/*- * Copyright (c) 2000 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/i386/linux/linux_machdep.c,v 1.6.2.4 2001/11/05 19:08:23 marcel Exp $ * $DragonFly: src/sys/emulation/linux/i386/linux_machdep.c,v 1.23 2007/07/30 17:41:23 pavalos Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "linux.h" #include "linux_proto.h" #include "../linux_ipc.h" #include "../linux_signal.h" #include "../linux_util.h" struct l_descriptor { l_uint entry_number; l_ulong base_addr; l_uint limit; l_uint seg_32bit:1; l_uint contents:2; l_uint read_exec_only:1; l_uint limit_in_pages:1; l_uint seg_not_present:1; l_uint useable:1; }; struct l_old_select_argv { l_int nfds; l_fd_set *readfds; l_fd_set *writefds; l_fd_set *exceptfds; struct l_timeval *timeout; }; int linux_to_bsd_sigaltstack(int lsa) { int bsa = 0; if (lsa & LINUX_SS_DISABLE) bsa |= SS_DISABLE; if (lsa & LINUX_SS_ONSTACK) bsa |= SS_ONSTACK; return (bsa); } int bsd_to_linux_sigaltstack(int bsa) { int lsa = 0; if (bsa & SS_DISABLE) lsa |= LINUX_SS_DISABLE; if (bsa & SS_ONSTACK) lsa |= LINUX_SS_ONSTACK; return (lsa); } int sys_linux_execve(struct linux_execve_args *args) { struct nlookupdata nd; struct image_args exec_args; char *path; int error; error = linux_copyin_path(args->path, &path, LINUX_PATH_EXISTS); if (error) return (error); #ifdef DEBUG if (ldebug(execve)) kprintf(ARGS(execve, "%s"), path); #endif error = nlookup_init(&nd, path, UIO_SYSSPACE, NLC_FOLLOW); bzero(&exec_args, sizeof(exec_args)); if (error == 0) { error = exec_copyin_args(&exec_args, path, PATH_SYSSPACE, args->argp, args->envp); } if (error == 0) error = kern_execve(&nd, &exec_args); nlookup_done(&nd); /* * The syscall result is returned in registers to the new program. * Linux will register %edx as an atexit function and we must be * sure to set it to 0. XXX */ if (error == 0) args->sysmsg_result64 = 0; exec_free_args(&exec_args); linux_free_path(&path); if (error < 0) { /* We hit a lethal error condition. Let's die now. */ exit1(W_EXITCODE(0, SIGABRT)); /* NOTREACHED */ } return(error); } struct l_ipc_kludge { struct l_msgbuf *msgp; l_long msgtyp; }; int sys_linux_ipc(struct linux_ipc_args *args) { int error = 0; switch (args->what & 0xFFFF) { case LINUX_SEMOP: { struct linux_semop_args a; a.semid = args->arg1; a.tsops = args->ptr; a.nsops = args->arg2; a.sysmsg_lresult = 0; error = linux_semop(&a); args->sysmsg_lresult = a.sysmsg_lresult; break; } case LINUX_SEMGET: { struct linux_semget_args a; a.key = args->arg1; a.nsems = args->arg2; a.semflg = args->arg3; a.sysmsg_lresult = 0; error = linux_semget(&a); args->sysmsg_lresult = a.sysmsg_lresult; break; } case LINUX_SEMCTL: { struct linux_semctl_args a; int error; a.semid = args->arg1; a.semnum = args->arg2; a.cmd = args->arg3; a.sysmsg_lresult = 0; error = copyin((caddr_t)args->ptr, &a.arg, sizeof(a.arg)); if (error) return (error); error = linux_semctl(&a); args->sysmsg_lresult = a.sysmsg_lresult; break; } case LINUX_MSGSND: { struct linux_msgsnd_args a; a.msqid = args->arg1; a.msgp = args->ptr; a.msgsz = args->arg2; a.msgflg = args->arg3; a.sysmsg_lresult = 0; error = linux_msgsnd(&a); args->sysmsg_lresult = a.sysmsg_lresult; break; } case LINUX_MSGRCV: { struct linux_msgrcv_args a; a.msqid = args->arg1; a.msgsz = args->arg2; a.msgflg = args->arg3; a.sysmsg_lresult = 0; if ((args->what >> 16) == 0) { struct l_ipc_kludge tmp; int error; if (args->ptr == NULL) return (EINVAL); error = copyin((caddr_t)args->ptr, &tmp, sizeof(tmp)); if (error) return (error); a.msgp = tmp.msgp; a.msgtyp = tmp.msgtyp; } else { a.msgp = args->ptr; a.msgtyp = args->arg5; } error = linux_msgrcv(&a); args->sysmsg_lresult = a.sysmsg_lresult; break; } case LINUX_MSGGET: { struct linux_msgget_args a; a.key = args->arg1; a.msgflg = args->arg2; a.sysmsg_lresult = 0; error = linux_msgget(&a); args->sysmsg_lresult = a.sysmsg_lresult; break; } case LINUX_MSGCTL: { struct linux_msgctl_args a; a.msqid = args->arg1; a.cmd = args->arg2; a.buf = args->ptr; a.sysmsg_lresult = 0; error = linux_msgctl(&a); args->sysmsg_lresult = a.sysmsg_lresult; break; } case LINUX_SHMAT: { struct linux_shmat_args a; a.shmid = args->arg1; a.shmaddr = args->ptr; a.shmflg = args->arg2; a.raddr = (l_ulong *)args->arg3; a.sysmsg_lresult = 0; error = linux_shmat(&a); args->sysmsg_lresult = a.sysmsg_lresult; break; } case LINUX_SHMDT: { struct linux_shmdt_args a; a.shmaddr = args->ptr; a.sysmsg_lresult = 0; error = linux_shmdt(&a); args->sysmsg_lresult = a.sysmsg_lresult; break; } case LINUX_SHMGET: { struct linux_shmget_args a; a.key = args->arg1; a.size = args->arg2; a.shmflg = args->arg3; a.sysmsg_lresult = 0; error = linux_shmget(&a); args->sysmsg_lresult = a.sysmsg_lresult; break; } case LINUX_SHMCTL: { struct linux_shmctl_args a; a.shmid = args->arg1; a.cmd = args->arg2; a.buf = args->ptr; a.sysmsg_lresult = 0; error = linux_shmctl(&a); args->sysmsg_lresult = a.sysmsg_lresult; break; } default: error = EINVAL; break; } return(error); } int sys_linux_old_select(struct linux_old_select_args *args) { struct l_old_select_argv linux_args; struct linux_select_args newsel; int error; #ifdef DEBUG if (ldebug(old_select)) kprintf(ARGS(old_select, "%p"), args->ptr); #endif error = copyin((caddr_t)args->ptr, &linux_args, sizeof(linux_args)); if (error) return (error); newsel.sysmsg_iresult = 0; newsel.nfds = linux_args.nfds; newsel.readfds = linux_args.readfds; newsel.writefds = linux_args.writefds; newsel.exceptfds = linux_args.exceptfds; newsel.timeout = linux_args.timeout; error = sys_linux_select(&newsel); args->sysmsg_iresult = newsel.sysmsg_iresult; return(error); } int sys_linux_fork(struct linux_fork_args *args) { int error; #ifdef DEBUG if (ldebug(fork)) kprintf(ARGS(fork, "")); #endif if ((error = sys_fork((struct fork_args *)args)) != 0) return (error); if (args->sysmsg_iresult == 1) args->sysmsg_iresult = 0; return (0); } int sys_linux_exit_group(struct linux_exit_group_args *args) { struct exit_args newargs; int error; newargs.sysmsg_iresult = 0; newargs.rval = args->rval; error = sys_exit(&newargs); args->sysmsg_iresult = newargs.sysmsg_iresult; return (error); } int sys_linux_vfork(struct linux_vfork_args *args) { int error; #ifdef DEBUG if (ldebug(vfork)) kprintf(ARGS(vfork, "")); #endif if ((error = sys_vfork((struct vfork_args *)args)) != 0) return (error); /* Are we the child? */ if (args->sysmsg_iresult == 1) args->sysmsg_iresult = 0; return (0); } #define CLONE_VM 0x100 #define CLONE_FS 0x200 #define CLONE_FILES 0x400 #define CLONE_SIGHAND 0x800 #define CLONE_PID 0x1000 int sys_linux_clone(struct linux_clone_args *args) { int error, ff = RFPROC; struct proc *p2; int exit_signal; vm_offset_t start; struct rfork_args rf_args; #ifdef DEBUG if (ldebug(clone)) { kprintf(ARGS(clone, "flags %x, stack %x"), (unsigned int)args->flags, (unsigned int)args->stack); if (args->flags & CLONE_PID) kprintf(LMSG("CLONE_PID not yet supported")); } #endif if (!args->stack) return (EINVAL); exit_signal = args->flags & 0x000000ff; if (exit_signal >= LINUX_NSIG) return (EINVAL); if (exit_signal <= LINUX_SIGTBLSZ) exit_signal = linux_to_bsd_signal[_SIG_IDX(exit_signal)]; /* RFTHREAD probably not necessary here, but it shouldn't hurt */ ff |= RFTHREAD; if (args->flags & CLONE_VM) ff |= RFMEM; if (args->flags & CLONE_SIGHAND) ff |= RFSIGSHARE; if (!(args->flags & CLONE_FILES)) ff |= RFFDG; error = 0; start = 0; rf_args.flags = ff; rf_args.sysmsg_iresult = 0; if ((error = sys_rfork(&rf_args)) != 0) return (error); args->sysmsg_iresult = rf_args.sysmsg_iresult; p2 = pfind(rf_args.sysmsg_iresult); if (p2 == NULL) return (ESRCH); p2->p_sigparent = exit_signal; ONLY_LWP_IN_PROC(p2)->lwp_md.md_regs->tf_esp = (unsigned int)args->stack; #ifdef DEBUG if (ldebug(clone)) kprintf(LMSG("clone: successful rfork to %ld"), (long)p2->p_pid); #endif return (0); } /* XXX move */ struct l_mmap_argv { l_caddr_t addr; l_int len; l_int prot; l_int flags; l_int fd; l_int pos; }; #define STACK_SIZE (2 * 1024 * 1024) #define GUARD_SIZE (4 * PAGE_SIZE) static int linux_mmap_common(caddr_t linux_addr, size_t linux_len, int linux_prot, int linux_flags, int linux_fd, off_t pos, void **res) { struct thread *td = curthread; struct proc *p = td->td_proc; caddr_t addr; void *new; int error, flags, len, prot, fd; flags = 0; if (linux_flags & LINUX_MAP_SHARED) flags |= MAP_SHARED; if (linux_flags & LINUX_MAP_PRIVATE) flags |= MAP_PRIVATE; if (linux_flags & LINUX_MAP_FIXED) flags |= MAP_FIXED; if (linux_flags & LINUX_MAP_ANON) { flags |= MAP_ANON; } else { flags |= MAP_NOSYNC; } if (linux_flags & LINUX_MAP_GROWSDOWN) { flags |= MAP_STACK; /* The linux MAP_GROWSDOWN option does not limit auto * growth of the region. Linux mmap with this option * takes as addr the inital BOS, and as len, the initial * region size. It can then grow down from addr without * limit. However, linux threads has an implicit internal * limit to stack size of STACK_SIZE. Its just not * enforced explicitly in linux. But, here we impose * a limit of (STACK_SIZE - GUARD_SIZE) on the stack * region, since we can do this with our mmap. * * Our mmap with MAP_STACK takes addr as the maximum * downsize limit on BOS, and as len the max size of * the region. It them maps the top SGROWSIZ bytes, * and autgrows the region down, up to the limit * in addr. * * If we don't use the MAP_STACK option, the effect * of this code is to allocate a stack region of a * fixed size of (STACK_SIZE - GUARD_SIZE). */ /* This gives us TOS */ addr = linux_addr + linux_len; if (addr > p->p_vmspace->vm_maxsaddr) { /* Some linux apps will attempt to mmap * thread stacks near the top of their * address space. If their TOS is greater * than vm_maxsaddr, vm_map_growstack() * will confuse the thread stack with the * process stack and deliver a SEGV if they * attempt to grow the thread stack past their * current stacksize rlimit. To avoid this, * adjust vm_maxsaddr upwards to reflect * the current stacksize rlimit rather * than the maximum possible stacksize. * It would be better to adjust the * mmap'ed region, but some apps do not check * mmap's return value. */ p->p_vmspace->vm_maxsaddr = (char *)USRSTACK - p->p_rlimit[RLIMIT_STACK].rlim_cur; } /* This gives us our maximum stack size */ if (linux_len > STACK_SIZE - GUARD_SIZE) { len = linux_len; } else { len = STACK_SIZE - GUARD_SIZE; } /* This gives us a new BOS. If we're using VM_STACK, then * mmap will just map the top SGROWSIZ bytes, and let * the stack grow down to the limit at BOS. If we're * not using VM_STACK we map the full stack, since we * don't have a way to autogrow it. */ addr -= len; } else { addr = linux_addr; len = linux_len; } prot = linux_prot | PROT_READ; if (linux_flags & LINUX_MAP_ANON) { fd = -1; } else { fd = linux_fd; } #ifdef DEBUG if (ldebug(mmap) || ldebug(mmap2)) kprintf("-> (%p, %d, %d, 0x%08x, %d, %lld)\n", addr, len, prot, flags, fd, pos); #endif error = kern_mmap(curproc->p_vmspace, addr, len, prot, flags, fd, pos, &new); if (error == 0) *res = new; return (error); } int sys_linux_mmap(struct linux_mmap_args *args) { struct l_mmap_argv linux_args; int error; error = copyin((caddr_t)args->ptr, &linux_args, sizeof(linux_args)); if (error) return (error); #ifdef DEBUG if (ldebug(mmap)) kprintf(ARGS(mmap, "%p, %d, %d, 0x%08x, %d, %d"), (void *)linux_args.addr, linux_args.len, linux_args.prot, linux_args.flags, linux_args.fd, linux_args.pos); #endif error = linux_mmap_common(linux_args.addr, linux_args.len, linux_args.prot, linux_args.flags, linux_args.fd, linux_args.pos, &args->sysmsg_resultp); #ifdef DEBUG if (ldebug(mmap)) kprintf("-> %p\n", args->sysmsg_resultp); #endif return(error); } int sys_linux_mmap2(struct linux_mmap2_args *args) { int error; #ifdef DEBUG if (ldebug(mmap2)) kprintf(ARGS(mmap2, "%p, %d, %d, 0x%08x, %d, %d"), (void *)args->addr, args->len, args->prot, args->flags, args->fd, args->pgoff); #endif error = linux_mmap_common((void *)args->addr, args->len, args->prot, args->flags, args->fd, args->pgoff * PAGE_SIZE, &args->sysmsg_resultp); #ifdef DEBUG if (ldebug(mmap2)) kprintf("-> %p\n", args->sysmsg_resultp); #endif return (error); } int sys_linux_pipe(struct linux_pipe_args *args) { int error; int reg_edx; struct pipe_args bsd_args; #ifdef DEBUG if (ldebug(pipe)) kprintf(ARGS(pipe, "*")); #endif reg_edx = args->sysmsg_fds[1]; error = sys_pipe(&bsd_args); if (error) { args->sysmsg_fds[1] = reg_edx; return (error); } error = copyout(bsd_args.sysmsg_fds, args->pipefds, 2*sizeof(int)); if (error) { args->sysmsg_fds[1] = reg_edx; return (error); } args->sysmsg_fds[1] = reg_edx; args->sysmsg_fds[0] = 0; return (0); } int sys_linux_ioperm(struct linux_ioperm_args *args) { struct sysarch_args sa; struct i386_ioperm_args *iia; caddr_t sg; int error; sg = stackgap_init(); iia = stackgap_alloc(&sg, sizeof(struct i386_ioperm_args)); iia->start = args->start; iia->length = args->length; iia->enable = args->enable; sa.sysmsg_resultp = NULL; sa.op = I386_SET_IOPERM; sa.parms = (char *)iia; error = sys_sysarch(&sa); args->sysmsg_resultp = sa.sysmsg_resultp; return(error); } int sys_linux_iopl(struct linux_iopl_args *args) { struct thread *td = curthread; struct lwp *lp = td->td_lwp; int error; KKASSERT(lp); if (args->level < 0 || args->level > 3) return (EINVAL); if ((error = priv_check(td, PRIV_ROOT)) != 0) return (error); if (securelevel > 0) return (EPERM); lp->lwp_md.md_regs->tf_eflags = (lp->lwp_md.md_regs->tf_eflags & ~PSL_IOPL) | (args->level * (PSL_IOPL / 3)); return (0); } int sys_linux_modify_ldt(struct linux_modify_ldt_args *uap) { int error; caddr_t sg; struct sysarch_args args; struct i386_ldt_args *ldt; struct l_descriptor ld; union descriptor *desc; sg = stackgap_init(); if (uap->ptr == NULL) return (EINVAL); switch (uap->func) { case 0x00: /* read_ldt */ ldt = stackgap_alloc(&sg, sizeof(*ldt)); ldt->start = 0; ldt->descs = uap->ptr; ldt->num = uap->bytecount / sizeof(union descriptor); args.op = I386_GET_LDT; args.parms = (char*)ldt; args.sysmsg_iresult = 0; error = sys_sysarch(&args); uap->sysmsg_iresult = args.sysmsg_iresult * sizeof(union descriptor); break; case 0x01: /* write_ldt */ case 0x11: /* write_ldt */ if (uap->bytecount != sizeof(ld)) return (EINVAL); error = copyin(uap->ptr, &ld, sizeof(ld)); if (error) return (error); ldt = stackgap_alloc(&sg, sizeof(*ldt)); desc = stackgap_alloc(&sg, sizeof(*desc)); ldt->start = ld.entry_number; ldt->descs = desc; ldt->num = 1; desc->sd.sd_lolimit = (ld.limit & 0x0000ffff); desc->sd.sd_hilimit = (ld.limit & 0x000f0000) >> 16; desc->sd.sd_lobase = (ld.base_addr & 0x00ffffff); desc->sd.sd_hibase = (ld.base_addr & 0xff000000) >> 24; desc->sd.sd_type = SDT_MEMRO | ((ld.read_exec_only ^ 1) << 1) | (ld.contents << 2); desc->sd.sd_dpl = 3; desc->sd.sd_p = (ld.seg_not_present ^ 1); desc->sd.sd_xx = 0; desc->sd.sd_def32 = ld.seg_32bit; desc->sd.sd_gran = ld.limit_in_pages; args.op = I386_SET_LDT; args.parms = (char*)ldt; args.sysmsg_iresult = 0; error = sys_sysarch(&args); uap->sysmsg_iresult = args.sysmsg_iresult; break; default: error = EINVAL; break; } return (error); } int sys_linux_sigaction(struct linux_sigaction_args *args) { l_osigaction_t osa; l_sigaction_t linux_act, linux_oact; struct sigaction act, oact; int error; #ifdef DEBUG if (ldebug(sigaction)) kprintf(ARGS(sigaction, "%d, %p, %p"), args->sig, (void *)args->nsa, (void *)args->osa); #endif if (args->nsa) { error = copyin(args->nsa, &osa, sizeof(l_osigaction_t)); if (error) return (error); linux_act.lsa_handler = osa.lsa_handler; linux_act.lsa_flags = osa.lsa_flags; linux_act.lsa_restorer = osa.lsa_restorer; LINUX_SIGEMPTYSET(linux_act.lsa_mask); linux_act.lsa_mask.__bits[0] = osa.lsa_mask; linux_to_bsd_sigaction(&linux_act, &act); } error = kern_sigaction(args->sig, args->nsa ? &act : NULL, args->osa ? &oact : NULL); if (args->osa != NULL && !error) { bsd_to_linux_sigaction(&oact, &linux_oact); osa.lsa_handler = linux_oact.lsa_handler; osa.lsa_flags = linux_oact.lsa_flags; osa.lsa_restorer = linux_oact.lsa_restorer; osa.lsa_mask = linux_oact.lsa_mask.__bits[0]; error = copyout(&osa, args->osa, sizeof(l_osigaction_t)); } return (error); } /* * Linux has two extra args, restart and oldmask. We dont use these, * but it seems that "restart" is actually a context pointer that * enables the signal to happen with a different register set. */ int sys_linux_sigsuspend(struct linux_sigsuspend_args *args) { l_sigset_t linux_mask; sigset_t mask; int error; #ifdef DEBUG if (ldebug(sigsuspend)) kprintf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask); #endif LINUX_SIGEMPTYSET(mask); mask.__bits[0] = args->mask; linux_to_bsd_sigset(&linux_mask, &mask); error = kern_sigsuspend(&mask); return(error); } int sys_linux_rt_sigsuspend(struct linux_rt_sigsuspend_args *uap) { l_sigset_t linux_mask; sigset_t mask; int error; #ifdef DEBUG if (ldebug(rt_sigsuspend)) kprintf(ARGS(rt_sigsuspend, "%p, %d"), (void *)uap->newset, uap->sigsetsize); #endif if (uap->sigsetsize != sizeof(l_sigset_t)) return (EINVAL); error = copyin(uap->newset, &linux_mask, sizeof(l_sigset_t)); if (error) return (error); linux_to_bsd_sigset(&linux_mask, &mask); error = kern_sigsuspend(&mask); return(error); } int sys_linux_pause(struct linux_pause_args *args) { struct thread *td = curthread; struct lwp *lp = td->td_lwp; sigset_t mask; int error; #ifdef DEBUG if (ldebug(pause)) kprintf(ARGS(pause, "")); #endif mask = lp->lwp_sigmask; error = kern_sigsuspend(&mask); return(error); } int sys_linux_sigaltstack(struct linux_sigaltstack_args *uap) { stack_t ss, oss; l_stack_t linux_ss; int error; #ifdef DEBUG if (ldebug(sigaltstack)) kprintf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss); #endif if (uap->uss) { error = copyin(uap->uss, &linux_ss, sizeof(l_stack_t)); if (error) return (error); ss.ss_sp = linux_ss.ss_sp; ss.ss_size = linux_ss.ss_size; ss.ss_flags = linux_to_bsd_sigaltstack(linux_ss.ss_flags); } error = kern_sigaltstack(uap->uss ? &ss : NULL, uap->uoss ? &oss : NULL); if (error == 0 && uap->uoss) { linux_ss.ss_sp = oss.ss_sp; linux_ss.ss_size = oss.ss_size; linux_ss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags); error = copyout(&linux_ss, uap->uoss, sizeof(l_stack_t)); } return (error); }