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● Kernel Differentiators Completed
● Light Weight Kernel Threading and Process Separation
● IPI Messaging
● Light Weight Kernel Messaging
● Slab Allocator / KVM mapping simplifications

● Differences in Approach Between DFly and FreeBSD-5.x
● Mutexes verses CPU Localization
● Mutexes verses Thread-based Serialization

● Kernel Differentiators Near-Term Work
● Robust IPC Messaging Mechanism
● AMD64 Port W/Mixed Environment Support

● Future Work – Achieving SSI
● Proxy Message Ports
● Cache Coherency
● Range Locking
● Global File Handles
● Piecemeal Process Migration
● Piecemeal Device Driver Migration

DragonFly Status



Completed Kernel Differentiators

● Light Weight Kernel Threading and Process Separation
● IPI Messaging
● Light Weight Kernel Messaging
● Slab Allocator / KVM mapping simplifications



Light Weight Kernel Threading and User Processes
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IPI Messaging
●ABSTRACTION PROMOTES CPU ISOLATION
●ASYNCHRONOUS IPI MESSAGING AVOIDS MUTEX OPS
●SIMPLE CRITICAL SECTIONS FOR LOCAL ACCESS
●MANY IPI OPS CAN BE PASSIVE / CONTRAST W/ RCU
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Light Weight Kernel Messaging
●AMIGA STYLE MESSAGES AND PORTS
●SEMI SYNCHRONOUS / PORT AGENT
●FAST SYNCHRONOUS PATH
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Slab Allocator
●PER-CPU LOCALIZATION
●BACKED BY KERNEL_MAP
●NO MORE KMEM_MAP
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●BULK=128K TYP
●HYSTERESIS W/FREE



Differences in Approach between DragonFly and FreeBSD-5

●CPU Localization verses Mutexes
●Thread based Serialization verses Mutexes



CPU Localization vs Mutexes
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●API ABSTRACTION
●BLOCKING ISSUES IN MAINLINE CODE
●BLOCKING ISSUES WITH INTERRUPTS
●CACHE MASTERSHIP CHANGES
●COMPLEX RECURSIONS
●MUTEX OVERHEAD VERSES IPI OVERHEAD



Thread Based Serialization vs Mutexes
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●WORK BEING DONE BY JEFFREY HSU
●UTILIZES LWKT MSGS AND PORTS
●MULTIPLE THREADS PER PROTOCOL
●NO UNI-PROCESSOR PENALTY
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Kernel Differentiators Near-Term Work

● Robust IPC Messaging Mechanism
● Upcoming AMD64 Work



Robust IPC Messaging Mechanism
●CLIENT/SERVER UID+NAMED IPC RENDEZVOUS MODEL
●MESSAGES ARE AGGREGATED IN THE KERNEL TO SIMPLIFY SERVER
●AUTO REPLY UNSERVICED MESSAGES ON SERVER EXIT
●AUTO REPLY TIMED OUT MESSAGES
●LWKT IN-PLACE MESSAGING ABSTRACTION
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●64 BIT NATIVE MODE KERNEL
●4-LEVEL MMU, SPECIAL CASE THE TOP LAYER, LINEARIZE PDE TABLE
●SWITCH CHANGEOUT PML4 ENTRY REPRESENTING USERLAND
●DIRECT MAP PHYSICAL MEMORY IN KVM
●SUPPORT 32 BIT EMULATION AND 32 BIT BINARY COMPATIBILITY

Upcoming AMD64 Work

PML4 TABLE
512GB/ENTRY
(256TB TOTAL)

PDP TABLE
1GB/ENTRY

PDE TABLE
2MB/ENTRY

PTE TABLE
4KB/ENTRY

●EACH TABLE HAS 512 ENTRIES
●PML4/PDP/PDE: 9 ADDRESS BITS
●PTE: 12 ADDRESS BITS (4K PAGES)
●PAE SUPPORTED ON PDE ENTRIES

●8 EXISTING REGISTERS CAN HOLD 64 BITS
●8 ADDITIONAL GENERAL (64 BIT) REGISTERS
●DESCRIPTOR TABLES ARE LARGER



Achieving a Single System Image (SSI)
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●CLUSTER MULTIPLE BOXES USING STANDARD NETWORK PROTOCOLS
●THE THREAD MESSAGING ABSTRACTION BECOMES VITAL
●THE CPU MESSAGING ABSTRACTION BECOMES VITAL (IPIs vs MUTEXs) 
●IMPLEMENT A NETWORKED MESI CACHE COHERENCY MODEL
●PAGE-LEVEL CACHE COHERENCY, RANGE BASED LOCKING
●COPY DATA INDIRECTLY VIA THE CACHE COHERENCY MODEL
●GLOBAL FILE HANDLES, MESSAGING INTERFACE
●WHAT IS THE ULTIMATE TEST?  PROCESS MIGRATION IN PIECES
●ADDING ROBUSTNESS (TIMEOUTS, TRANSACTIONS, VOTING)
●CONTRIBUTING RESOURCES TO A CLUSTER

Upcomming SSI Implementation Details
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●PROXY PORT REPRESENTS REAL PORT
●LOCAL COPY OF MESSAGE HELD UNTIL REMOTE REPLY OR FAILURE
●PROXY PORT HANDLES MESH FAILURES, TIMEOUTS, AND PROTOCOL ISSUES
●ASSOCIATED DATA HANDLED BY CACHE COHERENCY PROTOCOLS
●PATH FOR ASSOCIATED DATA DICTATED BY CACHE COHERENCY PROTOCOLS
●PATH FOR ASSOCIATED DATA CAN BE OPTIMIZED

Using Proxy Message Ports
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COPY



MESI Cache Coherency
●MESI = MODIFIED EXCLUSIVE SHARED INVALID
●DATA SHARING IS VITAL FOR EFFICIENT OPERATION OVER WAN INTERFACES
●CACHE COHERENCY MAKES THE CLUSTER INVISIBLE
●MEI IS EASIER TO IMPLEMENT BUT FAR LESS EFFICIENT
●E->M, M->E TRANSITIONS REQUIRE NO MESSAGE TRAFFIC
●FLUSHING MODIFIED DATA CAN MOVE FROM 'M' TO EITHER 'E' OR 'S'
●MACHINE HOLDING E OR M DECIDES DISPOSITION, ELSE BS DECIDES DISPOSITION
●IF E/M HOLDER IS UNKNOWN, BACKING STORE CAN PROXY REQUEST
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Range Locking
●RESERVE OFFSET RANGE IN OBJECT FOR UPCOMING I/O OPERATION (HEURISTIC)
●PRESERVE UNIX READ/WRITE ATOMICY WITHOUT LIMITATION
●ALLOWS PARALLEL READS, WRITES, AND COMBINATIONS ON THE SAME FILE
●AGGREGATE INTO LARGER GRANULARITIES TO REDUCE MANAGEMENT OVERHEAD
●POTENTIALLY KEEP TRACK OF MESI STATUS IN A FIXED AMOUNT OF RAM
●RESERVE MULTIPLE RANGES TO SUPPORT TRANSACTIONS

READ TD1
(S)

WRITE TD2
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WRITE TD3
(E,M)VM

OBJECT WRITE TD4
(STALLS)

READ TD5
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●CREATE A SINGLE (S) RECORD FOR P1-P4 BY OBTAINING A SHARED LOCK ON P1-P4
●CREATE A SINGLE (E) RECORD FOR P8-P9
●AGGREGATE OR THROW AWAY RECORDS TO REDUCE MEMORY USE
●ADD SERIAL NUMBER TO VM PAGES TO ALLOW REVALIDATION OF CACHE STATUS
●CAN MANAGE CACHE ON A BYTE RANGE BASIS RATHER THEN ON A PAGE BASIS

MESI
INFO



Global File Handles
●ACCESSIBLE FROM ANY HOST WITHIN THE CLUSTER
●POTENTIALLY ACCESSIBLE FROM OUTSIDE THE CLUSTER
●ALLOWS DEVICE DRIVERS TO DECIDE WHETHER TO MIGRATE OR NOT
●DATA ASSOCIATED WITH I/O SEPARTELY MANAGED VIA CACHE COHERENCY MODEL
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Piecemeal Process Migration
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●CACHE COHERENCY MODEL ALLOWS ADDRESS-SPACE SHARING ACROSS MACHINES
●DRIVERS FOR FILE DESCRIPTORS CAN MIGRATE ASYNCHRONOUSLY
●SOME DRIVERS MIGHT STAY ON THE MACHINE HODING THE PHYSICAL STORAGE
●TTYS AND PIPES CAN MIGRATE COMPLETELY OVER
●SOCKETS ARE MORE COMPLEX, BUT MIGRATION IS STILL POSSIBLE


