.rn '' }` ''' $RCSfile$$Revision$$Date$ ''' ''' $Log$ ''' .de Sh .br .if t .Sp .ne 5 .PP \fB\\$1\fR .PP .. .de Sp .if t .sp .5v .if n .sp .. .de Ip .br .ie \\n(.$>=3 .ne \\$3 .el .ne 3 .IP "\\$1" \\$2 .. .de Vb .ft CW .nf .ne \\$1 .. .de Ve .ft R .fi .. ''' ''' ''' Set up \*(-- to give an unbreakable dash; ''' string Tr holds user defined translation string. ''' Bell System Logo is used as a dummy character. ''' .tr \(*W-|\(bv\*(Tr .ie n \{\ .ds -- \(*W- .ds PI pi .if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch .if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch .ds L" "" .ds R" "" ''' \*(M", \*(S", \*(N" and \*(T" are the equivalent of ''' \*(L" and \*(R", except that they are used on ".xx" lines, ''' such as .IP and .SH, which do another additional levels of ''' double-quote interpretation .ds M" """ .ds S" """ .ds N" """"" .ds T" """"" .ds L' ' .ds R' ' .ds M' ' .ds S' ' .ds N' ' .ds T' ' 'br\} .el\{\ .ds -- \(em\| .tr \*(Tr .ds L" `` .ds R" '' .ds M" `` .ds S" '' .ds N" `` .ds T" '' .ds L' ` .ds R' ' .ds M' ` .ds S' ' .ds N' ` .ds T' ' .ds PI \(*p 'br\} .\" If the F register is turned on, we'll generate .\" index entries out stderr for the following things: .\" TH Title .\" SH Header .\" Sh Subsection .\" Ip Item .\" X<> Xref (embedded .\" Of course, you have to process the output yourself .\" in some meaninful fashion. .if \nF \{ .de IX .tm Index:\\$1\t\\n%\t"\\$2" .. .nr % 0 .rr F .\} .TH OBJ_nid2obj 3 "0.9.7d" "2/Sep/2004" "OpenSSL" .UC .if n .hy 0 .if n .na .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .de CQ \" put $1 in typewriter font .ft CW 'if n "\c 'if t \\&\\$1\c 'if n \\&\\$1\c 'if n \&" \\&\\$2 \\$3 \\$4 \\$5 \\$6 \\$7 '.ft R .. .\" @(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2 . \" AM - accent mark definitions .bd B 3 . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds ? ? . ds ! ! . ds / . ds q .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds ? \s-2c\h'-\w'c'u*7/10'\u\h'\*(#H'\zi\d\s+2\h'\w'c'u*8/10' . ds ! \s-2\(or\s+2\h'-\w'\(or'u'\v'-.8m'.\v'.8m' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' . ds q o\h'-\w'o'u*8/10'\s-4\v'.4m'\z\(*i\v'-.4m'\s+4\h'\w'o'u*8/10' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds v \\k:\h'-(\\n(.wu*9/10-\*(#H)'\v'-\*(#V'\*(#[\s-4v\s0\v'\*(#V'\h'|\\n:u'\*(#] .ds _ \\k:\h'-(\\n(.wu*9/10-\*(#H+(\*(#F*2/3))'\v'-.4m'\z\(hy\v'.4m'\h'|\\n:u' .ds . \\k:\h'-(\\n(.wu*8/10)'\v'\*(#V*4/10'\z.\v'-\*(#V*4/10'\h'|\\n:u' .ds 3 \*(#[\v'.2m'\s-2\&3\s0\v'-.2m'\*(#] .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E .ds oe o\h'-(\w'o'u*4/10)'e .ds Oe O\h'-(\w'O'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds v \h'-1'\o'\(aa\(ga' . ds _ \h'-1'^ . ds . \h'-1'. . ds 3 3 . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE . ds oe oe . ds Oe OE .\} .rm #[ #] #H #V #F C .SH "NAME" OBJ_nid2obj, OBJ_nid2ln, OBJ_nid2sn, OBJ_obj2nid, OBJ_txt2nid, OBJ_ln2nid, OBJ_sn2nid, OBJ_cmp, OBJ_dup, OBJ_txt2obj, OBJ_obj2txt, OBJ_create, OBJ_cleanup \- ASN1 object utility functions .SH "SYNOPSIS" .PP .Vb 3 \& ASN1_OBJECT * OBJ_nid2obj(int n); \& const char * OBJ_nid2ln(int n); \& const char * OBJ_nid2sn(int n); .Ve .Vb 3 \& int OBJ_obj2nid(const ASN1_OBJECT *o); \& int OBJ_ln2nid(const char *ln); \& int OBJ_sn2nid(const char *sn); .Ve .Vb 1 \& int OBJ_txt2nid(const char *s); .Ve .Vb 2 \& ASN1_OBJECT * OBJ_txt2obj(const char *s, int no_name); \& int OBJ_obj2txt(char *buf, int buf_len, const ASN1_OBJECT *a, int no_name); .Ve .Vb 2 \& int OBJ_cmp(const ASN1_OBJECT *a,const ASN1_OBJECT *b); \& ASN1_OBJECT * OBJ_dup(const ASN1_OBJECT *o); .Ve .Vb 2 \& int OBJ_create(const char *oid,const char *sn,const char *ln); \& void OBJ_cleanup(void); .Ve .SH "DESCRIPTION" The ASN1 object utility functions process ASN1_OBJECT structures which are a representation of the ASN1 OBJECT IDENTIFIER (OID) type. .PP \fIOBJ_nid2obj()\fR, \fIOBJ_nid2ln()\fR and \fIOBJ_nid2sn()\fR convert the NID \fBn\fR to an ASN1_OBJECT structure, its long name and its short name respectively, or \fBNULL\fR is an error occurred. .PP \fIOBJ_obj2nid()\fR, \fIOBJ_ln2nid()\fR, \fIOBJ_sn2nid()\fR return the corresponding NID for the object \fBo\fR, the long name or the short name respectively or NID_undef if an error occurred. .PP \fIOBJ_txt2nid()\fR returns NID corresponding to text string . \fBs\fR can be a long name, a short name or the numerical respresentation of an object. .PP \fIOBJ_txt2obj()\fR converts the text string \fBs\fR into an ASN1_OBJECT structure. If \fBno_name\fR is 0 then long names and short names will be interpreted as well as numerical forms. If \fBno_name\fR is 1 only the numerical form is acceptable. .PP \fIOBJ_obj2txt()\fR converts the \fBASN1_OBJECT\fR \fBa\fR into a textual representation. The representation is written as a null terminated string to \fBbuf\fR at most \fBbuf_len\fR bytes are written, truncating the result if necessary. The total amount of space required is returned. If \fBno_name\fR is 0 then if the object has a long or short name then that will be used, otherwise the numerical form will be used. If \fBno_name\fR is 1 then the numerical form will always be used. .PP \fIOBJ_cmp()\fR compares \fBa\fR to \fBb\fR. If the two are identical 0 is returned. .PP \fIOBJ_dup()\fR returns a copy of \fBo\fR. .PP \fIOBJ_create()\fR adds a new object to the internal table. \fBoid\fR is the numerical form of the object, \fBsn\fR the short name and \fBln\fR the long name. A new NID is returned for the created object. .PP \fIOBJ_cleanup()\fR cleans up OpenSSLs internal object table: this should be called before an application exits if any new objects were added using \fIOBJ_create()\fR. .SH "NOTES" Objects in OpenSSL can have a short name, a long name and a numerical identifier (NID) associated with them. A standard set of objects is represented in an internal table. The appropriate values are defined in the header file \fBobjects.h\fR. .PP For example the OID for commonName has the following definitions: .PP .Vb 3 \& #define SN_commonName "CN" \& #define LN_commonName "commonName" \& #define NID_commonName 13 .Ve New objects can be added by calling \fIOBJ_create()\fR. .PP Table objects have certain advantages over other objects: for example their NIDs can be used in a C language switch statement. They are also static constant structures which are shared: that is there is only a single constant structure for each table object. .PP Objects which are not in the table have the NID value NID_undef. .PP Objects do not need to be in the internal tables to be processed, the functions \fIOBJ_txt2obj()\fR and \fIOBJ_obj2txt()\fR can process the numerical form of an OID. .SH "EXAMPLES" Create an object for \fBcommonName\fR: .PP .Vb 2 \& ASN1_OBJECT *o; \& o = OBJ_nid2obj(NID_commonName); .Ve Check if an object is \fBcommonName\fR .PP .Vb 2 \& if (OBJ_obj2nid(obj) == NID_commonName) \& /* Do something */ .Ve Create a new NID and initialize an object from it: .PP .Vb 3 \& int new_nid; \& ASN1_OBJECT *obj; \& new_nid = OBJ_create("1.2.3.4", "NewOID", "New Object Identifier"); .Ve .Vb 3 \& obj = OBJ_nid2obj(new_nid); \& \&Create a new object directly: .Ve .Vb 1 \& obj = OBJ_txt2obj("1.2.3.4", 1); .Ve .SH "BUGS" \fIOBJ_obj2txt()\fR is awkward and messy to use: it doesn't follow the convention of other OpenSSL functions where the buffer can be set to \fBNULL\fR to determine the amount of data that should be written. Instead \fBbuf\fR must point to a valid buffer and \fBbuf_len\fR should be set to a positive value. A buffer length of 80 should be more than enough to handle any OID encountered in practice. .SH "RETURN VALUES" \fIOBJ_nid2obj()\fR returns an \fBASN1_OBJECT\fR structure or \fBNULL\fR is an error occurred. .PP \fIOBJ_nid2ln()\fR and \fIOBJ_nid2sn()\fR returns a valid string or \fBNULL\fR on error. .PP \fIOBJ_obj2nid()\fR, \fIOBJ_ln2nid()\fR, \fIOBJ_sn2nid()\fR and \fIOBJ_txt2nid()\fR return a NID or \fBNID_undef\fR on error. .SH "SEE ALSO" ERR_get_error(3) .SH "HISTORY" TBA .rn }` '' .IX Title "OBJ_nid2obj 3" .IX Name "OBJ_nid2obj, OBJ_nid2ln, OBJ_nid2sn, OBJ_obj2nid, OBJ_txt2nid, OBJ_ln2nid, OBJ_sn2nid, OBJ_cmp, OBJ_dup, OBJ_txt2obj, OBJ_obj2txt, OBJ_create, OBJ_cleanup - ASN1 object utility functions" .IX Header "NAME" .IX Header "SYNOPSIS" .IX Header "DESCRIPTION" .IX Header "NOTES" .IX Header "EXAMPLES" .IX Header "BUGS" .IX Header "RETURN VALUES" .IX Header "SEE ALSO" .IX Header "HISTORY"