/* $FreeBSD$ */ /*- * Copyright (c) 2005, 2006 * Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /*- * Ralink Technology RT2560 chipset driver * http://www.ralinktech.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__DragonFly__) /* empty */ #else #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RT2560_RSSI(sc, rssi) \ ((rssi) > (RT2560_NOISE_FLOOR + (sc)->rssi_corr) ? \ ((rssi) - RT2560_NOISE_FLOOR - (sc)->rssi_corr) : 0) #define RAL_DEBUG #ifdef RAL_DEBUG #define DPRINTF(sc, fmt, ...) do { \ if (sc->sc_debug > 0) \ kprintf(fmt, __VA_ARGS__); \ } while (0) #define DPRINTFN(sc, n, fmt, ...) do { \ if (sc->sc_debug >= (n)) \ kprintf(fmt, __VA_ARGS__); \ } while (0) #else #define DPRINTF(sc, fmt, ...) #define DPRINTFN(sc, n, fmt, ...) #endif static struct ieee80211vap *rt2560_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void rt2560_vap_delete(struct ieee80211vap *); static void rt2560_dma_map_addr(void *, bus_dma_segment_t *, int, int); static int rt2560_alloc_tx_ring(struct rt2560_softc *, struct rt2560_tx_ring *, int); static void rt2560_reset_tx_ring(struct rt2560_softc *, struct rt2560_tx_ring *); static void rt2560_free_tx_ring(struct rt2560_softc *, struct rt2560_tx_ring *); static int rt2560_alloc_rx_ring(struct rt2560_softc *, struct rt2560_rx_ring *, int); static void rt2560_reset_rx_ring(struct rt2560_softc *, struct rt2560_rx_ring *); static void rt2560_free_rx_ring(struct rt2560_softc *, struct rt2560_rx_ring *); static int rt2560_newstate(struct ieee80211vap *, enum ieee80211_state, int); static uint16_t rt2560_eeprom_read(struct rt2560_softc *, uint8_t); static void rt2560_encryption_intr(struct rt2560_softc *); static void rt2560_tx_intr(struct rt2560_softc *); static void rt2560_prio_intr(struct rt2560_softc *); static void rt2560_decryption_intr(struct rt2560_softc *); static void rt2560_rx_intr(struct rt2560_softc *); static void rt2560_beacon_update(struct ieee80211vap *, int item); static void rt2560_beacon_expire(struct rt2560_softc *); static void rt2560_wakeup_expire(struct rt2560_softc *); static void rt2560_scan_start(struct ieee80211com *); static void rt2560_scan_end(struct ieee80211com *); static void rt2560_set_channel(struct ieee80211com *); static void rt2560_setup_tx_desc(struct rt2560_softc *, struct rt2560_tx_desc *, uint32_t, int, int, int, bus_addr_t); static int rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *, struct ieee80211_node *); static int rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *, struct ieee80211_node *); static int rt2560_tx_data(struct rt2560_softc *, struct mbuf *, struct ieee80211_node *); static int rt2560_transmit(struct ieee80211com *, struct mbuf *); static void rt2560_start(struct rt2560_softc *); static void rt2560_watchdog(void *); static void rt2560_parent(struct ieee80211com *); static void rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t); static uint8_t rt2560_bbp_read(struct rt2560_softc *, uint8_t); static void rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t); static void rt2560_set_chan(struct rt2560_softc *, struct ieee80211_channel *); #if 0 static void rt2560_disable_rf_tune(struct rt2560_softc *); #endif static void rt2560_enable_tsf_sync(struct rt2560_softc *); static void rt2560_enable_tsf(struct rt2560_softc *); static void rt2560_update_plcp(struct rt2560_softc *); static void rt2560_update_slot(struct ieee80211com *); static void rt2560_set_basicrates(struct rt2560_softc *, const struct ieee80211_rateset *); static void rt2560_update_led(struct rt2560_softc *, int, int); static void rt2560_set_bssid(struct rt2560_softc *, const uint8_t *); static void rt2560_set_macaddr(struct rt2560_softc *, const uint8_t *); static void rt2560_get_macaddr(struct rt2560_softc *, uint8_t *); static void rt2560_update_promisc(struct ieee80211com *); static const char *rt2560_get_rf(int); static void rt2560_read_config(struct rt2560_softc *); static int rt2560_bbp_init(struct rt2560_softc *); static void rt2560_set_txantenna(struct rt2560_softc *, int); static void rt2560_set_rxantenna(struct rt2560_softc *, int); static void rt2560_init_locked(struct rt2560_softc *); static void rt2560_init(void *); static void rt2560_stop_locked(struct rt2560_softc *); static int rt2560_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static const struct { uint32_t reg; uint32_t val; } rt2560_def_mac[] = { RT2560_DEF_MAC }; static const struct { uint8_t reg; uint8_t val; } rt2560_def_bbp[] = { RT2560_DEF_BBP }; static const uint32_t rt2560_rf2522_r2[] = RT2560_RF2522_R2; static const uint32_t rt2560_rf2523_r2[] = RT2560_RF2523_R2; static const uint32_t rt2560_rf2524_r2[] = RT2560_RF2524_R2; static const uint32_t rt2560_rf2525_r2[] = RT2560_RF2525_R2; static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2; static const uint32_t rt2560_rf2525e_r2[] = RT2560_RF2525E_R2; static const uint32_t rt2560_rf2526_r2[] = RT2560_RF2526_R2; static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2; static const struct { uint8_t chan; uint32_t r1, r2, r4; } rt2560_rf5222[] = { RT2560_RF5222 }; int rt2560_attach(device_t dev, int id) { struct rt2560_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; uint8_t bands[IEEE80211_MODE_BYTES]; int error; sc->sc_dev = dev; #if defined(__DragonFly__) lockinit(&sc->sc_mtx, device_get_nameunit(dev), 0, LK_CANRECURSE); #else mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); #endif callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0); mbufq_init(&sc->sc_snd, ifqmaxlen); /* retrieve RT2560 rev. no */ sc->asic_rev = RAL_READ(sc, RT2560_CSR0); /* retrieve RF rev. no and various other things from EEPROM */ rt2560_read_config(sc); device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n", sc->asic_rev, rt2560_get_rf(sc->rf_rev)); /* * Allocate Tx and Rx rings. */ error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Tx ring\n"); goto fail1; } error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT); if (error != 0) { device_printf(sc->sc_dev, "could not allocate ATIM ring\n"); goto fail2; } error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Prio ring\n"); goto fail3; } error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Beacon ring\n"); goto fail4; } error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Rx ring\n"); goto fail5; } /* retrieve MAC address */ rt2560_get_macaddr(sc, ic->ic_macaddr); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(dev); ic->ic_opmode = IEEE80211_M_STA; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode */ | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ | IEEE80211_C_HOSTAP /* hostap mode */ | IEEE80211_C_MONITOR /* monitor mode */ | IEEE80211_C_AHDEMO /* adhoc demo mode */ | IEEE80211_C_WDS /* 4-address traffic works */ | IEEE80211_C_MBSS /* mesh point link mode */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ | IEEE80211_C_BGSCAN /* capable of bg scanning */ #ifdef notyet | IEEE80211_C_TXFRAG /* handle tx frags */ #endif ; memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); if (sc->rf_rev == RT2560_RF_5222) setbit(bands, IEEE80211_MODE_11A); ieee80211_init_channels(ic, NULL, bands); ieee80211_ifattach(ic); ic->ic_raw_xmit = rt2560_raw_xmit; ic->ic_updateslot = rt2560_update_slot; ic->ic_update_promisc = rt2560_update_promisc; ic->ic_scan_start = rt2560_scan_start; ic->ic_scan_end = rt2560_scan_end; ic->ic_set_channel = rt2560_set_channel; ic->ic_vap_create = rt2560_vap_create; ic->ic_vap_delete = rt2560_vap_delete; ic->ic_parent = rt2560_parent; ic->ic_transmit = rt2560_transmit; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), RT2560_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), RT2560_RX_RADIOTAP_PRESENT); /* * Add a few sysctl knobs. */ #ifdef RAL_DEBUG SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug", CTLFLAG_RW, &sc->sc_debug, 0, "debug msgs"); #endif SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)"); if (bootverbose) ieee80211_announce(ic); return 0; fail5: rt2560_free_tx_ring(sc, &sc->bcnq); fail4: rt2560_free_tx_ring(sc, &sc->prioq); fail3: rt2560_free_tx_ring(sc, &sc->atimq); fail2: rt2560_free_tx_ring(sc, &sc->txq); #if defined(__DragonFly__) fail1: lockuninit(&sc->sc_mtx); #else fail1: mtx_destroy(&sc->sc_mtx); #endif return ENXIO; } int rt2560_detach(void *xsc) { struct rt2560_softc *sc = xsc; struct ieee80211com *ic = &sc->sc_ic; rt2560_stop(sc); ieee80211_ifdetach(ic); mbufq_drain(&sc->sc_snd); rt2560_free_tx_ring(sc, &sc->txq); rt2560_free_tx_ring(sc, &sc->atimq); rt2560_free_tx_ring(sc, &sc->prioq); rt2560_free_tx_ring(sc, &sc->bcnq); rt2560_free_rx_ring(sc, &sc->rxq); #if defined(__DragonFly__) lockuninit(&sc->sc_mtx); #else mtx_destroy(&sc->sc_mtx); #endif return 0; } static struct ieee80211vap * rt2560_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct rt2560_softc *sc = ic->ic_softc; struct rt2560_vap *rvp; struct ieee80211vap *vap; switch (opmode) { case IEEE80211_M_STA: case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: case IEEE80211_M_MONITOR: case IEEE80211_M_HOSTAP: case IEEE80211_M_MBSS: /* XXXRP: TBD */ if (!TAILQ_EMPTY(&ic->ic_vaps)) { device_printf(sc->sc_dev, "only 1 vap supported\n"); return NULL; } if (opmode == IEEE80211_M_STA) flags |= IEEE80211_CLONE_NOBEACONS; break; case IEEE80211_M_WDS: if (TAILQ_EMPTY(&ic->ic_vaps) || ic->ic_opmode != IEEE80211_M_HOSTAP) { device_printf(sc->sc_dev, "wds only supported in ap mode\n"); return NULL; } /* * Silently remove any request for a unique * bssid; WDS vap's always share the local * mac address. */ flags &= ~IEEE80211_CLONE_BSSID; break; default: device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); return NULL; } rvp = kmalloc(sizeof(struct rt2560_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &rvp->ral_vap; ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); /* override state transition machine */ rvp->ral_newstate = vap->iv_newstate; vap->iv_newstate = rt2560_newstate; vap->iv_update_beacon = rt2560_beacon_update; ieee80211_ratectl_init(vap); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); if (TAILQ_FIRST(&ic->ic_vaps) == vap) ic->ic_opmode = opmode; return vap; } static void rt2560_vap_delete(struct ieee80211vap *vap) { struct rt2560_vap *rvp = RT2560_VAP(vap); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); kfree(rvp, M_80211_VAP); } void rt2560_resume(void *xsc) { struct rt2560_softc *sc = xsc; if (sc->sc_ic.ic_nrunning > 0) rt2560_init(sc); } static void rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { if (error != 0) return; KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); *(bus_addr_t *)arg = segs[0].ds_addr; } static int rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring, int count) { int i, error; ring->count = count; ring->queued = 0; ring->cur = ring->next = 0; ring->cur_encrypt = ring->next_encrypt = 0; #if defined(__DragonFly__) error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, count * RT2560_TX_DESC_SIZE, 1, count * RT2560_TX_DESC_SIZE, 0, &ring->desc_dmat); #else error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_TX_DESC_SIZE, 1, count * RT2560_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); #endif if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, count * RT2560_TX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } ring->data = kmalloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF, M_INTWAIT | M_ZERO); if (ring->data == NULL) { device_printf(sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } #if defined(__DragonFly__) error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, MCLBYTES, RT2560_MAX_SCATTER, MCLBYTES, 0, &ring->data_dmat); #else error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2560_MAX_SCATTER, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); #endif if (error != 0) { device_printf(sc->sc_dev, "could not create data DMA tag\n"); goto fail; } for (i = 0; i < count; i++) { error = bus_dmamap_create(ring->data_dmat, 0, &ring->data[i].map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } } return 0; fail: rt2560_free_tx_ring(sc, ring); return error; } static void rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) { struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; int i; for (i = 0; i < ring->count; i++) { desc = &ring->desc[i]; data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } desc->flags = 0; } bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); ring->queued = 0; ring->cur = ring->next = 0; ring->cur_encrypt = ring->next_encrypt = 0; } static void rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) { struct rt2560_tx_data *data; int i; if (ring->desc != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->ni != NULL) ieee80211_free_node(data->ni); if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } kfree(ring->data, M_DEVBUF); } if (ring->data_dmat != NULL) bus_dma_tag_destroy(ring->data_dmat); } static int rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring, int count) { struct rt2560_rx_desc *desc; struct rt2560_rx_data *data; bus_addr_t physaddr; int i, error; ring->count = count; ring->cur = ring->next = 0; ring->cur_decrypt = 0; #if defined(__DragonFly__) error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, count * RT2560_RX_DESC_SIZE, 1, count * RT2560_RX_DESC_SIZE, 0, &ring->desc_dmat); #else error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_RX_DESC_SIZE, 1, count * RT2560_RX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); #endif if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, count * RT2560_RX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } ring->data = kmalloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF, M_INTWAIT | M_ZERO); if (ring->data == NULL) { device_printf(sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } /* * Pre-allocate Rx buffers and populate Rx ring. */ #if defined(__DragonFly__) error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, MCLBYTES, 1, MCLBYTES, 0, &ring->data_dmat); #else error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); #endif if (error != 0) { device_printf(sc->sc_dev, "could not create data DMA tag\n"); goto fail; } for (i = 0; i < count; i++) { desc = &sc->rxq.desc[i]; data = &sc->rxq.data[i]; error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (data->m == NULL) { device_printf(sc->sc_dev, "could not allocate rx mbuf\n"); error = ENOMEM; goto fail; } error = bus_dmamap_load(ring->data_dmat, data->map, mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr, &physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load rx buf DMA map"); goto fail; } desc->flags = htole32(RT2560_RX_BUSY); desc->physaddr = htole32(physaddr); } bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); return 0; fail: rt2560_free_rx_ring(sc, ring); return error; } static void rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) { int i; for (i = 0; i < ring->count; i++) { ring->desc[i].flags = htole32(RT2560_RX_BUSY); ring->data[i].drop = 0; } bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); ring->cur = ring->next = 0; ring->cur_decrypt = 0; } static void rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) { struct rt2560_rx_data *data; int i; if (ring->desc != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } kfree(ring->data, M_DEVBUF); } if (ring->data_dmat != NULL) bus_dma_tag_destroy(ring->data_dmat); } static int rt2560_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct rt2560_vap *rvp = RT2560_VAP(vap); struct rt2560_softc *sc = vap->iv_ic->ic_softc; int error; if (nstate == IEEE80211_S_INIT && vap->iv_state == IEEE80211_S_RUN) { /* abort TSF synchronization */ RAL_WRITE(sc, RT2560_CSR14, 0); /* turn association led off */ rt2560_update_led(sc, 0, 0); } error = rvp->ral_newstate(vap, nstate, arg); if (error == 0 && nstate == IEEE80211_S_RUN) { struct ieee80211_node *ni = vap->iv_bss; struct mbuf *m; if (vap->iv_opmode != IEEE80211_M_MONITOR) { rt2560_update_plcp(sc); rt2560_set_basicrates(sc, &ni->ni_rates); rt2560_set_bssid(sc, ni->ni_bssid); } if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS || vap->iv_opmode == IEEE80211_M_MBSS) { m = ieee80211_beacon_alloc(ni); if (m == NULL) { device_printf(sc->sc_dev, "could not allocate beacon\n"); return ENOBUFS; } ieee80211_ref_node(ni); error = rt2560_tx_bcn(sc, m, ni); if (error != 0) return error; } /* turn association led on */ rt2560_update_led(sc, 1, 0); if (vap->iv_opmode != IEEE80211_M_MONITOR) rt2560_enable_tsf_sync(sc); else rt2560_enable_tsf(sc); } return error; } /* * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or * 93C66). */ static uint16_t rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr) { uint32_t tmp; uint16_t val; int n; /* clock C once before the first command */ RT2560_EEPROM_CTL(sc, 0); RT2560_EEPROM_CTL(sc, RT2560_S); RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); RT2560_EEPROM_CTL(sc, RT2560_S); /* write start bit (1) */ RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); /* write READ opcode (10) */ RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); RT2560_EEPROM_CTL(sc, RT2560_S); RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); /* write address (A5-A0 or A7-A0) */ n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7; for (; n >= 0; n--) { RT2560_EEPROM_CTL(sc, RT2560_S | (((addr >> n) & 1) << RT2560_SHIFT_D)); RT2560_EEPROM_CTL(sc, RT2560_S | (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C); } RT2560_EEPROM_CTL(sc, RT2560_S); /* read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); tmp = RAL_READ(sc, RT2560_CSR21); val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n; RT2560_EEPROM_CTL(sc, RT2560_S); } RT2560_EEPROM_CTL(sc, 0); /* clear Chip Select and clock C */ RT2560_EEPROM_CTL(sc, RT2560_S); RT2560_EEPROM_CTL(sc, 0); RT2560_EEPROM_CTL(sc, RT2560_C); return val; } /* * Some frames were processed by the hardware cipher engine and are ready for * transmission. */ static void rt2560_encryption_intr(struct rt2560_softc *sc) { struct rt2560_tx_desc *desc; int hw; /* retrieve last descriptor index processed by cipher engine */ hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr; hw /= RT2560_TX_DESC_SIZE; bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, BUS_DMASYNC_POSTREAD); while (sc->txq.next_encrypt != hw) { if (sc->txq.next_encrypt == sc->txq.cur_encrypt) { kprintf("hw encrypt %d, cur_encrypt %d\n", hw, sc->txq.cur_encrypt); break; } desc = &sc->txq.desc[sc->txq.next_encrypt]; if ((le32toh(desc->flags) & RT2560_TX_BUSY) || (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY)) break; /* for TKIP, swap eiv field to fix a bug in ASIC */ if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) == RT2560_TX_CIPHER_TKIP) desc->eiv = bswap32(desc->eiv); /* mark the frame ready for transmission */ desc->flags |= htole32(RT2560_TX_VALID); desc->flags |= htole32(RT2560_TX_BUSY); DPRINTFN(sc, 15, "encryption done idx=%u\n", sc->txq.next_encrypt); sc->txq.next_encrypt = (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT; } bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, BUS_DMASYNC_PREWRITE); /* kick Tx */ RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX); } static void rt2560_tx_intr(struct rt2560_softc *sc) { struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; struct mbuf *m; struct ieee80211vap *vap; struct ieee80211_node *ni; uint32_t flags; int retrycnt, status; bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, BUS_DMASYNC_POSTREAD); for (;;) { desc = &sc->txq.desc[sc->txq.next]; data = &sc->txq.data[sc->txq.next]; flags = le32toh(desc->flags); if ((flags & RT2560_TX_BUSY) || (flags & RT2560_TX_CIPHER_BUSY) || !(flags & RT2560_TX_VALID)) break; m = data->m; ni = data->ni; vap = ni->ni_vap; switch (flags & RT2560_TX_RESULT_MASK) { case RT2560_TX_SUCCESS: retrycnt = 0; DPRINTFN(sc, 10, "%s\n", "data frame sent successfully"); if (data->rix != IEEE80211_FIXED_RATE_NONE) ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, &retrycnt, NULL); status = 0; break; case RT2560_TX_SUCCESS_RETRY: retrycnt = RT2560_TX_RETRYCNT(flags); DPRINTFN(sc, 9, "data frame sent after %u retries\n", retrycnt); if (data->rix != IEEE80211_FIXED_RATE_NONE) ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, &retrycnt, NULL); status = 0; break; case RT2560_TX_FAIL_RETRY: retrycnt = RT2560_TX_RETRYCNT(flags); DPRINTFN(sc, 9, "data frame failed after %d retries\n", retrycnt); if (data->rix != IEEE80211_FIXED_RATE_NONE) ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_FAILURE, &retrycnt, NULL); status = 1; break; case RT2560_TX_FAIL_INVALID: case RT2560_TX_FAIL_OTHER: default: device_printf(sc->sc_dev, "sending data frame failed " "0x%08x\n", flags); status = 1; } bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->txq.data_dmat, data->map); ieee80211_tx_complete(ni, m, status); data->ni = NULL; data->m = NULL; /* descriptor is no longer valid */ desc->flags &= ~htole32(RT2560_TX_VALID); DPRINTFN(sc, 15, "tx done idx=%u\n", sc->txq.next); sc->txq.queued--; sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT; } bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, BUS_DMASYNC_PREWRITE); if (sc->prioq.queued == 0 && sc->txq.queued == 0) sc->sc_tx_timer = 0; if (sc->txq.queued < RT2560_TX_RING_COUNT - 1) rt2560_start(sc); } static void rt2560_prio_intr(struct rt2560_softc *sc) { struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; struct ieee80211_node *ni; struct mbuf *m; int flags; bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, BUS_DMASYNC_POSTREAD); for (;;) { desc = &sc->prioq.desc[sc->prioq.next]; data = &sc->prioq.data[sc->prioq.next]; flags = le32toh(desc->flags); if ((flags & RT2560_TX_BUSY) || (flags & RT2560_TX_VALID) == 0) break; switch (flags & RT2560_TX_RESULT_MASK) { case RT2560_TX_SUCCESS: DPRINTFN(sc, 10, "%s\n", "mgt frame sent successfully"); break; case RT2560_TX_SUCCESS_RETRY: DPRINTFN(sc, 9, "mgt frame sent after %u retries\n", (flags >> 5) & 0x7); break; case RT2560_TX_FAIL_RETRY: DPRINTFN(sc, 9, "%s\n", "sending mgt frame failed (too much retries)"); break; case RT2560_TX_FAIL_INVALID: case RT2560_TX_FAIL_OTHER: default: device_printf(sc->sc_dev, "sending mgt frame failed " "0x%08x\n", flags); break; } bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->prioq.data_dmat, data->map); m = data->m; data->m = NULL; ni = data->ni; data->ni = NULL; /* descriptor is no longer valid */ desc->flags &= ~htole32(RT2560_TX_VALID); DPRINTFN(sc, 15, "prio done idx=%u\n", sc->prioq.next); sc->prioq.queued--; sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT; if (m->m_flags & M_TXCB) ieee80211_process_callback(ni, m, (flags & RT2560_TX_RESULT_MASK) &~ (RT2560_TX_SUCCESS | RT2560_TX_SUCCESS_RETRY)); m_freem(m); ieee80211_free_node(ni); } bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, BUS_DMASYNC_PREWRITE); if (sc->prioq.queued == 0 && sc->txq.queued == 0) sc->sc_tx_timer = 0; if (sc->prioq.queued < RT2560_PRIO_RING_COUNT) rt2560_start(sc); } /* * Some frames were processed by the hardware cipher engine and are ready for * handoff to the IEEE802.11 layer. */ static void rt2560_decryption_intr(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct rt2560_rx_desc *desc; struct rt2560_rx_data *data; bus_addr_t physaddr; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *mnew, *m; int hw, error; int8_t rssi, nf; /* retrieve last descriptor index processed by cipher engine */ hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr; hw /= RT2560_RX_DESC_SIZE; bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, BUS_DMASYNC_POSTREAD); for (; sc->rxq.cur_decrypt != hw;) { desc = &sc->rxq.desc[sc->rxq.cur_decrypt]; data = &sc->rxq.data[sc->rxq.cur_decrypt]; if ((le32toh(desc->flags) & RT2560_RX_BUSY) || (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY)) break; if (data->drop) { #if defined(__DragonFly__) /* not implemeted */ #else counter_u64_add(ic->ic_ierrors, 1); #endif goto skip; } if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 && (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) { #if defined(__DragonFly__) /* not implemeted */ #else counter_u64_add(ic->ic_ierrors, 1); #endif goto skip; } /* * Try to allocate a new mbuf for this ring element and load it * before processing the current mbuf. If the ring element * cannot be loaded, drop the received packet and reuse the old * mbuf. In the unlikely case that the old mbuf can't be * reloaded either, explicitly panic. */ mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (mnew == NULL) { #if defined(__DragonFly__) /* not implemeted */ #else counter_u64_add(ic->ic_ierrors, 1); #endif goto skip; } bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rxq.data_dmat, data->map); error = bus_dmamap_load(sc->rxq.data_dmat, data->map, mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr, &physaddr, 0); if (error != 0) { m_freem(mnew); /* try to reload the old mbuf */ error = bus_dmamap_load(sc->rxq.data_dmat, data->map, mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr, &physaddr, 0); if (error != 0) { /* very unlikely that it will fail... */ panic("%s: could not load old rx mbuf", device_get_name(sc->sc_dev)); } #if defined(__DragonFly__) /* not implemeted */ #else counter_u64_add(ic->ic_ierrors, 1); #endif goto skip; } /* * New mbuf successfully loaded, update Rx ring and continue * processing. */ m = data->m; data->m = mnew; desc->physaddr = htole32(physaddr); /* finalize mbuf */ m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; rssi = RT2560_RSSI(sc, desc->rssi); nf = RT2560_NOISE_FLOOR; if (ieee80211_radiotap_active(ic)) { struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap; uint32_t tsf_lo, tsf_hi; /* get timestamp (low and high 32 bits) */ tsf_hi = RAL_READ(sc, RT2560_CSR17); tsf_lo = RAL_READ(sc, RT2560_CSR16); tap->wr_tsf = htole64(((uint64_t)tsf_hi << 32) | tsf_lo); tap->wr_flags = 0; tap->wr_rate = ieee80211_plcp2rate(desc->rate, (desc->flags & htole32(RT2560_RX_OFDM)) ? IEEE80211_T_OFDM : IEEE80211_T_CCK); tap->wr_antenna = sc->rx_ant; tap->wr_antsignal = nf + rssi; tap->wr_antnoise = nf; } sc->sc_flags |= RT2560_F_INPUT_RUNNING; RAL_UNLOCK(sc); wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); if (ni != NULL) { (void) ieee80211_input(ni, m, rssi, nf); ieee80211_free_node(ni); } else (void) ieee80211_input_all(ic, m, rssi, nf); RAL_LOCK(sc); sc->sc_flags &= ~RT2560_F_INPUT_RUNNING; skip: desc->flags = htole32(RT2560_RX_BUSY); DPRINTFN(sc, 15, "decryption done idx=%u\n", sc->rxq.cur_decrypt); sc->rxq.cur_decrypt = (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT; } bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, BUS_DMASYNC_PREWRITE); } /* * Some frames were received. Pass them to the hardware cipher engine before * sending them to the 802.11 layer. */ static void rt2560_rx_intr(struct rt2560_softc *sc) { struct rt2560_rx_desc *desc; struct rt2560_rx_data *data; bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, BUS_DMASYNC_POSTREAD); for (;;) { desc = &sc->rxq.desc[sc->rxq.cur]; data = &sc->rxq.data[sc->rxq.cur]; if ((le32toh(desc->flags) & RT2560_RX_BUSY) || (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY)) break; data->drop = 0; if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) || (le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) { /* * This should not happen since we did not request * to receive those frames when we filled RXCSR0. */ DPRINTFN(sc, 5, "PHY or CRC error flags 0x%08x\n", le32toh(desc->flags)); data->drop = 1; } if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) { DPRINTFN(sc, 5, "%s\n", "bad length"); data->drop = 1; } /* mark the frame for decryption */ desc->flags |= htole32(RT2560_RX_CIPHER_BUSY); DPRINTFN(sc, 15, "rx done idx=%u\n", sc->rxq.cur); sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT; } bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, BUS_DMASYNC_PREWRITE); /* kick decrypt */ RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT); } static void rt2560_beacon_update(struct ieee80211vap *vap, int item) { struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; setbit(bo->bo_flags, item); } /* * This function is called periodically in IBSS mode when a new beacon must be * sent out. */ static void rt2560_beacon_expire(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct rt2560_tx_data *data; if (ic->ic_opmode != IEEE80211_M_IBSS && ic->ic_opmode != IEEE80211_M_HOSTAP && ic->ic_opmode != IEEE80211_M_MBSS) return; data = &sc->bcnq.data[sc->bcnq.next]; /* * Don't send beacon if bsschan isn't set */ if (data->ni == NULL) return; bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->bcnq.data_dmat, data->map); /* XXX 1 =>'s mcast frames which means all PS sta's will wakeup! */ ieee80211_beacon_update(data->ni, data->m, 1); rt2560_tx_bcn(sc, data->m, data->ni); DPRINTFN(sc, 15, "%s", "beacon expired\n"); sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT; } /* ARGSUSED */ static void rt2560_wakeup_expire(struct rt2560_softc *sc) { DPRINTFN(sc, 2, "%s", "wakeup expired\n"); } void rt2560_intr(void *arg) { struct rt2560_softc *sc = arg; uint32_t r; RAL_LOCK(sc); /* disable interrupts */ RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); /* don't re-enable interrupts if we're shutting down */ if (!(sc->sc_flags & RT2560_F_RUNNING)) { RAL_UNLOCK(sc); return; } r = RAL_READ(sc, RT2560_CSR7); RAL_WRITE(sc, RT2560_CSR7, r); if (r & RT2560_BEACON_EXPIRE) rt2560_beacon_expire(sc); if (r & RT2560_WAKEUP_EXPIRE) rt2560_wakeup_expire(sc); if (r & RT2560_ENCRYPTION_DONE) rt2560_encryption_intr(sc); if (r & RT2560_TX_DONE) rt2560_tx_intr(sc); if (r & RT2560_PRIO_DONE) rt2560_prio_intr(sc); if (r & RT2560_DECRYPTION_DONE) rt2560_decryption_intr(sc); if (r & RT2560_RX_DONE) { rt2560_rx_intr(sc); rt2560_encryption_intr(sc); } /* re-enable interrupts */ RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); RAL_UNLOCK(sc); } #define RAL_SIFS 10 /* us */ #define RT2560_TXRX_TURNAROUND 10 /* us */ static uint8_t rt2560_plcp_signal(int rate) { switch (rate) { /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* CCK rates (NB: not IEEE std, device-specific) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; } return 0xff; /* XXX unsupported/unknown rate */ } static void rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc, uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr) { struct ieee80211com *ic = &sc->sc_ic; uint16_t plcp_length; int remainder; desc->flags = htole32(flags); desc->flags |= htole32(len << 16); desc->physaddr = htole32(physaddr); desc->wme = htole16( RT2560_AIFSN(2) | RT2560_LOGCWMIN(3) | RT2560_LOGCWMAX(8)); /* setup PLCP fields */ desc->plcp_signal = rt2560_plcp_signal(rate); desc->plcp_service = 4; len += IEEE80211_CRC_LEN; if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { desc->flags |= htole32(RT2560_TX_OFDM); plcp_length = len & 0xfff; desc->plcp_length_hi = plcp_length >> 6; desc->plcp_length_lo = plcp_length & 0x3f; } else { plcp_length = howmany(16 * len, rate); if (rate == 22) { remainder = (16 * len) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= RT2560_PLCP_LENGEXT; } desc->plcp_length_hi = plcp_length >> 8; desc->plcp_length_lo = plcp_length & 0xff; if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->plcp_signal |= 0x08; } if (!encrypt) desc->flags |= htole32(RT2560_TX_VALID); desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) : htole32(RT2560_TX_BUSY); } static int rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; bus_dma_segment_t segs[RT2560_MAX_SCATTER]; int nsegs, rate, error; desc = &sc->bcnq.desc[sc->bcnq.cur]; data = &sc->bcnq.data[sc->bcnq.cur]; /* XXX maybe a separate beacon rate? */ rate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].mgmtrate; #if defined(__DragonFly__) error = bus_dmamap_load_mbuf_segment(sc->bcnq.data_dmat, data->map, m0, segs, 1, &nsegs, BUS_DMA_NOWAIT); #else error = bus_dmamap_load_mbuf_sg(sc->bcnq.data_dmat, data->map, m0, segs, &nsegs, BUS_DMA_NOWAIT); #endif if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (ieee80211_radiotap_active_vap(vap)) { struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_antenna = sc->tx_ant; ieee80211_radiotap_tx(vap, m0); } data->m = m0; data->ni = ni; rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF | RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, segs->ds_addr); DPRINTFN(sc, 10, "sending beacon frame len=%u idx=%u rate=%u\n", m0->m_pkthdr.len, sc->bcnq.cur, rate); bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map, BUS_DMASYNC_PREWRITE); sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT; return 0; } static int rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; struct ieee80211_frame *wh; struct ieee80211_key *k; bus_dma_segment_t segs[RT2560_MAX_SCATTER]; uint16_t dur; uint32_t flags = 0; int nsegs, rate, error; desc = &sc->prioq.desc[sc->prioq.cur]; data = &sc->prioq.data[sc->prioq.cur]; rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } } #if defined(__DragonFly__) error = bus_dmamap_load_mbuf_segment(sc->prioq.data_dmat, data->map, m0, segs, 1, &nsegs, BUS_DMA_NOWAIT); #else error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0, segs, &nsegs, 0); #endif if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (ieee80211_radiotap_active_vap(vap)) { struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_antenna = sc->tx_ant; ieee80211_radiotap_tx(vap, m0); } data->m = m0; data->ni = ni; /* management frames are not taken into account for amrr */ data->rix = IEEE80211_FIXED_RATE_NONE; wh = mtod(m0, struct ieee80211_frame *); if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2560_TX_ACK; dur = ieee80211_ack_duration(ic->ic_rt, rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); *(uint16_t *)wh->i_dur = htole16(dur); /* tell hardware to add timestamp for probe responses */ if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT && (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == IEEE80211_FC0_SUBTYPE_PROBE_RESP) flags |= RT2560_TX_TIMESTAMP; } rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0, segs->ds_addr); bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(sc, 10, "sending mgt frame len=%u idx=%u rate=%u\n", m0->m_pkthdr.len, sc->prioq.cur, rate); /* kick prio */ sc->prioq.queued++; sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT; RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO); return 0; } static int rt2560_sendprot(struct rt2560_softc *sc, const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) { struct ieee80211com *ic = ni->ni_ic; const struct ieee80211_frame *wh; struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; struct mbuf *mprot; int protrate, ackrate, pktlen, flags, isshort, error; uint16_t dur; bus_dma_segment_t segs[RT2560_MAX_SCATTER]; int nsegs; KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, ("protection %d", prot)); wh = mtod(m, const struct ieee80211_frame *); pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; protrate = ieee80211_ctl_rate(ic->ic_rt, rate); ackrate = ieee80211_ack_rate(ic->ic_rt, rate); isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) + ieee80211_ack_duration(ic->ic_rt, rate, isshort); flags = RT2560_TX_MORE_FRAG; if (prot == IEEE80211_PROT_RTSCTS) { /* NB: CTS is the same size as an ACK */ dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); flags |= RT2560_TX_ACK; mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); } else { mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); } if (mprot == NULL) { /* XXX stat + msg */ return ENOBUFS; } desc = &sc->txq.desc[sc->txq.cur_encrypt]; data = &sc->txq.data[sc->txq.cur_encrypt]; #if defined(__DragonFly__) error = bus_dmamap_load_mbuf_segment(sc->txq.data_dmat, data->map, mprot, segs, 1, &nsegs, BUS_DMA_NOWAIT); #else error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, mprot, segs, &nsegs, 0); #endif if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(mprot); return error; } data->m = mprot; data->ni = ieee80211_ref_node(ni); /* ctl frames are not taken into account for amrr */ data->rix = IEEE80211_FIXED_RATE_NONE; rt2560_setup_tx_desc(sc, desc, flags, mprot->m_pkthdr.len, protrate, 1, segs->ds_addr); bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); sc->txq.queued++; sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT; return 0; } static int rt2560_tx_raw(struct rt2560_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; bus_dma_segment_t segs[RT2560_MAX_SCATTER]; uint32_t flags; int nsegs, rate, error; desc = &sc->prioq.desc[sc->prioq.cur]; data = &sc->prioq.data[sc->prioq.cur]; rate = params->ibp_rate0; if (!ieee80211_isratevalid(ic->ic_rt, rate)) { /* XXX fall back to mcast/mgmt rate? */ m_freem(m0); return EINVAL; } flags = 0; if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) flags |= RT2560_TX_ACK; if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { error = rt2560_sendprot(sc, m0, ni, params->ibp_flags & IEEE80211_BPF_RTS ? IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, rate); if (error) { m_freem(m0); return error; } flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS; } #if defined(__DragonFly__) error = bus_dmamap_load_mbuf_segment(sc->prioq.data_dmat, data->map, m0, segs, 1, &nsegs, BUS_DMA_NOWAIT); #else error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0, segs, &nsegs, 0); #endif if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (ieee80211_radiotap_active_vap(vap)) { struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_antenna = sc->tx_ant; ieee80211_radiotap_tx(ni->ni_vap, m0); } data->m = m0; data->ni = ni; /* XXX need to setup descriptor ourself */ rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0, segs->ds_addr); bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(sc, 10, "sending raw frame len=%u idx=%u rate=%u\n", m0->m_pkthdr.len, sc->prioq.cur, rate); /* kick prio */ sc->prioq.queued++; sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT; RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO); return 0; } static int rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp; struct ieee80211_key *k; struct mbuf *mnew; bus_dma_segment_t segs[RT2560_MAX_SCATTER]; uint16_t dur; uint32_t flags; int nsegs, rate, error; wh = mtod(m0, struct ieee80211_frame *); tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { rate = tp->mcastrate; } else if (m0->m_flags & M_EAPOL) { rate = tp->mgmtrate; } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { rate = tp->ucastrate; } else { (void) ieee80211_ratectl_rate(ni, NULL, 0); rate = ni->ni_txrate; } if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } flags = 0; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { int prot = IEEE80211_PROT_NONE; if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) prot = IEEE80211_PROT_RTSCTS; else if ((ic->ic_flags & IEEE80211_F_USEPROT) && ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) prot = ic->ic_protmode; if (prot != IEEE80211_PROT_NONE) { error = rt2560_sendprot(sc, m0, ni, prot, rate); if (error) { m_freem(m0); return error; } flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS; } } data = &sc->txq.data[sc->txq.cur_encrypt]; desc = &sc->txq.desc[sc->txq.cur_encrypt]; #if defined(__DragonFly__) error = bus_dmamap_load_mbuf_segment(sc->txq.data_dmat, data->map, m0, segs, 1, &nsegs, BUS_DMA_NOWAIT); #else error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0, segs, &nsegs, 0); #endif if (error != 0 && error != EFBIG) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (error != 0) { mnew = m_defrag(m0, M_NOWAIT); if (mnew == NULL) { device_printf(sc->sc_dev, "could not defragment mbuf\n"); m_freem(m0); return ENOBUFS; } m0 = mnew; #if defined(__DragonFly__) error = bus_dmamap_load_mbuf_segment(sc->txq.data_dmat, data->map, m0, segs, 1, &nsegs, BUS_DMA_NOWAIT); #else error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0, segs, &nsegs, 0); #endif if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } if (ieee80211_radiotap_active_vap(vap)) { struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_antenna = sc->tx_ant; ieee80211_radiotap_tx(vap, m0); } data->m = m0; data->ni = ni; /* remember link conditions for rate adaptation algorithm */ if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) { data->rix = ni->ni_txrate; /* XXX probably need last rssi value and not avg */ data->rssi = ic->ic_node_getrssi(ni); } else data->rix = IEEE80211_FIXED_RATE_NONE; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2560_TX_ACK; dur = ieee80211_ack_duration(ic->ic_rt, rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); *(uint16_t *)wh->i_dur = htole16(dur); } rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1, segs->ds_addr); bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(sc, 10, "sending data frame len=%u idx=%u rate=%u\n", m0->m_pkthdr.len, sc->txq.cur_encrypt, rate); /* kick encrypt */ sc->txq.queued++; sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT; RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT); return 0; } static int rt2560_transmit(struct ieee80211com *ic, struct mbuf *m) { struct rt2560_softc *sc = ic->ic_softc; int error; RAL_LOCK(sc); if ((sc->sc_flags & RT2560_F_RUNNING) == 0) { RAL_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { RAL_UNLOCK(sc); return (error); } rt2560_start(sc); RAL_UNLOCK(sc); return (0); } static void rt2560_start(struct rt2560_softc *sc) { struct ieee80211_node *ni; struct mbuf *m; RAL_LOCK_ASSERT(sc); while (sc->txq.queued < RT2560_TX_RING_COUNT - 1 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; if (rt2560_tx_data(sc, m, ni) != 0) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); break; } sc->sc_tx_timer = 5; } } static void rt2560_watchdog(void *arg) { struct rt2560_softc *sc = arg; RAL_LOCK_ASSERT(sc); KASSERT(sc->sc_flags & RT2560_F_RUNNING, ("not running")); if (sc->sc_invalid) /* card ejected */ return; rt2560_encryption_intr(sc); rt2560_tx_intr(sc); if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) { device_printf(sc->sc_dev, "device timeout\n"); rt2560_init_locked(sc); #if defined(__DragonFly__) /* not implemeted */ #else counter_u64_add(sc->sc_ic.ic_oerrors, 1); #endif /* NB: callout is reset in rt2560_init() */ return; } callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc); } static void rt2560_parent(struct ieee80211com *ic) { struct rt2560_softc *sc = ic->ic_softc; int startall = 0; RAL_LOCK(sc); if (ic->ic_nrunning > 0) { if ((sc->sc_flags & RT2560_F_RUNNING) == 0) { rt2560_init_locked(sc); startall = 1; } else rt2560_update_promisc(ic); } else if (sc->sc_flags & RT2560_F_RUNNING) rt2560_stop_locked(sc); RAL_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } static void rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY)) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to BBP\n"); return; } tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val; RAL_WRITE(sc, RT2560_BBPCSR, tmp); DPRINTFN(sc, 15, "BBP R%u <- 0x%02x\n", reg, val); } static uint8_t rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg) { uint32_t val; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY)) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not read from BBP\n"); return 0; } val = RT2560_BBP_BUSY | reg << 8; RAL_WRITE(sc, RT2560_BBPCSR, val); for (ntries = 0; ntries < 100; ntries++) { val = RAL_READ(sc, RT2560_BBPCSR); if (!(val & RT2560_BBP_BUSY)) return val & 0xff; DELAY(1); } device_printf(sc->sc_dev, "could not read from BBP\n"); return 0; } static void rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY)) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to RF\n"); return; } tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); RAL_WRITE(sc, RT2560_RFCSR, tmp); /* remember last written value in sc */ sc->rf_regs[reg] = val; DPRINTFN(sc, 15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff); } static void rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; uint8_t power, tmp; u_int i, chan; chan = ieee80211_chan2ieee(ic, c); KASSERT(chan != 0 && chan != IEEE80211_CHAN_ANY, ("chan 0x%x", chan)); if (IEEE80211_IS_CHAN_2GHZ(c)) power = min(sc->txpow[chan - 1], 31); else power = 31; /* adjust txpower using ifconfig settings */ power -= (100 - ic->ic_txpowlimit) / 8; DPRINTFN(sc, 2, "setting channel to %u, txpower to %u\n", chan, power); switch (sc->rf_rev) { case RT2560_RF_2522: rt2560_rf_write(sc, RAL_RF1, 0x00814); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); break; case RT2560_RF_2523: rt2560_rf_write(sc, RAL_RF1, 0x08804); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044); rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RT2560_RF_2524: rt2560_rf_write(sc, RAL_RF1, 0x0c808); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RT2560_RF_2525: rt2560_rf_write(sc, RAL_RF1, 0x08808); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); rt2560_rf_write(sc, RAL_RF1, 0x08808); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RT2560_RF_2525E: rt2560_rf_write(sc, RAL_RF1, 0x08808); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); break; case RT2560_RF_2526: rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); rt2560_rf_write(sc, RAL_RF1, 0x08804); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); break; /* dual-band RF */ case RT2560_RF_5222: for (i = 0; rt2560_rf5222[i].chan != chan; i++); rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1); rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4); break; default: kprintf("unknown ral rev=%d\n", sc->rf_rev); } /* XXX */ if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { /* set Japan filter bit for channel 14 */ tmp = rt2560_bbp_read(sc, 70); tmp &= ~RT2560_JAPAN_FILTER; if (chan == 14) tmp |= RT2560_JAPAN_FILTER; rt2560_bbp_write(sc, 70, tmp); /* clear CRC errors */ RAL_READ(sc, RT2560_CNT0); } } static void rt2560_set_channel(struct ieee80211com *ic) { struct rt2560_softc *sc = ic->ic_softc; RAL_LOCK(sc); rt2560_set_chan(sc, ic->ic_curchan); RAL_UNLOCK(sc); } #if 0 /* * Disable RF auto-tuning. */ static void rt2560_disable_rf_tune(struct rt2560_softc *sc) { uint32_t tmp; if (sc->rf_rev != RT2560_RF_2523) { tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; rt2560_rf_write(sc, RAL_RF1, tmp); } tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; rt2560_rf_write(sc, RAL_RF3, tmp); DPRINTFN(sc, 2, "%s", "disabling RF autotune\n"); } #endif /* * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF * synchronization. */ static void rt2560_enable_tsf_sync(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint16_t logcwmin, preload; uint32_t tmp; /* first, disable TSF synchronization */ RAL_WRITE(sc, RT2560_CSR14, 0); tmp = 16 * vap->iv_bss->ni_intval; RAL_WRITE(sc, RT2560_CSR12, tmp); RAL_WRITE(sc, RT2560_CSR13, 0); logcwmin = 5; preload = (vap->iv_opmode == IEEE80211_M_STA) ? 384 : 1024; tmp = logcwmin << 16 | preload; RAL_WRITE(sc, RT2560_BCNOCSR, tmp); /* finally, enable TSF synchronization */ tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN; if (ic->ic_opmode == IEEE80211_M_STA) tmp |= RT2560_ENABLE_TSF_SYNC(1); else tmp |= RT2560_ENABLE_TSF_SYNC(2) | RT2560_ENABLE_BEACON_GENERATOR; RAL_WRITE(sc, RT2560_CSR14, tmp); DPRINTF(sc, "%s", "enabling TSF synchronization\n"); } static void rt2560_enable_tsf(struct rt2560_softc *sc) { RAL_WRITE(sc, RT2560_CSR14, 0); RAL_WRITE(sc, RT2560_CSR14, RT2560_ENABLE_TSF_SYNC(2) | RT2560_ENABLE_TSF); } static void rt2560_update_plcp(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* no short preamble for 1Mbps */ RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400); if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) { /* values taken from the reference driver */ RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401); RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402); RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403); } else { /* same values as above or'ed 0x8 */ RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409); RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a); RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b); } DPRINTF(sc, "updating PLCP for %s preamble\n", (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"); } /* * This function can be called by ieee80211_set_shortslottime(). Refer to * IEEE Std 802.11-1999 pp. 85 to know how these values are computed. */ static void rt2560_update_slot(struct ieee80211com *ic) { struct rt2560_softc *sc = ic->ic_softc; uint8_t slottime; uint16_t tx_sifs, tx_pifs, tx_difs, eifs; uint32_t tmp; #ifndef FORCE_SLOTTIME slottime = IEEE80211_GET_SLOTTIME(ic); #else /* * Setting slot time according to "short slot time" capability * in beacon/probe_resp seems to cause problem to acknowledge * certain AP's data frames transimitted at CCK/DS rates: the * problematic AP keeps retransmitting data frames, probably * because MAC level acks are not received by hardware. * So we cheat a little bit here by claiming we are capable of * "short slot time" but setting hardware slot time to the normal * slot time. ral(4) does not seem to have trouble to receive * frames transmitted using short slot time even if hardware * slot time is set to normal slot time. If we didn't use this * trick, we would have to claim that short slot time is not * supported; this would give relative poor RX performance * (-1Mb~-2Mb lower) and the _whole_ BSS would stop using short * slot time. */ slottime = IEEE80211_DUR_SLOT; #endif /* update the MAC slot boundaries */ tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND; tx_pifs = tx_sifs + slottime; tx_difs = IEEE80211_DUR_DIFS(tx_sifs, slottime); eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60; tmp = RAL_READ(sc, RT2560_CSR11); tmp = (tmp & ~0x1f00) | slottime << 8; RAL_WRITE(sc, RT2560_CSR11, tmp); tmp = tx_pifs << 16 | tx_sifs; RAL_WRITE(sc, RT2560_CSR18, tmp); tmp = eifs << 16 | tx_difs; RAL_WRITE(sc, RT2560_CSR19, tmp); DPRINTF(sc, "setting slottime to %uus\n", slottime); } static void rt2560_set_basicrates(struct rt2560_softc *sc, const struct ieee80211_rateset *rs) { struct ieee80211com *ic = &sc->sc_ic; uint32_t mask = 0; uint8_t rate; int i; for (i = 0; i < rs->rs_nrates; i++) { rate = rs->rs_rates[i]; if (!(rate & IEEE80211_RATE_BASIC)) continue; mask |= 1 << ieee80211_legacy_rate_lookup(ic->ic_rt, IEEE80211_RV(rate)); } RAL_WRITE(sc, RT2560_ARSP_PLCP_1, mask); DPRINTF(sc, "Setting basic rate mask to 0x%x\n", mask); } static void rt2560_update_led(struct rt2560_softc *sc, int led1, int led2) { uint32_t tmp; /* set ON period to 70ms and OFF period to 30ms */ tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30; RAL_WRITE(sc, RT2560_LEDCSR, tmp); } static void rt2560_set_bssid(struct rt2560_softc *sc, const uint8_t *bssid) { uint32_t tmp; tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; RAL_WRITE(sc, RT2560_CSR5, tmp); tmp = bssid[4] | bssid[5] << 8; RAL_WRITE(sc, RT2560_CSR6, tmp); #if defined(__DragonFly__) DPRINTF(sc, "setting BSSID to %s\n", ether_sprintf(bssid)); #else DPRINTF(sc, "setting BSSID to %6D\n", bssid, ":"); #endif } static void rt2560_set_macaddr(struct rt2560_softc *sc, const uint8_t *addr) { uint32_t tmp; tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; RAL_WRITE(sc, RT2560_CSR3, tmp); tmp = addr[4] | addr[5] << 8; RAL_WRITE(sc, RT2560_CSR4, tmp); #if defined(__DragonFly__) DPRINTF(sc, "setting MAC address to %s\n", ether_sprintf(addr)); #else DPRINTF(sc, "setting MAC address to %6D\n", addr, ":"); #endif } static void rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr) { uint32_t tmp; tmp = RAL_READ(sc, RT2560_CSR3); addr[0] = tmp & 0xff; addr[1] = (tmp >> 8) & 0xff; addr[2] = (tmp >> 16) & 0xff; addr[3] = (tmp >> 24); tmp = RAL_READ(sc, RT2560_CSR4); addr[4] = tmp & 0xff; addr[5] = (tmp >> 8) & 0xff; } static void rt2560_update_promisc(struct ieee80211com *ic) { struct rt2560_softc *sc = ic->ic_softc; uint32_t tmp; tmp = RAL_READ(sc, RT2560_RXCSR0); tmp &= ~RT2560_DROP_NOT_TO_ME; if (ic->ic_promisc == 0) tmp |= RT2560_DROP_NOT_TO_ME; RAL_WRITE(sc, RT2560_RXCSR0, tmp); DPRINTF(sc, "%s promiscuous mode\n", (ic->ic_promisc > 0) ? "entering" : "leaving"); } static const char * rt2560_get_rf(int rev) { switch (rev) { case RT2560_RF_2522: return "RT2522"; case RT2560_RF_2523: return "RT2523"; case RT2560_RF_2524: return "RT2524"; case RT2560_RF_2525: return "RT2525"; case RT2560_RF_2525E: return "RT2525e"; case RT2560_RF_2526: return "RT2526"; case RT2560_RF_5222: return "RT5222"; default: return "unknown"; } } static void rt2560_read_config(struct rt2560_softc *sc) { uint16_t val; int i; val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0); sc->rf_rev = (val >> 11) & 0x7; sc->hw_radio = (val >> 10) & 0x1; sc->led_mode = (val >> 6) & 0x7; sc->rx_ant = (val >> 4) & 0x3; sc->tx_ant = (val >> 2) & 0x3; sc->nb_ant = val & 0x3; /* read default values for BBP registers */ for (i = 0; i < 16; i++) { val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i); if (val == 0 || val == 0xffff) continue; sc->bbp_prom[i].reg = val >> 8; sc->bbp_prom[i].val = val & 0xff; } /* read Tx power for all b/g channels */ for (i = 0; i < 14 / 2; i++) { val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i); sc->txpow[i * 2] = val & 0xff; sc->txpow[i * 2 + 1] = val >> 8; } for (i = 0; i < 14; ++i) { if (sc->txpow[i] > 31) sc->txpow[i] = 24; } val = rt2560_eeprom_read(sc, RT2560_EEPROM_CALIBRATE); if ((val & 0xff) == 0xff) sc->rssi_corr = RT2560_DEFAULT_RSSI_CORR; else sc->rssi_corr = val & 0xff; DPRINTF(sc, "rssi correction %d, calibrate 0x%02x\n", sc->rssi_corr, val); } static void rt2560_scan_start(struct ieee80211com *ic) { struct rt2560_softc *sc = ic->ic_softc; /* abort TSF synchronization */ RAL_WRITE(sc, RT2560_CSR14, 0); rt2560_set_bssid(sc, ieee80211broadcastaddr); } static void rt2560_scan_end(struct ieee80211com *ic) { struct rt2560_softc *sc = ic->ic_softc; struct ieee80211vap *vap = ic->ic_scan->ss_vap; rt2560_enable_tsf_sync(sc); /* XXX keep local copy */ rt2560_set_bssid(sc, vap->iv_bss->ni_bssid); } static int rt2560_bbp_init(struct rt2560_softc *sc) { int i, ntries; /* wait for BBP to be ready */ for (ntries = 0; ntries < 100; ntries++) { if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for BBP\n"); return EIO; } /* initialize BBP registers to default values */ for (i = 0; i < nitems(rt2560_def_bbp); i++) { rt2560_bbp_write(sc, rt2560_def_bbp[i].reg, rt2560_def_bbp[i].val); } /* initialize BBP registers to values stored in EEPROM */ for (i = 0; i < 16; i++) { if (sc->bbp_prom[i].reg == 0 && sc->bbp_prom[i].val == 0) break; rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } rt2560_bbp_write(sc, 17, 0x48); /* XXX restore bbp17 */ return 0; } static void rt2560_set_txantenna(struct rt2560_softc *sc, int antenna) { uint32_t tmp; uint8_t tx; tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK; if (antenna == 1) tx |= RT2560_BBP_ANTA; else if (antenna == 2) tx |= RT2560_BBP_ANTB; else tx |= RT2560_BBP_DIVERSITY; /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 || sc->rf_rev == RT2560_RF_5222) tx |= RT2560_BBP_FLIPIQ; rt2560_bbp_write(sc, RT2560_BBP_TX, tx); /* update values for CCK and OFDM in BBPCSR1 */ tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007; tmp |= (tx & 0x7) << 16 | (tx & 0x7); RAL_WRITE(sc, RT2560_BBPCSR1, tmp); } static void rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna) { uint8_t rx; rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK; if (antenna == 1) rx |= RT2560_BBP_ANTA; else if (antenna == 2) rx |= RT2560_BBP_ANTB; else rx |= RT2560_BBP_DIVERSITY; /* need to force no I/Q flip for RF 2525e and 2526 */ if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526) rx &= ~RT2560_BBP_FLIPIQ; rt2560_bbp_write(sc, RT2560_BBP_RX, rx); } static void rt2560_init_locked(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t tmp; int i; RAL_LOCK_ASSERT(sc); rt2560_stop_locked(sc); /* setup tx rings */ tmp = RT2560_PRIO_RING_COUNT << 24 | RT2560_ATIM_RING_COUNT << 16 | RT2560_TX_RING_COUNT << 8 | RT2560_TX_DESC_SIZE; /* rings must be initialized in this exact order */ RAL_WRITE(sc, RT2560_TXCSR2, tmp); RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr); RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr); RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr); RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr); /* setup rx ring */ tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE; RAL_WRITE(sc, RT2560_RXCSR1, tmp); RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr); /* initialize MAC registers to default values */ for (i = 0; i < nitems(rt2560_def_mac); i++) RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val); rt2560_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); /* set basic rate set (will be updated later) */ RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153); rt2560_update_slot(ic); rt2560_update_plcp(sc); rt2560_update_led(sc, 0, 0); RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY); if (rt2560_bbp_init(sc) != 0) { rt2560_stop_locked(sc); return; } rt2560_set_txantenna(sc, sc->tx_ant); rt2560_set_rxantenna(sc, sc->rx_ant); /* set default BSS channel */ rt2560_set_chan(sc, ic->ic_curchan); /* kick Rx */ tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR; if (ic->ic_opmode != IEEE80211_M_HOSTAP && ic->ic_opmode != IEEE80211_M_MBSS) tmp |= RT2560_DROP_TODS; if (ic->ic_promisc == 0) tmp |= RT2560_DROP_NOT_TO_ME; } RAL_WRITE(sc, RT2560_RXCSR0, tmp); /* clear old FCS and Rx FIFO errors */ RAL_READ(sc, RT2560_CNT0); RAL_READ(sc, RT2560_CNT4); /* clear any pending interrupts */ RAL_WRITE(sc, RT2560_CSR7, 0xffffffff); /* enable interrupts */ RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); sc->sc_flags |= RT2560_F_RUNNING; callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc); } static void rt2560_init(void *priv) { struct rt2560_softc *sc = priv; struct ieee80211com *ic = &sc->sc_ic; RAL_LOCK(sc); rt2560_init_locked(sc); RAL_UNLOCK(sc); if (sc->sc_flags & RT2560_F_RUNNING) ieee80211_start_all(ic); /* start all vap's */ } static void rt2560_stop_locked(struct rt2560_softc *sc) { volatile int *flags = &sc->sc_flags; RAL_LOCK_ASSERT(sc); #if defined(__DragonFly__) while (*flags & RT2560_F_INPUT_RUNNING) lksleep(sc, &sc->sc_mtx, 0, "ralrunning", hz/10); #else while (*flags & RT2560_F_INPUT_RUNNING) msleep(sc, &sc->sc_mtx, 0, "ralrunning", hz/10); #endif callout_stop(&sc->watchdog_ch); sc->sc_tx_timer = 0; if (sc->sc_flags & RT2560_F_RUNNING) { sc->sc_flags &= ~RT2560_F_RUNNING; /* abort Tx */ RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX); /* disable Rx */ RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX); /* reset ASIC (imply reset BBP) */ RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); RAL_WRITE(sc, RT2560_CSR1, 0); /* disable interrupts */ RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); /* reset Tx and Rx rings */ rt2560_reset_tx_ring(sc, &sc->txq); rt2560_reset_tx_ring(sc, &sc->atimq); rt2560_reset_tx_ring(sc, &sc->prioq); rt2560_reset_tx_ring(sc, &sc->bcnq); rt2560_reset_rx_ring(sc, &sc->rxq); } } void rt2560_stop(void *arg) { struct rt2560_softc *sc = arg; RAL_LOCK(sc); rt2560_stop_locked(sc); RAL_UNLOCK(sc); } static int rt2560_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct rt2560_softc *sc = ic->ic_softc; RAL_LOCK(sc); /* prevent management frames from being sent if we're not ready */ if (!(sc->sc_flags & RT2560_F_RUNNING)) { RAL_UNLOCK(sc); m_freem(m); return ENETDOWN; } if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) { RAL_UNLOCK(sc); m_freem(m); return ENOBUFS; /* XXX */ } if (params == NULL) { /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. */ if (rt2560_tx_mgt(sc, m, ni) != 0) goto bad; } else { /* * Caller supplied explicit parameters to use in * sending the frame. */ if (rt2560_tx_raw(sc, m, ni, params)) goto bad; } sc->sc_tx_timer = 5; RAL_UNLOCK(sc); return 0; bad: RAL_UNLOCK(sc); return EIO; /* XXX */ }