
Matthew Dillon
DragonFly BSD Project

08 January 2004

● Kernel Differentiators Completed
● Light Weight Kernel Threading and Process Separation
● IPI Messaging
● Light Weight Kernel Messaging
● Slab Allocator / KVM mapping simplifications

● Differences in Approach Between DFly and FreeBSD-5.x
● Mutexes verses CPU Localization
● Mutexes verses Thread-based Serialization

● Kernel Differentiators Near-Term Work
● Robust IPC Messaging Mechanism
● AMD64 Port W/Mixed Environment Support

● Future Work – Achieving SSI
● Proxy Message Ports
● Cache Coherency
● Range Locking
● Global File Handles
● Piecemeal Process Migration
● Piecemeal Device Driver Migration

DragonFly Status

Completed Kernel Differentiators

● Light Weight Kernel Threading and Process Separation
● IPI Messaging
● Light Weight Kernel Messaging
● Slab Allocator / KVM mapping simplifications

Light Weight Kernel Threading and User Processes

LWKT SUBSYSTEM

CPU #1

CPU #2

LWKT
SCHEDULER
(FIXED PRI)

THREAD

THREAD

THREAD

THREAD

THREAD

THREAD

USERLAND PROCESS SCHEDULER

PROCESS2
CURPROC ON CPU1

PROCESS1

PROCESS2

PROCESS3

PROCESS4

PROCESS5

PROCESS6

PROCESS
SCHEDULER

RUNQ

PROCESS5
CURPROC ON CPU2

BGL

BGL

BGL

LWKT
SCHEDULER
(FIXED PRI)

BGL

IPI Messaging
●ABSTRACTION PROMOTES CPU ISOLATION
●ASYNCHRONOUS IPI MESSAGING AVOIDS MUTEX OPS
●SIMPLE CRITICAL SECTIONS FOR LOCAL ACCESS
●MANY IPI OPS CAN BE PASSIVE / CONTRAST W/ RCU

CPU #1

THREAD1
ASYNC

IPI
MESSAGE

SCHEDULER

SCHEDULE
THREAD2

CPU #2

THREAD2

SCHEDULER

SCHEDULE
THREAD2

THREAD1

ALLOCATE
MEMORY
ON CPU#1

ALLOCATOR

THREAD2
FREE

MEMORY
OWNED BY

CPU #1

PASSIVE
IPI

MESSAGE

FREE
MEMORY

ON CPU #1

ALLOCATOR
ALLOCATOR

Light Weight Kernel Messaging
●AMIGA STYLE MESSAGES AND PORTS
●SEMI SYNCHRONOUS / PORT AGENT
●FAST SYNCHRONOUS PATH

PORT AGENT
PROCESSES MSG

TARGET PORT (OWNED BY T2)

APP SEND MSG

SYNC RETURN

THREAD #1

PORT AGENT
QUEUES MSG

TARGET PORT (OWNED BY T2)

APP

SEND MSG

EASYNC

THREAD #1

(WAKEUP T2)

REPLY PORT

(WAKEUP T1)WAITMSG

RETURN

THREAD #2

APP

GETMSG

REPLY MSG

APP
EXECUTE T2's CODE
IN T1's CONTEXT

Slab Allocator
●PER-CPU LOCALIZATION
●BACKED BY KERNEL_MAP
●NO MORE KMEM_MAP

CPU #1

PER-CPU SLAB CACHE

CPU #2

PER-CPU SLAB CACHE

KERNEL_MAP

REMOTE
FREE

(ASYNC IPI)

BULK
ALLOCATION

(LOCK)

THREAD THREAD THREAD THREAD THREAD THREAD

BULK
ALLOCATION

(LOCK)

BULK
FREE

(LOCK)

BULK
FREE

(LOCK)

●BULK=128K TYP
●HYSTERESIS W/FREE

Differences in Approach between DragonFly and FreeBSD-5

●CPU Localization verses Mutexes
●Thread based Serialization verses Mutexes

CPU Localization vs Mutexes
CPU #1

DATA OWNED
BY CPU #2?

ASYNC
IPI

MESSAGE

OPERATE
ON DATA

CPU #2

OPERATE
ON DATA

YES

NO

CRIT_ENTER

CRIT_EXIT

CRIT_ENTER

CRIT_EXIT

CPU #X

GET MUTEX

OPERATE
ON DATA

REL MUTEX

●API ABSTRACTION
●BLOCKING ISSUES IN MAINLINE CODE
●BLOCKING ISSUES WITH INTERRUPTS
●CACHE MASTERSHIP CHANGES
●COMPLEX RECURSIONS
●MUTEX OVERHEAD VERSES IPI OVERHEAD

Thread Based Serialization vs Mutexes

NETIF

NETISR TCP A
THREAD

PROTO
SWITCH

NETISR TCP B
THREAD

NETISR UDP A
THREAD

NETISR UDP B
THREAD

Etc

Etc

PCB PCB PCB

PCB PCB PCB

PCB PCB PCB

PCB PCB PCB

PACKETS

●WORK BEING DONE BY JEFFREY HSU
●UTILIZES LWKT MSGS AND PORTS
●MULTIPLE THREADS PER PROTOCOL
●NO UNI-PROCESSOR PENALTY

TCP THREAD

GET MUTEX

GET WORK

REL MUTEX
GET MUTEX

REL MUTEX

PROTO SW

Kernel Differentiators Near-Term Work

● Robust IPC Messaging Mechanism
● Upcoming AMD64 Work

Robust IPC Messaging Mechanism
●CLIENT/SERVER UID+NAMED IPC RENDEZVOUS MODEL
●MESSAGES ARE AGGREGATED IN THE KERNEL TO SIMPLIFY SERVER
●AUTO REPLY UNSERVICED MESSAGES ON SERVER EXIT
●AUTO REPLY TIMED OUT MESSAGES
●LWKT IN-PLACE MESSAGING ABSTRACTION

CLIENT #1

SERVER

KERNEL

CLIENT #2

MSG1

IPC
PORT

MSG2

REPLY1

REPLY2

GETMSG

PROCESS

REPLYMSG

●64 BIT NATIVE MODE KERNEL
●4-LEVEL MMU, SPECIAL CASE THE TOP LAYER, LINEARIZE PDE TABLE
●SWITCH CHANGEOUT PML4 ENTRY REPRESENTING USERLAND
●DIRECT MAP PHYSICAL MEMORY IN KVM
●SUPPORT 32 BIT EMULATION AND 32 BIT BINARY COMPATIBILITY

Upcoming AMD64 Work

PML4 TABLE
512GB/ENTRY
(256TB TOTAL)

PDP TABLE
1GB/ENTRY

PDE TABLE
2MB/ENTRY

PTE TABLE
4KB/ENTRY

●EACH TABLE HAS 512 ENTRIES
●PML4/PDP/PDE: 9 ADDRESS BITS
●PTE: 12 ADDRESS BITS (4K PAGES)
●PAE SUPPORTED ON PDE ENTRIES

●8 EXISTING REGISTERS CAN HOLD 64 BITS
●8 ADDITIONAL GENERAL (64 BIT) REGISTERS
●DESCRIPTOR TABLES ARE LARGER

Achieving a Single System Image (SSI)

Matthew Dillon
DragonFly BSD Project

23 October 2003

●CLUSTER MULTIPLE BOXES USING STANDARD NETWORK PROTOCOLS
●THE THREAD MESSAGING ABSTRACTION BECOMES VITAL
●THE CPU MESSAGING ABSTRACTION BECOMES VITAL (IPIs vs MUTEXs)
●IMPLEMENT A NETWORKED MESI CACHE COHERENCY MODEL
●PAGE-LEVEL CACHE COHERENCY, RANGE BASED LOCKING
●COPY DATA INDIRECTLY VIA THE CACHE COHERENCY MODEL
●GLOBAL FILE HANDLES, MESSAGING INTERFACE
●WHAT IS THE ULTIMATE TEST? PROCESS MIGRATION IN PIECES
●ADDING ROBUSTNESS (TIMEOUTS, TRANSACTIONS, VOTING)
●CONTRIBUTING RESOURCES TO A CLUSTER

Upcomming SSI Implementation Details

APP

THREAD #1 ON MACHINE 1

CREATE COPY,
WAKEUP T2

REPLY PORT1

(WAKEUP T1)WAITMSG

RETURN

THREAD #2 ON MACHINE 2

APP

GETMSG

REPLY MSG

PROXY FOR
PORT2

QUEUES MSG

SEND MSG

PROXY PORT2

EASYNC

PORT2

PROXY FOR
PORT1

QUEUES MSG

PROXY PORT1

MESH

MESH

CATASTROPHIC
FAILURE, DUPS,
 AND TIMEOUTS

●PROXY PORT REPRESENTS REAL PORT
●LOCAL COPY OF MESSAGE HELD UNTIL REMOTE REPLY OR FAILURE
●PROXY PORT HANDLES MESH FAILURES, TIMEOUTS, AND PROTOCOL ISSUES
●ASSOCIATED DATA HANDLED BY CACHE COHERENCY PROTOCOLS
●PATH FOR ASSOCIATED DATA DICTATED BY CACHE COHERENCY PROTOCOLS
●PATH FOR ASSOCIATED DATA CAN BE OPTIMIZED

Using Proxy Message Ports

CATASTROPHIC
FAILURE, DUPS,
 AND TIMEOUTS

DISCARD
COPY

MESI Cache Coherency
●MESI = MODIFIED EXCLUSIVE SHARED INVALID
●DATA SHARING IS VITAL FOR EFFICIENT OPERATION OVER WAN INTERFACES
●CACHE COHERENCY MAKES THE CLUSTER INVISIBLE
●MEI IS EASIER TO IMPLEMENT BUT FAR LESS EFFICIENT
●E->M, M->E TRANSITIONS REQUIRE NO MESSAGE TRAFFIC
●FLUSHING MODIFIED DATA CAN MOVE FROM 'M' TO EITHER 'E' OR 'S'
●MACHINE HOLDING E OR M DECIDES DISPOSITION, ELSE BS DECIDES DISPOSITION
●IF E/M HOLDER IS UNKNOWN, BACKING STORE CAN PROXY REQUEST

MACHINE 1 MACHINE 2 MACHINE 3

P1(S)

P1(M)

READ P1 P1(S)

WRITE P1 P1(I)

BACKING STORE
FOR P1

FLUSH P1 P1(E)

ACQ-M

M->E P1(I)

READ P1

DISK IO

P1(S)E->S P1(S)

EXCLU P1 P1(E) S->E/I INVAL P1(I)

(PROXY)

P2(M)

PS(S) M->S PS(S)FLUSH P2

MACHINE 4

Range Locking
●RESERVE OFFSET RANGE IN OBJECT FOR UPCOMING I/O OPERATION (HEURISTIC)
●PRESERVE UNIX READ/WRITE ATOMICY WITHOUT LIMITATION
●ALLOWS PARALLEL READS, WRITES, AND COMBINATIONS ON THE SAME FILE
●AGGREGATE INTO LARGER GRANULARITIES TO REDUCE MANAGEMENT OVERHEAD
●POTENTIALLY KEEP TRACK OF MESI STATUS IN A FIXED AMOUNT OF RAM
●RESERVE MULTIPLE RANGES TO SUPPORT TRANSACTIONS

READ TD1
(S)

WRITE TD2
(E,M)

WRITE TD3
(E,M)VM

OBJECT WRITE TD4
(STALLS)

READ TD5
(STALLS)

P1(S) P2(S) P4(S) P6(E) P7(S) P8(E) P9(E)

S ESE

●CREATE A SINGLE (S) RECORD FOR P1-P4 BY OBTAINING A SHARED LOCK ON P1-P4
●CREATE A SINGLE (E) RECORD FOR P8-P9
●AGGREGATE OR THROW AWAY RECORDS TO REDUCE MEMORY USE
●ADD SERIAL NUMBER TO VM PAGES TO ALLOW REVALIDATION OF CACHE STATUS
●CAN MANAGE CACHE ON A BYTE RANGE BASIS RATHER THEN ON A PAGE BASIS

MESI
INFO

Global File Handles
●ACCESSIBLE FROM ANY HOST WITHIN THE CLUSTER
●POTENTIALLY ACCESSIBLE FROM OUTSIDE THE CLUSTER
●ALLOWS DEVICE DRIVERS TO DECIDE WHETHER TO MIGRATE OR NOT
●DATA ASSOCIATED WITH I/O SEPARTELY MANAGED VIA CACHE COHERENCY MODEL

MACHINE 1

OPEN AAA AAA DRIVER

MACHINE 2 MACHINE 3

BBB DRIVEROPEN BBB

RD A / WR B
(COPY)

AAA DRIVER BBB DRIVER

BULK DATA
TRAFFIC

MESSAGE
TRAFFIC

AAA BBB

THREAD

THREAD1

MACHINE 1

Piecemeal Process Migration

THREAD2

THREAD3

PROGRAM A FILES

FD0

FD1

FD2

GD3

FD4

MACHINE 2

THREAD 2

PROGRAM AFILES

GD0

GD1

GD2

FD3

GD4

●CACHE COHERENCY MODEL ALLOWS ADDRESS-SPACE SHARING ACROSS MACHINES
●DRIVERS FOR FILE DESCRIPTORS CAN MIGRATE ASYNCHRONOUSLY
●SOME DRIVERS MIGHT STAY ON THE MACHINE HODING THE PHYSICAL STORAGE
●TTYS AND PIPES CAN MIGRATE COMPLETELY OVER
●SOCKETS ARE MORE COMPLEX, BUT MIGRATION IS STILL POSSIBLE

