MFV r307313:
[freebsd.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright 2016 Toomas Soome <tsoome@me.com>
29  */
30
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/dmu.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/uberblock_impl.h>
39 #include <sys/metaslab.h>
40 #include <sys/metaslab_impl.h>
41 #include <sys/space_map.h>
42 #include <sys/space_reftree.h>
43 #include <sys/zio.h>
44 #include <sys/zap.h>
45 #include <sys/fs/zfs.h>
46 #include <sys/arc.h>
47 #include <sys/zil.h>
48 #include <sys/dsl_scan.h>
49 #include <sys/trim_map.h>
50
51 SYSCTL_DECL(_vfs_zfs);
52 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
53
54 /*
55  * Virtual device management.
56  */
57
58 /*
59  * The limit for ZFS to automatically increase a top-level vdev's ashift
60  * from logical ashift to physical ashift.
61  *
62  * Example: one or more 512B emulation child vdevs
63  *          child->vdev_ashift = 9 (512 bytes)
64  *          child->vdev_physical_ashift = 12 (4096 bytes)
65  *          zfs_max_auto_ashift = 11 (2048 bytes)
66  *          zfs_min_auto_ashift = 9 (512 bytes)
67  *
68  * On pool creation or the addition of a new top-level vdev, ZFS will
69  * increase the ashift of the top-level vdev to 2048 as limited by
70  * zfs_max_auto_ashift.
71  *
72  * Example: one or more 512B emulation child vdevs
73  *          child->vdev_ashift = 9 (512 bytes)
74  *          child->vdev_physical_ashift = 12 (4096 bytes)
75  *          zfs_max_auto_ashift = 13 (8192 bytes)
76  *          zfs_min_auto_ashift = 9 (512 bytes)
77  *
78  * On pool creation or the addition of a new top-level vdev, ZFS will
79  * increase the ashift of the top-level vdev to 4096 to match the
80  * max vdev_physical_ashift.
81  *
82  * Example: one or more 512B emulation child vdevs
83  *          child->vdev_ashift = 9 (512 bytes)
84  *          child->vdev_physical_ashift = 9 (512 bytes)
85  *          zfs_max_auto_ashift = 13 (8192 bytes)
86  *          zfs_min_auto_ashift = 12 (4096 bytes)
87  *
88  * On pool creation or the addition of a new top-level vdev, ZFS will
89  * increase the ashift of the top-level vdev to 4096 to match the
90  * zfs_min_auto_ashift.
91  */
92 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
93 static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
94
95 static int
96 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
97 {
98         uint64_t val;
99         int err;
100
101         val = zfs_max_auto_ashift;
102         err = sysctl_handle_64(oidp, &val, 0, req);
103         if (err != 0 || req->newptr == NULL)
104                 return (err);
105
106         if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
107                 return (EINVAL);
108
109         zfs_max_auto_ashift = val;
110
111         return (0);
112 }
113 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
114     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
115     sysctl_vfs_zfs_max_auto_ashift, "QU",
116     "Max ashift used when optimising for logical -> physical sectors size on "
117     "new top-level vdevs.");
118
119 static int
120 sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
121 {
122         uint64_t val;
123         int err;
124
125         val = zfs_min_auto_ashift;
126         err = sysctl_handle_64(oidp, &val, 0, req);
127         if (err != 0 || req->newptr == NULL)
128                 return (err);
129
130         if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
131                 return (EINVAL);
132
133         zfs_min_auto_ashift = val;
134
135         return (0);
136 }
137 SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
138     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
139     sysctl_vfs_zfs_min_auto_ashift, "QU",
140     "Min ashift used when creating new top-level vdevs.");
141
142 static vdev_ops_t *vdev_ops_table[] = {
143         &vdev_root_ops,
144         &vdev_raidz_ops,
145         &vdev_mirror_ops,
146         &vdev_replacing_ops,
147         &vdev_spare_ops,
148 #ifdef _KERNEL
149         &vdev_geom_ops,
150 #else
151         &vdev_disk_ops,
152 #endif
153         &vdev_file_ops,
154         &vdev_missing_ops,
155         &vdev_hole_ops,
156         NULL
157 };
158
159
160 /*
161  * When a vdev is added, it will be divided into approximately (but no
162  * more than) this number of metaslabs.
163  */
164 int metaslabs_per_vdev = 200;
165 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN,
166     &metaslabs_per_vdev, 0,
167     "When a vdev is added, how many metaslabs the vdev should be divided into");
168
169 /*
170  * Given a vdev type, return the appropriate ops vector.
171  */
172 static vdev_ops_t *
173 vdev_getops(const char *type)
174 {
175         vdev_ops_t *ops, **opspp;
176
177         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
178                 if (strcmp(ops->vdev_op_type, type) == 0)
179                         break;
180
181         return (ops);
182 }
183
184 /*
185  * Default asize function: return the MAX of psize with the asize of
186  * all children.  This is what's used by anything other than RAID-Z.
187  */
188 uint64_t
189 vdev_default_asize(vdev_t *vd, uint64_t psize)
190 {
191         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
192         uint64_t csize;
193
194         for (int c = 0; c < vd->vdev_children; c++) {
195                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
196                 asize = MAX(asize, csize);
197         }
198
199         return (asize);
200 }
201
202 /*
203  * Get the minimum allocatable size. We define the allocatable size as
204  * the vdev's asize rounded to the nearest metaslab. This allows us to
205  * replace or attach devices which don't have the same physical size but
206  * can still satisfy the same number of allocations.
207  */
208 uint64_t
209 vdev_get_min_asize(vdev_t *vd)
210 {
211         vdev_t *pvd = vd->vdev_parent;
212
213         /*
214          * If our parent is NULL (inactive spare or cache) or is the root,
215          * just return our own asize.
216          */
217         if (pvd == NULL)
218                 return (vd->vdev_asize);
219
220         /*
221          * The top-level vdev just returns the allocatable size rounded
222          * to the nearest metaslab.
223          */
224         if (vd == vd->vdev_top)
225                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
226
227         /*
228          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
229          * so each child must provide at least 1/Nth of its asize.
230          */
231         if (pvd->vdev_ops == &vdev_raidz_ops)
232                 return (pvd->vdev_min_asize / pvd->vdev_children);
233
234         return (pvd->vdev_min_asize);
235 }
236
237 void
238 vdev_set_min_asize(vdev_t *vd)
239 {
240         vd->vdev_min_asize = vdev_get_min_asize(vd);
241
242         for (int c = 0; c < vd->vdev_children; c++)
243                 vdev_set_min_asize(vd->vdev_child[c]);
244 }
245
246 vdev_t *
247 vdev_lookup_top(spa_t *spa, uint64_t vdev)
248 {
249         vdev_t *rvd = spa->spa_root_vdev;
250
251         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
252
253         if (vdev < rvd->vdev_children) {
254                 ASSERT(rvd->vdev_child[vdev] != NULL);
255                 return (rvd->vdev_child[vdev]);
256         }
257
258         return (NULL);
259 }
260
261 vdev_t *
262 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
263 {
264         vdev_t *mvd;
265
266         if (vd->vdev_guid == guid)
267                 return (vd);
268
269         for (int c = 0; c < vd->vdev_children; c++)
270                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
271                     NULL)
272                         return (mvd);
273
274         return (NULL);
275 }
276
277 static int
278 vdev_count_leaves_impl(vdev_t *vd)
279 {
280         int n = 0;
281
282         if (vd->vdev_ops->vdev_op_leaf)
283                 return (1);
284
285         for (int c = 0; c < vd->vdev_children; c++)
286                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
287
288         return (n);
289 }
290
291 int
292 vdev_count_leaves(spa_t *spa)
293 {
294         return (vdev_count_leaves_impl(spa->spa_root_vdev));
295 }
296
297 void
298 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
299 {
300         size_t oldsize, newsize;
301         uint64_t id = cvd->vdev_id;
302         vdev_t **newchild;
303         spa_t *spa = cvd->vdev_spa;
304
305         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
306         ASSERT(cvd->vdev_parent == NULL);
307
308         cvd->vdev_parent = pvd;
309
310         if (pvd == NULL)
311                 return;
312
313         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
314
315         oldsize = pvd->vdev_children * sizeof (vdev_t *);
316         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
317         newsize = pvd->vdev_children * sizeof (vdev_t *);
318
319         newchild = kmem_zalloc(newsize, KM_SLEEP);
320         if (pvd->vdev_child != NULL) {
321                 bcopy(pvd->vdev_child, newchild, oldsize);
322                 kmem_free(pvd->vdev_child, oldsize);
323         }
324
325         pvd->vdev_child = newchild;
326         pvd->vdev_child[id] = cvd;
327
328         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
329         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
330
331         /*
332          * Walk up all ancestors to update guid sum.
333          */
334         for (; pvd != NULL; pvd = pvd->vdev_parent)
335                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
336 }
337
338 void
339 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
340 {
341         int c;
342         uint_t id = cvd->vdev_id;
343
344         ASSERT(cvd->vdev_parent == pvd);
345
346         if (pvd == NULL)
347                 return;
348
349         ASSERT(id < pvd->vdev_children);
350         ASSERT(pvd->vdev_child[id] == cvd);
351
352         pvd->vdev_child[id] = NULL;
353         cvd->vdev_parent = NULL;
354
355         for (c = 0; c < pvd->vdev_children; c++)
356                 if (pvd->vdev_child[c])
357                         break;
358
359         if (c == pvd->vdev_children) {
360                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
361                 pvd->vdev_child = NULL;
362                 pvd->vdev_children = 0;
363         }
364
365         /*
366          * Walk up all ancestors to update guid sum.
367          */
368         for (; pvd != NULL; pvd = pvd->vdev_parent)
369                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
370 }
371
372 /*
373  * Remove any holes in the child array.
374  */
375 void
376 vdev_compact_children(vdev_t *pvd)
377 {
378         vdev_t **newchild, *cvd;
379         int oldc = pvd->vdev_children;
380         int newc;
381
382         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
383
384         for (int c = newc = 0; c < oldc; c++)
385                 if (pvd->vdev_child[c])
386                         newc++;
387
388         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
389
390         for (int c = newc = 0; c < oldc; c++) {
391                 if ((cvd = pvd->vdev_child[c]) != NULL) {
392                         newchild[newc] = cvd;
393                         cvd->vdev_id = newc++;
394                 }
395         }
396
397         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
398         pvd->vdev_child = newchild;
399         pvd->vdev_children = newc;
400 }
401
402 /*
403  * Allocate and minimally initialize a vdev_t.
404  */
405 vdev_t *
406 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
407 {
408         vdev_t *vd;
409
410         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
411
412         if (spa->spa_root_vdev == NULL) {
413                 ASSERT(ops == &vdev_root_ops);
414                 spa->spa_root_vdev = vd;
415                 spa->spa_load_guid = spa_generate_guid(NULL);
416         }
417
418         if (guid == 0 && ops != &vdev_hole_ops) {
419                 if (spa->spa_root_vdev == vd) {
420                         /*
421                          * The root vdev's guid will also be the pool guid,
422                          * which must be unique among all pools.
423                          */
424                         guid = spa_generate_guid(NULL);
425                 } else {
426                         /*
427                          * Any other vdev's guid must be unique within the pool.
428                          */
429                         guid = spa_generate_guid(spa);
430                 }
431                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
432         }
433
434         vd->vdev_spa = spa;
435         vd->vdev_id = id;
436         vd->vdev_guid = guid;
437         vd->vdev_guid_sum = guid;
438         vd->vdev_ops = ops;
439         vd->vdev_state = VDEV_STATE_CLOSED;
440         vd->vdev_ishole = (ops == &vdev_hole_ops);
441
442         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
443         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
444         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
445         mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
446         for (int t = 0; t < DTL_TYPES; t++) {
447                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
448                     &vd->vdev_dtl_lock);
449         }
450         txg_list_create(&vd->vdev_ms_list,
451             offsetof(struct metaslab, ms_txg_node));
452         txg_list_create(&vd->vdev_dtl_list,
453             offsetof(struct vdev, vdev_dtl_node));
454         vd->vdev_stat.vs_timestamp = gethrtime();
455         vdev_queue_init(vd);
456         vdev_cache_init(vd);
457
458         return (vd);
459 }
460
461 /*
462  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
463  * creating a new vdev or loading an existing one - the behavior is slightly
464  * different for each case.
465  */
466 int
467 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
468     int alloctype)
469 {
470         vdev_ops_t *ops;
471         char *type;
472         uint64_t guid = 0, islog, nparity;
473         vdev_t *vd;
474
475         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
476
477         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
478                 return (SET_ERROR(EINVAL));
479
480         if ((ops = vdev_getops(type)) == NULL)
481                 return (SET_ERROR(EINVAL));
482
483         /*
484          * If this is a load, get the vdev guid from the nvlist.
485          * Otherwise, vdev_alloc_common() will generate one for us.
486          */
487         if (alloctype == VDEV_ALLOC_LOAD) {
488                 uint64_t label_id;
489
490                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
491                     label_id != id)
492                         return (SET_ERROR(EINVAL));
493
494                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
495                         return (SET_ERROR(EINVAL));
496         } else if (alloctype == VDEV_ALLOC_SPARE) {
497                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
498                         return (SET_ERROR(EINVAL));
499         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
500                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
501                         return (SET_ERROR(EINVAL));
502         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
503                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
504                         return (SET_ERROR(EINVAL));
505         }
506
507         /*
508          * The first allocated vdev must be of type 'root'.
509          */
510         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
511                 return (SET_ERROR(EINVAL));
512
513         /*
514          * Determine whether we're a log vdev.
515          */
516         islog = 0;
517         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
518         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
519                 return (SET_ERROR(ENOTSUP));
520
521         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
522                 return (SET_ERROR(ENOTSUP));
523
524         /*
525          * Set the nparity property for RAID-Z vdevs.
526          */
527         nparity = -1ULL;
528         if (ops == &vdev_raidz_ops) {
529                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
530                     &nparity) == 0) {
531                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
532                                 return (SET_ERROR(EINVAL));
533                         /*
534                          * Previous versions could only support 1 or 2 parity
535                          * device.
536                          */
537                         if (nparity > 1 &&
538                             spa_version(spa) < SPA_VERSION_RAIDZ2)
539                                 return (SET_ERROR(ENOTSUP));
540                         if (nparity > 2 &&
541                             spa_version(spa) < SPA_VERSION_RAIDZ3)
542                                 return (SET_ERROR(ENOTSUP));
543                 } else {
544                         /*
545                          * We require the parity to be specified for SPAs that
546                          * support multiple parity levels.
547                          */
548                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
549                                 return (SET_ERROR(EINVAL));
550                         /*
551                          * Otherwise, we default to 1 parity device for RAID-Z.
552                          */
553                         nparity = 1;
554                 }
555         } else {
556                 nparity = 0;
557         }
558         ASSERT(nparity != -1ULL);
559
560         vd = vdev_alloc_common(spa, id, guid, ops);
561
562         vd->vdev_islog = islog;
563         vd->vdev_nparity = nparity;
564
565         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
566                 vd->vdev_path = spa_strdup(vd->vdev_path);
567         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
568                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
569         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
570             &vd->vdev_physpath) == 0)
571                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
572         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
573                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
574
575         /*
576          * Set the whole_disk property.  If it's not specified, leave the value
577          * as -1.
578          */
579         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
580             &vd->vdev_wholedisk) != 0)
581                 vd->vdev_wholedisk = -1ULL;
582
583         /*
584          * Look for the 'not present' flag.  This will only be set if the device
585          * was not present at the time of import.
586          */
587         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
588             &vd->vdev_not_present);
589
590         /*
591          * Get the alignment requirement.
592          */
593         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
594
595         /*
596          * Retrieve the vdev creation time.
597          */
598         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
599             &vd->vdev_crtxg);
600
601         /*
602          * If we're a top-level vdev, try to load the allocation parameters.
603          */
604         if (parent && !parent->vdev_parent &&
605             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
606                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
607                     &vd->vdev_ms_array);
608                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
609                     &vd->vdev_ms_shift);
610                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
611                     &vd->vdev_asize);
612                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
613                     &vd->vdev_removing);
614                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
615                     &vd->vdev_top_zap);
616         } else {
617                 ASSERT0(vd->vdev_top_zap);
618         }
619
620         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
621                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
622                     alloctype == VDEV_ALLOC_ADD ||
623                     alloctype == VDEV_ALLOC_SPLIT ||
624                     alloctype == VDEV_ALLOC_ROOTPOOL);
625                 vd->vdev_mg = metaslab_group_create(islog ?
626                     spa_log_class(spa) : spa_normal_class(spa), vd);
627         }
628
629         if (vd->vdev_ops->vdev_op_leaf &&
630             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
631                 (void) nvlist_lookup_uint64(nv,
632                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
633         } else {
634                 ASSERT0(vd->vdev_leaf_zap);
635         }
636
637         /*
638          * If we're a leaf vdev, try to load the DTL object and other state.
639          */
640
641         if (vd->vdev_ops->vdev_op_leaf &&
642             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
643             alloctype == VDEV_ALLOC_ROOTPOOL)) {
644                 if (alloctype == VDEV_ALLOC_LOAD) {
645                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
646                             &vd->vdev_dtl_object);
647                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
648                             &vd->vdev_unspare);
649                 }
650
651                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
652                         uint64_t spare = 0;
653
654                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
655                             &spare) == 0 && spare)
656                                 spa_spare_add(vd);
657                 }
658
659                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
660                     &vd->vdev_offline);
661
662                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
663                     &vd->vdev_resilver_txg);
664
665                 /*
666                  * When importing a pool, we want to ignore the persistent fault
667                  * state, as the diagnosis made on another system may not be
668                  * valid in the current context.  Local vdevs will
669                  * remain in the faulted state.
670                  */
671                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
672                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
673                             &vd->vdev_faulted);
674                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
675                             &vd->vdev_degraded);
676                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
677                             &vd->vdev_removed);
678
679                         if (vd->vdev_faulted || vd->vdev_degraded) {
680                                 char *aux;
681
682                                 vd->vdev_label_aux =
683                                     VDEV_AUX_ERR_EXCEEDED;
684                                 if (nvlist_lookup_string(nv,
685                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
686                                     strcmp(aux, "external") == 0)
687                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
688                         }
689                 }
690         }
691
692         /*
693          * Add ourselves to the parent's list of children.
694          */
695         vdev_add_child(parent, vd);
696
697         *vdp = vd;
698
699         return (0);
700 }
701
702 void
703 vdev_free(vdev_t *vd)
704 {
705         spa_t *spa = vd->vdev_spa;
706
707         /*
708          * vdev_free() implies closing the vdev first.  This is simpler than
709          * trying to ensure complicated semantics for all callers.
710          */
711         vdev_close(vd);
712
713         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
714         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
715
716         /*
717          * Free all children.
718          */
719         for (int c = 0; c < vd->vdev_children; c++)
720                 vdev_free(vd->vdev_child[c]);
721
722         ASSERT(vd->vdev_child == NULL);
723         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
724
725         /*
726          * Discard allocation state.
727          */
728         if (vd->vdev_mg != NULL) {
729                 vdev_metaslab_fini(vd);
730                 metaslab_group_destroy(vd->vdev_mg);
731         }
732
733         ASSERT0(vd->vdev_stat.vs_space);
734         ASSERT0(vd->vdev_stat.vs_dspace);
735         ASSERT0(vd->vdev_stat.vs_alloc);
736
737         /*
738          * Remove this vdev from its parent's child list.
739          */
740         vdev_remove_child(vd->vdev_parent, vd);
741
742         ASSERT(vd->vdev_parent == NULL);
743
744         /*
745          * Clean up vdev structure.
746          */
747         vdev_queue_fini(vd);
748         vdev_cache_fini(vd);
749
750         if (vd->vdev_path)
751                 spa_strfree(vd->vdev_path);
752         if (vd->vdev_devid)
753                 spa_strfree(vd->vdev_devid);
754         if (vd->vdev_physpath)
755                 spa_strfree(vd->vdev_physpath);
756         if (vd->vdev_fru)
757                 spa_strfree(vd->vdev_fru);
758
759         if (vd->vdev_isspare)
760                 spa_spare_remove(vd);
761         if (vd->vdev_isl2cache)
762                 spa_l2cache_remove(vd);
763
764         txg_list_destroy(&vd->vdev_ms_list);
765         txg_list_destroy(&vd->vdev_dtl_list);
766
767         mutex_enter(&vd->vdev_dtl_lock);
768         space_map_close(vd->vdev_dtl_sm);
769         for (int t = 0; t < DTL_TYPES; t++) {
770                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
771                 range_tree_destroy(vd->vdev_dtl[t]);
772         }
773         mutex_exit(&vd->vdev_dtl_lock);
774
775         mutex_destroy(&vd->vdev_queue_lock);
776         mutex_destroy(&vd->vdev_dtl_lock);
777         mutex_destroy(&vd->vdev_stat_lock);
778         mutex_destroy(&vd->vdev_probe_lock);
779
780         if (vd == spa->spa_root_vdev)
781                 spa->spa_root_vdev = NULL;
782
783         kmem_free(vd, sizeof (vdev_t));
784 }
785
786 /*
787  * Transfer top-level vdev state from svd to tvd.
788  */
789 static void
790 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
791 {
792         spa_t *spa = svd->vdev_spa;
793         metaslab_t *msp;
794         vdev_t *vd;
795         int t;
796
797         ASSERT(tvd == tvd->vdev_top);
798
799         tvd->vdev_ms_array = svd->vdev_ms_array;
800         tvd->vdev_ms_shift = svd->vdev_ms_shift;
801         tvd->vdev_ms_count = svd->vdev_ms_count;
802         tvd->vdev_top_zap = svd->vdev_top_zap;
803
804         svd->vdev_ms_array = 0;
805         svd->vdev_ms_shift = 0;
806         svd->vdev_ms_count = 0;
807         svd->vdev_top_zap = 0;
808
809         if (tvd->vdev_mg)
810                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
811         tvd->vdev_mg = svd->vdev_mg;
812         tvd->vdev_ms = svd->vdev_ms;
813
814         svd->vdev_mg = NULL;
815         svd->vdev_ms = NULL;
816
817         if (tvd->vdev_mg != NULL)
818                 tvd->vdev_mg->mg_vd = tvd;
819
820         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
821         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
822         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
823
824         svd->vdev_stat.vs_alloc = 0;
825         svd->vdev_stat.vs_space = 0;
826         svd->vdev_stat.vs_dspace = 0;
827
828         for (t = 0; t < TXG_SIZE; t++) {
829                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
830                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
831                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
832                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
833                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
834                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
835         }
836
837         if (list_link_active(&svd->vdev_config_dirty_node)) {
838                 vdev_config_clean(svd);
839                 vdev_config_dirty(tvd);
840         }
841
842         if (list_link_active(&svd->vdev_state_dirty_node)) {
843                 vdev_state_clean(svd);
844                 vdev_state_dirty(tvd);
845         }
846
847         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
848         svd->vdev_deflate_ratio = 0;
849
850         tvd->vdev_islog = svd->vdev_islog;
851         svd->vdev_islog = 0;
852 }
853
854 static void
855 vdev_top_update(vdev_t *tvd, vdev_t *vd)
856 {
857         if (vd == NULL)
858                 return;
859
860         vd->vdev_top = tvd;
861
862         for (int c = 0; c < vd->vdev_children; c++)
863                 vdev_top_update(tvd, vd->vdev_child[c]);
864 }
865
866 /*
867  * Add a mirror/replacing vdev above an existing vdev.
868  */
869 vdev_t *
870 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
871 {
872         spa_t *spa = cvd->vdev_spa;
873         vdev_t *pvd = cvd->vdev_parent;
874         vdev_t *mvd;
875
876         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
877
878         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
879
880         mvd->vdev_asize = cvd->vdev_asize;
881         mvd->vdev_min_asize = cvd->vdev_min_asize;
882         mvd->vdev_max_asize = cvd->vdev_max_asize;
883         mvd->vdev_ashift = cvd->vdev_ashift;
884         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
885         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
886         mvd->vdev_state = cvd->vdev_state;
887         mvd->vdev_crtxg = cvd->vdev_crtxg;
888
889         vdev_remove_child(pvd, cvd);
890         vdev_add_child(pvd, mvd);
891         cvd->vdev_id = mvd->vdev_children;
892         vdev_add_child(mvd, cvd);
893         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
894
895         if (mvd == mvd->vdev_top)
896                 vdev_top_transfer(cvd, mvd);
897
898         return (mvd);
899 }
900
901 /*
902  * Remove a 1-way mirror/replacing vdev from the tree.
903  */
904 void
905 vdev_remove_parent(vdev_t *cvd)
906 {
907         vdev_t *mvd = cvd->vdev_parent;
908         vdev_t *pvd = mvd->vdev_parent;
909
910         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
911
912         ASSERT(mvd->vdev_children == 1);
913         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
914             mvd->vdev_ops == &vdev_replacing_ops ||
915             mvd->vdev_ops == &vdev_spare_ops);
916         cvd->vdev_ashift = mvd->vdev_ashift;
917         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
918         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
919
920         vdev_remove_child(mvd, cvd);
921         vdev_remove_child(pvd, mvd);
922
923         /*
924          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
925          * Otherwise, we could have detached an offline device, and when we
926          * go to import the pool we'll think we have two top-level vdevs,
927          * instead of a different version of the same top-level vdev.
928          */
929         if (mvd->vdev_top == mvd) {
930                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
931                 cvd->vdev_orig_guid = cvd->vdev_guid;
932                 cvd->vdev_guid += guid_delta;
933                 cvd->vdev_guid_sum += guid_delta;
934         }
935         cvd->vdev_id = mvd->vdev_id;
936         vdev_add_child(pvd, cvd);
937         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
938
939         if (cvd == cvd->vdev_top)
940                 vdev_top_transfer(mvd, cvd);
941
942         ASSERT(mvd->vdev_children == 0);
943         vdev_free(mvd);
944 }
945
946 int
947 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
948 {
949         spa_t *spa = vd->vdev_spa;
950         objset_t *mos = spa->spa_meta_objset;
951         uint64_t m;
952         uint64_t oldc = vd->vdev_ms_count;
953         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
954         metaslab_t **mspp;
955         int error;
956
957         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
958
959         /*
960          * This vdev is not being allocated from yet or is a hole.
961          */
962         if (vd->vdev_ms_shift == 0)
963                 return (0);
964
965         ASSERT(!vd->vdev_ishole);
966
967         /*
968          * Compute the raidz-deflation ratio.  Note, we hard-code
969          * in 128k (1 << 17) because it is the "typical" blocksize.
970          * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
971          * otherwise it would inconsistently account for existing bp's.
972          */
973         vd->vdev_deflate_ratio = (1 << 17) /
974             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
975
976         ASSERT(oldc <= newc);
977
978         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
979
980         if (oldc != 0) {
981                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
982                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
983         }
984
985         vd->vdev_ms = mspp;
986         vd->vdev_ms_count = newc;
987
988         for (m = oldc; m < newc; m++) {
989                 uint64_t object = 0;
990
991                 if (txg == 0) {
992                         error = dmu_read(mos, vd->vdev_ms_array,
993                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
994                             DMU_READ_PREFETCH);
995                         if (error)
996                                 return (error);
997                 }
998
999                 error = metaslab_init(vd->vdev_mg, m, object, txg,
1000                     &(vd->vdev_ms[m]));
1001                 if (error)
1002                         return (error);
1003         }
1004
1005         if (txg == 0)
1006                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1007
1008         /*
1009          * If the vdev is being removed we don't activate
1010          * the metaslabs since we want to ensure that no new
1011          * allocations are performed on this device.
1012          */
1013         if (oldc == 0 && !vd->vdev_removing)
1014                 metaslab_group_activate(vd->vdev_mg);
1015
1016         if (txg == 0)
1017                 spa_config_exit(spa, SCL_ALLOC, FTAG);
1018
1019         return (0);
1020 }
1021
1022 void
1023 vdev_metaslab_fini(vdev_t *vd)
1024 {
1025         uint64_t m;
1026         uint64_t count = vd->vdev_ms_count;
1027
1028         if (vd->vdev_ms != NULL) {
1029                 metaslab_group_passivate(vd->vdev_mg);
1030                 for (m = 0; m < count; m++) {
1031                         metaslab_t *msp = vd->vdev_ms[m];
1032
1033                         if (msp != NULL)
1034                                 metaslab_fini(msp);
1035                 }
1036                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1037                 vd->vdev_ms = NULL;
1038         }
1039 }
1040
1041 typedef struct vdev_probe_stats {
1042         boolean_t       vps_readable;
1043         boolean_t       vps_writeable;
1044         int             vps_flags;
1045 } vdev_probe_stats_t;
1046
1047 static void
1048 vdev_probe_done(zio_t *zio)
1049 {
1050         spa_t *spa = zio->io_spa;
1051         vdev_t *vd = zio->io_vd;
1052         vdev_probe_stats_t *vps = zio->io_private;
1053
1054         ASSERT(vd->vdev_probe_zio != NULL);
1055
1056         if (zio->io_type == ZIO_TYPE_READ) {
1057                 if (zio->io_error == 0)
1058                         vps->vps_readable = 1;
1059                 if (zio->io_error == 0 && spa_writeable(spa)) {
1060                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1061                             zio->io_offset, zio->io_size, zio->io_data,
1062                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1063                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1064                 } else {
1065                         zio_buf_free(zio->io_data, zio->io_size);
1066                 }
1067         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1068                 if (zio->io_error == 0)
1069                         vps->vps_writeable = 1;
1070                 zio_buf_free(zio->io_data, zio->io_size);
1071         } else if (zio->io_type == ZIO_TYPE_NULL) {
1072                 zio_t *pio;
1073
1074                 vd->vdev_cant_read |= !vps->vps_readable;
1075                 vd->vdev_cant_write |= !vps->vps_writeable;
1076
1077                 if (vdev_readable(vd) &&
1078                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1079                         zio->io_error = 0;
1080                 } else {
1081                         ASSERT(zio->io_error != 0);
1082                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1083                             spa, vd, NULL, 0, 0);
1084                         zio->io_error = SET_ERROR(ENXIO);
1085                 }
1086
1087                 mutex_enter(&vd->vdev_probe_lock);
1088                 ASSERT(vd->vdev_probe_zio == zio);
1089                 vd->vdev_probe_zio = NULL;
1090                 mutex_exit(&vd->vdev_probe_lock);
1091
1092                 zio_link_t *zl = NULL;
1093                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1094                         if (!vdev_accessible(vd, pio))
1095                                 pio->io_error = SET_ERROR(ENXIO);
1096
1097                 kmem_free(vps, sizeof (*vps));
1098         }
1099 }
1100
1101 /*
1102  * Determine whether this device is accessible.
1103  *
1104  * Read and write to several known locations: the pad regions of each
1105  * vdev label but the first, which we leave alone in case it contains
1106  * a VTOC.
1107  */
1108 zio_t *
1109 vdev_probe(vdev_t *vd, zio_t *zio)
1110 {
1111         spa_t *spa = vd->vdev_spa;
1112         vdev_probe_stats_t *vps = NULL;
1113         zio_t *pio;
1114
1115         ASSERT(vd->vdev_ops->vdev_op_leaf);
1116
1117         /*
1118          * Don't probe the probe.
1119          */
1120         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1121                 return (NULL);
1122
1123         /*
1124          * To prevent 'probe storms' when a device fails, we create
1125          * just one probe i/o at a time.  All zios that want to probe
1126          * this vdev will become parents of the probe io.
1127          */
1128         mutex_enter(&vd->vdev_probe_lock);
1129
1130         if ((pio = vd->vdev_probe_zio) == NULL) {
1131                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1132
1133                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1134                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1135                     ZIO_FLAG_TRYHARD;
1136
1137                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1138                         /*
1139                          * vdev_cant_read and vdev_cant_write can only
1140                          * transition from TRUE to FALSE when we have the
1141                          * SCL_ZIO lock as writer; otherwise they can only
1142                          * transition from FALSE to TRUE.  This ensures that
1143                          * any zio looking at these values can assume that
1144                          * failures persist for the life of the I/O.  That's
1145                          * important because when a device has intermittent
1146                          * connectivity problems, we want to ensure that
1147                          * they're ascribed to the device (ENXIO) and not
1148                          * the zio (EIO).
1149                          *
1150                          * Since we hold SCL_ZIO as writer here, clear both
1151                          * values so the probe can reevaluate from first
1152                          * principles.
1153                          */
1154                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1155                         vd->vdev_cant_read = B_FALSE;
1156                         vd->vdev_cant_write = B_FALSE;
1157                 }
1158
1159                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1160                     vdev_probe_done, vps,
1161                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1162
1163                 /*
1164                  * We can't change the vdev state in this context, so we
1165                  * kick off an async task to do it on our behalf.
1166                  */
1167                 if (zio != NULL) {
1168                         vd->vdev_probe_wanted = B_TRUE;
1169                         spa_async_request(spa, SPA_ASYNC_PROBE);
1170                 }
1171         }
1172
1173         if (zio != NULL)
1174                 zio_add_child(zio, pio);
1175
1176         mutex_exit(&vd->vdev_probe_lock);
1177
1178         if (vps == NULL) {
1179                 ASSERT(zio != NULL);
1180                 return (NULL);
1181         }
1182
1183         for (int l = 1; l < VDEV_LABELS; l++) {
1184                 zio_nowait(zio_read_phys(pio, vd,
1185                     vdev_label_offset(vd->vdev_psize, l,
1186                     offsetof(vdev_label_t, vl_pad2)),
1187                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1188                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1189                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1190         }
1191
1192         if (zio == NULL)
1193                 return (pio);
1194
1195         zio_nowait(pio);
1196         return (NULL);
1197 }
1198
1199 static void
1200 vdev_open_child(void *arg)
1201 {
1202         vdev_t *vd = arg;
1203
1204         vd->vdev_open_thread = curthread;
1205         vd->vdev_open_error = vdev_open(vd);
1206         vd->vdev_open_thread = NULL;
1207 }
1208
1209 boolean_t
1210 vdev_uses_zvols(vdev_t *vd)
1211 {
1212         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1213             strlen(ZVOL_DIR)) == 0)
1214                 return (B_TRUE);
1215         for (int c = 0; c < vd->vdev_children; c++)
1216                 if (vdev_uses_zvols(vd->vdev_child[c]))
1217                         return (B_TRUE);
1218         return (B_FALSE);
1219 }
1220
1221 void
1222 vdev_open_children(vdev_t *vd)
1223 {
1224         taskq_t *tq;
1225         int children = vd->vdev_children;
1226
1227         /*
1228          * in order to handle pools on top of zvols, do the opens
1229          * in a single thread so that the same thread holds the
1230          * spa_namespace_lock
1231          */
1232         if (B_TRUE || vdev_uses_zvols(vd)) {
1233                 for (int c = 0; c < children; c++)
1234                         vd->vdev_child[c]->vdev_open_error =
1235                             vdev_open(vd->vdev_child[c]);
1236                 return;
1237         }
1238         tq = taskq_create("vdev_open", children, minclsyspri,
1239             children, children, TASKQ_PREPOPULATE);
1240
1241         for (int c = 0; c < children; c++)
1242                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1243                     TQ_SLEEP) != 0);
1244
1245         taskq_destroy(tq);
1246 }
1247
1248 /*
1249  * Prepare a virtual device for access.
1250  */
1251 int
1252 vdev_open(vdev_t *vd)
1253 {
1254         spa_t *spa = vd->vdev_spa;
1255         int error;
1256         uint64_t osize = 0;
1257         uint64_t max_osize = 0;
1258         uint64_t asize, max_asize, psize;
1259         uint64_t logical_ashift = 0;
1260         uint64_t physical_ashift = 0;
1261
1262         ASSERT(vd->vdev_open_thread == curthread ||
1263             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1264         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1265             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1266             vd->vdev_state == VDEV_STATE_OFFLINE);
1267
1268         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1269         vd->vdev_cant_read = B_FALSE;
1270         vd->vdev_cant_write = B_FALSE;
1271         vd->vdev_notrim = B_FALSE;
1272         vd->vdev_min_asize = vdev_get_min_asize(vd);
1273
1274         /*
1275          * If this vdev is not removed, check its fault status.  If it's
1276          * faulted, bail out of the open.
1277          */
1278         if (!vd->vdev_removed && vd->vdev_faulted) {
1279                 ASSERT(vd->vdev_children == 0);
1280                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1281                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1282                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1283                     vd->vdev_label_aux);
1284                 return (SET_ERROR(ENXIO));
1285         } else if (vd->vdev_offline) {
1286                 ASSERT(vd->vdev_children == 0);
1287                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1288                 return (SET_ERROR(ENXIO));
1289         }
1290
1291         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1292             &logical_ashift, &physical_ashift);
1293
1294         /*
1295          * Reset the vdev_reopening flag so that we actually close
1296          * the vdev on error.
1297          */
1298         vd->vdev_reopening = B_FALSE;
1299         if (zio_injection_enabled && error == 0)
1300                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1301
1302         if (error) {
1303                 if (vd->vdev_removed &&
1304                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1305                         vd->vdev_removed = B_FALSE;
1306
1307                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1308                     vd->vdev_stat.vs_aux);
1309                 return (error);
1310         }
1311
1312         vd->vdev_removed = B_FALSE;
1313
1314         /*
1315          * Recheck the faulted flag now that we have confirmed that
1316          * the vdev is accessible.  If we're faulted, bail.
1317          */
1318         if (vd->vdev_faulted) {
1319                 ASSERT(vd->vdev_children == 0);
1320                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1321                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1322                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1323                     vd->vdev_label_aux);
1324                 return (SET_ERROR(ENXIO));
1325         }
1326
1327         if (vd->vdev_degraded) {
1328                 ASSERT(vd->vdev_children == 0);
1329                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1330                     VDEV_AUX_ERR_EXCEEDED);
1331         } else {
1332                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1333         }
1334
1335         /*
1336          * For hole or missing vdevs we just return success.
1337          */
1338         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1339                 return (0);
1340
1341         if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1342                 trim_map_create(vd);
1343
1344         for (int c = 0; c < vd->vdev_children; c++) {
1345                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1346                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1347                             VDEV_AUX_NONE);
1348                         break;
1349                 }
1350         }
1351
1352         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1353         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1354
1355         if (vd->vdev_children == 0) {
1356                 if (osize < SPA_MINDEVSIZE) {
1357                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1358                             VDEV_AUX_TOO_SMALL);
1359                         return (SET_ERROR(EOVERFLOW));
1360                 }
1361                 psize = osize;
1362                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1363                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1364                     VDEV_LABEL_END_SIZE);
1365         } else {
1366                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1367                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1368                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1369                             VDEV_AUX_TOO_SMALL);
1370                         return (SET_ERROR(EOVERFLOW));
1371                 }
1372                 psize = 0;
1373                 asize = osize;
1374                 max_asize = max_osize;
1375         }
1376
1377         vd->vdev_psize = psize;
1378
1379         /*
1380          * Make sure the allocatable size hasn't shrunk.
1381          */
1382         if (asize < vd->vdev_min_asize) {
1383                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1384                     VDEV_AUX_BAD_LABEL);
1385                 return (SET_ERROR(EINVAL));
1386         }
1387
1388         vd->vdev_physical_ashift =
1389             MAX(physical_ashift, vd->vdev_physical_ashift);
1390         vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1391         vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1392
1393         if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1394                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1395                     VDEV_AUX_ASHIFT_TOO_BIG);
1396                 return (EINVAL);
1397         }
1398
1399         if (vd->vdev_asize == 0) {
1400                 /*
1401                  * This is the first-ever open, so use the computed values.
1402                  * For testing purposes, a higher ashift can be requested.
1403                  */
1404                 vd->vdev_asize = asize;
1405                 vd->vdev_max_asize = max_asize;
1406         } else {
1407                 /*
1408                  * Make sure the alignment requirement hasn't increased.
1409                  */
1410                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1411                     vd->vdev_ops->vdev_op_leaf) {
1412                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1413                             VDEV_AUX_BAD_LABEL);
1414                         return (EINVAL);
1415                 }
1416                 vd->vdev_max_asize = max_asize;
1417         }
1418
1419         /*
1420          * If all children are healthy and the asize has increased,
1421          * then we've experienced dynamic LUN growth.  If automatic
1422          * expansion is enabled then use the additional space.
1423          */
1424         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1425             (vd->vdev_expanding || spa->spa_autoexpand))
1426                 vd->vdev_asize = asize;
1427
1428         vdev_set_min_asize(vd);
1429
1430         /*
1431          * Ensure we can issue some IO before declaring the
1432          * vdev open for business.
1433          */
1434         if (vd->vdev_ops->vdev_op_leaf &&
1435             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1436                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1437                     VDEV_AUX_ERR_EXCEEDED);
1438                 return (error);
1439         }
1440
1441         /*
1442          * Track the min and max ashift values for normal data devices.
1443          */
1444         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1445             !vd->vdev_islog && vd->vdev_aux == NULL) {
1446                 if (vd->vdev_ashift > spa->spa_max_ashift)
1447                         spa->spa_max_ashift = vd->vdev_ashift;
1448                 if (vd->vdev_ashift < spa->spa_min_ashift)
1449                         spa->spa_min_ashift = vd->vdev_ashift;
1450         }
1451
1452         /*
1453          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1454          * resilver.  But don't do this if we are doing a reopen for a scrub,
1455          * since this would just restart the scrub we are already doing.
1456          */
1457         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1458             vdev_resilver_needed(vd, NULL, NULL))
1459                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1460
1461         return (0);
1462 }
1463
1464 /*
1465  * Called once the vdevs are all opened, this routine validates the label
1466  * contents.  This needs to be done before vdev_load() so that we don't
1467  * inadvertently do repair I/Os to the wrong device.
1468  *
1469  * If 'strict' is false ignore the spa guid check. This is necessary because
1470  * if the machine crashed during a re-guid the new guid might have been written
1471  * to all of the vdev labels, but not the cached config. The strict check
1472  * will be performed when the pool is opened again using the mos config.
1473  *
1474  * This function will only return failure if one of the vdevs indicates that it
1475  * has since been destroyed or exported.  This is only possible if
1476  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1477  * will be updated but the function will return 0.
1478  */
1479 int
1480 vdev_validate(vdev_t *vd, boolean_t strict)
1481 {
1482         spa_t *spa = vd->vdev_spa;
1483         nvlist_t *label;
1484         uint64_t guid = 0, top_guid;
1485         uint64_t state;
1486
1487         for (int c = 0; c < vd->vdev_children; c++)
1488                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1489                         return (SET_ERROR(EBADF));
1490
1491         /*
1492          * If the device has already failed, or was marked offline, don't do
1493          * any further validation.  Otherwise, label I/O will fail and we will
1494          * overwrite the previous state.
1495          */
1496         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1497                 uint64_t aux_guid = 0;
1498                 nvlist_t *nvl;
1499                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1500                     spa_last_synced_txg(spa) : -1ULL;
1501
1502                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1503                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1504                             VDEV_AUX_BAD_LABEL);
1505                         return (0);
1506                 }
1507
1508                 /*
1509                  * Determine if this vdev has been split off into another
1510                  * pool.  If so, then refuse to open it.
1511                  */
1512                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1513                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1514                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1515                             VDEV_AUX_SPLIT_POOL);
1516                         nvlist_free(label);
1517                         return (0);
1518                 }
1519
1520                 if (strict && (nvlist_lookup_uint64(label,
1521                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1522                     guid != spa_guid(spa))) {
1523                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1524                             VDEV_AUX_CORRUPT_DATA);
1525                         nvlist_free(label);
1526                         return (0);
1527                 }
1528
1529                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1530                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1531                     &aux_guid) != 0)
1532                         aux_guid = 0;
1533
1534                 /*
1535                  * If this vdev just became a top-level vdev because its
1536                  * sibling was detached, it will have adopted the parent's
1537                  * vdev guid -- but the label may or may not be on disk yet.
1538                  * Fortunately, either version of the label will have the
1539                  * same top guid, so if we're a top-level vdev, we can
1540                  * safely compare to that instead.
1541                  *
1542                  * If we split this vdev off instead, then we also check the
1543                  * original pool's guid.  We don't want to consider the vdev
1544                  * corrupt if it is partway through a split operation.
1545                  */
1546                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1547                     &guid) != 0 ||
1548                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1549                     &top_guid) != 0 ||
1550                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1551                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1552                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1553                             VDEV_AUX_CORRUPT_DATA);
1554                         nvlist_free(label);
1555                         return (0);
1556                 }
1557
1558                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1559                     &state) != 0) {
1560                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1561                             VDEV_AUX_CORRUPT_DATA);
1562                         nvlist_free(label);
1563                         return (0);
1564                 }
1565
1566                 nvlist_free(label);
1567
1568                 /*
1569                  * If this is a verbatim import, no need to check the
1570                  * state of the pool.
1571                  */
1572                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1573                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1574                     state != POOL_STATE_ACTIVE)
1575                         return (SET_ERROR(EBADF));
1576
1577                 /*
1578                  * If we were able to open and validate a vdev that was
1579                  * previously marked permanently unavailable, clear that state
1580                  * now.
1581                  */
1582                 if (vd->vdev_not_present)
1583                         vd->vdev_not_present = 0;
1584         }
1585
1586         return (0);
1587 }
1588
1589 /*
1590  * Close a virtual device.
1591  */
1592 void
1593 vdev_close(vdev_t *vd)
1594 {
1595         spa_t *spa = vd->vdev_spa;
1596         vdev_t *pvd = vd->vdev_parent;
1597
1598         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1599
1600         /*
1601          * If our parent is reopening, then we are as well, unless we are
1602          * going offline.
1603          */
1604         if (pvd != NULL && pvd->vdev_reopening)
1605                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1606
1607         vd->vdev_ops->vdev_op_close(vd);
1608
1609         vdev_cache_purge(vd);
1610
1611         if (vd->vdev_ops->vdev_op_leaf)
1612                 trim_map_destroy(vd);
1613
1614         /*
1615          * We record the previous state before we close it, so that if we are
1616          * doing a reopen(), we don't generate FMA ereports if we notice that
1617          * it's still faulted.
1618          */
1619         vd->vdev_prevstate = vd->vdev_state;
1620
1621         if (vd->vdev_offline)
1622                 vd->vdev_state = VDEV_STATE_OFFLINE;
1623         else
1624                 vd->vdev_state = VDEV_STATE_CLOSED;
1625         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1626 }
1627
1628 void
1629 vdev_hold(vdev_t *vd)
1630 {
1631         spa_t *spa = vd->vdev_spa;
1632
1633         ASSERT(spa_is_root(spa));
1634         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1635                 return;
1636
1637         for (int c = 0; c < vd->vdev_children; c++)
1638                 vdev_hold(vd->vdev_child[c]);
1639
1640         if (vd->vdev_ops->vdev_op_leaf)
1641                 vd->vdev_ops->vdev_op_hold(vd);
1642 }
1643
1644 void
1645 vdev_rele(vdev_t *vd)
1646 {
1647         spa_t *spa = vd->vdev_spa;
1648
1649         ASSERT(spa_is_root(spa));
1650         for (int c = 0; c < vd->vdev_children; c++)
1651                 vdev_rele(vd->vdev_child[c]);
1652
1653         if (vd->vdev_ops->vdev_op_leaf)
1654                 vd->vdev_ops->vdev_op_rele(vd);
1655 }
1656
1657 /*
1658  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1659  * reopen leaf vdevs which had previously been opened as they might deadlock
1660  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1661  * If the leaf has never been opened then open it, as usual.
1662  */
1663 void
1664 vdev_reopen(vdev_t *vd)
1665 {
1666         spa_t *spa = vd->vdev_spa;
1667
1668         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1669
1670         /* set the reopening flag unless we're taking the vdev offline */
1671         vd->vdev_reopening = !vd->vdev_offline;
1672         vdev_close(vd);
1673         (void) vdev_open(vd);
1674
1675         /*
1676          * Call vdev_validate() here to make sure we have the same device.
1677          * Otherwise, a device with an invalid label could be successfully
1678          * opened in response to vdev_reopen().
1679          */
1680         if (vd->vdev_aux) {
1681                 (void) vdev_validate_aux(vd);
1682                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1683                     vd->vdev_aux == &spa->spa_l2cache &&
1684                     !l2arc_vdev_present(vd))
1685                         l2arc_add_vdev(spa, vd);
1686         } else {
1687                 (void) vdev_validate(vd, B_TRUE);
1688         }
1689
1690         /*
1691          * Reassess parent vdev's health.
1692          */
1693         vdev_propagate_state(vd);
1694 }
1695
1696 int
1697 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1698 {
1699         int error;
1700
1701         /*
1702          * Normally, partial opens (e.g. of a mirror) are allowed.
1703          * For a create, however, we want to fail the request if
1704          * there are any components we can't open.
1705          */
1706         error = vdev_open(vd);
1707
1708         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1709                 vdev_close(vd);
1710                 return (error ? error : ENXIO);
1711         }
1712
1713         /*
1714          * Recursively load DTLs and initialize all labels.
1715          */
1716         if ((error = vdev_dtl_load(vd)) != 0 ||
1717             (error = vdev_label_init(vd, txg, isreplacing ?
1718             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1719                 vdev_close(vd);
1720                 return (error);
1721         }
1722
1723         return (0);
1724 }
1725
1726 void
1727 vdev_metaslab_set_size(vdev_t *vd)
1728 {
1729         /*
1730          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1731          */
1732         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1733         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1734 }
1735
1736 /*
1737  * Maximize performance by inflating the configured ashift for top level
1738  * vdevs to be as close to the physical ashift as possible while maintaining
1739  * administrator defined limits and ensuring it doesn't go below the
1740  * logical ashift.
1741  */
1742 void
1743 vdev_ashift_optimize(vdev_t *vd)
1744 {
1745         if (vd == vd->vdev_top) {
1746                 if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1747                         vd->vdev_ashift = MIN(
1748                             MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1749                             MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1750                 } else {
1751                         /*
1752                          * Unusual case where logical ashift > physical ashift
1753                          * so we can't cap the calculated ashift based on max
1754                          * ashift as that would cause failures.
1755                          * We still check if we need to increase it to match
1756                          * the min ashift.
1757                          */
1758                         vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1759                             vd->vdev_ashift);
1760                 }
1761         }
1762 }
1763
1764 void
1765 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1766 {
1767         ASSERT(vd == vd->vdev_top);
1768         ASSERT(!vd->vdev_ishole);
1769         ASSERT(ISP2(flags));
1770         ASSERT(spa_writeable(vd->vdev_spa));
1771
1772         if (flags & VDD_METASLAB)
1773                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1774
1775         if (flags & VDD_DTL)
1776                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1777
1778         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1779 }
1780
1781 void
1782 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1783 {
1784         for (int c = 0; c < vd->vdev_children; c++)
1785                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1786
1787         if (vd->vdev_ops->vdev_op_leaf)
1788                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1789 }
1790
1791 /*
1792  * DTLs.
1793  *
1794  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1795  * the vdev has less than perfect replication.  There are four kinds of DTL:
1796  *
1797  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1798  *
1799  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1800  *
1801  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1802  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1803  *      txgs that was scrubbed.
1804  *
1805  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1806  *      persistent errors or just some device being offline.
1807  *      Unlike the other three, the DTL_OUTAGE map is not generally
1808  *      maintained; it's only computed when needed, typically to
1809  *      determine whether a device can be detached.
1810  *
1811  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1812  * either has the data or it doesn't.
1813  *
1814  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1815  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1816  * if any child is less than fully replicated, then so is its parent.
1817  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1818  * comprising only those txgs which appear in 'maxfaults' or more children;
1819  * those are the txgs we don't have enough replication to read.  For example,
1820  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1821  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1822  * two child DTL_MISSING maps.
1823  *
1824  * It should be clear from the above that to compute the DTLs and outage maps
1825  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1826  * Therefore, that is all we keep on disk.  When loading the pool, or after
1827  * a configuration change, we generate all other DTLs from first principles.
1828  */
1829 void
1830 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1831 {
1832         range_tree_t *rt = vd->vdev_dtl[t];
1833
1834         ASSERT(t < DTL_TYPES);
1835         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1836         ASSERT(spa_writeable(vd->vdev_spa));
1837
1838         mutex_enter(rt->rt_lock);
1839         if (!range_tree_contains(rt, txg, size))
1840                 range_tree_add(rt, txg, size);
1841         mutex_exit(rt->rt_lock);
1842 }
1843
1844 boolean_t
1845 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1846 {
1847         range_tree_t *rt = vd->vdev_dtl[t];
1848         boolean_t dirty = B_FALSE;
1849
1850         ASSERT(t < DTL_TYPES);
1851         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1852
1853         mutex_enter(rt->rt_lock);
1854         if (range_tree_space(rt) != 0)
1855                 dirty = range_tree_contains(rt, txg, size);
1856         mutex_exit(rt->rt_lock);
1857
1858         return (dirty);
1859 }
1860
1861 boolean_t
1862 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1863 {
1864         range_tree_t *rt = vd->vdev_dtl[t];
1865         boolean_t empty;
1866
1867         mutex_enter(rt->rt_lock);
1868         empty = (range_tree_space(rt) == 0);
1869         mutex_exit(rt->rt_lock);
1870
1871         return (empty);
1872 }
1873
1874 /*
1875  * Returns the lowest txg in the DTL range.
1876  */
1877 static uint64_t
1878 vdev_dtl_min(vdev_t *vd)
1879 {
1880         range_seg_t *rs;
1881
1882         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1883         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1884         ASSERT0(vd->vdev_children);
1885
1886         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1887         return (rs->rs_start - 1);
1888 }
1889
1890 /*
1891  * Returns the highest txg in the DTL.
1892  */
1893 static uint64_t
1894 vdev_dtl_max(vdev_t *vd)
1895 {
1896         range_seg_t *rs;
1897
1898         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1899         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1900         ASSERT0(vd->vdev_children);
1901
1902         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1903         return (rs->rs_end);
1904 }
1905
1906 /*
1907  * Determine if a resilvering vdev should remove any DTL entries from
1908  * its range. If the vdev was resilvering for the entire duration of the
1909  * scan then it should excise that range from its DTLs. Otherwise, this
1910  * vdev is considered partially resilvered and should leave its DTL
1911  * entries intact. The comment in vdev_dtl_reassess() describes how we
1912  * excise the DTLs.
1913  */
1914 static boolean_t
1915 vdev_dtl_should_excise(vdev_t *vd)
1916 {
1917         spa_t *spa = vd->vdev_spa;
1918         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1919
1920         ASSERT0(scn->scn_phys.scn_errors);
1921         ASSERT0(vd->vdev_children);
1922
1923         if (vd->vdev_resilver_txg == 0 ||
1924             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1925                 return (B_TRUE);
1926
1927         /*
1928          * When a resilver is initiated the scan will assign the scn_max_txg
1929          * value to the highest txg value that exists in all DTLs. If this
1930          * device's max DTL is not part of this scan (i.e. it is not in
1931          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1932          * for excision.
1933          */
1934         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1935                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1936                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1937                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1938                 return (B_TRUE);
1939         }
1940         return (B_FALSE);
1941 }
1942
1943 /*
1944  * Reassess DTLs after a config change or scrub completion.
1945  */
1946 void
1947 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1948 {
1949         spa_t *spa = vd->vdev_spa;
1950         avl_tree_t reftree;
1951         int minref;
1952
1953         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1954
1955         for (int c = 0; c < vd->vdev_children; c++)
1956                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1957                     scrub_txg, scrub_done);
1958
1959         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1960                 return;
1961
1962         if (vd->vdev_ops->vdev_op_leaf) {
1963                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1964
1965                 mutex_enter(&vd->vdev_dtl_lock);
1966
1967                 /*
1968                  * If we've completed a scan cleanly then determine
1969                  * if this vdev should remove any DTLs. We only want to
1970                  * excise regions on vdevs that were available during
1971                  * the entire duration of this scan.
1972                  */
1973                 if (scrub_txg != 0 &&
1974                     (spa->spa_scrub_started ||
1975                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1976                     vdev_dtl_should_excise(vd)) {
1977                         /*
1978                          * We completed a scrub up to scrub_txg.  If we
1979                          * did it without rebooting, then the scrub dtl
1980                          * will be valid, so excise the old region and
1981                          * fold in the scrub dtl.  Otherwise, leave the
1982                          * dtl as-is if there was an error.
1983                          *
1984                          * There's little trick here: to excise the beginning
1985                          * of the DTL_MISSING map, we put it into a reference
1986                          * tree and then add a segment with refcnt -1 that
1987                          * covers the range [0, scrub_txg).  This means
1988                          * that each txg in that range has refcnt -1 or 0.
1989                          * We then add DTL_SCRUB with a refcnt of 2, so that
1990                          * entries in the range [0, scrub_txg) will have a
1991                          * positive refcnt -- either 1 or 2.  We then convert
1992                          * the reference tree into the new DTL_MISSING map.
1993                          */
1994                         space_reftree_create(&reftree);
1995                         space_reftree_add_map(&reftree,
1996                             vd->vdev_dtl[DTL_MISSING], 1);
1997                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1998                         space_reftree_add_map(&reftree,
1999                             vd->vdev_dtl[DTL_SCRUB], 2);
2000                         space_reftree_generate_map(&reftree,
2001                             vd->vdev_dtl[DTL_MISSING], 1);
2002                         space_reftree_destroy(&reftree);
2003                 }
2004                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2005                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2006                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2007                 if (scrub_done)
2008                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2009                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2010                 if (!vdev_readable(vd))
2011                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2012                 else
2013                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2014                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2015
2016                 /*
2017                  * If the vdev was resilvering and no longer has any
2018                  * DTLs then reset its resilvering flag and dirty
2019                  * the top level so that we persist the change.
2020                  */
2021                 if (vd->vdev_resilver_txg != 0 &&
2022                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2023                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
2024                         vd->vdev_resilver_txg = 0;
2025                         vdev_config_dirty(vd->vdev_top);
2026                 }
2027
2028                 mutex_exit(&vd->vdev_dtl_lock);
2029
2030                 if (txg != 0)
2031                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2032                 return;
2033         }
2034
2035         mutex_enter(&vd->vdev_dtl_lock);
2036         for (int t = 0; t < DTL_TYPES; t++) {
2037                 /* account for child's outage in parent's missing map */
2038                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2039                 if (t == DTL_SCRUB)
2040                         continue;                       /* leaf vdevs only */
2041                 if (t == DTL_PARTIAL)
2042                         minref = 1;                     /* i.e. non-zero */
2043                 else if (vd->vdev_nparity != 0)
2044                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
2045                 else
2046                         minref = vd->vdev_children;     /* any kind of mirror */
2047                 space_reftree_create(&reftree);
2048                 for (int c = 0; c < vd->vdev_children; c++) {
2049                         vdev_t *cvd = vd->vdev_child[c];
2050                         mutex_enter(&cvd->vdev_dtl_lock);
2051                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2052                         mutex_exit(&cvd->vdev_dtl_lock);
2053                 }
2054                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2055                 space_reftree_destroy(&reftree);
2056         }
2057         mutex_exit(&vd->vdev_dtl_lock);
2058 }
2059
2060 int
2061 vdev_dtl_load(vdev_t *vd)
2062 {
2063         spa_t *spa = vd->vdev_spa;
2064         objset_t *mos = spa->spa_meta_objset;
2065         int error = 0;
2066
2067         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2068                 ASSERT(!vd->vdev_ishole);
2069
2070                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2071                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2072                 if (error)
2073                         return (error);
2074                 ASSERT(vd->vdev_dtl_sm != NULL);
2075
2076                 mutex_enter(&vd->vdev_dtl_lock);
2077
2078                 /*
2079                  * Now that we've opened the space_map we need to update
2080                  * the in-core DTL.
2081                  */
2082                 space_map_update(vd->vdev_dtl_sm);
2083
2084                 error = space_map_load(vd->vdev_dtl_sm,
2085                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2086                 mutex_exit(&vd->vdev_dtl_lock);
2087
2088                 return (error);
2089         }
2090
2091         for (int c = 0; c < vd->vdev_children; c++) {
2092                 error = vdev_dtl_load(vd->vdev_child[c]);
2093                 if (error != 0)
2094                         break;
2095         }
2096
2097         return (error);
2098 }
2099
2100 void
2101 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2102 {
2103         spa_t *spa = vd->vdev_spa;
2104
2105         VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2106         VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2107             zapobj, tx));
2108 }
2109
2110 uint64_t
2111 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2112 {
2113         spa_t *spa = vd->vdev_spa;
2114         uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2115             DMU_OT_NONE, 0, tx);
2116
2117         ASSERT(zap != 0);
2118         VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2119             zap, tx));
2120
2121         return (zap);
2122 }
2123
2124 void
2125 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2126 {
2127         if (vd->vdev_ops != &vdev_hole_ops &&
2128             vd->vdev_ops != &vdev_missing_ops &&
2129             vd->vdev_ops != &vdev_root_ops &&
2130             !vd->vdev_top->vdev_removing) {
2131                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2132                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2133                 }
2134                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2135                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2136                 }
2137         }
2138         for (uint64_t i = 0; i < vd->vdev_children; i++) {
2139                 vdev_construct_zaps(vd->vdev_child[i], tx);
2140         }
2141 }
2142
2143 void
2144 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2145 {
2146         spa_t *spa = vd->vdev_spa;
2147         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2148         objset_t *mos = spa->spa_meta_objset;
2149         range_tree_t *rtsync;
2150         kmutex_t rtlock;
2151         dmu_tx_t *tx;
2152         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2153
2154         ASSERT(!vd->vdev_ishole);
2155         ASSERT(vd->vdev_ops->vdev_op_leaf);
2156
2157         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2158
2159         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2160                 mutex_enter(&vd->vdev_dtl_lock);
2161                 space_map_free(vd->vdev_dtl_sm, tx);
2162                 space_map_close(vd->vdev_dtl_sm);
2163                 vd->vdev_dtl_sm = NULL;
2164                 mutex_exit(&vd->vdev_dtl_lock);
2165
2166                 /*
2167                  * We only destroy the leaf ZAP for detached leaves or for
2168                  * removed log devices. Removed data devices handle leaf ZAP
2169                  * cleanup later, once cancellation is no longer possible.
2170                  */
2171                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2172                     vd->vdev_top->vdev_islog)) {
2173                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2174                         vd->vdev_leaf_zap = 0;
2175                 }
2176
2177                 dmu_tx_commit(tx);
2178                 return;
2179         }
2180
2181         if (vd->vdev_dtl_sm == NULL) {
2182                 uint64_t new_object;
2183
2184                 new_object = space_map_alloc(mos, tx);
2185                 VERIFY3U(new_object, !=, 0);
2186
2187                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2188                     0, -1ULL, 0, &vd->vdev_dtl_lock));
2189                 ASSERT(vd->vdev_dtl_sm != NULL);
2190         }
2191
2192         bzero(&rtlock, sizeof(rtlock));
2193         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2194
2195         rtsync = range_tree_create(NULL, NULL, &rtlock);
2196
2197         mutex_enter(&rtlock);
2198
2199         mutex_enter(&vd->vdev_dtl_lock);
2200         range_tree_walk(rt, range_tree_add, rtsync);
2201         mutex_exit(&vd->vdev_dtl_lock);
2202
2203         space_map_truncate(vd->vdev_dtl_sm, tx);
2204         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2205         range_tree_vacate(rtsync, NULL, NULL);
2206
2207         range_tree_destroy(rtsync);
2208
2209         mutex_exit(&rtlock);
2210         mutex_destroy(&rtlock);
2211
2212         /*
2213          * If the object for the space map has changed then dirty
2214          * the top level so that we update the config.
2215          */
2216         if (object != space_map_object(vd->vdev_dtl_sm)) {
2217                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2218                     "new object %llu", txg, spa_name(spa), object,
2219                     space_map_object(vd->vdev_dtl_sm));
2220                 vdev_config_dirty(vd->vdev_top);
2221         }
2222
2223         dmu_tx_commit(tx);
2224
2225         mutex_enter(&vd->vdev_dtl_lock);
2226         space_map_update(vd->vdev_dtl_sm);
2227         mutex_exit(&vd->vdev_dtl_lock);
2228 }
2229
2230 /*
2231  * Determine whether the specified vdev can be offlined/detached/removed
2232  * without losing data.
2233  */
2234 boolean_t
2235 vdev_dtl_required(vdev_t *vd)
2236 {
2237         spa_t *spa = vd->vdev_spa;
2238         vdev_t *tvd = vd->vdev_top;
2239         uint8_t cant_read = vd->vdev_cant_read;
2240         boolean_t required;
2241
2242         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2243
2244         if (vd == spa->spa_root_vdev || vd == tvd)
2245                 return (B_TRUE);
2246
2247         /*
2248          * Temporarily mark the device as unreadable, and then determine
2249          * whether this results in any DTL outages in the top-level vdev.
2250          * If not, we can safely offline/detach/remove the device.
2251          */
2252         vd->vdev_cant_read = B_TRUE;
2253         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2254         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2255         vd->vdev_cant_read = cant_read;
2256         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2257
2258         if (!required && zio_injection_enabled)
2259                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2260
2261         return (required);
2262 }
2263
2264 /*
2265  * Determine if resilver is needed, and if so the txg range.
2266  */
2267 boolean_t
2268 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2269 {
2270         boolean_t needed = B_FALSE;
2271         uint64_t thismin = UINT64_MAX;
2272         uint64_t thismax = 0;
2273
2274         if (vd->vdev_children == 0) {
2275                 mutex_enter(&vd->vdev_dtl_lock);
2276                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2277                     vdev_writeable(vd)) {
2278
2279                         thismin = vdev_dtl_min(vd);
2280                         thismax = vdev_dtl_max(vd);
2281                         needed = B_TRUE;
2282                 }
2283                 mutex_exit(&vd->vdev_dtl_lock);
2284         } else {
2285                 for (int c = 0; c < vd->vdev_children; c++) {
2286                         vdev_t *cvd = vd->vdev_child[c];
2287                         uint64_t cmin, cmax;
2288
2289                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2290                                 thismin = MIN(thismin, cmin);
2291                                 thismax = MAX(thismax, cmax);
2292                                 needed = B_TRUE;
2293                         }
2294                 }
2295         }
2296
2297         if (needed && minp) {
2298                 *minp = thismin;
2299                 *maxp = thismax;
2300         }
2301         return (needed);
2302 }
2303
2304 void
2305 vdev_load(vdev_t *vd)
2306 {
2307         /*
2308          * Recursively load all children.
2309          */
2310         for (int c = 0; c < vd->vdev_children; c++)
2311                 vdev_load(vd->vdev_child[c]);
2312
2313         /*
2314          * If this is a top-level vdev, initialize its metaslabs.
2315          */
2316         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2317             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2318             vdev_metaslab_init(vd, 0) != 0))
2319                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2320                     VDEV_AUX_CORRUPT_DATA);
2321
2322         /*
2323          * If this is a leaf vdev, load its DTL.
2324          */
2325         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2326                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2327                     VDEV_AUX_CORRUPT_DATA);
2328 }
2329
2330 /*
2331  * The special vdev case is used for hot spares and l2cache devices.  Its
2332  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2333  * we make sure that we can open the underlying device, then try to read the
2334  * label, and make sure that the label is sane and that it hasn't been
2335  * repurposed to another pool.
2336  */
2337 int
2338 vdev_validate_aux(vdev_t *vd)
2339 {
2340         nvlist_t *label;
2341         uint64_t guid, version;
2342         uint64_t state;
2343
2344         if (!vdev_readable(vd))
2345                 return (0);
2346
2347         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2348                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2349                     VDEV_AUX_CORRUPT_DATA);
2350                 return (-1);
2351         }
2352
2353         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2354             !SPA_VERSION_IS_SUPPORTED(version) ||
2355             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2356             guid != vd->vdev_guid ||
2357             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2358                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2359                     VDEV_AUX_CORRUPT_DATA);
2360                 nvlist_free(label);
2361                 return (-1);
2362         }
2363
2364         /*
2365          * We don't actually check the pool state here.  If it's in fact in
2366          * use by another pool, we update this fact on the fly when requested.
2367          */
2368         nvlist_free(label);
2369         return (0);
2370 }
2371
2372 void
2373 vdev_remove(vdev_t *vd, uint64_t txg)
2374 {
2375         spa_t *spa = vd->vdev_spa;
2376         objset_t *mos = spa->spa_meta_objset;
2377         dmu_tx_t *tx;
2378
2379         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2380         ASSERT(vd == vd->vdev_top);
2381         ASSERT3U(txg, ==, spa_syncing_txg(spa));
2382
2383         if (vd->vdev_ms != NULL) {
2384                 metaslab_group_t *mg = vd->vdev_mg;
2385
2386                 metaslab_group_histogram_verify(mg);
2387                 metaslab_class_histogram_verify(mg->mg_class);
2388
2389                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2390                         metaslab_t *msp = vd->vdev_ms[m];
2391
2392                         if (msp == NULL || msp->ms_sm == NULL)
2393                                 continue;
2394
2395                         mutex_enter(&msp->ms_lock);
2396                         /*
2397                          * If the metaslab was not loaded when the vdev
2398                          * was removed then the histogram accounting may
2399                          * not be accurate. Update the histogram information
2400                          * here so that we ensure that the metaslab group
2401                          * and metaslab class are up-to-date.
2402                          */
2403                         metaslab_group_histogram_remove(mg, msp);
2404
2405                         VERIFY0(space_map_allocated(msp->ms_sm));
2406                         space_map_free(msp->ms_sm, tx);
2407                         space_map_close(msp->ms_sm);
2408                         msp->ms_sm = NULL;
2409                         mutex_exit(&msp->ms_lock);
2410                 }
2411
2412                 metaslab_group_histogram_verify(mg);
2413                 metaslab_class_histogram_verify(mg->mg_class);
2414                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2415                         ASSERT0(mg->mg_histogram[i]);
2416
2417         }
2418
2419         if (vd->vdev_ms_array) {
2420                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2421                 vd->vdev_ms_array = 0;
2422         }
2423
2424         if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2425                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2426                 vd->vdev_top_zap = 0;
2427         }
2428         dmu_tx_commit(tx);
2429 }
2430
2431 void
2432 vdev_sync_done(vdev_t *vd, uint64_t txg)
2433 {
2434         metaslab_t *msp;
2435         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2436
2437         ASSERT(!vd->vdev_ishole);
2438
2439         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2440                 metaslab_sync_done(msp, txg);
2441
2442         if (reassess)
2443                 metaslab_sync_reassess(vd->vdev_mg);
2444 }
2445
2446 void
2447 vdev_sync(vdev_t *vd, uint64_t txg)
2448 {
2449         spa_t *spa = vd->vdev_spa;
2450         vdev_t *lvd;
2451         metaslab_t *msp;
2452         dmu_tx_t *tx;
2453
2454         ASSERT(!vd->vdev_ishole);
2455
2456         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2457                 ASSERT(vd == vd->vdev_top);
2458                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2459                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2460                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2461                 ASSERT(vd->vdev_ms_array != 0);
2462                 vdev_config_dirty(vd);
2463                 dmu_tx_commit(tx);
2464         }
2465
2466         /*
2467          * Remove the metadata associated with this vdev once it's empty.
2468          */
2469         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2470                 vdev_remove(vd, txg);
2471
2472         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2473                 metaslab_sync(msp, txg);
2474                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2475         }
2476
2477         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2478                 vdev_dtl_sync(lvd, txg);
2479
2480         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2481 }
2482
2483 uint64_t
2484 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2485 {
2486         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2487 }
2488
2489 /*
2490  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2491  * not be opened, and no I/O is attempted.
2492  */
2493 int
2494 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2495 {
2496         vdev_t *vd, *tvd;
2497
2498         spa_vdev_state_enter(spa, SCL_NONE);
2499
2500         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2501                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2502
2503         if (!vd->vdev_ops->vdev_op_leaf)
2504                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2505
2506         tvd = vd->vdev_top;
2507
2508         /*
2509          * We don't directly use the aux state here, but if we do a
2510          * vdev_reopen(), we need this value to be present to remember why we
2511          * were faulted.
2512          */
2513         vd->vdev_label_aux = aux;
2514
2515         /*
2516          * Faulted state takes precedence over degraded.
2517          */
2518         vd->vdev_delayed_close = B_FALSE;
2519         vd->vdev_faulted = 1ULL;
2520         vd->vdev_degraded = 0ULL;
2521         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2522
2523         /*
2524          * If this device has the only valid copy of the data, then
2525          * back off and simply mark the vdev as degraded instead.
2526          */
2527         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2528                 vd->vdev_degraded = 1ULL;
2529                 vd->vdev_faulted = 0ULL;
2530
2531                 /*
2532                  * If we reopen the device and it's not dead, only then do we
2533                  * mark it degraded.
2534                  */
2535                 vdev_reopen(tvd);
2536
2537                 if (vdev_readable(vd))
2538                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2539         }
2540
2541         return (spa_vdev_state_exit(spa, vd, 0));
2542 }
2543
2544 /*
2545  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2546  * user that something is wrong.  The vdev continues to operate as normal as far
2547  * as I/O is concerned.
2548  */
2549 int
2550 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2551 {
2552         vdev_t *vd;
2553
2554         spa_vdev_state_enter(spa, SCL_NONE);
2555
2556         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2557                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2558
2559         if (!vd->vdev_ops->vdev_op_leaf)
2560                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2561
2562         /*
2563          * If the vdev is already faulted, then don't do anything.
2564          */
2565         if (vd->vdev_faulted || vd->vdev_degraded)
2566                 return (spa_vdev_state_exit(spa, NULL, 0));
2567
2568         vd->vdev_degraded = 1ULL;
2569         if (!vdev_is_dead(vd))
2570                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2571                     aux);
2572
2573         return (spa_vdev_state_exit(spa, vd, 0));
2574 }
2575
2576 /*
2577  * Online the given vdev.
2578  *
2579  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2580  * spare device should be detached when the device finishes resilvering.
2581  * Second, the online should be treated like a 'test' online case, so no FMA
2582  * events are generated if the device fails to open.
2583  */
2584 int
2585 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2586 {
2587         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2588         boolean_t postevent = B_FALSE;
2589
2590         spa_vdev_state_enter(spa, SCL_NONE);
2591
2592         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2593                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2594
2595         if (!vd->vdev_ops->vdev_op_leaf)
2596                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2597
2598         postevent =
2599             (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2600             B_TRUE : B_FALSE;
2601
2602         tvd = vd->vdev_top;
2603         vd->vdev_offline = B_FALSE;
2604         vd->vdev_tmpoffline = B_FALSE;
2605         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2606         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2607
2608         /* XXX - L2ARC 1.0 does not support expansion */
2609         if (!vd->vdev_aux) {
2610                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2611                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2612         }
2613
2614         vdev_reopen(tvd);
2615         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2616
2617         if (!vd->vdev_aux) {
2618                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2619                         pvd->vdev_expanding = B_FALSE;
2620         }
2621
2622         if (newstate)
2623                 *newstate = vd->vdev_state;
2624         if ((flags & ZFS_ONLINE_UNSPARE) &&
2625             !vdev_is_dead(vd) && vd->vdev_parent &&
2626             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2627             vd->vdev_parent->vdev_child[0] == vd)
2628                 vd->vdev_unspare = B_TRUE;
2629
2630         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2631
2632                 /* XXX - L2ARC 1.0 does not support expansion */
2633                 if (vd->vdev_aux)
2634                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2635                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2636         }
2637
2638         if (postevent)
2639                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2640
2641         return (spa_vdev_state_exit(spa, vd, 0));
2642 }
2643
2644 static int
2645 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2646 {
2647         vdev_t *vd, *tvd;
2648         int error = 0;
2649         uint64_t generation;
2650         metaslab_group_t *mg;
2651
2652 top:
2653         spa_vdev_state_enter(spa, SCL_ALLOC);
2654
2655         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2656                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2657
2658         if (!vd->vdev_ops->vdev_op_leaf)
2659                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2660
2661         tvd = vd->vdev_top;
2662         mg = tvd->vdev_mg;
2663         generation = spa->spa_config_generation + 1;
2664
2665         /*
2666          * If the device isn't already offline, try to offline it.
2667          */
2668         if (!vd->vdev_offline) {
2669                 /*
2670                  * If this device has the only valid copy of some data,
2671                  * don't allow it to be offlined. Log devices are always
2672                  * expendable.
2673                  */
2674                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2675                     vdev_dtl_required(vd))
2676                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2677
2678                 /*
2679                  * If the top-level is a slog and it has had allocations
2680                  * then proceed.  We check that the vdev's metaslab group
2681                  * is not NULL since it's possible that we may have just
2682                  * added this vdev but not yet initialized its metaslabs.
2683                  */
2684                 if (tvd->vdev_islog && mg != NULL) {
2685                         /*
2686                          * Prevent any future allocations.
2687                          */
2688                         metaslab_group_passivate(mg);
2689                         (void) spa_vdev_state_exit(spa, vd, 0);
2690
2691                         error = spa_offline_log(spa);
2692
2693                         spa_vdev_state_enter(spa, SCL_ALLOC);
2694
2695                         /*
2696                          * Check to see if the config has changed.
2697                          */
2698                         if (error || generation != spa->spa_config_generation) {
2699                                 metaslab_group_activate(mg);
2700                                 if (error)
2701                                         return (spa_vdev_state_exit(spa,
2702                                             vd, error));
2703                                 (void) spa_vdev_state_exit(spa, vd, 0);
2704                                 goto top;
2705                         }
2706                         ASSERT0(tvd->vdev_stat.vs_alloc);
2707                 }
2708
2709                 /*
2710                  * Offline this device and reopen its top-level vdev.
2711                  * If the top-level vdev is a log device then just offline
2712                  * it. Otherwise, if this action results in the top-level
2713                  * vdev becoming unusable, undo it and fail the request.
2714                  */
2715                 vd->vdev_offline = B_TRUE;
2716                 vdev_reopen(tvd);
2717
2718                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2719                     vdev_is_dead(tvd)) {
2720                         vd->vdev_offline = B_FALSE;
2721                         vdev_reopen(tvd);
2722                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2723                 }
2724
2725                 /*
2726                  * Add the device back into the metaslab rotor so that
2727                  * once we online the device it's open for business.
2728                  */
2729                 if (tvd->vdev_islog && mg != NULL)
2730                         metaslab_group_activate(mg);
2731         }
2732
2733         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2734
2735         return (spa_vdev_state_exit(spa, vd, 0));
2736 }
2737
2738 int
2739 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2740 {
2741         int error;
2742
2743         mutex_enter(&spa->spa_vdev_top_lock);
2744         error = vdev_offline_locked(spa, guid, flags);
2745         mutex_exit(&spa->spa_vdev_top_lock);
2746
2747         return (error);
2748 }
2749
2750 /*
2751  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2752  * vdev_offline(), we assume the spa config is locked.  We also clear all
2753  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2754  */
2755 void
2756 vdev_clear(spa_t *spa, vdev_t *vd)
2757 {
2758         vdev_t *rvd = spa->spa_root_vdev;
2759
2760         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2761
2762         if (vd == NULL)
2763                 vd = rvd;
2764
2765         vd->vdev_stat.vs_read_errors = 0;
2766         vd->vdev_stat.vs_write_errors = 0;
2767         vd->vdev_stat.vs_checksum_errors = 0;
2768
2769         for (int c = 0; c < vd->vdev_children; c++)
2770                 vdev_clear(spa, vd->vdev_child[c]);
2771
2772         if (vd == rvd) {
2773                 for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2774                         vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2775
2776                 for (int c = 0; c < spa->spa_spares.sav_count; c++)
2777                         vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2778         }
2779
2780         /*
2781          * If we're in the FAULTED state or have experienced failed I/O, then
2782          * clear the persistent state and attempt to reopen the device.  We
2783          * also mark the vdev config dirty, so that the new faulted state is
2784          * written out to disk.
2785          */
2786         if (vd->vdev_faulted || vd->vdev_degraded ||
2787             !vdev_readable(vd) || !vdev_writeable(vd)) {
2788
2789                 /*
2790                  * When reopening in reponse to a clear event, it may be due to
2791                  * a fmadm repair request.  In this case, if the device is
2792                  * still broken, we want to still post the ereport again.
2793                  */
2794                 vd->vdev_forcefault = B_TRUE;
2795
2796                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2797                 vd->vdev_cant_read = B_FALSE;
2798                 vd->vdev_cant_write = B_FALSE;
2799
2800                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2801
2802                 vd->vdev_forcefault = B_FALSE;
2803
2804                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2805                         vdev_state_dirty(vd->vdev_top);
2806
2807                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2808                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2809
2810                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2811         }
2812
2813         /*
2814          * When clearing a FMA-diagnosed fault, we always want to
2815          * unspare the device, as we assume that the original spare was
2816          * done in response to the FMA fault.
2817          */
2818         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2819             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2820             vd->vdev_parent->vdev_child[0] == vd)
2821                 vd->vdev_unspare = B_TRUE;
2822 }
2823
2824 boolean_t
2825 vdev_is_dead(vdev_t *vd)
2826 {
2827         /*
2828          * Holes and missing devices are always considered "dead".
2829          * This simplifies the code since we don't have to check for
2830          * these types of devices in the various code paths.
2831          * Instead we rely on the fact that we skip over dead devices
2832          * before issuing I/O to them.
2833          */
2834         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2835             vd->vdev_ops == &vdev_missing_ops);
2836 }
2837
2838 boolean_t
2839 vdev_readable(vdev_t *vd)
2840 {
2841         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2842 }
2843
2844 boolean_t
2845 vdev_writeable(vdev_t *vd)
2846 {
2847         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2848 }
2849
2850 boolean_t
2851 vdev_allocatable(vdev_t *vd)
2852 {
2853         uint64_t state = vd->vdev_state;
2854
2855         /*
2856          * We currently allow allocations from vdevs which may be in the
2857          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2858          * fails to reopen then we'll catch it later when we're holding
2859          * the proper locks.  Note that we have to get the vdev state
2860          * in a local variable because although it changes atomically,
2861          * we're asking two separate questions about it.
2862          */
2863         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2864             !vd->vdev_cant_write && !vd->vdev_ishole &&
2865             vd->vdev_mg->mg_initialized);
2866 }
2867
2868 boolean_t
2869 vdev_accessible(vdev_t *vd, zio_t *zio)
2870 {
2871         ASSERT(zio->io_vd == vd);
2872
2873         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2874                 return (B_FALSE);
2875
2876         if (zio->io_type == ZIO_TYPE_READ)
2877                 return (!vd->vdev_cant_read);
2878
2879         if (zio->io_type == ZIO_TYPE_WRITE)
2880                 return (!vd->vdev_cant_write);
2881
2882         return (B_TRUE);
2883 }
2884
2885 /*
2886  * Get statistics for the given vdev.
2887  */
2888 void
2889 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2890 {
2891         spa_t *spa = vd->vdev_spa;
2892         vdev_t *rvd = spa->spa_root_vdev;
2893         vdev_t *tvd = vd->vdev_top;
2894
2895         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2896
2897         mutex_enter(&vd->vdev_stat_lock);
2898         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2899         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2900         vs->vs_state = vd->vdev_state;
2901         vs->vs_rsize = vdev_get_min_asize(vd);
2902         if (vd->vdev_ops->vdev_op_leaf)
2903                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2904         /*
2905          * Report expandable space on top-level, non-auxillary devices only.
2906          * The expandable space is reported in terms of metaslab sized units
2907          * since that determines how much space the pool can expand.
2908          */
2909         if (vd->vdev_aux == NULL && tvd != NULL && vd->vdev_max_asize != 0) {
2910                 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize,
2911                     1ULL << tvd->vdev_ms_shift);
2912         }
2913         vs->vs_configured_ashift = vd->vdev_top != NULL
2914             ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2915         vs->vs_logical_ashift = vd->vdev_logical_ashift;
2916         vs->vs_physical_ashift = vd->vdev_physical_ashift;
2917         if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2918                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2919         }
2920
2921         /*
2922          * If we're getting stats on the root vdev, aggregate the I/O counts
2923          * over all top-level vdevs (i.e. the direct children of the root).
2924          */
2925         if (vd == rvd) {
2926                 for (int c = 0; c < rvd->vdev_children; c++) {
2927                         vdev_t *cvd = rvd->vdev_child[c];
2928                         vdev_stat_t *cvs = &cvd->vdev_stat;
2929
2930                         for (int t = 0; t < ZIO_TYPES; t++) {
2931                                 vs->vs_ops[t] += cvs->vs_ops[t];
2932                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2933                         }
2934                         cvs->vs_scan_removing = cvd->vdev_removing;
2935                 }
2936         }
2937         mutex_exit(&vd->vdev_stat_lock);
2938 }
2939
2940 void
2941 vdev_clear_stats(vdev_t *vd)
2942 {
2943         mutex_enter(&vd->vdev_stat_lock);
2944         vd->vdev_stat.vs_space = 0;
2945         vd->vdev_stat.vs_dspace = 0;
2946         vd->vdev_stat.vs_alloc = 0;
2947         mutex_exit(&vd->vdev_stat_lock);
2948 }
2949
2950 void
2951 vdev_scan_stat_init(vdev_t *vd)
2952 {
2953         vdev_stat_t *vs = &vd->vdev_stat;
2954
2955         for (int c = 0; c < vd->vdev_children; c++)
2956                 vdev_scan_stat_init(vd->vdev_child[c]);
2957
2958         mutex_enter(&vd->vdev_stat_lock);
2959         vs->vs_scan_processed = 0;
2960         mutex_exit(&vd->vdev_stat_lock);
2961 }
2962
2963 void
2964 vdev_stat_update(zio_t *zio, uint64_t psize)
2965 {
2966         spa_t *spa = zio->io_spa;
2967         vdev_t *rvd = spa->spa_root_vdev;
2968         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2969         vdev_t *pvd;
2970         uint64_t txg = zio->io_txg;
2971         vdev_stat_t *vs = &vd->vdev_stat;
2972         zio_type_t type = zio->io_type;
2973         int flags = zio->io_flags;
2974
2975         /*
2976          * If this i/o is a gang leader, it didn't do any actual work.
2977          */
2978         if (zio->io_gang_tree)
2979                 return;
2980
2981         if (zio->io_error == 0) {
2982                 /*
2983                  * If this is a root i/o, don't count it -- we've already
2984                  * counted the top-level vdevs, and vdev_get_stats() will
2985                  * aggregate them when asked.  This reduces contention on
2986                  * the root vdev_stat_lock and implicitly handles blocks
2987                  * that compress away to holes, for which there is no i/o.
2988                  * (Holes never create vdev children, so all the counters
2989                  * remain zero, which is what we want.)
2990                  *
2991                  * Note: this only applies to successful i/o (io_error == 0)
2992                  * because unlike i/o counts, errors are not additive.
2993                  * When reading a ditto block, for example, failure of
2994                  * one top-level vdev does not imply a root-level error.
2995                  */
2996                 if (vd == rvd)
2997                         return;
2998
2999                 ASSERT(vd == zio->io_vd);
3000
3001                 if (flags & ZIO_FLAG_IO_BYPASS)
3002                         return;
3003
3004                 mutex_enter(&vd->vdev_stat_lock);
3005
3006                 if (flags & ZIO_FLAG_IO_REPAIR) {
3007                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3008                                 dsl_scan_phys_t *scn_phys =
3009                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
3010                                 uint64_t *processed = &scn_phys->scn_processed;
3011
3012                                 /* XXX cleanup? */
3013                                 if (vd->vdev_ops->vdev_op_leaf)
3014                                         atomic_add_64(processed, psize);
3015                                 vs->vs_scan_processed += psize;
3016                         }
3017
3018                         if (flags & ZIO_FLAG_SELF_HEAL)
3019                                 vs->vs_self_healed += psize;
3020                 }
3021
3022                 vs->vs_ops[type]++;
3023                 vs->vs_bytes[type] += psize;
3024
3025                 mutex_exit(&vd->vdev_stat_lock);
3026                 return;
3027         }
3028
3029         if (flags & ZIO_FLAG_SPECULATIVE)
3030                 return;
3031
3032         /*
3033          * If this is an I/O error that is going to be retried, then ignore the
3034          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3035          * hard errors, when in reality they can happen for any number of
3036          * innocuous reasons (bus resets, MPxIO link failure, etc).
3037          */
3038         if (zio->io_error == EIO &&
3039             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3040                 return;
3041
3042         /*
3043          * Intent logs writes won't propagate their error to the root
3044          * I/O so don't mark these types of failures as pool-level
3045          * errors.
3046          */
3047         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3048                 return;
3049
3050         mutex_enter(&vd->vdev_stat_lock);
3051         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3052                 if (zio->io_error == ECKSUM)
3053                         vs->vs_checksum_errors++;
3054                 else
3055                         vs->vs_read_errors++;
3056         }
3057         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3058                 vs->vs_write_errors++;
3059         mutex_exit(&vd->vdev_stat_lock);
3060
3061         if (type == ZIO_TYPE_WRITE && txg != 0 &&
3062             (!(flags & ZIO_FLAG_IO_REPAIR) ||
3063             (flags & ZIO_FLAG_SCAN_THREAD) ||
3064             spa->spa_claiming)) {
3065                 /*
3066                  * This is either a normal write (not a repair), or it's
3067                  * a repair induced by the scrub thread, or it's a repair
3068                  * made by zil_claim() during spa_load() in the first txg.
3069                  * In the normal case, we commit the DTL change in the same
3070                  * txg as the block was born.  In the scrub-induced repair
3071                  * case, we know that scrubs run in first-pass syncing context,
3072                  * so we commit the DTL change in spa_syncing_txg(spa).
3073                  * In the zil_claim() case, we commit in spa_first_txg(spa).
3074                  *
3075                  * We currently do not make DTL entries for failed spontaneous
3076                  * self-healing writes triggered by normal (non-scrubbing)
3077                  * reads, because we have no transactional context in which to
3078                  * do so -- and it's not clear that it'd be desirable anyway.
3079                  */
3080                 if (vd->vdev_ops->vdev_op_leaf) {
3081                         uint64_t commit_txg = txg;
3082                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3083                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3084                                 ASSERT(spa_sync_pass(spa) == 1);
3085                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3086                                 commit_txg = spa_syncing_txg(spa);
3087                         } else if (spa->spa_claiming) {
3088                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3089                                 commit_txg = spa_first_txg(spa);
3090                         }
3091                         ASSERT(commit_txg >= spa_syncing_txg(spa));
3092                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3093                                 return;
3094                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3095                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3096                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3097                 }
3098                 if (vd != rvd)
3099                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3100         }
3101 }
3102
3103 /*
3104  * Update the in-core space usage stats for this vdev, its metaslab class,
3105  * and the root vdev.
3106  */
3107 void
3108 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3109     int64_t space_delta)
3110 {
3111         int64_t dspace_delta = space_delta;
3112         spa_t *spa = vd->vdev_spa;
3113         vdev_t *rvd = spa->spa_root_vdev;
3114         metaslab_group_t *mg = vd->vdev_mg;
3115         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3116
3117         ASSERT(vd == vd->vdev_top);
3118
3119         /*
3120          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3121          * factor.  We must calculate this here and not at the root vdev
3122          * because the root vdev's psize-to-asize is simply the max of its
3123          * childrens', thus not accurate enough for us.
3124          */
3125         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3126         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3127         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3128             vd->vdev_deflate_ratio;
3129
3130         mutex_enter(&vd->vdev_stat_lock);
3131         vd->vdev_stat.vs_alloc += alloc_delta;
3132         vd->vdev_stat.vs_space += space_delta;
3133         vd->vdev_stat.vs_dspace += dspace_delta;
3134         mutex_exit(&vd->vdev_stat_lock);
3135
3136         if (mc == spa_normal_class(spa)) {
3137                 mutex_enter(&rvd->vdev_stat_lock);
3138                 rvd->vdev_stat.vs_alloc += alloc_delta;
3139                 rvd->vdev_stat.vs_space += space_delta;
3140                 rvd->vdev_stat.vs_dspace += dspace_delta;
3141                 mutex_exit(&rvd->vdev_stat_lock);
3142         }
3143
3144         if (mc != NULL) {
3145                 ASSERT(rvd == vd->vdev_parent);
3146                 ASSERT(vd->vdev_ms_count != 0);
3147
3148                 metaslab_class_space_update(mc,
3149                     alloc_delta, defer_delta, space_delta, dspace_delta);
3150         }
3151 }
3152
3153 /*
3154  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3155  * so that it will be written out next time the vdev configuration is synced.
3156  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3157  */
3158 void
3159 vdev_config_dirty(vdev_t *vd)
3160 {
3161         spa_t *spa = vd->vdev_spa;
3162         vdev_t *rvd = spa->spa_root_vdev;
3163         int c;
3164
3165         ASSERT(spa_writeable(spa));
3166
3167         /*
3168          * If this is an aux vdev (as with l2cache and spare devices), then we
3169          * update the vdev config manually and set the sync flag.
3170          */
3171         if (vd->vdev_aux != NULL) {
3172                 spa_aux_vdev_t *sav = vd->vdev_aux;
3173                 nvlist_t **aux;
3174                 uint_t naux;
3175
3176                 for (c = 0; c < sav->sav_count; c++) {
3177                         if (sav->sav_vdevs[c] == vd)
3178                                 break;
3179                 }
3180
3181                 if (c == sav->sav_count) {
3182                         /*
3183                          * We're being removed.  There's nothing more to do.
3184                          */
3185                         ASSERT(sav->sav_sync == B_TRUE);
3186                         return;
3187                 }
3188
3189                 sav->sav_sync = B_TRUE;
3190
3191                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3192                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3193                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3194                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3195                 }
3196
3197                 ASSERT(c < naux);
3198
3199                 /*
3200                  * Setting the nvlist in the middle if the array is a little
3201                  * sketchy, but it will work.
3202                  */
3203                 nvlist_free(aux[c]);
3204                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3205
3206                 return;
3207         }
3208
3209         /*
3210          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3211          * must either hold SCL_CONFIG as writer, or must be the sync thread
3212          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3213          * so this is sufficient to ensure mutual exclusion.
3214          */
3215         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3216             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3217             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3218
3219         if (vd == rvd) {
3220                 for (c = 0; c < rvd->vdev_children; c++)
3221                         vdev_config_dirty(rvd->vdev_child[c]);
3222         } else {
3223                 ASSERT(vd == vd->vdev_top);
3224
3225                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3226                     !vd->vdev_ishole)
3227                         list_insert_head(&spa->spa_config_dirty_list, vd);
3228         }
3229 }
3230
3231 void
3232 vdev_config_clean(vdev_t *vd)
3233 {
3234         spa_t *spa = vd->vdev_spa;
3235
3236         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3237             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3238             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3239
3240         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3241         list_remove(&spa->spa_config_dirty_list, vd);
3242 }
3243
3244 /*
3245  * Mark a top-level vdev's state as dirty, so that the next pass of
3246  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3247  * the state changes from larger config changes because they require
3248  * much less locking, and are often needed for administrative actions.
3249  */
3250 void
3251 vdev_state_dirty(vdev_t *vd)
3252 {
3253         spa_t *spa = vd->vdev_spa;
3254
3255         ASSERT(spa_writeable(spa));
3256         ASSERT(vd == vd->vdev_top);
3257
3258         /*
3259          * The state list is protected by the SCL_STATE lock.  The caller
3260          * must either hold SCL_STATE as writer, or must be the sync thread
3261          * (which holds SCL_STATE as reader).  There's only one sync thread,
3262          * so this is sufficient to ensure mutual exclusion.
3263          */
3264         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3265             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3266             spa_config_held(spa, SCL_STATE, RW_READER)));
3267
3268         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3269                 list_insert_head(&spa->spa_state_dirty_list, vd);
3270 }
3271
3272 void
3273 vdev_state_clean(vdev_t *vd)
3274 {
3275         spa_t *spa = vd->vdev_spa;
3276
3277         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3278             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3279             spa_config_held(spa, SCL_STATE, RW_READER)));
3280
3281         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3282         list_remove(&spa->spa_state_dirty_list, vd);
3283 }
3284
3285 /*
3286  * Propagate vdev state up from children to parent.
3287  */
3288 void
3289 vdev_propagate_state(vdev_t *vd)
3290 {
3291         spa_t *spa = vd->vdev_spa;
3292         vdev_t *rvd = spa->spa_root_vdev;
3293         int degraded = 0, faulted = 0;
3294         int corrupted = 0;
3295         vdev_t *child;
3296
3297         if (vd->vdev_children > 0) {
3298                 for (int c = 0; c < vd->vdev_children; c++) {
3299                         child = vd->vdev_child[c];
3300
3301                         /*
3302                          * Don't factor holes into the decision.
3303                          */
3304                         if (child->vdev_ishole)
3305                                 continue;
3306
3307                         if (!vdev_readable(child) ||
3308                             (!vdev_writeable(child) && spa_writeable(spa))) {
3309                                 /*
3310                                  * Root special: if there is a top-level log
3311                                  * device, treat the root vdev as if it were
3312                                  * degraded.
3313                                  */
3314                                 if (child->vdev_islog && vd == rvd)
3315                                         degraded++;
3316                                 else
3317                                         faulted++;
3318                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3319                                 degraded++;
3320                         }
3321
3322                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3323                                 corrupted++;
3324                 }
3325
3326                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3327
3328                 /*
3329                  * Root special: if there is a top-level vdev that cannot be
3330                  * opened due to corrupted metadata, then propagate the root
3331                  * vdev's aux state as 'corrupt' rather than 'insufficient
3332                  * replicas'.
3333                  */
3334                 if (corrupted && vd == rvd &&
3335                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3336                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3337                             VDEV_AUX_CORRUPT_DATA);
3338         }
3339
3340         if (vd->vdev_parent)
3341                 vdev_propagate_state(vd->vdev_parent);
3342 }
3343
3344 /*
3345  * Set a vdev's state.  If this is during an open, we don't update the parent
3346  * state, because we're in the process of opening children depth-first.
3347  * Otherwise, we propagate the change to the parent.
3348  *
3349  * If this routine places a device in a faulted state, an appropriate ereport is
3350  * generated.
3351  */
3352 void
3353 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3354 {
3355         uint64_t save_state;
3356         spa_t *spa = vd->vdev_spa;
3357
3358         if (state == vd->vdev_state) {
3359                 vd->vdev_stat.vs_aux = aux;
3360                 return;
3361         }
3362
3363         save_state = vd->vdev_state;
3364
3365         vd->vdev_state = state;
3366         vd->vdev_stat.vs_aux = aux;
3367
3368         /*
3369          * If we are setting the vdev state to anything but an open state, then
3370          * always close the underlying device unless the device has requested
3371          * a delayed close (i.e. we're about to remove or fault the device).
3372          * Otherwise, we keep accessible but invalid devices open forever.
3373          * We don't call vdev_close() itself, because that implies some extra
3374          * checks (offline, etc) that we don't want here.  This is limited to
3375          * leaf devices, because otherwise closing the device will affect other
3376          * children.
3377          */
3378         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3379             vd->vdev_ops->vdev_op_leaf)
3380                 vd->vdev_ops->vdev_op_close(vd);
3381
3382         if (vd->vdev_removed &&
3383             state == VDEV_STATE_CANT_OPEN &&
3384             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3385                 /*
3386                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3387                  * device was previously marked removed and someone attempted to
3388                  * reopen it.  If this failed due to a nonexistent device, then
3389                  * keep the device in the REMOVED state.  We also let this be if
3390                  * it is one of our special test online cases, which is only
3391                  * attempting to online the device and shouldn't generate an FMA
3392                  * fault.
3393                  */
3394                 vd->vdev_state = VDEV_STATE_REMOVED;
3395                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3396         } else if (state == VDEV_STATE_REMOVED) {
3397                 vd->vdev_removed = B_TRUE;
3398         } else if (state == VDEV_STATE_CANT_OPEN) {
3399                 /*
3400                  * If we fail to open a vdev during an import or recovery, we
3401                  * mark it as "not available", which signifies that it was
3402                  * never there to begin with.  Failure to open such a device
3403                  * is not considered an error.
3404                  */
3405                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3406                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3407                     vd->vdev_ops->vdev_op_leaf)
3408                         vd->vdev_not_present = 1;
3409
3410                 /*
3411                  * Post the appropriate ereport.  If the 'prevstate' field is
3412                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3413                  * that this is part of a vdev_reopen().  In this case, we don't
3414                  * want to post the ereport if the device was already in the
3415                  * CANT_OPEN state beforehand.
3416                  *
3417                  * If the 'checkremove' flag is set, then this is an attempt to
3418                  * online the device in response to an insertion event.  If we
3419                  * hit this case, then we have detected an insertion event for a
3420                  * faulted or offline device that wasn't in the removed state.
3421                  * In this scenario, we don't post an ereport because we are
3422                  * about to replace the device, or attempt an online with
3423                  * vdev_forcefault, which will generate the fault for us.
3424                  */
3425                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3426                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3427                     vd != spa->spa_root_vdev) {
3428                         const char *class;
3429
3430                         switch (aux) {
3431                         case VDEV_AUX_OPEN_FAILED:
3432                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3433                                 break;
3434                         case VDEV_AUX_CORRUPT_DATA:
3435                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3436                                 break;
3437                         case VDEV_AUX_NO_REPLICAS:
3438                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3439                                 break;
3440                         case VDEV_AUX_BAD_GUID_SUM:
3441                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3442                                 break;
3443                         case VDEV_AUX_TOO_SMALL:
3444                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3445                                 break;
3446                         case VDEV_AUX_BAD_LABEL:
3447                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3448                                 break;
3449                         default:
3450                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3451                         }
3452
3453                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3454                 }
3455
3456                 /* Erase any notion of persistent removed state */
3457                 vd->vdev_removed = B_FALSE;
3458         } else {
3459                 vd->vdev_removed = B_FALSE;
3460         }
3461
3462         /*
3463         * Notify the fmd of the state change.  Be verbose and post
3464         * notifications even for stuff that's not important; the fmd agent can
3465         * sort it out.  Don't emit state change events for non-leaf vdevs since
3466         * they can't change state on their own.  The FMD can check their state
3467         * if it wants to when it sees that a leaf vdev had a state change.
3468         */
3469         if (vd->vdev_ops->vdev_op_leaf)
3470                 zfs_post_state_change(spa, vd);
3471
3472         if (!isopen && vd->vdev_parent)
3473                 vdev_propagate_state(vd->vdev_parent);
3474 }
3475
3476 /*
3477  * Check the vdev configuration to ensure that it's capable of supporting
3478  * a root pool. We do not support partial configuration.
3479  * In addition, only a single top-level vdev is allowed.
3480  *
3481  * FreeBSD does not have above limitations.
3482  */
3483 boolean_t
3484 vdev_is_bootable(vdev_t *vd)
3485 {
3486 #ifdef illumos
3487         if (!vd->vdev_ops->vdev_op_leaf) {
3488                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3489
3490                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3491                     vd->vdev_children > 1) {
3492                         return (B_FALSE);
3493                 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3494                         return (B_FALSE);
3495                 }
3496         }
3497
3498         for (int c = 0; c < vd->vdev_children; c++) {
3499                 if (!vdev_is_bootable(vd->vdev_child[c]))
3500                         return (B_FALSE);
3501         }
3502 #endif  /* illumos */
3503         return (B_TRUE);
3504 }
3505
3506 /*
3507  * Load the state from the original vdev tree (ovd) which
3508  * we've retrieved from the MOS config object. If the original
3509  * vdev was offline or faulted then we transfer that state to the
3510  * device in the current vdev tree (nvd).
3511  */
3512 void
3513 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3514 {
3515         spa_t *spa = nvd->vdev_spa;
3516
3517         ASSERT(nvd->vdev_top->vdev_islog);
3518         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3519         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3520
3521         for (int c = 0; c < nvd->vdev_children; c++)
3522                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3523
3524         if (nvd->vdev_ops->vdev_op_leaf) {
3525                 /*
3526                  * Restore the persistent vdev state
3527                  */
3528                 nvd->vdev_offline = ovd->vdev_offline;
3529                 nvd->vdev_faulted = ovd->vdev_faulted;
3530                 nvd->vdev_degraded = ovd->vdev_degraded;
3531                 nvd->vdev_removed = ovd->vdev_removed;
3532         }
3533 }
3534
3535 /*
3536  * Determine if a log device has valid content.  If the vdev was
3537  * removed or faulted in the MOS config then we know that
3538  * the content on the log device has already been written to the pool.
3539  */
3540 boolean_t
3541 vdev_log_state_valid(vdev_t *vd)
3542 {
3543         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3544             !vd->vdev_removed)
3545                 return (B_TRUE);
3546
3547         for (int c = 0; c < vd->vdev_children; c++)
3548                 if (vdev_log_state_valid(vd->vdev_child[c]))
3549                         return (B_TRUE);
3550
3551         return (B_FALSE);
3552 }
3553
3554 /*
3555  * Expand a vdev if possible.
3556  */
3557 void
3558 vdev_expand(vdev_t *vd, uint64_t txg)
3559 {
3560         ASSERT(vd->vdev_top == vd);
3561         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3562
3563         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3564                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3565                 vdev_config_dirty(vd);
3566         }
3567 }
3568
3569 /*
3570  * Split a vdev.
3571  */
3572 void
3573 vdev_split(vdev_t *vd)
3574 {
3575         vdev_t *cvd, *pvd = vd->vdev_parent;
3576
3577         vdev_remove_child(pvd, vd);
3578         vdev_compact_children(pvd);
3579
3580         cvd = pvd->vdev_child[0];
3581         if (pvd->vdev_children == 1) {
3582                 vdev_remove_parent(cvd);
3583                 cvd->vdev_splitting = B_TRUE;
3584         }
3585         vdev_propagate_state(cvd);
3586 }
3587
3588 void
3589 vdev_deadman(vdev_t *vd)
3590 {
3591         for (int c = 0; c < vd->vdev_children; c++) {
3592                 vdev_t *cvd = vd->vdev_child[c];
3593
3594                 vdev_deadman(cvd);
3595         }
3596
3597         if (vd->vdev_ops->vdev_op_leaf) {
3598                 vdev_queue_t *vq = &vd->vdev_queue;
3599
3600                 mutex_enter(&vq->vq_lock);
3601                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3602                         spa_t *spa = vd->vdev_spa;
3603                         zio_t *fio;
3604                         uint64_t delta;
3605
3606                         /*
3607                          * Look at the head of all the pending queues,
3608                          * if any I/O has been outstanding for longer than
3609                          * the spa_deadman_synctime we panic the system.
3610                          */
3611                         fio = avl_first(&vq->vq_active_tree);
3612                         delta = gethrtime() - fio->io_timestamp;
3613                         if (delta > spa_deadman_synctime(spa)) {
3614                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3615                                     "delta %lluns, last io %lluns",
3616                                     fio->io_timestamp, delta,
3617                                     vq->vq_io_complete_ts);
3618                                 fm_panic("I/O to pool '%s' appears to be "
3619                                     "hung on vdev guid %llu at '%s'.",
3620                                     spa_name(spa),
3621                                     (long long unsigned int) vd->vdev_guid,
3622                                     vd->vdev_path);
3623                         }
3624                 }
3625                 mutex_exit(&vq->vq_lock);
3626         }
3627 }