- update OpenSSL to 0.9.8
[dragonfly.git] / secure / lib / libcrypto / man / des_modes.7
similarity index 86%
rename from secure/lib/libcrypto/man/des_modes.3
rename to secure/lib/libcrypto/man/des_modes.7
index 788e0e8..2537583 100644 (file)
@@ -1,8 +1,7 @@
-.\" Automatically generated by Pod::Man version 1.15
-.\" Mon Jan 13 19:29:14 2003
+.\" Automatically generated by Pod::Man v1.37, Pod::Parser v1.14
 .\"
 .\" Standard preamble:
-.\" ======================================================================
+.\" ========================================================================
 .de Sh \" Subsection heading
 .br
 .if t .Sp
 .if t .sp .5v
 .if n .sp
 ..
-.de Ip \" List item
-.br
-.ie \\n(.$>=3 .ne \\$3
-.el .ne 3
-.IP "\\$1" \\$2
-..
 .de Vb \" Begin verbatim text
 .ft CW
 .nf
 ..
 .de Ve \" End verbatim text
 .ft R
-
 .fi
 ..
 .\" Set up some character translations and predefined strings.  \*(-- will
 .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
 .\" double quote, and \*(R" will give a right double quote.  | will give a
-.\" real vertical bar.  \*(C+ will give a nicer C++.  Capital omega is used
-.\" to do unbreakable dashes and therefore won't be available.  \*(C` and
-.\" \*(C' expand to `' in nroff, nothing in troff, for use with C<>
+.\" real vertical bar.  \*(C+ will give a nicer C++.  Capital omega is used to
+.\" do unbreakable dashes and therefore won't be available.  \*(C` and \*(C'
+.\" expand to `' in nroff, nothing in troff, for use with C<>.
 .tr \(*W-|\(bv\*(Tr
 .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
 .ie n \{\
 .    ds R" ''
 'br\}
 .\"
-.\" If the F register is turned on, we'll generate index entries on stderr
-.\" for titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and
-.\" index entries marked with X<> in POD.  Of course, you'll have to process
-.\" the output yourself in some meaningful fashion.
+.\" If the F register is turned on, we'll generate index entries on stderr for
+.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
+.\" entries marked with X<> in POD.  Of course, you'll have to process the
+.\" output yourself in some meaningful fashion.
 .if \nF \{\
 .    de IX
 .    tm Index:\\$1\t\\n%\t"\\$2"
 .    rr F
 .\}
 .\"
-.\" For nroff, turn off justification.  Always turn off hyphenation; it
-.\" makes way too many mistakes in technical documents.
+.\" For nroff, turn off justification.  Always turn off hyphenation; it makes
+.\" way too many mistakes in technical documents.
 .hy 0
 .if n .na
 .\"
 .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
 .\" Fear.  Run.  Save yourself.  No user-serviceable parts.
-.bd B 3
 .    \" fudge factors for nroff and troff
 .if n \{\
 .    ds #H 0
 .    ds Ae AE
 .\}
 .rm #[ #] #H #V #F C
-.\" ======================================================================
+.\" ========================================================================
 .\"
-.IX Title "des_modes 3"
-.TH des_modes 3 "0.9.7" "2003-01-13" "OpenSSL"
-.UC
+.IX Title "DES_MODES 7"
+.TH DES_MODES 7 "2005-07-06" "0.9.8" "OpenSSL"
 .SH "NAME"
-Modes of \s-1DES\s0 \- the variants of \s-1DES\s0 and other crypto algorithms of OpenSSL
+Modes of DES \- the variants of DES and other crypto algorithms of OpenSSL
 .SH "DESCRIPTION"
 .IX Header "DESCRIPTION"
 Several crypto algorithms for OpenSSL can be used in a number of modes.  Those
@@ -152,92 +142,92 @@ other things.
 .Sh "Electronic Codebook Mode (\s-1ECB\s0)"
 .IX Subsection "Electronic Codebook Mode (ECB)"
 Normally, this is found as the function \fIalgorithm\fR\fI_ecb_encrypt()\fR.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 64 bits are enciphered at a time.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 The order of the blocks can be rearranged without detection.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 The same plaintext block always produces the same ciphertext block
 (for the same key) making it vulnerable to a 'dictionary attack'.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 An error will only affect one ciphertext block.
 .Sh "Cipher Block Chaining Mode (\s-1CBC\s0)"
 .IX Subsection "Cipher Block Chaining Mode (CBC)"
 Normally, this is found as the function \fIalgorithm\fR\fI_cbc_encrypt()\fR.
 Be aware that \fIdes_cbc_encrypt()\fR is not really \s-1DES\s0 \s-1CBC\s0 (it does
 not update the \s-1IV\s0); use \fIdes_ncbc_encrypt()\fR instead.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 a multiple of 64 bits are enciphered at a time.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 The \s-1CBC\s0 mode produces the same ciphertext whenever the same
 plaintext is encrypted using the same key and starting variable.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 The chaining operation makes the ciphertext blocks dependent on the
 current and all preceding plaintext blocks and therefore blocks can not
 be rearranged.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 The use of different starting variables prevents the same plaintext
 enciphering to the same ciphertext.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 An error will affect the current and the following ciphertext blocks.
 .Sh "Cipher Feedback Mode (\s-1CFB\s0)"
 .IX Subsection "Cipher Feedback Mode (CFB)"
 Normally, this is found as the function \fIalgorithm\fR\fI_cfb_encrypt()\fR.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 a number of bits (j) <= 64 are enciphered at a time.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 The \s-1CFB\s0 mode produces the same ciphertext whenever the same
 plaintext is encrypted using the same key and starting variable.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 The chaining operation makes the ciphertext variables dependent on the
-current and all preceding variables and therefore j-bit variables are
+current and all preceding variables and therefore j\-bit variables are
 chained together and can not be rearranged.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 The use of different starting variables prevents the same plaintext
 enciphering to the same ciphertext.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 The strength of the \s-1CFB\s0 mode depends on the size of k (maximal if
 j == k).  In my implementation this is always the case.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 Selection of a small value for j will require more cycles through
 the encipherment algorithm per unit of plaintext and thus cause
 greater processing overheads.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 Only multiples of j bits can be enciphered.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 An error will affect the current and the following ciphertext variables.
 .Sh "Output Feedback Mode (\s-1OFB\s0)"
 .IX Subsection "Output Feedback Mode (OFB)"
 Normally, this is found as the function \fIalgorithm\fR\fI_ofb_encrypt()\fR.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 a number of bits (j) <= 64 are enciphered at a time.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 The \s-1OFB\s0 mode produces the same ciphertext whenever the same
 plaintext enciphered using the same key and starting variable.  More
 over, in the \s-1OFB\s0 mode the same key stream is produced when the same
 key and start variable are used.  Consequently, for security reasons
 a specific start variable should be used only once for a given key.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 The absence of chaining makes the \s-1OFB\s0 more vulnerable to specific attacks.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 The use of different start variables values prevents the same
 plaintext enciphering to the same ciphertext, by producing different
 key streams.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 Selection of a small value for j will require more cycles through
 the encipherment algorithm per unit of plaintext and thus cause
 greater processing overheads.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 Only multiples of j bits can be enciphered.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 \&\s-1OFB\s0 mode of operation does not extend ciphertext errors in the
 resultant plaintext output.  Every bit error in the ciphertext causes
 only one bit to be in error in the deciphered plaintext.
-.Ip "\(bu" 2
-\&\s-1OFB\s0 mode is not self-synchronizing.  If the two operation of
+.IP "\(bu" 2
+\&\s-1OFB\s0 mode is not self\-synchronizing.  If the two operation of
 encipherment and decipherment get out of synchronism, the system needs
-to be re-initialized.
-.Ip "\(bu" 2
+to be re\-initialized.
+.IP "\(bu" 2
 Each re-initialization should use a value of the start variable
 different from the start variable values used before with the same
 key.  The reason for this is that an identical bit stream would be
@@ -246,29 +236,29 @@ susceptible to a 'known plaintext' attack.
 .Sh "Triple \s-1ECB\s0 Mode"
 .IX Subsection "Triple ECB Mode"
 Normally, this is found as the function \fIalgorithm\fR\fI_ecb3_encrypt()\fR.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 Encrypt with key1, decrypt with key2 and encrypt with key3 again.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 As for \s-1ECB\s0 encryption but increases the key length to 168 bits.
 There are theoretic attacks that can be used that make the effective
 key length 112 bits, but this attack also requires 2^56 blocks of
 memory, not very likely, even for the \s-1NSA\s0.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 If both keys are the same it is equivalent to encrypting once with
 just one key.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 If the first and last key are the same, the key length is 112 bits.
 There are attacks that could reduce the effective key strength
 to only slightly more than 56 bits, but these require a lot of memory.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 If all 3 keys are the same, this is effectively the same as normal
 ecb mode.
 .Sh "Triple \s-1CBC\s0 Mode"
 .IX Subsection "Triple CBC Mode"
 Normally, this is found as the function \fIalgorithm\fR\fI_ede3_cbc_encrypt()\fR.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 Encrypt with key1, decrypt with key2 and then encrypt with key3.
-.Ip "\(bu" 2
+.IP "\(bu" 2
 As for \s-1CBC\s0 encryption but increases the key length to 168 bits with
 the same restrictions as for triple ecb mode.
 .SH "NOTES"
@@ -286,5 +276,5 @@ it to:
 .Ve
 .SH "SEE ALSO"
 .IX Header "SEE ALSO"
-blowfish(3), des(3), idea(3),
-rc2(3)
+\&\fIblowfish\fR\|(3), \fIdes\fR\|(3), \fIidea\fR\|(3),
+\&\fIrc2\fR\|(3)