/* Implementation of Password-Based Cryptography as per PKCS#5 * Copyright (C) 2002,2003 Simon Josefsson * Copyright (C) 2004 Free Software Foundation * * LUKS code * Copyright (C) 2004 Clemens Fruhwirth * Copyright (C) 2009 Red Hat, Inc. All rights reserved. * * This file is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This file is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this file; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include static volatile uint64_t __PBKDF2_global_j = 0; static volatile uint64_t __PBKDF2_performance = 0; /* * 5.2 PBKDF2 * * PBKDF2 applies a pseudorandom function (see Appendix B.1 for an * example) to derive keys. The length of the derived key is essentially * unbounded. (However, the maximum effective search space for the * derived key may be limited by the structure of the underlying * pseudorandom function. See Appendix B.1 for further discussion.) * PBKDF2 is recommended for new applications. * * PBKDF2 (P, S, c, dkLen) * * Options: PRF underlying pseudorandom function (hLen * denotes the length in octets of the * pseudorandom function output) * * Input: P password, an octet string (ASCII or UTF-8) * S salt, an octet string * c iteration count, a positive integer * dkLen intended length in octets of the derived * key, a positive integer, at most * (2^32 - 1) * hLen * * Output: DK derived key, a dkLen-octet string */ #define MAX_PRF_BLOCK_LEN 80 static int pkcs5_pbkdf2(const char *hash, const char *P, size_t Plen, const char *S, size_t Slen, unsigned int c, unsigned int dkLen, char *DK, int perfcheck) { char U[MAX_PRF_BLOCK_LEN]; char T[MAX_PRF_BLOCK_LEN]; const EVP_MD *PRF; HMAC_CTX *ctx; int i, k, rc = -EINVAL; unsigned int u, hLen, l, r; unsigned char *p; size_t tmplen = Slen + 4; char *tmp; tmp = alloca(tmplen); if (tmp == NULL) return -ENOMEM; OpenSSL_add_all_digests(); PRF = EVP_get_digestbyname(hash); if (PRF == NULL) { printf("pkcs5_pbkdf2: invalid hash %s\n", hash); return -EINVAL; } hLen = EVP_MD_size(PRF); if (hLen == 0 || hLen > MAX_PRF_BLOCK_LEN) return -EINVAL; if (c == 0) return -EINVAL; if (dkLen == 0) return -EINVAL; /* * * Steps: * * 1. If dkLen > (2^32 - 1) * hLen, output "derived key too long" and * stop. */ if (dkLen > 4294967295U) return -EINVAL; /* * 2. Let l be the number of hLen-octet blocks in the derived key, * rounding up, and let r be the number of octets in the last * block: * * l = CEIL (dkLen / hLen) , * r = dkLen - (l - 1) * hLen . * * Here, CEIL (x) is the "ceiling" function, i.e. the smallest * integer greater than, or equal to, x. */ l = dkLen / hLen; if (dkLen % hLen) l++; r = dkLen - (l - 1) * hLen; /* * 3. For each block of the derived key apply the function F defined * below to the password P, the salt S, the iteration count c, and * the block index to compute the block: * * T_1 = F (P, S, c, 1) , * T_2 = F (P, S, c, 2) , * ... * T_l = F (P, S, c, l) , * * where the function F is defined as the exclusive-or sum of the * first c iterates of the underlying pseudorandom function PRF * applied to the password P and the concatenation of the salt S * and the block index i: * * F (P, S, c, i) = U_1 \xor U_2 \xor ... \xor U_c * * where * * U_1 = PRF (P, S || INT (i)) , * U_2 = PRF (P, U_1) , * ... * U_c = PRF (P, U_{c-1}) . * * Here, INT (i) is a four-octet encoding of the integer i, most * significant octet first. * * 4. Concatenate the blocks and extract the first dkLen octets to * produce a derived key DK: * * DK = T_1 || T_2 || ... || T_l<0..r-1> * * 5. Output the derived key DK. * * Note. The construction of the function F follows a "belt-and- * suspenders" approach. The iterates U_i are computed recursively to * remove a degree of parallelism from an opponent; they are exclusive- * ored together to reduce concerns about the recursion degenerating * into a small set of values. * */ ctx = HMAC_CTX_new(); for (i = 1; (uint) i <= l; i++) { memset(T, 0, hLen); for (u = 1; u <= c ; u++) { if (u == 1) { memcpy(tmp, S, Slen); tmp[Slen + 0] = (i & 0xff000000) >> 24; tmp[Slen + 1] = (i & 0x00ff0000) >> 16; tmp[Slen + 2] = (i & 0x0000ff00) >> 8; tmp[Slen + 3] = (i & 0x000000ff) >> 0; HMAC_Init_ex(ctx, P, Plen, PRF, NULL); HMAC_Update(ctx, tmp, tmplen); HMAC_Final(ctx, U, NULL); } else { HMAC(PRF, P, Plen, U, hLen, U, NULL); } for (k = 0; (uint) k < hLen; k++) T[k] ^= U[k]; if (perfcheck && __PBKDF2_performance) { rc = 0; goto out; } if (perfcheck) __PBKDF2_global_j++; } memcpy(DK + (i - 1) * hLen, T, (uint) i == l ? r : hLen); } rc = 0; out: HMAC_CTX_free(ctx); return rc; } int PBKDF2_HMAC(const char *hash, const char *password, size_t passwordLen, const char *salt, size_t saltLen, unsigned int iterations, char *dKey, size_t dKeyLen) { return pkcs5_pbkdf2(hash, password, passwordLen, salt, saltLen, iterations, (unsigned int)dKeyLen, dKey, 0); } int PBKDF2_HMAC_ready(const char *hash) { const EVP_MD *md; OpenSSL_add_all_digests(); md = EVP_get_digestbyname(hash); if (md == NULL) return -EINVAL; /* Used hash must have at least 160 bits */ if (EVP_MD_size(md) < 20) return -EINVAL; return 1; } static void sigvtalarm(int foo) { __PBKDF2_performance = __PBKDF2_global_j; } /* This code benchmarks PBKDF2 and returns iterations/second using wth specified hash */ int PBKDF2_performance_check(const char *hash, uint64_t *iter) { int r; char buf; struct itimerval it; if (__PBKDF2_global_j) { printf("foo1\n"); return -EBUSY; } if (!PBKDF2_HMAC_ready(hash)) { printf("foo2\n"); return -EINVAL; } signal(SIGVTALRM,sigvtalarm); it.it_interval.tv_usec = 0; it.it_interval.tv_sec = 0; it.it_value.tv_usec = 0; it.it_value.tv_sec = 1; if (setitimer (ITIMER_VIRTUAL, &it, NULL) < 0) { printf("foo3\n"); return -EINVAL; } r = pkcs5_pbkdf2(hash, "foo", 3, "bar", 3, ~(0U), 1, &buf, 1); *iter = __PBKDF2_performance; __PBKDF2_global_j = 0; __PBKDF2_performance = 0; return r; }