addr, cmd9k->sg_list[0].length); cdb = (u_int8_t *)(cmdpkt->command.cmd_pkt_9k.cdb); twa_printf(sc, "cdb = %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n", cdb[0], cdb[1], cdb[2], cdb[3], cdb[4], cdb[5], cdb[6], cdb[7], cdb[8], cdb[9], cdb[10], cdb[11], cdb[12], cdb[13], cdb[14], cdb[15]); } else { cmd7k = &(cmdpkt->command.cmd_pkt_7k); twa_printf(sc, "7K cmd = %x %x %x %x %x %x %x %x %x\n", cmd7k->generic.opcode, cmd7k->generic.sgl_offset, cmd7k->generic.size, cmd7k->generic.request_id, cmd7k->generic.unit, cmd7k->generic.host_id, cmd7k->generic.status, cmd7k->generic.flags, cmd7k->generic.count); } cmd_phys_addr = (int)(tr->tr_cmd_phys); twa_printf(sc, "cmdphys=0x%x data=%p length=0x%x\n", cmd_phys_addr, tr->tr_data, tr->tr_length); twa_printf(sc, "req_id=0x%x flags=0x%x callback=%p private=%p\n", tr->tr_request_id, tr->tr_flags, tr->tr_callback, tr->tr_private); } } #endif