/*- * Copyright (c) 1983, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if 0 #ifndef lint static char sccsid[] = "From: @(#)route.c 8.6 (Berkeley) 4/28/95"; #endif /* not lint */ #endif #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #define _WANT_RTENTRY #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "netstat.h" #define kget(p, d) (kread((u_long)(p), (char *)&(d), sizeof (d))) /* * Definitions for showing gateway flags. */ struct bits { u_long b_mask; char b_val; const char *b_name; } bits[] = { { RTF_UP, 'U', "up" }, { RTF_GATEWAY, 'G', "gateway" }, { RTF_HOST, 'H', "host" }, { RTF_REJECT, 'R', "reject" }, { RTF_DYNAMIC, 'D', "dynamic" }, { RTF_MODIFIED, 'M', "modified" }, { RTF_DONE, 'd', "done" }, /* Completed -- for routing msgs only */ { RTF_XRESOLVE, 'X', "xresolve" }, { RTF_STATIC, 'S', "static" }, { RTF_PROTO1, '1', "proto1" }, { RTF_PROTO2, '2', "proto2" }, { RTF_PROTO3, '3', "proto3" }, { RTF_BLACKHOLE,'B', "blackhole" }, { RTF_BROADCAST,'b', "broadcast" }, #ifdef RTF_LLINFO { RTF_LLINFO, 'L', "llinfo" }, #endif { 0 , 0, NULL } }; /* * kvm(3) bindings for every needed symbol */ static struct nlist rl[] = { #define N_RTSTAT 0 { .n_name = "_rtstat" }, #define N_RTREE 1 { .n_name = "_rt_tables"}, #define N_RTTRASH 2 { .n_name = "_rttrash" }, { .n_name = NULL }, }; typedef union { long dummy; /* Helps align structure. */ struct sockaddr u_sa; u_short u_data[128]; } sa_u; static sa_u pt_u; struct ifmap_entry { char ifname[IFNAMSIZ]; }; static struct ifmap_entry *ifmap; static int ifmap_size; int do_rtent = 0; struct rtentry rtentry; struct radix_node rnode; struct radix_mask rmask; int NewTree = 1; struct timespec uptime; static struct sockaddr *kgetsa(struct sockaddr *); static void size_cols(int ef, struct radix_node *rn); static void size_cols_tree(struct radix_node *rn); static void size_cols_rtentry(struct rtentry *rt); static void p_rtnode_kvm(void); static void p_rtable_sysctl(int, int); static void p_rtable_kvm(int, int ); static void p_rtree_kvm(const char *name, struct radix_node *); static void p_rtentry_kvm(const char *name, struct rtentry *); static void p_rtentry_sysctl(const char *name, struct rt_msghdr *); static void p_sockaddr(const char *name, struct sockaddr *, struct sockaddr *, int, int); static const char *fmt_sockaddr(struct sockaddr *sa, struct sockaddr *mask, int flags); static void p_flags(int, const char *); static const char *fmt_flags(int f); static void domask(char *, in_addr_t, u_long); /* * Print routing tables. */ void routepr(int fibnum, int af) { size_t intsize; int numfibs; intsize = sizeof(int); if (fibnum == -1 && sysctlbyname("net.my_fibnum", &fibnum, &intsize, NULL, 0) == -1) fibnum = 0; if (sysctlbyname("net.fibs", &numfibs, &intsize, NULL, 0) == -1) numfibs = 1; if (fibnum < 0 || fibnum > numfibs - 1) errx(EX_USAGE, "%d: invalid fib", fibnum); /* * Since kernel & userland use different timebase * (time_uptime vs time_second) and we are reading kernel memory * directly we should do rt_expire --> expire_time conversion. */ if (clock_gettime(CLOCK_UPTIME, &uptime) < 0) err(EX_OSERR, "clock_gettime() failed"); xo_open_container("route-information"); xo_emit("{T:Routing tables}"); if (fibnum) xo_emit(" ({L:fib}: {:fib/%d})", fibnum); xo_emit("\n"); if (Aflag == 0 && live != 0 && NewTree) p_rtable_sysctl(fibnum, af); else p_rtable_kvm(fibnum, af); xo_close_container("route-information"); } /* * Print address family header before a section of the routing table. */ void pr_family(int af1) { const char *afname; switch (af1) { case AF_INET: afname = "Internet"; break; #ifdef INET6 case AF_INET6: afname = "Internet6"; break; #endif /*INET6*/ case AF_ISO: afname = "ISO"; break; case AF_CCITT: afname = "X.25"; break; case AF_NETGRAPH: afname = "Netgraph"; break; default: afname = NULL; break; } if (afname) xo_emit("\n{k:address-family/%s}:\n", afname); else xo_emit("\n{L:Protocol Family} {k:address-family/%d}:\n", af1); } /* column widths; each followed by one space */ #ifndef INET6 #define WID_DST_DEFAULT(af) 18 /* width of destination column */ #define WID_GW_DEFAULT(af) 18 /* width of gateway column */ #define WID_IF_DEFAULT(af) (Wflag ? 10 : 8) /* width of netif column */ #else #define WID_DST_DEFAULT(af) \ ((af) == AF_INET6 ? (numeric_addr ? 33: 18) : 18) #define WID_GW_DEFAULT(af) \ ((af) == AF_INET6 ? (numeric_addr ? 29 : 18) : 18) #define WID_IF_DEFAULT(af) ((af) == AF_INET6 ? 8 : (Wflag ? 10 : 8)) #endif /*INET6*/ static int wid_dst; static int wid_gw; static int wid_flags; static int wid_pksent; static int wid_mtu; static int wid_if; static int wid_expire; static void size_cols(int ef, struct radix_node *rn) { wid_dst = WID_DST_DEFAULT(ef); wid_gw = WID_GW_DEFAULT(ef); wid_flags = 6; wid_pksent = 8; wid_mtu = 6; wid_if = WID_IF_DEFAULT(ef); wid_expire = 6; if (Wflag && rn != NULL) size_cols_tree(rn); } static void size_cols_tree(struct radix_node *rn) { again: if (kget(rn, rnode) != 0) return; if (!(rnode.rn_flags & RNF_ACTIVE)) return; if (rnode.rn_bit < 0) { if ((rnode.rn_flags & RNF_ROOT) == 0) { if (kget(rn, rtentry) != 0) return; size_cols_rtentry(&rtentry); } if ((rn = rnode.rn_dupedkey)) goto again; } else { rn = rnode.rn_right; size_cols_tree(rnode.rn_left); size_cols_tree(rn); } } static void size_cols_rtentry(struct rtentry *rt) { static struct ifnet ifnet, *lastif; static char buffer[100]; const char *bp; struct sockaddr *sa; sa_u addr, mask; int len; bzero(&addr, sizeof(addr)); if ((sa = kgetsa(rt_key(rt)))) bcopy(sa, &addr, sa->sa_len); bzero(&mask, sizeof(mask)); if (rt_mask(rt) && (sa = kgetsa(rt_mask(rt)))) bcopy(sa, &mask, sa->sa_len); bp = fmt_sockaddr(&addr.u_sa, &mask.u_sa, rt->rt_flags); len = strlen(bp); wid_dst = MAX(len, wid_dst); bp = fmt_sockaddr(kgetsa(rt->rt_gateway), NULL, RTF_HOST); len = strlen(bp); wid_gw = MAX(len, wid_gw); bp = fmt_flags(rt->rt_flags); len = strlen(bp); wid_flags = MAX(len, wid_flags); if (Wflag) { len = snprintf(buffer, sizeof(buffer), "%ju", (uintmax_t )kread_counter((u_long )rt->rt_pksent)); wid_pksent = MAX(len, wid_pksent); } if (rt->rt_ifp) { if (rt->rt_ifp != lastif) { if (kget(rt->rt_ifp, ifnet) == 0) len = strlen(ifnet.if_xname); else len = strlen("---"); lastif = rt->rt_ifp; wid_if = MAX(len, wid_if); } if (rt->rt_expire) { time_t expire_time; if ((expire_time = rt->rt_expire - uptime.tv_sec) > 0) { len = snprintf(buffer, sizeof(buffer), "%d", (int)expire_time); wid_expire = MAX(len, wid_expire); } } } } /* * Print header for routing table columns. */ void pr_rthdr(int af1) { if (Aflag) xo_emit("{T:/%-8.8s} ","Address"); if (Wflag) { xo_emit("{T:/%-*.*s} {T:/%-*.*s} {T:/%-*.*s} {T:/%*.*s} " "{T:/%*.*s} {T:/%*.*s} {T:/%*.*s} {T:/%*s}\n", wid_dst, wid_dst, "Destination", wid_gw, wid_gw, "Gateway", wid_flags, wid_flags, "Flags", wid_pksent, wid_pksent, "Use", wid_mtu, wid_mtu, "Mtu", wid_if, wid_if, "Netif", wid_expire, "Expire"); } else { xo_emit("{T:/%-*.*s} {T:/%-*.*s} {T:/%-*.*s} {T:/%*.*s} " "{T:/%*s}\n", wid_dst, wid_dst, "Destination", wid_gw, wid_gw, "Gateway", wid_flags, wid_flags, "Flags", wid_if, wid_if, "Netif", wid_expire, "Expire"); } } static struct sockaddr * kgetsa(struct sockaddr *dst) { if (kget(dst, pt_u.u_sa) != 0) return (NULL); if (pt_u.u_sa.sa_len > sizeof (pt_u.u_sa)) kread((u_long)dst, (char *)pt_u.u_data, pt_u.u_sa.sa_len); return (&pt_u.u_sa); } /* * Print kernel routing tables for given fib * using debugging kvm(3) interface. */ static void p_rtable_kvm(int fibnum, int af) { struct radix_node_head **rnhp, *rnh, head; struct radix_node_head **rt_tables; u_long rtree; int fam, af_size; bool did_rt_family = false; kresolve_list(rl); if ((rtree = rl[N_RTREE].n_value) == 0) { xo_emit("rt_tables: symbol not in namelist\n"); return; } af_size = (AF_MAX + 1) * sizeof(struct radix_node_head *); rt_tables = calloc(1, af_size); if (rt_tables == NULL) err(EX_OSERR, "memory allocation failed"); if (kread((u_long)(rtree), (char *)(rt_tables) + fibnum * af_size, af_size) != 0) err(EX_OSERR, "error retrieving radix pointers"); xo_open_container("route-table"); for (fam = 0; fam <= AF_MAX; fam++) { int tmpfib; switch (fam) { case AF_INET6: case AF_INET: tmpfib = fibnum; break; default: tmpfib = 0; } rnhp = (struct radix_node_head **)*rt_tables; /* Calculate the in-kernel address. */ rnhp += tmpfib * (AF_MAX + 1) + fam; /* Read the in kernel rhn pointer. */ if (kget(rnhp, rnh) != 0) continue; if (rnh == NULL) continue; /* Read the rnh data. */ if (kget(rnh, head) != 0) continue; if (fam == AF_UNSPEC) { if (Aflag && af == 0) { xo_emit("{T:Netmasks}:\n"); xo_open_list("netmasks"); p_rtree_kvm("netmasks", head.rnh_treetop); xo_close_list("netmasks"); } } else if (af == AF_UNSPEC || af == fam) { if (!did_rt_family) { xo_open_list("rt-family"); did_rt_family = true; } size_cols(fam, head.rnh_treetop); xo_open_instance("rt-family"); pr_family(fam); do_rtent = 1; xo_open_list("rt-entry"); pr_rthdr(fam); p_rtree_kvm("rt-entry", head.rnh_treetop); xo_close_list("rt-entry"); xo_close_instance("rt-family"); } } if (did_rt_family) xo_close_list("rt-family"); xo_close_container("route-table"); free(rt_tables); } /* * Print given kernel radix tree using * debugging kvm(3) interface. */ static void p_rtree_kvm(const char *name, struct radix_node *rn) { bool opened; opened = false; #define DOOPEN() do { \ if (!opened) { xo_open_instance(name); opened = true; } \ } while (0) #define DOCLOSE() do { \ if (opened) { opened = false; xo_close_instance(name); } \ } while(0) again: if (kget(rn, rnode) != 0) return; if (!(rnode.rn_flags & RNF_ACTIVE)) return; if (rnode.rn_bit < 0) { if (Aflag) { DOOPEN(); xo_emit("{q:radix-node/%-8.8lx} ", (u_long)rn); } if (rnode.rn_flags & RNF_ROOT) { if (Aflag) { DOOPEN(); xo_emit("({:root/root} node){L:/%s}", rnode.rn_dupedkey ? " =>\n" : "\n"); } } else if (do_rtent) { if (kget(rn, rtentry) == 0) { DOOPEN(); p_rtentry_kvm(name, &rtentry); if (Aflag) { DOOPEN(); p_rtnode_kvm(); DOCLOSE(); } } } else { DOOPEN(); p_sockaddr("address", kgetsa((struct sockaddr *)rnode.rn_key), NULL, 0, 44); xo_emit("\n"); } DOCLOSE(); if ((rn = rnode.rn_dupedkey)) goto again; } else { if (Aflag && do_rtent) { DOOPEN(); xo_emit("{q:radix-node/%-8.8lx} ", (u_long)rn); p_rtnode_kvm(); DOCLOSE(); } rn = rnode.rn_right; p_rtree_kvm(name, rnode.rn_left); p_rtree_kvm(name, rn); } } char nbuf[20]; static void p_rtnode_kvm(void) { struct radix_mask *rm = rnode.rn_mklist; if (rnode.rn_bit < 0) { if (rnode.rn_mask) { xo_emit("\t {L:mask} "); p_sockaddr("netmask", kgetsa((struct sockaddr *)rnode.rn_mask), NULL, 0, -1); } else if (rm == 0) return; } else { xo_emit("{[:6}{:bit/(%d)}{]:} {q:left-node/%8.8lx} " ": {q:right-node/%8.8lx}", rnode.rn_bit, (u_long)rnode.rn_left, (u_long)rnode.rn_right); } while (rm) { if (kget(rm, rmask) != 0) break; sprintf(nbuf, " %d refs, ", rmask.rm_refs); xo_emit(" mk = {q:node/%8.8lx} \\{({:bit/%d}),{nbufs/%s}", (u_long)rm, -1 - rmask.rm_bit, rmask.rm_refs ? nbuf : " "); if (rmask.rm_flags & RNF_NORMAL) { struct radix_node rnode_aux; xo_emit(" <{:mode/normal}>, "); if (kget(rmask.rm_leaf, rnode_aux) == 0) p_sockaddr("netmask", kgetsa(/*XXX*/(void *)rnode_aux.rn_mask), NULL, 0, -1); else p_sockaddr(NULL, NULL, NULL, 0, -1); } else p_sockaddr("netmask", kgetsa((struct sockaddr *)rmask.rm_mask), NULL, 0, -1); xo_emit("\\}"); if ((rm = rmask.rm_mklist)) xo_emit(" {D:->}"); } xo_emit("\n"); } static void p_rtable_sysctl(int fibnum, int af) { size_t needed; int mib[7]; char *buf, *next, *lim; struct rt_msghdr *rtm; struct sockaddr *sa; int fam = AF_UNSPEC, ifindex = 0, size; int need_table_close = false; struct ifaddrs *ifap, *ifa; struct sockaddr_dl *sdl; /* * Retrieve interface list at first * since we need #ifindex -> if_xname match */ if (getifaddrs(&ifap) != 0) err(EX_OSERR, "getifaddrs"); for (ifa = ifap; ifa; ifa = ifa->ifa_next) { if (ifa->ifa_addr->sa_family != AF_LINK) continue; sdl = (struct sockaddr_dl *)ifa->ifa_addr; ifindex = sdl->sdl_index; if (ifindex >= ifmap_size) { size = roundup(ifindex + 1, 32) * sizeof(struct ifmap_entry); if ((ifmap = realloc(ifmap, size)) == NULL) errx(2, "realloc(%d) failed", size); memset(&ifmap[ifmap_size], 0, size - ifmap_size * sizeof(struct ifmap_entry)); ifmap_size = roundup(ifindex + 1, 32); } if (*ifmap[ifindex].ifname != '\0') continue; strlcpy(ifmap[ifindex].ifname, ifa->ifa_name, IFNAMSIZ); } freeifaddrs(ifap); mib[0] = CTL_NET; mib[1] = PF_ROUTE; mib[2] = 0; mib[3] = af; mib[4] = NET_RT_DUMP; mib[5] = 0; mib[6] = fibnum; if (sysctl(mib, nitems(mib), NULL, &needed, NULL, 0) < 0) err(EX_OSERR, "sysctl: net.route.0.%d.dump.%d estimate", af, fibnum); if ((buf = malloc(needed)) == NULL) errx(2, "malloc(%lu)", (unsigned long)needed); if (sysctl(mib, nitems(mib), buf, &needed, NULL, 0) < 0) err(1, "sysctl: net.route.0.%d.dump.%d", af, fibnum); lim = buf + needed; xo_open_container("route-table"); xo_open_list("rt-family"); for (next = buf; next < lim; next += rtm->rtm_msglen) { rtm = (struct rt_msghdr *)next; if (rtm->rtm_version != RTM_VERSION) continue; /* * Peek inside header to determine AF */ sa = (struct sockaddr *)(rtm + 1); /* Only print family first time. */ if (fam != sa->sa_family) { if (need_table_close) { xo_close_list("rt-entry"); xo_close_instance("rt-family"); } need_table_close = true; fam = sa->sa_family; size_cols(fam, NULL); xo_open_instance("rt-family"); pr_family(fam); xo_open_list("rt-entry"); pr_rthdr(fam); } p_rtentry_sysctl("rt-entry", rtm); } if (need_table_close) { xo_close_list("rt-entry"); xo_close_instance("rt-family"); } xo_close_list("rt-family"); xo_close_container("route-table"); free(buf); } static void p_rtentry_sysctl(const char *name, struct rt_msghdr *rtm) { struct sockaddr *sa = (struct sockaddr *)(rtm + 1); char buffer[128]; char prettyname[128]; sa_u addr, mask, gw; unsigned int l; xo_open_instance(name); #define GETSA(_s, _f) { \ bzero(&(_s), sizeof(_s)); \ if (rtm->rtm_addrs & _f) { \ l = roundup(sa->sa_len, sizeof(long)); \ memcpy(&(_s), sa, (l > sizeof(_s)) ? sizeof(_s) : l); \ sa = (struct sockaddr *)((char *)sa + l); \ } \ } GETSA(addr, RTA_DST); GETSA(gw, RTA_GATEWAY); GETSA(mask, RTA_NETMASK); p_sockaddr("destination", &addr.u_sa, &mask.u_sa, rtm->rtm_flags, wid_dst); p_sockaddr("gateway", &gw.u_sa, NULL, RTF_HOST, wid_gw); snprintf(buffer, sizeof(buffer), "{[:-%d}{:flags/%%s}{]:}", wid_flags); p_flags(rtm->rtm_flags, buffer); if (Wflag) { xo_emit("{t:use/%*lu} ", wid_pksent, rtm->rtm_rmx.rmx_pksent); if (rtm->rtm_rmx.rmx_mtu != 0) xo_emit("{t:mtu/%*lu} ", wid_mtu, rtm->rtm_rmx.rmx_mtu); else xo_emit("{P:/%*s} ", wid_mtu, ""); } memset(prettyname, 0, sizeof(prettyname)); if (rtm->rtm_index < ifmap_size) { strlcpy(prettyname, ifmap[rtm->rtm_index].ifname, sizeof(prettyname)); if (*prettyname == '\0') strlcpy(prettyname, "---", sizeof(prettyname)); } xo_emit("{t:interface-name/%*.*s}", wid_if, wid_if, prettyname); if (rtm->rtm_rmx.rmx_expire) { time_t expire_time; if ((expire_time = rtm->rtm_rmx.rmx_expire - uptime.tv_sec) > 0) xo_emit(" {:expire-time/%*d}", wid_expire, (int)expire_time); } xo_emit("\n"); xo_close_instance(name); } static void p_sockaddr(const char *name, struct sockaddr *sa, struct sockaddr *mask, int flags, int width) { const char *cp; char buf[128]; cp = fmt_sockaddr(sa, mask, flags); if (width < 0) { snprintf(buf, sizeof(buf), "{:%s/%%s} ", name); xo_emit(buf, cp); } else { if (numeric_addr) { snprintf(buf, sizeof(buf), "{[:%d}{:%s/%%s}{]:} ", -width, name); xo_emit(buf, cp); } else { snprintf(buf, sizeof(buf), "{[:%d}{:%s/%%-.*s}{]:} ", -width, name); xo_emit(buf, width, cp); } } } static const char * fmt_sockaddr(struct sockaddr *sa, struct sockaddr *mask, int flags) { static char workbuf[128]; const char *cp; if (sa == NULL) return ("null"); switch(sa->sa_family) { case AF_INET: { struct sockaddr_in *sockin = (struct sockaddr_in *)sa; if ((sockin->sin_addr.s_addr == INADDR_ANY) && mask && ntohl(((struct sockaddr_in *)mask)->sin_addr.s_addr) ==0L) cp = "default" ; else if (flags & RTF_HOST) cp = routename(sockin->sin_addr.s_addr); else if (mask) cp = netname(sockin->sin_addr.s_addr, ((struct sockaddr_in *)mask)->sin_addr.s_addr); else cp = netname(sockin->sin_addr.s_addr, INADDR_ANY); break; } #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa; /* * The sa6->sin6_scope_id must be filled here because * this sockaddr is extracted from kmem(4) directly * and has KAME-specific embedded scope id in * sa6->sin6_addr.s6_addr[2]. */ in6_fillscopeid(sa6); if (flags & RTF_HOST) cp = routename6(sa6); else if (mask) cp = netname6(sa6, &((struct sockaddr_in6 *)mask)->sin6_addr); else { cp = netname6(sa6, NULL); } break; } #endif /*INET6*/ case AF_NETGRAPH: { strlcpy(workbuf, ((struct sockaddr_ng *)sa)->sg_data, sizeof(workbuf)); cp = workbuf; break; } case AF_LINK: { struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa; if (sdl->sdl_nlen == 0 && sdl->sdl_alen == 0 && sdl->sdl_slen == 0) { (void) sprintf(workbuf, "link#%d", sdl->sdl_index); cp = workbuf; } else switch (sdl->sdl_type) { case IFT_ETHER: case IFT_L2VLAN: case IFT_BRIDGE: if (sdl->sdl_alen == ETHER_ADDR_LEN) { cp = ether_ntoa((struct ether_addr *) (sdl->sdl_data + sdl->sdl_nlen)); break; } /* FALLTHROUGH */ default: cp = link_ntoa(sdl); break; } break; } default: { u_char *s = (u_char *)sa->sa_data, *slim; char *cq, *cqlim; cq = workbuf; slim = sa->sa_len + (u_char *) sa; cqlim = cq + sizeof(workbuf) - 6; cq += sprintf(cq, "(%d)", sa->sa_family); while (s < slim && cq < cqlim) { cq += sprintf(cq, " %02x", *s++); if (s < slim) cq += sprintf(cq, "%02x", *s++); } cp = workbuf; } } return (cp); } static void p_flags(int f, const char *format) { struct bits *p; xo_emit(format, fmt_flags(f)); xo_open_list("flags_pretty"); for (p = bits; p->b_mask; p++) if (p->b_mask & f) xo_emit("{le:flags_pretty/%s}", p->b_name); xo_close_list("flags_pretty"); } static const char * fmt_flags(int f) { static char name[33]; char *flags; struct bits *p = bits; for (flags = name; p->b_mask; p++) if (p->b_mask & f) *flags++ = p->b_val; *flags = '\0'; return (name); } static void p_rtentry_kvm(const char *name, struct rtentry *rt) { static struct ifnet ifnet, *lastif; static char buffer[128]; static char prettyname[128]; struct sockaddr *sa; sa_u addr, mask; bzero(&addr, sizeof(addr)); if ((sa = kgetsa(rt_key(rt)))) bcopy(sa, &addr, sa->sa_len); bzero(&mask, sizeof(mask)); if (rt_mask(rt) && (sa = kgetsa(rt_mask(rt)))) bcopy(sa, &mask, sa->sa_len); p_sockaddr("destination", &addr.u_sa, &mask.u_sa, rt->rt_flags, wid_dst); p_sockaddr("gateway", kgetsa(rt->rt_gateway), NULL, RTF_HOST, wid_gw); snprintf(buffer, sizeof(buffer), "{[:-%d}{:flags/%%s}{]:}", wid_flags); p_flags(rt->rt_flags, buffer); if (Wflag) { xo_emit("{[:%d}{t:use/%ju}{]:} ", -wid_pksent, (uintmax_t )kread_counter((u_long )rt->rt_pksent)); if (rt->rt_mtu != 0) xo_emit("{t:mtu/%*lu} ", wid_mtu, rt->rt_mtu); else xo_emit("{P:/%*s} ", wid_mtu, ""); } if (rt->rt_ifp) { if (rt->rt_ifp != lastif) { if (kget(rt->rt_ifp, ifnet) == 0) strlcpy(prettyname, ifnet.if_xname, sizeof(prettyname)); else strlcpy(prettyname, "---", sizeof(prettyname)); lastif = rt->rt_ifp; } xo_emit("{t:interface-name/%*.*s}", wid_if, wid_if, prettyname); if (rt->rt_expire) { time_t expire_time; if ((expire_time = rt->rt_expire - uptime.tv_sec) > 0) xo_emit(" {:expire-time/%*d}", wid_expire, (int)expire_time); } if (rt->rt_nodes[0].rn_dupedkey) xo_emit(" =>"); } xo_emit("\n"); } char * routename(in_addr_t in) { char *cp; static char line[MAXHOSTNAMELEN]; struct hostent *hp; cp = 0; if (!numeric_addr) { hp = gethostbyaddr(&in, sizeof (struct in_addr), AF_INET); if (hp) { cp = hp->h_name; trimdomain(cp, strlen(cp)); } } if (cp) { strlcpy(line, cp, sizeof(line)); } else { #define C(x) ((x) & 0xff) in = ntohl(in); sprintf(line, "%u.%u.%u.%u", C(in >> 24), C(in >> 16), C(in >> 8), C(in)); } return (line); } #define NSHIFT(m) ( \ (m) == IN_CLASSA_NET ? IN_CLASSA_NSHIFT : \ (m) == IN_CLASSB_NET ? IN_CLASSB_NSHIFT : \ (m) == IN_CLASSC_NET ? IN_CLASSC_NSHIFT : \ 0) static void domask(char *dst, in_addr_t addr __unused, u_long mask) { int b, i; if (mask == 0 || (!numeric_addr && NSHIFT(mask) != 0)) { *dst = '\0'; return; } i = 0; for (b = 0; b < 32; b++) if (mask & (1 << b)) { int bb; i = b; for (bb = b+1; bb < 32; bb++) if (!(mask & (1 << bb))) { i = -1; /* noncontig */ break; } break; } if (i == -1) sprintf(dst, "&0x%lx", mask); else sprintf(dst, "/%d", 32-i); } /* * Return the name of the network whose address is given. */ char * netname(in_addr_t in, in_addr_t mask) { char *cp = 0; static char line[MAXHOSTNAMELEN]; struct netent *np = 0; in_addr_t i; /* It is ok to supply host address. */ in &= mask; i = ntohl(in); if (!numeric_addr && i) { np = getnetbyaddr(i >> NSHIFT(ntohl(mask)), AF_INET); if (np != NULL) { cp = np->n_name; trimdomain(cp, strlen(cp)); } } if (cp != NULL) { strlcpy(line, cp, sizeof(line)); } else { inet_ntop(AF_INET, &in, line, sizeof(line) - 1); } domask(line + strlen(line), i, ntohl(mask)); return (line); } #undef NSHIFT #ifdef INET6 void in6_fillscopeid(struct sockaddr_in6 *sa6) { #if defined(__KAME__) /* * XXX: This is a special workaround for KAME kernels. * sin6_scope_id field of SA should be set in the future. */ if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr) || IN6_IS_ADDR_MC_NODELOCAL(&sa6->sin6_addr) || IN6_IS_ADDR_MC_LINKLOCAL(&sa6->sin6_addr)) { if (sa6->sin6_scope_id == 0) sa6->sin6_scope_id = ntohs(*(u_int16_t *)&sa6->sin6_addr.s6_addr[2]); sa6->sin6_addr.s6_addr[2] = sa6->sin6_addr.s6_addr[3] = 0; } #endif } const char * netname6(struct sockaddr_in6 *sa6, struct in6_addr *mask) { static char line[MAXHOSTNAMELEN]; u_char *p = (u_char *)mask; u_char *lim; int masklen, illegal = 0, flag = 0; if (mask) { for (masklen = 0, lim = p + 16; p < lim; p++) { switch (*p) { case 0xff: masklen += 8; break; case 0xfe: masklen += 7; break; case 0xfc: masklen += 6; break; case 0xf8: masklen += 5; break; case 0xf0: masklen += 4; break; case 0xe0: masklen += 3; break; case 0xc0: masklen += 2; break; case 0x80: masklen += 1; break; case 0x00: break; default: illegal ++; break; } } if (illegal) xo_error("illegal prefixlen\n"); } else masklen = 128; if (masklen == 0 && IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr)) return("default"); if (numeric_addr) flag |= NI_NUMERICHOST; getnameinfo((struct sockaddr *)sa6, sa6->sin6_len, line, sizeof(line), NULL, 0, flag); if (numeric_addr) sprintf(&line[strlen(line)], "/%d", masklen); return line; } char * routename6(struct sockaddr_in6 *sa6) { static char line[MAXHOSTNAMELEN]; int flag = 0; /* use local variable for safety */ struct sockaddr_in6 sa6_local; sa6_local.sin6_family = AF_INET6; sa6_local.sin6_len = sizeof(sa6_local); sa6_local.sin6_addr = sa6->sin6_addr; sa6_local.sin6_scope_id = sa6->sin6_scope_id; if (numeric_addr) flag |= NI_NUMERICHOST; getnameinfo((struct sockaddr *)&sa6_local, sa6_local.sin6_len, line, sizeof(line), NULL, 0, flag); return line; } #endif /*INET6*/ /* * Print routing statistics */ void rt_stats(void) { struct rtstat rtstat; u_long rtsaddr, rttaddr; int rttrash; kresolve_list(rl); if ((rtsaddr = rl[N_RTSTAT].n_value) == 0) { xo_emit("{W:rtstat: symbol not in namelist}\n"); return; } if ((rttaddr = rl[N_RTTRASH].n_value) == 0) { xo_emit("{W:rttrash: symbol not in namelist}\n"); return; } kread(rtsaddr, (char *)&rtstat, sizeof (rtstat)); kread(rttaddr, (char *)&rttrash, sizeof (rttrash)); xo_emit("{T:routing}:\n"); #define p(f, m) if (rtstat.f || sflag <= 1) \ xo_emit(m, rtstat.f, plural(rtstat.f)) p(rts_badredirect, "\t{:bad-redirects/%hu} " "{N:/bad routing redirect%s}\n"); p(rts_dynamic, "\t{:dynamically-created/%hu} " "{N:/dynamically created route%s}\n"); p(rts_newgateway, "\t{:new-gateways/%hu} " "{N:/new gateway%s due to redirects}\n"); p(rts_unreach, "\t{:unreachable-destination/%hu} " "{N:/destination%s found unreachable}\n"); p(rts_wildcard, "\t{:wildcard-uses/%hu} " "{N:/use%s of a wildcard route}\n"); #undef p if (rttrash || sflag <= 1) xo_emit("\t{:unused-but-not-freed/%u} " "{N:/route%s not in table but not freed}\n", rttrash, plural(rttrash)); }