/* * Copyright (c) 2004 Jeffrey M. Hsu. All rights reserved. * Copyright (c) 2004 The DragonFly Project. All rights reserved. * * This code is derived from software contributed to The DragonFly Project * by Jeffrey M. Hsu. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of The DragonFly Project nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific, prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1991, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 * $FreeBSD: src/sys/netinet/in_pcb.c,v 1.59.2.27 2004/01/02 04:06:42 ambrisko Exp $ */ #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #endif /* INET6 */ #define INP_LOCALGROUP_SIZMIN 8 #define INP_LOCALGROUP_SIZMAX 256 static struct inpcb *in_pcblookup_local(struct inpcbporthead *porthash, struct in_addr laddr, u_int lport_arg, int wild_okay, struct ucred *cred); struct in_addr zeroin_addr; /* * These configure the range of local port addresses assigned to * "unspecified" outgoing connections/packets/whatever. */ int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */ int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */ int ipport_firstauto = IPPORT_RESERVED; /* 1024 */ int ipport_lastauto = IPPORT_USERRESERVED; /* 5000 */ int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */ #define RANGECHK(var, min, max) \ if ((var) < (min)) { (var) = (min); } \ else if ((var) > (max)) { (var) = (max); } int udpencap_enable = 1; /* enabled by default */ int udpencap_port = 4500; /* triggers decapsulation */ /* * Per-netisr inpcb markers. * NOTE: they should only be used in netisrs. */ static struct inpcb *in_pcbmarkers; static struct inpcontainer *in_pcbcontainer_markers; static int sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) { int error; error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req); if (!error) { RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1); RANGECHK(ipport_firstauto, IPPORT_RESERVED, USHRT_MAX); RANGECHK(ipport_lastauto, IPPORT_RESERVED, USHRT_MAX); RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, USHRT_MAX); RANGECHK(ipport_hilastauto, IPPORT_RESERVED, USHRT_MAX); } return (error); } #undef RANGECHK SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports"); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW, &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW, &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW, &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW, &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW, &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW, &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", ""); /* Initialized by ip_init() */ int ip_porthash_trycount; SYSCTL_INT(_net_inet_ip, OID_AUTO, porthash_trycount, CTLFLAG_RW, &ip_porthash_trycount, 0, "Number of tries to find local port matching hash of 4-tuple"); /* * in_pcb.c: manage the Protocol Control Blocks. * * NOTE: It is assumed that most of these functions will be called from * a critical section. XXX - There are, unfortunately, a few exceptions * to this rule that should be fixed. * * NOTE: The caller should initialize the cpu field to the cpu running the * protocol stack associated with this inpcbinfo. */ void in_pcbinfo_init(struct inpcbinfo *pcbinfo, int cpu, boolean_t shared) { KASSERT(cpu >= 0 && cpu < netisr_ncpus, ("invalid cpu%d", cpu)); pcbinfo->cpu = cpu; LIST_INIT(&pcbinfo->pcblisthead); pcbinfo->portsave = kmalloc(sizeof(*pcbinfo->portsave), M_PCB, M_WAITOK | M_ZERO); if (shared) { pcbinfo->infotoken = kmalloc(sizeof(struct lwkt_token), M_PCB, M_WAITOK); lwkt_token_init(pcbinfo->infotoken, "infotoken"); } else { pcbinfo->infotoken = NULL; } } void in_pcbportinfo_set(struct inpcbinfo *pcbinfo, struct inpcbportinfo *portinfo, int portinfo_cnt) { KASSERT(portinfo_cnt > 0, ("invalid portinfo_cnt %d", portinfo_cnt)); pcbinfo->portinfo = portinfo; pcbinfo->portinfo_cnt = portinfo_cnt; } struct baddynamicports baddynamicports; /* * Check if the specified port is invalid for dynamic allocation. */ int in_baddynamic(u_int16_t port, u_int16_t proto) { switch (proto) { case IPPROTO_TCP: return (DP_ISSET(baddynamicports.tcp, port)); case IPPROTO_UDP: return (DP_ISSET(baddynamicports.udp, port)); default: return (0); } } void in_pcbonlist(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; KASSERT(&curthread->td_msgport == netisr_cpuport(pcbinfo->cpu), ("not in the correct netisr")); KASSERT((inp->inp_flags & INP_ONLIST) == 0, ("already on pcblist")); inp->inp_flags |= INP_ONLIST; GET_PCBINFO_TOKEN(pcbinfo); LIST_INSERT_HEAD(&pcbinfo->pcblisthead, inp, inp_list); pcbinfo->ipi_count++; REL_PCBINFO_TOKEN(pcbinfo); } void in_pcbofflist(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; KASSERT(&curthread->td_msgport == netisr_cpuport(pcbinfo->cpu), ("not in the correct netisr")); KASSERT(inp->inp_flags & INP_ONLIST, ("not on pcblist")); inp->inp_flags &= ~INP_ONLIST; GET_PCBINFO_TOKEN(pcbinfo); LIST_REMOVE(inp, inp_list); KASSERT(pcbinfo->ipi_count > 0, ("invalid inpcb count %d", pcbinfo->ipi_count)); pcbinfo->ipi_count--; REL_PCBINFO_TOKEN(pcbinfo); } /* * Allocate a PCB and associate it with the socket. */ int in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) { struct inpcb *inp; inp = kmalloc(pcbinfo->ipi_size, M_PCB, M_WAITOK|M_ZERO|M_NULLOK); if (inp == NULL) return (ENOMEM); inp->inp_lgrpindex = -1; inp->inp_gencnt = ++pcbinfo->ipi_gencnt; inp->inp_pcbinfo = pcbinfo; inp->inp_socket = so; #ifdef INET6 if (INP_CHECK_SOCKAF(so, AF_INET6)) { if (ip6_auto_flowlabel) inp->inp_flags |= IN6P_AUTOFLOWLABEL; inp->inp_af = AF_INET6; } else #endif inp->inp_af = AF_INET; soreference(so); so->so_pcb = inp; in_pcbonlist(inp); return (0); } /* * Unlink a pcb with the intention of moving it to another cpu with a * different pcbinfo. While unlinked nothing should attempt to dereference * inp_pcbinfo, NULL it out so we assert if it does. */ void in_pcbunlink_flags(struct inpcb *inp, struct inpcbinfo *pcbinfo, int flags) { KASSERT(inp->inp_pcbinfo == pcbinfo, ("pcbinfo mismatch")); KASSERT((inp->inp_flags & (flags | INP_CONNECTED)) == 0, ("already linked")); in_pcbofflist(inp); inp->inp_pcbinfo = NULL; } void in_pcbunlink(struct inpcb *inp, struct inpcbinfo *pcbinfo) { in_pcbunlink_flags(inp, pcbinfo, INP_WILDCARD); } /* * Relink a pcb into a new pcbinfo. */ void in_pcblink_flags(struct inpcb *inp, struct inpcbinfo *pcbinfo, int flags) { KASSERT(inp->inp_pcbinfo == NULL, ("has pcbinfo")); KASSERT((inp->inp_flags & (flags | INP_CONNECTED)) == 0, ("already linked")); inp->inp_pcbinfo = pcbinfo; in_pcbonlist(inp); } void in_pcblink(struct inpcb *inp, struct inpcbinfo *pcbinfo) { return in_pcblink_flags(inp, pcbinfo, INP_WILDCARD); } static boolean_t in_pcbporthash_update(struct inpcbportinfo *portinfo, struct inpcb *inp, u_short lport, struct ucred *cred, int wild) { struct inpcbporthead *porthash; /* * This has to be atomic. If the porthash is shared across multiple * protocol threads, e.g. tcp and udp, then the token must be held. */ porthash = in_pcbporthash_head(portinfo, lport); GET_PORTHASH_TOKEN(porthash); if (in_pcblookup_local(porthash, inp->inp_laddr, lport, wild, cred)) { REL_PORTHASH_TOKEN(porthash); return FALSE; } inp->inp_lport = lport; in_pcbinsporthash(porthash, inp); REL_PORTHASH_TOKEN(porthash); return TRUE; } static int in_pcbsetlport(struct inpcb *inp, int wild, struct ucred *cred) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbportinfo *portinfo; u_short first, last, lport, step, first0, last0; int count, error; int portinfo_first, portinfo_idx; uint32_t cut; inp->inp_flags |= INP_ANONPORT; step = pcbinfo->portinfo_cnt; portinfo_first = mycpuid % pcbinfo->portinfo_cnt; portinfo_idx = portinfo_first; if (inp->inp_flags & INP_HIGHPORT) { first0 = ipport_hifirstauto; /* sysctl */ last0 = ipport_hilastauto; } else if (inp->inp_flags & INP_LOWPORT) { if (cred && (error = caps_priv_check(cred, SYSCAP_NONET_RESPORT))) { inp->inp_laddr.s_addr = INADDR_ANY; return error; } first0 = ipport_lowfirstauto; /* 1023 */ last0 = ipport_lowlastauto; /* 600 */ } else { first0 = ipport_firstauto; /* sysctl */ last0 = ipport_lastauto; } if (first0 > last0) { lport = last0; last0 = first0; first0 = lport; } KKASSERT(last0 >= first0); cut = karc4random(); loop: portinfo = &pcbinfo->portinfo[portinfo_idx]; first = first0; last = last0; /* * Simple check to ensure all ports are not used up causing * a deadlock here. */ in_pcbportrange(&last, &first, portinfo->offset, step); lport = last - first; count = lport / step; lport = rounddown(cut % lport, step) + first; KKASSERT(lport % step == portinfo->offset); for (;;) { if (count-- < 0) { /* completely used? */ error = EADDRNOTAVAIL; break; } if (__predict_false(lport < first || lport > last)) { lport = first; KKASSERT(lport % step == portinfo->offset); } if (in_pcbporthash_update(portinfo, inp, htons(lport), cred, wild)) { error = 0; break; } lport += step; KKASSERT(lport % step == portinfo->offset); } if (error) { /* Try next portinfo */ portinfo_idx++; portinfo_idx %= pcbinfo->portinfo_cnt; if (portinfo_idx != portinfo_first) goto loop; inp->inp_laddr.s_addr = INADDR_ANY; } return error; } static __inline struct inpcbporthead * OBTAIN_LPORTHASH_TOKEN(struct inpcbinfo *pcbinfo, u_short lport) { struct inpcbportinfo *portinfo; struct inpcbporthead *porthash; u_short lport_ho = ntohs(lport); /* * Locate the proper portinfo based on lport */ portinfo = &pcbinfo->portinfo[lport_ho % pcbinfo->portinfo_cnt]; KKASSERT((lport_ho % pcbinfo->portinfo_cnt) == portinfo->offset); porthash = in_pcbporthash_head(portinfo, lport); GET_PORTHASH_TOKEN(porthash); return porthash; } static int in_pcbbind_laddr(struct sockaddr_in *sin, struct in_addr *laddr, struct thread *td) { struct sockaddr_in jsin; if (!prison_replace_wildcards(td, (struct sockaddr *)sin)) return (EINVAL); if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && sin->sin_addr.s_addr != INADDR_ANY) { sin->sin_port = 0; /* yech... */ bzero(&sin->sin_zero, sizeof sin->sin_zero); if (ifa_ifwithaddr((struct sockaddr *)sin) == NULL) return (EADDRNOTAVAIL); } *laddr = sin->sin_addr; jsin.sin_family = AF_INET; jsin.sin_addr.s_addr = laddr->s_addr; if (!prison_replace_wildcards(td, (struct sockaddr *)&jsin)) { laddr->s_addr = INADDR_ANY; return (EINVAL); } laddr->s_addr = jsin.sin_addr.s_addr; return (0); } static int in_pcbbind_laddrport_check(const struct socket *so, struct sockaddr_in *sin, struct inpcbporthead *porthash, int wild, struct ucred *cred, struct thread *td) { int reuseport = (so->so_options & SO_REUSEPORT); struct inpcb *t; ASSERT_PORTHASH_TOKEN_HELD(porthash); if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow complete duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if (so->so_options & SO_REUSEADDR) reuseport = SO_REUSEADDR | SO_REUSEPORT; } if (so->so_cred->cr_uid != 0 && !IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { t = in_pcblookup_local(porthash, sin->sin_addr, sin->sin_port, INPLOOKUP_WILDCARD, cred); if (t && t->inp_socket != so && (so->so_cred->cr_uid != t->inp_socket->so_cred->cr_uid)) return (EADDRINUSE); } if (cred && !prison_replace_wildcards(td, (struct sockaddr *)sin)) return (EADDRNOTAVAIL); /* * When binding to a local port if the best match is against * an accepted socket we generally want to allow the binding. * This means that there is no longer any specific socket * bound or bound for listening. */ t = in_pcblookup_local(porthash, sin->sin_addr, sin->sin_port, wild, cred); if (t && t->inp_socket != so && (reuseport & t->inp_socket->so_options) == 0 && (t->inp_socket->so_state & SS_ACCEPTMECH) == 0) return (EADDRINUSE); return (0); } int in_pcbsrcaddr_check(const struct inpcb *inp, struct sockaddr_in *sin, struct in_addr *laddr, struct thread *td) { const struct socket *so = inp->inp_socket; struct inpcbporthead *porthash; struct ucred *cred = NULL; int wild = 0; int error; /* inp must be bound beforehand. */ KKASSERT(inp->inp_lport != 0); KKASSERT(sin->sin_len == sizeof(*sin)); if (!(so->so_options & (SO_REUSEADDR|SO_REUSEPORT))) wild = 1; /* neither SO_REUSEADDR nor SO_REUSEPORT is set */ if (td->td_proc) cred = td->td_proc->p_ucred; /* Always use inp_lport */ sin->sin_port = inp->inp_lport; error = in_pcbbind_laddr(sin, laddr, td); if (error) return (error); if (IN_MULTICAST(ntohl(laddr->s_addr))) { /* Unlike bind, multicast src address is not allowed. */ return (EINVAL); } if (inp->inp_laddr.s_addr == laddr->s_addr) { /* * src address is same as what we bound to. * * inp_laddr == INADDR_ANY && srcaddr == INADDR_ANY * is allowed, which does not really matter. */ return (0); } else if (inp->inp_laddr.s_addr != INADDR_ANY && !IN_MULTICAST(ntohl(inp->inp_laddr.s_addr))) { /* Already bound to a specific address */ return (EINVAL); } /* * This has to be atomic. If the porthash is shared across * multiple protocol threads, e.g. tcp and udp then the token * must be held. */ porthash = OBTAIN_LPORTHASH_TOKEN(inp->inp_pcbinfo, inp->inp_lport); /* * Restore the sin_port whacked by in_pcbbind_ladddr(); * sin->sin_port is checked by in_pcbbind_laddrport_check(). */ sin->sin_port = inp->inp_lport; error = in_pcbbind_laddrport_check(so, sin, porthash, wild, cred, td); if (error) laddr->s_addr = INADDR_ANY; REL_PORTHASH_TOKEN(porthash); return (error); } int in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct thread *td) { const struct socket *so = inp->inp_socket; struct ucred *cred = NULL; int wild = 0; if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) return (EINVAL); /* already bound */ if (!(so->so_options & (SO_REUSEADDR|SO_REUSEPORT))) wild = 1; /* neither SO_REUSEADDR nor SO_REUSEPORT is set */ if (td->td_proc) cred = td->td_proc->p_ucred; if (nam != NULL) { struct sockaddr_in *sin = (struct sockaddr_in *)nam; struct inpcbporthead *porthash; u_short lport; int error; if (nam->sa_len != sizeof *sin) return (EINVAL); #ifdef notdef /* * We should check the family, but old programs * incorrectly fail to initialize it. */ if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); #endif /* * Save sin_port for later use, since it will * be whacked by in_pcbbind_laddr(). */ lport = sin->sin_port; error = in_pcbbind_laddr(sin, &inp->inp_laddr, td); if (error) return (error); if (lport == 0) { /* Auto-select local port */ return in_pcbsetlport(inp, wild, cred); } /* GROSS */ if (ntohs(lport) < IPPORT_RESERVED && cred && (error = caps_priv_check(cred, SYSCAP_NONET_RESPORT))) { inp->inp_laddr.s_addr = INADDR_ANY; return (error); } /* * This has to be atomic. If the porthash is shared across * multiple protocol threads, e.g. tcp and udp then the token * must be held. */ porthash = OBTAIN_LPORTHASH_TOKEN(inp->inp_pcbinfo, lport); /* * Restore the sin_port whacked by in_pcbbind_ladddr(); * sin->sin_port is checked by in_pcbbind_laddrport_check(). */ sin->sin_port = lport; error = in_pcbbind_laddrport_check(so, sin, porthash, wild, cred, td); if (error) { inp->inp_laddr.s_addr = INADDR_ANY; goto done; } inp->inp_lport = lport; in_pcbinsporthash(porthash, inp); error = 0; done: REL_PORTHASH_TOKEN(porthash); return (error); } else { struct sockaddr_in jsin; jsin.sin_family = AF_INET; jsin.sin_addr.s_addr = inp->inp_laddr.s_addr; if (!prison_replace_wildcards(td, (struct sockaddr *)&jsin)) { inp->inp_laddr.s_addr = INADDR_ANY; return (EINVAL); } inp->inp_laddr.s_addr = jsin.sin_addr.s_addr; return in_pcbsetlport(inp, wild, cred); } } /* * Lookup a PCB based on the local and remote address and port. * * This function is only used when scanning for a free port. */ static struct inpcb * in_pcblookup_localremote(struct inpcbporthead *porthash, struct in_addr laddr, u_short lport, struct in_addr faddr, u_short fport, struct ucred *cred) { struct inpcb *inp; struct inpcbport *phd; struct inpcb *match = NULL; struct prison *pscan; struct prison *pr; /* * If the porthashbase is shared across several cpus, it must * have been locked. */ ASSERT_PORTHASH_TOKEN_HELD(porthash); /* * Best fit PCB lookup. * * First see if this local port is in use by looking on the * port hash list. */ LIST_FOREACH(phd, porthash, phd_hash) { if (phd->phd_port == lport) break; } if (phd != NULL) { pr = cred ? cred->cr_prison : NULL; LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { #ifdef INET6 if (!INP_ISIPV4(inp)) continue; #endif if (inp->inp_laddr.s_addr == INADDR_ANY) { if (inp->inp_socket && inp->inp_socket->so_cred) pscan = inp->inp_socket->so_cred->cr_prison; else pscan = NULL; if (pr != pscan) continue; } else { if (inp->inp_laddr.s_addr != laddr.s_addr) continue; } if (inp->inp_faddr.s_addr != INADDR_ANY && inp->inp_faddr.s_addr != faddr.s_addr) continue; if (inp->inp_fport != 0 && inp->inp_fport != fport) continue; match = inp; break; } } return (match); } static boolean_t in_pcbporthash_update4(struct inpcbportinfo *portinfo, struct inpcb *inp, u_short lport, const struct sockaddr_in *sin, struct ucred *cred) { struct inpcbporthead *porthash; /* * This has to be atomic. If the porthash is shared across multiple * protocol threads, e.g. tcp and udp, then the token must be held. */ porthash = in_pcbporthash_head(portinfo, lport); GET_PORTHASH_TOKEN(porthash); if (in_pcblookup_localremote(porthash, inp->inp_laddr, lport, sin->sin_addr, sin->sin_port, cred)) { REL_PORTHASH_TOKEN(porthash); return FALSE; } inp->inp_lport = lport; in_pcbinsporthash(porthash, inp); REL_PORTHASH_TOKEN(porthash); return TRUE; } int in_pcbbind_remote(struct inpcb *inp, const struct sockaddr *remote, struct thread *td) { struct proc *p = td->td_proc; const struct sockaddr_in *sin = (const struct sockaddr_in *)remote; struct sockaddr_in jsin; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct ucred *cred = NULL; u_short first, last, lport; int count, hash_count; int error, selfconn = 0; int cpuid = mycpuid; uint32_t hash_base = 0, hash; ASSERT_NETISR_NCPUS(cpuid); if (TAILQ_EMPTY(&in_ifaddrheads[cpuid])) /* XXX broken! */ return (EADDRNOTAVAIL); KKASSERT(inp->inp_laddr.s_addr != INADDR_ANY); if (inp->inp_lport != 0) return (EINVAL); /* already bound */ KKASSERT(p); cred = p->p_ucred; jsin.sin_family = AF_INET; jsin.sin_addr.s_addr = inp->inp_laddr.s_addr; if (!prison_replace_wildcards(td, (struct sockaddr *)&jsin)) { inp->inp_laddr.s_addr = INADDR_ANY; return (EINVAL); } inp->inp_laddr.s_addr = jsin.sin_addr.s_addr; hash_count = ip_porthash_trycount; if (hash_count > 0) { hash_base = toeplitz_piecemeal_addr(sin->sin_addr.s_addr) ^ toeplitz_piecemeal_addr(inp->inp_laddr.s_addr) ^ toeplitz_piecemeal_port(sin->sin_port); } else { hash_count = 0; } inp->inp_flags |= INP_ANONPORT; if (inp->inp_flags & INP_HIGHPORT) { first = ipport_hifirstauto; /* sysctl */ last = ipport_hilastauto; } else if (inp->inp_flags & INP_LOWPORT) { if (cred && (error = caps_priv_check(cred, SYSCAP_NONET_RESPORT))) { inp->inp_laddr.s_addr = INADDR_ANY; return (error); } first = ipport_lowfirstauto; /* 1023 */ last = ipport_lowlastauto; /* 600 */ } else { first = ipport_firstauto; /* sysctl */ last = ipport_lastauto; } if (first > last) { lport = last; last = first; first = lport; } KKASSERT(last >= first); count = last - first; lport = (karc4random() % count) + first; count += hash_count; /* * Simple check to ensure all ports are not used up causing * a deadlock here. */ for (;;) { u_short lport_no; if (count-- < 0) { /* completely used? */ error = EADDRNOTAVAIL; break; } if (__predict_false(lport < first || lport > last)) lport = first; lport_no = htons(lport); /* This could happen on loopback interface */ if (__predict_false(sin->sin_port == lport_no && sin->sin_addr.s_addr == inp->inp_laddr.s_addr)) { if (!selfconn) { ++count; /* don't count this try */ selfconn = 1; } goto next; } if (hash_count) { --hash_count; hash = hash_base ^ toeplitz_piecemeal_port(lport_no); if (netisr_hashcpu(hash) != cpuid && hash_count) goto next; } if (in_pcbporthash_update4( &pcbinfo->portinfo[lport % pcbinfo->portinfo_cnt], inp, lport_no, sin, cred)) { error = 0; break; } next: ++lport; } if (error) inp->inp_laddr.s_addr = INADDR_ANY; return (error); } /* * Figure out the local interface address to pair against the requested * target address, as well as validate the target address. */ int in_pcbladdr_find(struct inpcb *inp, struct sockaddr *nam, struct sockaddr_in **plocal_sin, struct thread *td, int find) { struct in_ifaddr_container *iac; struct in_ifaddr *ia; struct ucred *cred = NULL; struct sockaddr_in *sin = (struct sockaddr_in *)nam; struct sockaddr *jsin; struct prison *pr; struct route *ro; int alloc_route = 0; if (nam->sa_len != sizeof *sin) return (EINVAL); if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); if (sin->sin_port == 0) return (EADDRNOTAVAIL); /* * Are we in a jail? */ pr = NULL; if (td && td->td_proc && td->td_proc->p_ucred) cred = td->td_proc->p_ucred; if (cred) pr = cred->cr_prison; /* * If the destination address is INADDR_ANY then use the primary * local address. * * If the supplied address is INADDR_BROADCAST, and the primary * interface supports broadcast, choose the broadcast address for * that interface. * * If jailed, locate an interface address acceptable to the jail. */ if (sin->sin_addr.s_addr == INADDR_ANY) { TAILQ_FOREACH(iac, &in_ifaddrheads[mycpuid], ia_link) { ia = iac->ia; if (pr == NULL || jailed_ip(pr, sintosa(&ia->ia_addr))) { sin->sin_addr = IA_SIN(ia)->sin_addr; break; } } } else if (sin->sin_addr.s_addr == (u_long)INADDR_BROADCAST) { TAILQ_FOREACH(iac, &in_ifaddrheads[mycpuid], ia_link) { ia = iac->ia; if ((pr == NULL || jailed_ip(pr, sintosa(&ia->ia_addr))) && (iac->ia->ia_ifp->if_flags & IFF_BROADCAST)) { sin->sin_addr = satosin(&ia->ia_broadaddr)->sin_addr; break; } } } /* * If asked to do a search, use the cached route or do a route table * lookup to try to find an acceptable local interface IP. */ if (find == 0) return 0; ia = NULL; /* * If we have a cached route, check to see if it is acceptable. * If not, free it. */ ro = &inp->inp_route; if (ro->ro_rt && (!(ro->ro_rt->rt_flags & RTF_UP) || ro->ro_dst.sa_family != AF_INET || satosin(&ro->ro_dst)->sin_addr.s_addr != sin->sin_addr.s_addr || inp->inp_socket->so_options & SO_DONTROUTE)) { RTFREE(ro->ro_rt); ro->ro_rt = NULL; } /* * If we do not have a route, construct one and do a lookup, * unless we are forbidden to do so. * * Note that we should check the address family of the cached * destination, in case of sharing the cache with IPv6. */ if (!(inp->inp_socket->so_options & SO_DONTROUTE) && /*XXX*/ (ro->ro_rt == NULL || ro->ro_rt->rt_ifp == NULL)) { bzero(&ro->ro_dst, sizeof(struct sockaddr_in)); ro->ro_dst.sa_family = AF_INET; ro->ro_dst.sa_len = sizeof(struct sockaddr_in); ((struct sockaddr_in *)&ro->ro_dst)->sin_addr = sin->sin_addr; rtalloc(ro); alloc_route = 1; } /* * If we found a route, use the address corresponding to the * outgoing interface. * * If jailed, try to find a compatible address on the outgoing * interface. */ if (ro->ro_rt) { ia = ifatoia(ro->ro_rt->rt_ifa); if (pr == NULL) goto skip; if (jailed_ip(pr, sintosa(&ia->ia_addr))) goto skip; TAILQ_FOREACH(iac, &in_ifaddrheads[mycpuid], ia_link) { if (iac->ia->ia_ifp != ia->ia_ifp) continue; ia = iac->ia; if (jailed_ip(pr, sintosa(&ia->ia_addr))) goto skip; } ia = NULL; } skip: /* * If the route didn't work or there was no route, * fall-back to the first address in in_ifaddrheads[]. * * If jailed and this address is not available for * the jail, leave ia set to NULL. */ if (ia == NULL) { u_short fport = sin->sin_port; sin->sin_port = 0; ia = ifatoia(ifa_ifwithdstaddr(sintosa(sin))); if (ia && pr && !jailed_ip(pr, sintosa(&ia->ia_addr))) ia = NULL; if (ia == NULL) ia = ifatoia(ifa_ifwithnet(sintosa(sin))); if (ia && pr && !jailed_ip(pr, sintosa(&ia->ia_addr))) ia = NULL; sin->sin_port = fport; if (ia == NULL && !TAILQ_EMPTY(&in_ifaddrheads[mycpuid])) ia = TAILQ_FIRST(&in_ifaddrheads[mycpuid])->ia; if (ia && pr && !jailed_ip(pr, sintosa(&ia->ia_addr))) ia = NULL; if (pr == NULL && ia == NULL) goto fail; } /* * If the destination address is multicast and an outgoing * interface has been set as a multicast option, use the * address of that interface as our source address. */ if (pr == NULL && IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && inp->inp_moptions != NULL) { struct ip_moptions *imo; struct ifnet *ifp; imo = inp->inp_moptions; if ((ifp = imo->imo_multicast_ifp) != NULL) { struct in_ifaddr_container *iac; ia = NULL; TAILQ_FOREACH(iac, &in_ifaddrheads[mycpuid], ia_link) { if (iac->ia->ia_ifp == ifp) { ia = iac->ia; break; } } if (ia == NULL) goto fail; } } /* * If we still don't have a local address, and are jailed, * use the jail's first non-localhost IP. If there isn't * one, use the jail's first localhost IP. * * Don't do pcblookup call here; return interface in plocal_sin * and exit to caller, that will do the lookup. */ if (ia == NULL && pr) { jsin = prison_get_nonlocal(cred->cr_prison, AF_INET, NULL); if (jsin == NULL) jsin = prison_get_local(cred->cr_prison, AF_INET, NULL); if (jsin) *plocal_sin = satosin(jsin); else goto fail; } else if (ia) { *plocal_sin = &ia->ia_addr; } else { goto fail; } return (0); fail: if (alloc_route) in_pcbresetroute(inp); return (EADDRNOTAVAIL); } int in_pcbladdr(struct inpcb *inp, struct sockaddr *nam, struct sockaddr_in **plocal_sin, struct thread *td) { return in_pcbladdr_find(inp, nam, plocal_sin, td, (inp->inp_laddr.s_addr == INADDR_ANY)); } /* * Outer subroutine: * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. */ int in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct thread *td) { struct sockaddr_in *if_sin; struct sockaddr_in *sin = (struct sockaddr_in *)nam; int error; if_sin = NULL; /* avoid gcc warnings */ /* Call inner routine to assign local interface address. */ if ((error = in_pcbladdr(inp, nam, &if_sin, td)) != 0) return (error); if (in_pcblookup_hash(inp->inp_pcbinfo, sin->sin_addr, sin->sin_port, inp->inp_laddr.s_addr ? inp->inp_laddr : if_sin->sin_addr, inp->inp_lport, FALSE, NULL) != NULL) { return (EADDRINUSE); } if (inp->inp_laddr.s_addr == INADDR_ANY) { if (inp->inp_lport == 0) { error = in_pcbbind(inp, NULL, td); if (error) return (error); } inp->inp_laddr = if_sin->sin_addr; } inp->inp_faddr = sin->sin_addr; inp->inp_fport = sin->sin_port; in_pcbinsconnhash(inp); return (0); } void in_pcbdisconnect(struct inpcb *inp) { in_pcbremconnhash(inp); inp->inp_faddr.s_addr = INADDR_ANY; inp->inp_fport = 0; } void in_pcbdetach(struct inpcb *inp) { struct socket *so = inp->inp_socket; struct inpcbinfo *ipi = inp->inp_pcbinfo; inp->inp_gencnt = ++ipi->ipi_gencnt; KKASSERT((so->so_state & SS_ASSERTINPROG) == 0); in_pcbremlists(inp); so->so_pcb = NULL; sofree(so); /* remove pcb ref */ if (inp->inp_options) m_free(inp->inp_options); if (inp->inp_route.ro_rt) rtfree(inp->inp_route.ro_rt); ip_freemoptions(inp->inp_moptions); kfree(inp, M_PCB); } /* * The socket may have an invalid PCB, i.e. NULL. For example, a TCP * socket received RST. */ static int in_setsockaddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct sockaddr_in *sin; KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr")); inp = so->so_pcb; if (!inp) return (ECONNRESET); sin = kmalloc(sizeof *sin, M_SONAME, M_WAITOK | M_ZERO); sin->sin_family = AF_INET; sin->sin_len = sizeof *sin; sin->sin_port = inp->inp_lport; sin->sin_addr = inp->inp_laddr; *nam = (struct sockaddr *)sin; return (0); } void in_setsockaddr_dispatch(netmsg_t msg) { int error; error = in_setsockaddr(msg->base.nm_so, msg->peeraddr.nm_nam); lwkt_replymsg(&msg->lmsg, error); } /* * The socket may have an invalid PCB, i.e. NULL. For example, a TCP * socket received RST. */ int in_setpeeraddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct sockaddr_in *sin; KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr")); inp = so->so_pcb; if (!inp) return (ECONNRESET); sin = kmalloc(sizeof *sin, M_SONAME, M_WAITOK | M_ZERO); sin->sin_family = AF_INET; sin->sin_len = sizeof *sin; sin->sin_port = inp->inp_fport; sin->sin_addr = inp->inp_faddr; *nam = (struct sockaddr *)sin; return (0); } void in_setpeeraddr_dispatch(netmsg_t msg) { int error; error = in_setpeeraddr(msg->base.nm_so, msg->peeraddr.nm_nam); lwkt_replymsg(&msg->lmsg, error); } void in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int err, inp_notify_t notify) { struct inpcb *inp, *marker; KASSERT(&curthread->td_msgport == netisr_cpuport(pcbinfo->cpu), ("not in the correct netisr")); marker = in_pcbmarker(); /* * NOTE: * - If INP_PLACEMARKER is set we must ignore the rest of the * structure and skip it. * - It is safe to nuke inpcbs here, since we are in their own * netisr. */ GET_PCBINFO_TOKEN(pcbinfo); LIST_INSERT_HEAD(&pcbinfo->pcblisthead, marker, inp_list); while ((inp = LIST_NEXT(marker, inp_list)) != NULL) { LIST_REMOVE(marker, inp_list); LIST_INSERT_AFTER(inp, marker, inp_list); if (inp->inp_flags & INP_PLACEMARKER) continue; #ifdef INET6 if (!INP_ISIPV4(inp)) continue; #endif if (inp->inp_faddr.s_addr != faddr.s_addr || inp->inp_socket == NULL) continue; (*notify)(inp, err); /* can remove inp from list! */ } LIST_REMOVE(marker, inp_list); REL_PCBINFO_TOKEN(pcbinfo); } void in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) { struct inpcb *inp, *marker; /* * We only need to make sure that we are in netisr0, where all * multicast operation happen. We could check inpcbinfo which * does not belong to netisr0 by holding the inpcbinfo's token. * In this case, the pcbinfo must be able to be shared, i.e. * pcbinfo->infotoken is not NULL. */ ASSERT_NETISR0; KASSERT(pcbinfo->cpu == 0 || pcbinfo->infotoken != NULL, ("pcbinfo could not be shared")); /* * Get a marker for the current netisr (netisr0). * * It is possible that the multicast address deletion blocks, * which could cause temporary token releasing. So we use * inpcb marker here to get a coherent view of the inpcb list. * * While, on the other hand, moptions are only added and deleted * in netisr0, so we would not see staled moption or miss moption * even if the token was released due to the blocking multicast * address deletion. */ marker = in_pcbmarker(); GET_PCBINFO_TOKEN(pcbinfo); LIST_INSERT_HEAD(&pcbinfo->pcblisthead, marker, inp_list); while ((inp = LIST_NEXT(marker, inp_list)) != NULL) { struct ip_moptions *imo; LIST_REMOVE(marker, inp_list); LIST_INSERT_AFTER(inp, marker, inp_list); if (inp->inp_flags & INP_PLACEMARKER) continue; imo = inp->inp_moptions; if (INP_ISIPV4(inp) && imo != NULL) { int i, gap; /* * Unselect the outgoing interface if it is being * detached. */ if (imo->imo_multicast_ifp == ifp) imo->imo_multicast_ifp = NULL; /* * Drop multicast group membership if we joined * through the interface being detached. */ for (i = 0, gap = 0; i < imo->imo_num_memberships; i++) { if (imo->imo_membership[i]->inm_ifp == ifp) { /* * NOTE: * This could block and the pcbinfo * token could be passively released. */ in_delmulti(imo->imo_membership[i]); gap++; } else if (gap != 0) imo->imo_membership[i - gap] = imo->imo_membership[i]; } imo->imo_num_memberships -= gap; } } LIST_REMOVE(marker, inp_list); REL_PCBINFO_TOKEN(pcbinfo); } /* * Check for alternatives when higher level complains * about service problems. For now, invalidate cached * routing information. If the route was created dynamically * (by a redirect), time to try a default gateway again. */ void in_losing(struct inpcb *inp) { struct rtentry *rt; struct rt_addrinfo rtinfo; if ((rt = inp->inp_route.ro_rt)) { bzero(&rtinfo, sizeof(struct rt_addrinfo)); rtinfo.rti_info[RTAX_DST] = rt_key(rt); rtinfo.rti_info[RTAX_GATEWAY] = rt->rt_gateway; rtinfo.rti_info[RTAX_NETMASK] = rt_mask(rt); rtinfo.rti_flags = rt->rt_flags; rt_missmsg(RTM_LOSING, &rtinfo, rt->rt_flags, 0); if (rt->rt_flags & RTF_DYNAMIC) { rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL); } inp->inp_route.ro_rt = NULL; rtfree(rt); /* * A new route can be allocated * the next time output is attempted. */ } } /* * After a routing change, flush old routing * and allocate a (hopefully) better one. */ void in_rtchange(struct inpcb *inp, int err) { if (inp->inp_route.ro_rt) { rtfree(inp->inp_route.ro_rt); inp->inp_route.ro_rt = NULL; /* * A new route can be allocated the next time * output is attempted. */ } } /* * Lookup a PCB based on the local address and port. * * This function is only used when scanning for a free port. */ static struct inpcb * in_pcblookup_local(struct inpcbporthead *porthash, struct in_addr laddr, u_int lport_arg, int wild_okay, struct ucred *cred) { struct prison *pscan; struct prison *pr; struct inpcb *inp; int matchwild = 3, wildcard; u_short lport = lport_arg; struct inpcbport *phd; struct inpcb *match = NULL; /* * If the porthashbase is shared across several cpus, it must * have been locked. */ ASSERT_PORTHASH_TOKEN_HELD(porthash); /* * Best fit PCB lookup. * * First see if this local port is in use by looking on the * port hash list. */ LIST_FOREACH(phd, porthash, phd_hash) { if (phd->phd_port == lport) break; } if (phd != NULL) { pr = cred ? cred->cr_prison : NULL; /* * Port is in use by one or more PCBs. Look for best * fit. * * If in a prison we may wish to allow the jail to override * a wildcard listen on the host. Since the jail forces its * own wildcard listens to a specific set of jail IPs, this * override allows most services on the host to remain as * they were and still be 'jail friendly'. */ LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { wildcard = 0; #ifdef INET6 if (!INP_ISIPV4(inp)) continue; #endif if (inp->inp_faddr.s_addr != INADDR_ANY) wildcard++; /* * Prison are independent of each other in terms * of allowing bindings. This can result in multiple * overloaded bindings which in_pcblookup_pkthash() * will have to sort out. * * Allow wildcarded entries to co-exist with specific * entries. Specific entries override wildcarded * entries. */ if (inp->inp_socket && inp->inp_socket->so_cred) pscan = inp->inp_socket->so_cred->cr_prison; else pscan = NULL; if (pr != pscan) continue; if (inp->inp_laddr.s_addr == INADDR_ANY) { if (laddr.s_addr != INADDR_ANY) wildcard++; } else { if (laddr.s_addr == INADDR_ANY) wildcard++; else if (inp->inp_laddr.s_addr != laddr.s_addr) continue; } if (wildcard && !wild_okay) continue; if (wildcard < matchwild) { match = inp; matchwild = wildcard; if (matchwild == 0) break; } } } return (match); } struct inpcb * in_pcblocalgroup_last(const struct inpcbinfo *pcbinfo, const struct inpcb *inp) { const struct inp_localgrphead *hdr; const struct inp_localgroup *grp; int i; if (pcbinfo->localgrphashbase == NULL) return NULL; GET_PCBINFO_TOKEN(pcbinfo); hdr = &pcbinfo->localgrphashbase[ INP_PCBLOCALGRPHASH(inp->inp_lport, pcbinfo->localgrphashmask)]; LIST_FOREACH(grp, hdr, il_list) { if (grp->il_af == inp->inp_af && grp->il_lport == inp->inp_lport && memcmp(&grp->il_dependladdr, &inp->inp_inc.inc_ie.ie_dependladdr, sizeof(grp->il_dependladdr)) == 0) { break; } } if (grp == NULL || grp->il_inpcnt == 1) { REL_PCBINFO_TOKEN(pcbinfo); return NULL; } KASSERT(grp->il_inpcnt >= 2, ("invalid localgroup inp count %d", grp->il_inpcnt)); for (i = 0; i < grp->il_inpcnt; ++i) { if (grp->il_inp[i] == inp) { int last = grp->il_inpcnt - 1; if (i == last) last = grp->il_inpcnt - 2; REL_PCBINFO_TOKEN(pcbinfo); return grp->il_inp[last]; } } REL_PCBINFO_TOKEN(pcbinfo); return NULL; } static struct inpcb * inp_localgroup_lookup(const struct inpcbinfo *pcbinfo, struct in_addr laddr, uint16_t lport, uint32_t pkt_hash) { struct inpcb *local_wild; struct inpcb *jinp; struct inpcb *jinp_wild; struct inpcb *inp; const struct inp_localgrphead *hdr; const struct inp_localgroup *grp; struct sockaddr_in jsin; struct prison *pr; struct ucred *cred; int idx; int net_listen_ov_local; int net_listen_ov_wild; ASSERT_PCBINFO_TOKEN_HELD(pcbinfo); hdr = &pcbinfo->localgrphashbase[ INP_PCBLOCALGRPHASH(lport, pcbinfo->localgrphashmask)]; /* * Order of socket selection: * 1. non-wild. * 2. wild. * * NOTE: Local group does not contain jailed sockets */ jsin.sin_family = AF_INET; jsin.sin_addr.s_addr = laddr.s_addr; jinp = NULL; jinp_wild = NULL; local_wild = NULL; net_listen_ov_local = 0; net_listen_ov_wild = 0; LIST_FOREACH(grp, hdr, il_list) { #ifdef INET6 if (grp->il_af != AF_INET) continue; #endif if (grp->il_lport != lport) continue; /* * look for a match */ idx = netisr_hashlsb(pkt_hash) % grp->il_inpcnt; inp = grp->il_inp[idx]; /* * Modulo-N is used here, which greatly reduces * completion queue token contention, thus more * cpu time is saved. */ if (grp->il_jailed) { if (inp->inp_socket == NULL) continue; cred = inp->inp_socket->so_cred; if (cred == NULL) continue; pr = cred->cr_prison; if (pr == NULL) continue; if (!jailed_ip(pr, (struct sockaddr *)&jsin)) continue; if (grp->il_laddr.s_addr == laddr.s_addr) { jinp = inp; if (PRISON_CAP_ISSET(pr->pr_caps, PRISON_CAP_NET_LISTEN_OVERRIDE)) net_listen_ov_local = 1; } else if (grp->il_laddr.s_addr == INADDR_ANY && jinp_wild == NULL) { jinp_wild = inp; if (PRISON_CAP_ISSET(pr->pr_caps, PRISON_CAP_NET_LISTEN_OVERRIDE)) net_listen_ov_wild = 1; } } else { if (grp->il_laddr.s_addr == laddr.s_addr) { return inp; } else if (grp->il_laddr.s_addr == INADDR_ANY) { local_wild = inp; } } } if (net_listen_ov_local) return jinp; if (net_listen_ov_wild) return jinp_wild; if (local_wild) return (local_wild); if (jinp) return (jinp); return (jinp_wild); } /* * Lookup PCB in hash list. * * This is used to match incoming packets to a pcb */ struct inpcb * in_pcblookup_pkthash(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, boolean_t wildcard, struct ifnet *ifp, const struct mbuf *m) { struct inpcbhead *head; struct inpcb *inp, *jinp=NULL; u_short fport = fport_arg, lport = lport_arg; /* * First look for an exact match. */ head = &pcbinfo->hashbase[INP_PCBCONNHASH(faddr.s_addr, fport, laddr.s_addr, lport, pcbinfo->hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 if (!INP_ISIPV4(inp)) continue; #endif if (in_hosteq(inp->inp_faddr, faddr) && in_hosteq(inp->inp_laddr, laddr) && inp->inp_fport == fport && inp->inp_lport == lport) { /* * Found specific address, host overrides jailed * inpcb. */ if (inp->inp_socket == NULL || inp->inp_socket->so_cred->cr_prison == NULL) { return (inp); } if (jinp == NULL) jinp = inp; } } if (jinp != NULL) return (jinp); /* * We generally get here for connections to wildcarded listeners. * Any wildcarded listeners in jails must be restricted to the * jailed IPs only. */ if (wildcard) { struct inpcb *local_wild = NULL; struct inpcb *jinp_wild = NULL; struct inpcontainer *ic; struct inpcontainerhead *chead; struct sockaddr_in jsin; struct ucred *cred; struct prison *pr; int net_listen_ov_local = 0; int net_listen_ov_wild = 0; GET_PCBINFO_TOKEN(pcbinfo); /* * Check local group first. When present, the localgroup * hash utilizes the same non-jailed-vs/jailed priortization * that the normal wildcardhash does. */ if (pcbinfo->localgrphashbase != NULL && m != NULL && (m->m_flags & M_HASH)) { inp = inp_localgroup_lookup(pcbinfo, laddr, lport, m->m_pkthdr.hash); if (inp != NULL) { REL_PCBINFO_TOKEN(pcbinfo); return inp; } } /* * Order of socket selection: * * 1. non-jailed, non-wild. * 2. non-jailed, wild. (allow_listen_override on) * 3. jailed, non-wild. * 4. jailed, wild. * 5. non-jailed, wild. (allow_listen_override off) * * NOTE: jailed wildcards are still restricted to the jail * IPs. * * NOTE: (1) and (3) already handled above. */ jsin.sin_family = AF_INET; chead = &pcbinfo->wildcardhashbase[ INP_PCBWILDCARDHASH(lport, pcbinfo->wildcardhashmask)]; LIST_FOREACH(ic, chead, ic_list) { inp = ic->ic_inp; if (inp->inp_flags & INP_PLACEMARKER) continue; /* * Basic validation */ #ifdef INET6 if (!INP_ISIPV4(inp)) continue; #endif if (inp->inp_lport != lport) continue; /* * Calculate prison, setup jsin for jailed_ip() * check. */ jsin.sin_addr.s_addr = laddr.s_addr; pr = NULL; cred = NULL; if (inp->inp_socket) { cred = inp->inp_socket->so_cred; if (cred) pr = cred->cr_prison; } /* * Assign jinp, jinp_wild, and local_wild as * appropriate, track whether the jail supports * listen overrides. */ if (pr) { if (!jailed_ip(pr, (struct sockaddr *)&jsin)) continue; if (inp->inp_laddr.s_addr == laddr.s_addr && jinp == NULL) { jinp = inp; if (PRISON_CAP_ISSET(pr->pr_caps, PRISON_CAP_NET_LISTEN_OVERRIDE)) net_listen_ov_local = 1; } if (inp->inp_laddr.s_addr == INADDR_ANY && jinp_wild == NULL) { jinp_wild = inp; if (PRISON_CAP_ISSET(pr->pr_caps, PRISON_CAP_NET_LISTEN_OVERRIDE)) net_listen_ov_wild = 1; } } else { if (inp->inp_laddr.s_addr == laddr.s_addr) { REL_PCBINFO_TOKEN(pcbinfo); return (inp); } if (inp->inp_laddr.s_addr == INADDR_ANY) local_wild = inp; } } REL_PCBINFO_TOKEN(pcbinfo); if (net_listen_ov_local) return jinp; if (net_listen_ov_wild) return jinp_wild; if (local_wild) return (local_wild); if (jinp) return (jinp); return (jinp_wild); } /* * Not found. */ return (NULL); } struct inpcb * in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, boolean_t wildcard, struct ifnet *ifp) { return in_pcblookup_pkthash(pcbinfo, faddr, fport_arg, laddr, lport_arg, wildcard, ifp, NULL); } /* * Insert PCB into connection hash table. */ void in_pcbinsconnhash(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbhead *bucket; u_int32_t hashkey_faddr, hashkey_laddr; #ifdef INET6 if (INP_ISIPV6(inp)) { hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX JH */; hashkey_laddr = inp->in6p_laddr.s6_addr32[3] /* XXX JH */; } else { #endif hashkey_faddr = inp->inp_faddr.s_addr; hashkey_laddr = inp->inp_laddr.s_addr; #ifdef INET6 } #endif KASSERT(&curthread->td_msgport == netisr_cpuport(pcbinfo->cpu), ("not in the correct netisr")); ASSERT_INP_NOTINHASH(inp); inp->inp_flags |= INP_CONNECTED; /* * Insert into the connection hash table. */ bucket = &pcbinfo->hashbase[INP_PCBCONNHASH(hashkey_faddr, inp->inp_fport, hashkey_laddr, inp->inp_lport, pcbinfo->hashmask)]; LIST_INSERT_HEAD(bucket, inp, inp_hash); } /* * Remove PCB from connection hash table. */ void in_pcbremconnhash(struct inpcb *inp) { struct inpcbinfo *pcbinfo __debugvar = inp->inp_pcbinfo; KASSERT(&curthread->td_msgport == netisr_cpuport(pcbinfo->cpu), ("not in the correct netisr")); KASSERT(inp->inp_flags & INP_CONNECTED, ("inp not connected")); LIST_REMOVE(inp, inp_hash); inp->inp_flags &= ~INP_CONNECTED; } /* * Insert PCB into port hash table. */ void in_pcbinsporthash(struct inpcbporthead *pcbporthash, struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbport *phd; /* * If the porthashbase is shared across several cpus, it must * have been locked. */ ASSERT_PORTHASH_TOKEN_HELD(pcbporthash); /* * Insert into the port hash table. */ /* Go through port list and look for a head for this lport. */ LIST_FOREACH(phd, pcbporthash, phd_hash) { if (phd->phd_port == inp->inp_lport) break; } /* If none exists, use saved one and tack it on. */ if (phd == NULL) { KKASSERT(pcbinfo->portsave != NULL); phd = pcbinfo->portsave; pcbinfo->portsave = NULL; phd->phd_port = inp->inp_lport; LIST_INIT(&phd->phd_pcblist); LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); } inp->inp_porthash = pcbporthash; inp->inp_phd = phd; LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); /* * Malloc one inpcbport for later use. It is safe to use * "wait" malloc here (port token would be released, if * malloc ever blocked), since all changes to the porthash * are done. */ if (pcbinfo->portsave == NULL) { pcbinfo->portsave = kmalloc(sizeof(*pcbinfo->portsave), M_PCB, M_INTWAIT | M_ZERO); } } void in_pcbinsporthash_lport(struct inpcb *inp) { struct inpcbporthead *porthash; porthash = OBTAIN_LPORTHASH_TOKEN(inp->inp_pcbinfo, inp->inp_lport); in_pcbinsporthash(porthash, inp); REL_PORTHASH_TOKEN(porthash); } void in_pcbremporthash(struct inpcb *inp) { struct inpcbporthead *porthash; struct inpcbport *phd; if (inp->inp_phd == NULL) return; KASSERT(inp->inp_lport != 0, ("inpcb has no lport")); porthash = inp->inp_porthash; KASSERT(porthash != NULL, ("no porthash")); GET_PORTHASH_TOKEN(porthash); phd = inp->inp_phd; LIST_REMOVE(inp, inp_portlist); if (LIST_FIRST(&phd->phd_pcblist) == NULL) { LIST_REMOVE(phd, phd_hash); kfree(phd, M_PCB); } REL_PORTHASH_TOKEN(porthash); inp->inp_phd = NULL; /* NOTE: Don't whack inp_lport, which may be used later */ } static struct inp_localgroup * inp_localgroup_alloc(u_char af, uint16_t port, const union in_dependaddr *addr, int size) { struct inp_localgroup *grp; grp = kmalloc(__offsetof(struct inp_localgroup, il_inp[size]), M_TEMP, M_INTWAIT | M_ZERO); grp->il_af = af; grp->il_lport = port; grp->il_dependladdr = *addr; grp->il_inpsiz = size; return grp; } static void inp_localgroup_free(struct inp_localgroup *grp) { kfree(grp, M_TEMP); } static void inp_localgroup_destroy(struct inp_localgroup *grp) { LIST_REMOVE(grp, il_list); inp_localgroup_free(grp); } static void inp_localgroup_copy(struct inp_localgroup *grp, const struct inp_localgroup *old_grp) { int i; KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, ("invalid new local group size %d and old local group count %d", grp->il_inpsiz, old_grp->il_inpcnt)); for (i = 0; i < old_grp->il_inpcnt; ++i) grp->il_inp[i] = old_grp->il_inp[i]; grp->il_inpcnt = old_grp->il_inpcnt; } static void in_pcbinslocalgrphash_oncpu(struct inpcb *inp, struct inpcbinfo *pcbinfo) { struct inp_localgrphead *hdr; struct inp_localgroup *grp, *grp_alloc = NULL; u_char isjailed; int i, idx; ASSERT_PCBINFO_TOKEN_HELD(pcbinfo); if (pcbinfo->localgrphashbase == NULL) return; /* * Further separate groups by whether the inp is jailed or not. * This allows the inp_localgroup_lookup() code to manage port * overloading between jails and non-jails. * * XXX all jails are collected into one group, which works fine * as we expect the jails to be listening on different addresses. * If this changes in the future we may have to break the groups * up by prison pointer as well. */ if (inp->inp_socket && inp->inp_socket->so_cred) isjailed = jailed(inp->inp_socket->so_cred); else isjailed = 0; hdr = &pcbinfo->localgrphashbase[ INP_PCBLOCALGRPHASH(inp->inp_lport, pcbinfo->localgrphashmask)]; again: LIST_FOREACH(grp, hdr, il_list) { if (grp->il_af == inp->inp_af && grp->il_lport == inp->inp_lport && grp->il_jailed == isjailed && memcmp(&grp->il_dependladdr, &inp->inp_inc.inc_ie.ie_dependladdr, sizeof(grp->il_dependladdr)) == 0) { break; } } if (grp == NULL) { /* * Create a new local group */ if (grp_alloc == NULL) { grp_alloc = inp_localgroup_alloc(inp->inp_af, inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, INP_LOCALGROUP_SIZMIN); /* * Local group allocation could block and the * local group w/ the same property might have * been added by others when we were blocked; * check again. */ goto again; } else { /* Local group has been allocated; link it */ grp = grp_alloc; grp->il_jailed = isjailed; grp_alloc = NULL; LIST_INSERT_HEAD(hdr, grp, il_list); } } else if (grp->il_inpcnt == grp->il_inpsiz) { #if 0 /* * REMOVED - Ensure that all entries are placed in the * localgroup so jail operations can be * deterministic on a il_lport basis. */ if (grp->il_inpsiz >= INP_LOCALGROUP_SIZMAX) { static int limit_logged = 0; if (!limit_logged) { limit_logged = 1; kprintf("local group port %d, " "limit reached\n", ntohs(grp->il_lport)); } if (grp_alloc != NULL) { /* * This would happen if the local group * w/ the same property was expanded when * our local group allocation blocked. */ inp_localgroup_free(grp_alloc); } return; } #endif /* * Expand this local group */ if (grp_alloc == NULL || grp->il_inpcnt >= grp_alloc->il_inpsiz) { if (grp_alloc != NULL) inp_localgroup_free(grp_alloc); grp_alloc = inp_localgroup_alloc(grp->il_af, grp->il_lport, &grp->il_dependladdr, grp->il_inpsiz * 2); /* * Local group allocation could block and the * local group w/ the same property might have * been expanded by others when we were blocked; * check again. */ goto again; } /* * Save the old local group, link the new one, and then * destroy the old local group */ inp_localgroup_copy(grp_alloc, grp); LIST_INSERT_HEAD(hdr, grp_alloc, il_list); inp_localgroup_destroy(grp); grp = grp_alloc; grp->il_jailed = isjailed; grp_alloc = NULL; } else { /* * Found the local group */ if (grp_alloc != NULL) { /* * This would happen if the local group w/ the * same property was added or expanded when our * local group allocation blocked. */ inp_localgroup_free(grp_alloc); grp_alloc = NULL; } } KASSERT(grp->il_inpcnt < grp->il_inpsiz, ("invalid local group size %d and count %d", grp->il_inpsiz, grp->il_inpcnt)); /* * Keep the local group sorted by the inpcb local group index * in ascending order. * * This eases the multi-process userland application which uses * SO_REUSEPORT sockets and binds process to the owner cpu of * the SO_REUSEPORT socket: * If we didn't sort the local group by the inpcb local group * index and one of the process owning an inpcb in this local * group restarted, e.g. crashed and restarted by watchdog, * other processes owning a inpcb in this local group would have * to detect that event, refetch its socket's owner cpu, and * re-bind. */ idx = grp->il_inpcnt; for (i = 0; i < idx; ++i) { struct inpcb *oinp = grp->il_inp[i]; if (oinp->inp_lgrpindex > i) { if (inp->inp_lgrpindex < 0) { inp->inp_lgrpindex = i; } else if (inp->inp_lgrpindex != i) { if (bootverbose) { kprintf("inp %p: grpidx %d, " "assigned to %d, cpu%d\n", inp, inp->inp_lgrpindex, i, mycpuid); } } grp->il_inp[i] = inp; /* Pull down inpcbs */ for (; i < grp->il_inpcnt; ++i) { struct inpcb *oinp1 = grp->il_inp[i + 1]; grp->il_inp[i + 1] = oinp; oinp = oinp1; } grp->il_inpcnt++; return; } } if (inp->inp_lgrpindex < 0) { inp->inp_lgrpindex = idx; } else if (inp->inp_lgrpindex != idx) { if (bootverbose) { kprintf("inp %p: grpidx %d, assigned to %d, cpu%d\n", inp, inp->inp_lgrpindex, idx, mycpuid); } } grp->il_inp[idx] = inp; grp->il_inpcnt++; } void in_pcbinswildcardhash_oncpu(struct inpcb *inp, struct inpcbinfo *pcbinfo) { struct inpcontainer *ic; struct inpcontainerhead *bucket; GET_PCBINFO_TOKEN(pcbinfo); in_pcbinslocalgrphash_oncpu(inp, pcbinfo); bucket = &pcbinfo->wildcardhashbase[ INP_PCBWILDCARDHASH(inp->inp_lport, pcbinfo->wildcardhashmask)]; ic = kmalloc(sizeof(struct inpcontainer), M_TEMP, M_INTWAIT); ic->ic_inp = inp; LIST_INSERT_HEAD(bucket, ic, ic_list); REL_PCBINFO_TOKEN(pcbinfo); } /* * Insert PCB into wildcard hash table. */ void in_pcbinswildcardhash(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; KASSERT(&curthread->td_msgport == netisr_cpuport(pcbinfo->cpu), ("not in correct netisr")); ASSERT_INP_NOTINHASH(inp); inp->inp_flags |= INP_WILDCARD; in_pcbinswildcardhash_oncpu(inp, pcbinfo); } static void in_pcbremlocalgrphash_oncpu(struct inpcb *inp, struct inpcbinfo *pcbinfo) { struct inp_localgrphead *hdr; struct inp_localgroup *grp; ASSERT_PCBINFO_TOKEN_HELD(pcbinfo); if (pcbinfo->localgrphashbase == NULL) return; hdr = &pcbinfo->localgrphashbase[ INP_PCBLOCALGRPHASH(inp->inp_lport, pcbinfo->localgrphashmask)]; LIST_FOREACH(grp, hdr, il_list) { int i; for (i = 0; i < grp->il_inpcnt; ++i) { if (grp->il_inp[i] != inp) continue; if (grp->il_inpcnt == 1) { /* Destroy this local group */ inp_localgroup_destroy(grp); } else { /* Pull up inpcbs */ for (; i + 1 < grp->il_inpcnt; ++i) grp->il_inp[i] = grp->il_inp[i + 1]; grp->il_inpcnt--; } return; } } } void in_pcbremwildcardhash_oncpu(struct inpcb *inp, struct inpcbinfo *pcbinfo) { struct inpcontainer *ic; struct inpcontainerhead *head; GET_PCBINFO_TOKEN(pcbinfo); in_pcbremlocalgrphash_oncpu(inp, pcbinfo); /* find bucket */ head = &pcbinfo->wildcardhashbase[ INP_PCBWILDCARDHASH(inp->inp_lport, pcbinfo->wildcardhashmask)]; LIST_FOREACH(ic, head, ic_list) { if (ic->ic_inp == inp) goto found; } REL_PCBINFO_TOKEN(pcbinfo); return; /* not found! */ found: LIST_REMOVE(ic, ic_list); /* remove container from bucket chain */ REL_PCBINFO_TOKEN(pcbinfo); kfree(ic, M_TEMP); /* deallocate container */ } /* * Remove PCB from wildcard hash table. */ void in_pcbremwildcardhash(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; KASSERT(&curthread->td_msgport == netisr_cpuport(pcbinfo->cpu), ("not in correct netisr")); KASSERT(inp->inp_flags & INP_WILDCARD, ("inp not wildcard")); in_pcbremwildcardhash_oncpu(inp, pcbinfo); inp->inp_lgrpindex = -1; inp->inp_flags &= ~INP_WILDCARD; } /* * Remove PCB from various lists. */ void in_pcbremlists(struct inpcb *inp) { in_pcbremporthash(inp); if (inp->inp_flags & INP_WILDCARD) { in_pcbremwildcardhash(inp); } else if (inp->inp_flags & INP_CONNECTED) { in_pcbremconnhash(inp); } if (inp->inp_flags & INP_ONLIST) in_pcbofflist(inp); } int prison_xinpcb(struct thread *td, struct inpcb *inp) { struct ucred *cr; if (td->td_proc == NULL) return (0); cr = td->td_proc->p_ucred; if (cr->cr_prison == NULL) return (0); if (inp->inp_socket && inp->inp_socket->so_cred && inp->inp_socket->so_cred->cr_prison && cr->cr_prison == inp->inp_socket->so_cred->cr_prison) return (0); return (1); } int in_pcblist_range(SYSCTL_HANDLER_ARGS) { struct inpcbinfo *pcbinfo_arr = arg1; int pcbinfo_arrlen = arg2; struct inpcb *marker; int cpu, origcpu; int error, n; KASSERT(pcbinfo_arrlen <= netisr_ncpus && pcbinfo_arrlen >= 1, ("invalid pcbinfo count %d", pcbinfo_arrlen)); /* * The process of preparing the TCB list is too time-consuming and * resource-intensive to repeat twice on every request. */ n = 0; if (req->oldptr == NULL) { for (cpu = 0; cpu < pcbinfo_arrlen; ++cpu) n += pcbinfo_arr[cpu].ipi_count; req->oldidx = (n + n/8 + 10) * sizeof(struct xinpcb); return 0; } if (req->newptr != NULL) return EPERM; marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO); marker->inp_flags |= INP_PLACEMARKER; /* * OK, now we're committed to doing something. Re-fetch ipi_count * after obtaining the generation count. */ error = 0; origcpu = mycpuid; for (cpu = 0; cpu < pcbinfo_arrlen && error == 0; ++cpu) { struct inpcbinfo *pcbinfo = &pcbinfo_arr[cpu]; struct inpcb *inp; struct xinpcb xi; int i; lwkt_migratecpu(cpu); GET_PCBINFO_TOKEN(pcbinfo); n = pcbinfo->ipi_count; LIST_INSERT_HEAD(&pcbinfo->pcblisthead, marker, inp_list); i = 0; while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) { LIST_REMOVE(marker, inp_list); LIST_INSERT_AFTER(inp, marker, inp_list); if (inp->inp_flags & INP_PLACEMARKER) continue; if (prison_xinpcb(req->td, inp)) continue; bzero(&xi, sizeof xi); xi.xi_len = sizeof xi; bcopy(inp, &xi.xi_inp, sizeof *inp); if (inp->inp_socket) sotoxsocket(inp->inp_socket, &xi.xi_socket); if ((error = SYSCTL_OUT(req, &xi, sizeof xi)) != 0) break; ++i; } LIST_REMOVE(marker, inp_list); REL_PCBINFO_TOKEN(pcbinfo); if (error == 0 && i < n) { bzero(&xi, sizeof xi); xi.xi_len = sizeof xi; while (i < n) { error = SYSCTL_OUT(req, &xi, sizeof xi); if (error) break; ++i; } } } lwkt_migratecpu(origcpu); kfree(marker, M_TEMP); return error; } int in_pcblist_ncpus(SYSCTL_HANDLER_ARGS) { return (in_pcblist_range(oidp, arg1, netisr_ncpus, req)); } void in_savefaddr(struct socket *so, const struct sockaddr *faddr) { struct sockaddr_in *sin; KASSERT(faddr->sa_family == AF_INET, ("not AF_INET faddr %d", faddr->sa_family)); sin = kmalloc(sizeof(*sin), M_SONAME, M_WAITOK | M_ZERO); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_port = ((const struct sockaddr_in *)faddr)->sin_port; sin->sin_addr = ((const struct sockaddr_in *)faddr)->sin_addr; so->so_faddr = (struct sockaddr *)sin; } void in_pcbportinfo_init(struct inpcbportinfo *portinfo, int hashsize, u_short offset) { memset(portinfo, 0, sizeof(*portinfo)); portinfo->offset = offset; portinfo->porthashbase = phashinit(hashsize, M_PCB, &portinfo->porthashcnt); } void in_pcbportrange(u_short *hi0, u_short *lo0, u_short ofs, u_short step) { int hi, lo; if (step == 1) return; hi = *hi0; lo = *lo0; hi = rounddown(hi, step); hi += ofs; if (hi > (int)*hi0) hi -= step; lo = roundup(lo, step); lo -= (step - ofs); if (lo < (int)*lo0) lo += step; *hi0 = hi; *lo0 = lo; } void in_pcbglobalinit(void) { int cpu; in_pcbmarkers = kmalloc(netisr_ncpus * sizeof(struct inpcb), M_PCB, M_WAITOK | M_ZERO); in_pcbcontainer_markers = kmalloc(netisr_ncpus * sizeof(struct inpcontainer), M_PCB, M_WAITOK | M_ZERO); for (cpu = 0; cpu < netisr_ncpus; ++cpu) { struct inpcontainer *ic = &in_pcbcontainer_markers[cpu]; struct inpcb *marker = &in_pcbmarkers[cpu]; marker->inp_flags |= INP_PLACEMARKER; ic->ic_inp = marker; } } struct inpcb * in_pcbmarker(void) { ASSERT_NETISR_NCPUS(mycpuid); return &in_pcbmarkers[mycpuid]; } struct inpcontainer * in_pcbcontainer_marker(void) { ASSERT_NETISR_NCPUS(mycpuid); return &in_pcbcontainer_markers[mycpuid]; } void in_pcbresetroute(struct inpcb *inp) { struct route *ro = &inp->inp_route; if (ro->ro_rt != NULL) RTFREE(ro->ro_rt); bzero(ro, sizeof(*ro)); }