/*- * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_wlan.h" #ifdef IEEE80211_SUPPORT_SUPERG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Atheros fast-frame encapsulation format. * FF max payload: * 802.2 + FFHDR + HPAD + 802.3 + 802.2 + 1500 + SPAD + 802.3 + 802.2 + 1500: * 8 + 4 + 4 + 14 + 8 + 1500 + 6 + 14 + 8 + 1500 * = 3066 */ /* fast frame header is 32-bits */ #define ATH_FF_PROTO 0x0000003f /* protocol */ #define ATH_FF_PROTO_S 0 #define ATH_FF_FTYPE 0x000000c0 /* frame type */ #define ATH_FF_FTYPE_S 6 #define ATH_FF_HLEN32 0x00000300 /* optional hdr length */ #define ATH_FF_HLEN32_S 8 #define ATH_FF_SEQNUM 0x001ffc00 /* sequence number */ #define ATH_FF_SEQNUM_S 10 #define ATH_FF_OFFSET 0xffe00000 /* offset to 2nd payload */ #define ATH_FF_OFFSET_S 21 #define ATH_FF_MAX_HDR_PAD 4 #define ATH_FF_MAX_SEP_PAD 6 #define ATH_FF_MAX_HDR 30 #define ATH_FF_PROTO_L2TUNNEL 0 /* L2 tunnel protocol */ #define ATH_FF_ETH_TYPE 0x88bd /* Ether type for encapsulated frames */ #define ATH_FF_SNAP_ORGCODE_0 0x00 #define ATH_FF_SNAP_ORGCODE_1 0x03 #define ATH_FF_SNAP_ORGCODE_2 0x7f #define ATH_FF_TXQMIN 2 /* min txq depth for staging */ #define ATH_FF_TXQMAX 50 /* maximum # of queued frames allowed */ #define ATH_FF_STAGEMAX 5 /* max waiting period for staged frame*/ #define ETHER_HEADER_COPY(dst, src) \ memcpy(dst, src, sizeof(struct ether_header)) static int ieee80211_ffppsmin = 2; /* pps threshold for ff aggregation */ SYSCTL_INT(_net_wlan, OID_AUTO, ffppsmin, CTLFLAG_RW, &ieee80211_ffppsmin, 0, "min packet rate before fast-frame staging"); static int ieee80211_ffagemax = -1; /* max time frames held on stage q */ SYSCTL_PROC(_net_wlan, OID_AUTO, ffagemax, CTLTYPE_INT | CTLFLAG_RW, &ieee80211_ffagemax, 0, ieee80211_sysctl_msecs_ticks, "I", "max hold time for fast-frame staging (ms)"); void ieee80211_superg_attach(struct ieee80211com *ic) { struct ieee80211_superg *sg; #if defined(__DragonFly__) sg = (struct ieee80211_superg *) kmalloc( sizeof(struct ieee80211_superg), M_80211_VAP, M_INTWAIT | M_ZERO); #else sg = (struct ieee80211_superg *) IEEE80211_MALLOC( sizeof(struct ieee80211_superg), M_80211_VAP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); #endif if (sg == NULL) { kprintf("%s: cannot allocate SuperG state block\n", __func__); return; } ic->ic_superg = sg; /* * Default to not being so aggressive for FF/AMSDU * aging, otherwise we may hold a frame around * for way too long before we expire it out. */ ieee80211_ffagemax = msecs_to_ticks(2); } void ieee80211_superg_detach(struct ieee80211com *ic) { if (ic->ic_superg != NULL) { IEEE80211_FREE(ic->ic_superg, M_80211_VAP); ic->ic_superg = NULL; } } void ieee80211_superg_vattach(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; if (ic->ic_superg == NULL) /* NB: can't do fast-frames w/o state */ vap->iv_caps &= ~IEEE80211_C_FF; if (vap->iv_caps & IEEE80211_C_FF) vap->iv_flags |= IEEE80211_F_FF; /* NB: we only implement sta mode */ if (vap->iv_opmode == IEEE80211_M_STA && (vap->iv_caps & IEEE80211_C_TURBOP)) vap->iv_flags |= IEEE80211_F_TURBOP; } void ieee80211_superg_vdetach(struct ieee80211vap *vap) { } #define ATH_OUI_BYTES 0x00, 0x03, 0x7f /* * Add a WME information element to a frame. */ uint8_t * ieee80211_add_ath(uint8_t *frm, uint8_t caps, ieee80211_keyix defkeyix) { static const struct ieee80211_ath_ie info = { .ath_id = IEEE80211_ELEMID_VENDOR, .ath_len = sizeof(struct ieee80211_ath_ie) - 2, .ath_oui = { ATH_OUI_BYTES }, .ath_oui_type = ATH_OUI_TYPE, .ath_oui_subtype= ATH_OUI_SUBTYPE, .ath_version = ATH_OUI_VERSION, }; struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm; memcpy(frm, &info, sizeof(info)); ath->ath_capability = caps; if (defkeyix != IEEE80211_KEYIX_NONE) { ath->ath_defkeyix[0] = (defkeyix & 0xff); ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff); } else { ath->ath_defkeyix[0] = 0xff; ath->ath_defkeyix[1] = 0x7f; } return frm + sizeof(info); } #undef ATH_OUI_BYTES uint8_t * ieee80211_add_athcaps(uint8_t *frm, const struct ieee80211_node *bss) { const struct ieee80211vap *vap = bss->ni_vap; return ieee80211_add_ath(frm, vap->iv_flags & IEEE80211_F_ATHEROS, ((vap->iv_flags & IEEE80211_F_WPA) == 0 && bss->ni_authmode != IEEE80211_AUTH_8021X) ? vap->iv_def_txkey : IEEE80211_KEYIX_NONE); } void ieee80211_parse_ath(struct ieee80211_node *ni, uint8_t *ie) { const struct ieee80211_ath_ie *ath = (const struct ieee80211_ath_ie *) ie; ni->ni_ath_flags = ath->ath_capability; ni->ni_ath_defkeyix = le16dec(&ath->ath_defkeyix); } int ieee80211_parse_athparams(struct ieee80211_node *ni, uint8_t *frm, const struct ieee80211_frame *wh) { struct ieee80211vap *vap = ni->ni_vap; const struct ieee80211_ath_ie *ath; u_int len = frm[1]; int capschanged; uint16_t defkeyix; if (len < sizeof(struct ieee80211_ath_ie)-2) { IEEE80211_DISCARD_IE(vap, IEEE80211_MSG_ELEMID | IEEE80211_MSG_SUPERG, wh, "Atheros", "too short, len %u", len); return -1; } ath = (const struct ieee80211_ath_ie *)frm; capschanged = (ni->ni_ath_flags != ath->ath_capability); defkeyix = le16dec(ath->ath_defkeyix); if (capschanged || defkeyix != ni->ni_ath_defkeyix) { ni->ni_ath_flags = ath->ath_capability; ni->ni_ath_defkeyix = defkeyix; IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, "ath ie change: new caps 0x%x defkeyix 0x%x", ni->ni_ath_flags, ni->ni_ath_defkeyix); } if (IEEE80211_ATH_CAP(vap, ni, ATHEROS_CAP_TURBO_PRIME)) { uint16_t curflags, newflags; /* * Check for turbo mode switch. Calculate flags * for the new mode and effect the switch. */ newflags = curflags = vap->iv_ic->ic_bsschan->ic_flags; /* NB: BOOST is not in ic_flags, so get it from the ie */ if (ath->ath_capability & ATHEROS_CAP_BOOST) newflags |= IEEE80211_CHAN_TURBO; else newflags &= ~IEEE80211_CHAN_TURBO; if (newflags != curflags) ieee80211_dturbo_switch(vap, newflags); } return capschanged; } /* * Decap the encapsulated frame pair and dispatch the first * for delivery. The second frame is returned for delivery * via the normal path. */ struct mbuf * ieee80211_ff_decap(struct ieee80211_node *ni, struct mbuf *m) { #define FF_LLC_SIZE (sizeof(struct ether_header) + sizeof(struct llc)) #define MS(x,f) (((x) & f) >> f##_S) struct ieee80211vap *vap = ni->ni_vap; struct llc *llc; uint32_t ath; struct mbuf *n; int framelen; /* NB: we assume caller does this check for us */ KASSERT(IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF), ("ff not negotiated")); /* * Check for fast-frame tunnel encapsulation. */ if (m->m_pkthdr.len < 3*FF_LLC_SIZE) return m; if (m->m_len < FF_LLC_SIZE && (m = m_pullup(m, FF_LLC_SIZE)) == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "fast-frame", "%s", "m_pullup(llc) failed"); vap->iv_stats.is_rx_tooshort++; return NULL; } llc = (struct llc *)(mtod(m, uint8_t *) + sizeof(struct ether_header)); if (llc->llc_snap.ether_type != htons(ATH_FF_ETH_TYPE)) return m; m_adj(m, FF_LLC_SIZE); m_copydata(m, 0, sizeof(uint32_t), &ath); if (MS(ath, ATH_FF_PROTO) != ATH_FF_PROTO_L2TUNNEL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "fast-frame", "unsupport tunnel protocol, header 0x%x", ath); vap->iv_stats.is_ff_badhdr++; m_freem(m); return NULL; } /* NB: skip header and alignment padding */ m_adj(m, roundup(sizeof(uint32_t) - 2, 4) + 2); vap->iv_stats.is_ff_decap++; /* * Decap the first frame, bust it apart from the * second and deliver; then decap the second frame * and return it to the caller for normal delivery. */ m = ieee80211_decap1(m, &framelen); if (m == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "fast-frame", "%s", "first decap failed"); vap->iv_stats.is_ff_tooshort++; return NULL; } n = m_split(m, framelen, M_NOWAIT); if (n == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "fast-frame", "%s", "unable to split encapsulated frames"); vap->iv_stats.is_ff_split++; m_freem(m); /* NB: must reclaim */ return NULL; } /* XXX not right for WDS */ vap->iv_deliver_data(vap, ni, m); /* 1st of pair */ /* * Decap second frame. */ m_adj(n, roundup2(framelen, 4) - framelen); /* padding */ n = ieee80211_decap1(n, &framelen); if (n == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "fast-frame", "%s", "second decap failed"); vap->iv_stats.is_ff_tooshort++; } /* XXX verify framelen against mbuf contents */ return n; /* 2nd delivered by caller */ #undef MS #undef FF_LLC_SIZE } /* * Fast frame encapsulation. There must be two packets * chained with m_nextpkt. We do header adjustment for * each, add the tunnel encapsulation, and then concatenate * the mbuf chains to form a single frame for transmission. */ struct mbuf * ieee80211_ff_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace, struct ieee80211_key *key) { struct mbuf *m2; struct ether_header eh1, eh2; struct llc *llc; struct mbuf *m; int pad; m2 = m1->m_nextpkt; if (m2 == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: only one frame\n", __func__); goto bad; } m1->m_nextpkt = NULL; /* * Adjust to include 802.11 header requirement. */ KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!")); ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t)); m1 = ieee80211_mbuf_adjust(vap, hdrspace, key, m1); if (m1 == NULL) { kprintf("%s: failed initial mbuf_adjust\n", __func__); /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ m_freem(m2); goto bad; } /* * Copy second frame's Ethernet header out of line * and adjust for possible padding in case there isn't room * at the end of first frame. */ KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!")); ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t)); m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2); if (m2 == NULL) { /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ kprintf("%s: failed second \n", __func__); goto bad; } /* * Now do tunnel encapsulation. First, each * frame gets a standard encapsulation. */ m1 = ieee80211_ff_encap1(vap, m1, &eh1); if (m1 == NULL) goto bad; m2 = ieee80211_ff_encap1(vap, m2, &eh2); if (m2 == NULL) goto bad; /* * Pad leading frame to a 4-byte boundary. If there * is space at the end of the first frame, put it * there; otherwise prepend to the front of the second * frame. We know doing the second will always work * because we reserve space above. We prefer appending * as this typically has better DMA alignment properties. */ for (m = m1; m->m_next != NULL; m = m->m_next) ; pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len; if (pad) { if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */ m2->m_data -= pad; m2->m_len += pad; m2->m_pkthdr.len += pad; } else { /* append to first */ m->m_len += pad; m1->m_pkthdr.len += pad; } } /* * A-MSDU's are just appended; the "I'm A-MSDU!" bit is in the * QoS header. * * XXX optimize by prepending together */ m->m_next = m2; /* NB: last mbuf from above */ m1->m_pkthdr.len += m2->m_pkthdr.len; M_PREPEND(m1, sizeof(uint32_t)+2, M_NOWAIT); if (m1 == NULL) { /* XXX cannot happen */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: no space for tunnel header\n", __func__); vap->iv_stats.is_tx_nobuf++; return NULL; } memset(mtod(m1, void *), 0, sizeof(uint32_t)+2); M_PREPEND(m1, sizeof(struct llc), M_NOWAIT); if (m1 == NULL) { /* XXX cannot happen */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: no space for llc header\n", __func__); vap->iv_stats.is_tx_nobuf++; return NULL; } llc = mtod(m1, struct llc *); llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; llc->llc_control = LLC_UI; llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0; llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1; llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2; llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE); vap->iv_stats.is_ff_encap++; return m1; bad: vap->iv_stats.is_ff_encapfail++; if (m1 != NULL) m_freem(m1); if (m2 != NULL) m_freem(m2); return NULL; } /* * A-MSDU encapsulation. * * This assumes just two frames for now, since we're borrowing the * same queuing code and infrastructure as fast-frames. * * There must be two packets chained with m_nextpkt. * We do header adjustment for each, and then concatenate the mbuf chains * to form a single frame for transmission. */ struct mbuf * ieee80211_amsdu_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace, struct ieee80211_key *key) { struct mbuf *m2; struct ether_header eh1, eh2; struct mbuf *m; int pad; m2 = m1->m_nextpkt; if (m2 == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: only one frame\n", __func__); goto bad; } m1->m_nextpkt = NULL; /* * Include A-MSDU header in adjusting header layout. */ KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!")); ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t)); m1 = ieee80211_mbuf_adjust(vap, hdrspace + sizeof(struct llc) + sizeof(uint32_t) + sizeof(struct ether_header), key, m1); if (m1 == NULL) { /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ m_freem(m2); goto bad; } /* * Copy second frame's Ethernet header out of line * and adjust for encapsulation headers. Note that * we make room for padding in case there isn't room * at the end of first frame. */ KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!")); ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t)); m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2); if (m2 == NULL) { /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ goto bad; } /* * Now do tunnel encapsulation. First, each * frame gets a standard encapsulation. */ m1 = ieee80211_ff_encap1(vap, m1, &eh1); if (m1 == NULL) goto bad; m2 = ieee80211_ff_encap1(vap, m2, &eh2); if (m2 == NULL) goto bad; /* * Pad leading frame to a 4-byte boundary. If there * is space at the end of the first frame, put it * there; otherwise prepend to the front of the second * frame. We know doing the second will always work * because we reserve space above. We prefer appending * as this typically has better DMA alignment properties. */ for (m = m1; m->m_next != NULL; m = m->m_next) ; pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len; if (pad) { if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */ m2->m_data -= pad; m2->m_len += pad; m2->m_pkthdr.len += pad; } else { /* append to first */ m->m_len += pad; m1->m_pkthdr.len += pad; } } /* * Now, stick 'em together. */ m->m_next = m2; /* NB: last mbuf from above */ m1->m_pkthdr.len += m2->m_pkthdr.len; vap->iv_stats.is_amsdu_encap++; return m1; bad: vap->iv_stats.is_amsdu_encapfail++; if (m1 != NULL) m_freem(m1); if (m2 != NULL) m_freem(m2); return NULL; } static void ff_transmit(struct ieee80211_node *ni, struct mbuf *m) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; int error; IEEE80211_TX_LOCK_ASSERT(vap->iv_ic); /* encap and xmit */ m = ieee80211_encap(vap, ni, m); if (m != NULL) { struct ifnet *ifp = vap->iv_ifp; error = ieee80211_parent_xmitpkt(ic, m); if (!error) if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); } else ieee80211_free_node(ni); } /* * Flush frames to device; note we re-use the linked list * the frames were stored on and use the sentinel (unchanged) * which may be non-NULL. */ static void ff_flush(struct mbuf *head, struct mbuf *last) { struct mbuf *m, *next; struct ieee80211_node *ni; struct ieee80211vap *vap; for (m = head; m != last; m = next) { next = m->m_nextpkt; m->m_nextpkt = NULL; ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; vap = ni->ni_vap; IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, "%s: flush frame, age %u", __func__, M_AGE_GET(m)); vap->iv_stats.is_ff_flush++; ff_transmit(ni, m); } } /* * Age frames on the staging queue. * * This is called without the comlock held, but it does all its work * behind the comlock. Because of this, it's possible that the * staging queue will be serviced between the function which called * it and now; thus simply checking that the queue has work in it * may fail. * * See PR kern/174283 for more details. */ void ieee80211_ff_age(struct ieee80211com *ic, struct ieee80211_stageq *sq, int quanta) { struct mbuf *m, *head; struct ieee80211_node *ni; #if 0 KASSERT(sq->head != NULL, ("stageq empty")); #endif IEEE80211_LOCK(ic); head = sq->head; while ((m = sq->head) != NULL && M_AGE_GET(m) < quanta) { int tid = WME_AC_TO_TID(M_WME_GETAC(m)); /* clear staging ref to frame */ ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; KASSERT(ni->ni_tx_superg[tid] == m, ("staging queue empty")); ni->ni_tx_superg[tid] = NULL; sq->head = m->m_nextpkt; sq->depth--; } if (m == NULL) sq->tail = NULL; else M_AGE_SUB(m, quanta); IEEE80211_UNLOCK(ic); IEEE80211_TX_LOCK(ic); ff_flush(head, m); IEEE80211_TX_UNLOCK(ic); } static void stageq_add(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *m) { int age = ieee80211_ffagemax; IEEE80211_LOCK_ASSERT(ic); if (sq->tail != NULL) { sq->tail->m_nextpkt = m; age -= M_AGE_GET(sq->head); } else sq->head = m; KASSERT(age >= 0, ("age %d", age)); M_AGE_SET(m, age); m->m_nextpkt = NULL; sq->tail = m; sq->depth++; } static void stageq_remove(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *mstaged) { struct mbuf *m, *mprev; IEEE80211_LOCK_ASSERT(ic); mprev = NULL; for (m = sq->head; m != NULL; m = m->m_nextpkt) { if (m == mstaged) { if (mprev == NULL) sq->head = m->m_nextpkt; else mprev->m_nextpkt = m->m_nextpkt; if (sq->tail == m) sq->tail = mprev; sq->depth--; return; } mprev = m; } kprintf("%s: packet not found\n", __func__); } static uint32_t ff_approx_txtime(struct ieee80211_node *ni, const struct mbuf *m1, const struct mbuf *m2) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; uint32_t framelen; uint32_t frame_time; /* * Approximate the frame length to be transmitted. A swag to add * the following maximal values to the skb payload: * - 32: 802.11 encap + CRC * - 24: encryption overhead (if wep bit) * - 4 + 6: fast-frame header and padding * - 16: 2 LLC FF tunnel headers * - 14: 1 802.3 FF tunnel header (mbuf already accounts for 2nd) */ framelen = m1->m_pkthdr.len + 32 + ATH_FF_MAX_HDR_PAD + ATH_FF_MAX_SEP_PAD + ATH_FF_MAX_HDR; if (vap->iv_flags & IEEE80211_F_PRIVACY) framelen += 24; if (m2 != NULL) framelen += m2->m_pkthdr.len; /* * For now, we assume non-shortgi, 20MHz, just because I want to * at least test 802.11n. */ if (ni->ni_txrate & IEEE80211_RATE_MCS) frame_time = ieee80211_compute_duration_ht(framelen, ni->ni_txrate, IEEE80211_HT_RC_2_STREAMS(ni->ni_txrate), 0, /* isht40 */ 0); /* isshortgi */ else frame_time = ieee80211_compute_duration(ic->ic_rt, framelen, ni->ni_txrate, 0); return (frame_time); } /* * Check if the supplied frame can be partnered with an existing * or pending frame. Return a reference to any frame that should be * sent on return; otherwise return NULL. */ struct mbuf * ieee80211_ff_check(struct ieee80211_node *ni, struct mbuf *m) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_superg *sg = ic->ic_superg; const int pri = M_WME_GETAC(m); struct ieee80211_stageq *sq; struct ieee80211_tx_ampdu *tap; struct mbuf *mstaged; uint32_t txtime, limit; IEEE80211_TX_UNLOCK_ASSERT(ic); /* * Check if the supplied frame can be aggregated. * * NB: we allow EAPOL frames to be aggregated with other ucast traffic. * Do 802.1x EAPOL frames proceed in the clear? Then they couldn't * be aggregated with other types of frames when encryption is on? */ IEEE80211_LOCK(ic); tap = &ni->ni_tx_ampdu[WME_AC_TO_TID(pri)]; mstaged = ni->ni_tx_superg[WME_AC_TO_TID(pri)]; /* XXX NOTE: reusing packet counter state from A-MPDU */ /* * XXX NOTE: this means we're double-counting; it should just * be done in ieee80211_output.c once for both superg and A-MPDU. */ ieee80211_txampdu_count_packet(tap); /* * When not in station mode never aggregate a multicast * frame; this insures, for example, that a combined frame * does not require multiple encryption keys. */ if (vap->iv_opmode != IEEE80211_M_STA && ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) { /* XXX flush staged frame? */ IEEE80211_UNLOCK(ic); return m; } /* * If there is no frame to combine with and the pps is * too low; then do not attempt to aggregate this frame. */ if (mstaged == NULL && ieee80211_txampdu_getpps(tap) < ieee80211_ffppsmin) { IEEE80211_UNLOCK(ic); return m; } sq = &sg->ff_stageq[pri]; /* * Check the txop limit to insure the aggregate fits. */ limit = IEEE80211_TXOP_TO_US( ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit); if (limit != 0 && (txtime = ff_approx_txtime(ni, m, mstaged)) > limit) { /* * Aggregate too long, return to the caller for direct * transmission. In addition, flush any pending frame * before sending this one. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: txtime %u exceeds txop limit %u\n", __func__, txtime, limit); ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL; if (mstaged != NULL) stageq_remove(ic, sq, mstaged); IEEE80211_UNLOCK(ic); if (mstaged != NULL) { IEEE80211_TX_LOCK(ic); IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, "%s: flush staged frame", __func__); /* encap and xmit */ ff_transmit(ni, mstaged); IEEE80211_TX_UNLOCK(ic); } return m; /* NB: original frame */ } /* * An aggregation candidate. If there's a frame to partner * with then combine and return for processing. Otherwise * save this frame and wait for a partner to show up (or * the frame to be flushed). Note that staged frames also * hold their node reference. */ if (mstaged != NULL) { ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL; stageq_remove(ic, sq, mstaged); IEEE80211_UNLOCK(ic); IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, "%s: aggregate fast-frame", __func__); /* * Release the node reference; we only need * the one already in mstaged. */ KASSERT(mstaged->m_pkthdr.rcvif == (void *)ni, ("rcvif %p ni %p", mstaged->m_pkthdr.rcvif, ni)); ieee80211_free_node(ni); m->m_nextpkt = NULL; mstaged->m_nextpkt = m; mstaged->m_flags |= M_FF; /* NB: mark for encap work */ } else { KASSERT(ni->ni_tx_superg[WME_AC_TO_TID(pri)]== NULL, ("ni_tx_superg[]: %p", ni->ni_tx_superg[WME_AC_TO_TID(pri)])); ni->ni_tx_superg[WME_AC_TO_TID(pri)] = m; stageq_add(ic, sq, m); IEEE80211_UNLOCK(ic); IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, "%s: stage frame, %u queued", __func__, sq->depth); /* NB: mstaged is NULL */ } return mstaged; } struct mbuf * ieee80211_amsdu_check(struct ieee80211_node *ni, struct mbuf *m) { /* * XXX TODO: actually enforce the node support * and HTCAP requirements for the maximum A-MSDU * size. */ /* First: software A-MSDU transmit? */ if (! ieee80211_amsdu_tx_ok(ni)) return (m); /* Next - EAPOL? Nope, don't aggregate; we don't QoS encap them */ if (m->m_flags & (M_EAPOL | M_MCAST | M_BCAST)) return (m); /* Next - needs to be a data frame, non-broadcast, etc */ if (ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) return (m); return (ieee80211_ff_check(ni, m)); } void ieee80211_ff_node_init(struct ieee80211_node *ni) { /* * Clean FF state on re-associate. This handles the case * where a station leaves w/o notifying us and then returns * before node is reaped for inactivity. */ ieee80211_ff_node_cleanup(ni); } void ieee80211_ff_node_cleanup(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211_superg *sg = ic->ic_superg; struct mbuf *m, *next_m, *head; int tid; IEEE80211_LOCK(ic); head = NULL; for (tid = 0; tid < WME_NUM_TID; tid++) { int ac = TID_TO_WME_AC(tid); /* * XXX Initialise the packet counter. * * This may be double-work for 11n stations; * but without it we never setup things. */ ieee80211_txampdu_init_pps(&ni->ni_tx_ampdu[tid]); m = ni->ni_tx_superg[tid]; if (m != NULL) { ni->ni_tx_superg[tid] = NULL; stageq_remove(ic, &sg->ff_stageq[ac], m); m->m_nextpkt = head; head = m; } } IEEE80211_UNLOCK(ic); /* * Free mbufs, taking care to not dereference the mbuf after * we free it (hence grabbing m_nextpkt before we free it.) */ m = head; while (m != NULL) { next_m = m->m_nextpkt; m_freem(m); ieee80211_free_node(ni); m = next_m; } } /* * Switch between turbo and non-turbo operating modes. * Use the specified channel flags to locate the new * channel, update 802.11 state, and then call back into * the driver to effect the change. */ void ieee80211_dturbo_switch(struct ieee80211vap *vap, int newflags) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_channel *chan; chan = ieee80211_find_channel(ic, ic->ic_bsschan->ic_freq, newflags); if (chan == NULL) { /* XXX should not happen */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: no channel with freq %u flags 0x%x\n", __func__, ic->ic_bsschan->ic_freq, newflags); return; } IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: %s -> %s (freq %u flags 0x%x)\n", __func__, ieee80211_phymode_name[ieee80211_chan2mode(ic->ic_bsschan)], ieee80211_phymode_name[ieee80211_chan2mode(chan)], chan->ic_freq, chan->ic_flags); ic->ic_bsschan = chan; ic->ic_prevchan = ic->ic_curchan; ic->ic_curchan = chan; ic->ic_rt = ieee80211_get_ratetable(chan); ic->ic_set_channel(ic); ieee80211_radiotap_chan_change(ic); /* NB: do not need to reset ERP state 'cuz we're in sta mode */ } /* * Return the current ``state'' of an Atheros capbility. * If associated in station mode report the negotiated * setting. Otherwise report the current setting. */ static int getathcap(struct ieee80211vap *vap, int cap) { if (vap->iv_opmode == IEEE80211_M_STA && vap->iv_state == IEEE80211_S_RUN) return IEEE80211_ATH_CAP(vap, vap->iv_bss, cap) != 0; else return (vap->iv_flags & cap) != 0; } static int superg_ioctl_get80211(struct ieee80211vap *vap, struct ieee80211req *ireq) { switch (ireq->i_type) { case IEEE80211_IOC_FF: ireq->i_val = getathcap(vap, IEEE80211_F_FF); break; case IEEE80211_IOC_TURBOP: ireq->i_val = getathcap(vap, IEEE80211_F_TURBOP); break; default: return ENOSYS; } return 0; } IEEE80211_IOCTL_GET(superg, superg_ioctl_get80211); static int superg_ioctl_set80211(struct ieee80211vap *vap, struct ieee80211req *ireq) { switch (ireq->i_type) { case IEEE80211_IOC_FF: if (ireq->i_val) { if ((vap->iv_caps & IEEE80211_C_FF) == 0) return EOPNOTSUPP; vap->iv_flags |= IEEE80211_F_FF; } else vap->iv_flags &= ~IEEE80211_F_FF; return ENETRESET; case IEEE80211_IOC_TURBOP: if (ireq->i_val) { if ((vap->iv_caps & IEEE80211_C_TURBOP) == 0) return EOPNOTSUPP; vap->iv_flags |= IEEE80211_F_TURBOP; } else vap->iv_flags &= ~IEEE80211_F_TURBOP; return ENETRESET; default: return ENOSYS; } return 0; } IEEE80211_IOCTL_SET(superg, superg_ioctl_set80211); #endif /* IEEE80211_SUPPORT_SUPERG */