Matthew Dillon
DragonFly BSD Project
08 January 2004

DragonFly Status

* Kernel Differentiators Completed
« Light Weight Kernel Threading and Process Separation
» IPI Messaging
» Light Weight Kernel Messaging
 Slab Allocator / KVM mapping simplifications
* Differences in Approach Between DFly and FreeBSD-5.x
» Mutexes verses CPU Localization
» Mutexes verses Thread-based Serialization
 Kernel Differentiators Near-Term Work
* Robust IPC Messaging Mechanism
« AMD64 Port W/Mixed Environment Support
» Future Work — Achieving SSI
* Proxy Message Ports
» Cache Coherency
* Range Locking
 Global File Handles
* Piecemeal Process Migration
* Piecemeal Device Driver Migration

Completed Kernel Differentiators

» Light Weight Kernel Threading and Process Separation
 IPI Messaging

* Light Weight Kernel Messaging

» Slab Allocator / KVM mapping simplifications

Light Weight Kernel Threading and User Processes

LWKT
SCHEDULER PROCESS1
(FIXED PRI)

PROCESS2

CURPROC ON CPU1 PROCESS2

PROCESS3

PROCESS4

LWKT
SCHEDULER
(FIXED PRI)

PROCESS5

CURPROC ON CPU2 | | TROCESS5

PROCESS6

IPI Messaging

*/ABSTRACTION PROMOTES CPU ISOLATION
*/ASYNCHRONOUS IPI MESSAGING AVOIDS MUTEX OPS
«SIMPLE CRITICAL SECTIONS FOR LOCAL ACCESS
*MANY IPI OPS CAN BE PASSIVE / CONTRAST W/ RCU

THREAD1

THREAD1

THREAD2

THREAD2

Light Weight Kernel Messaging

/AMIGA STYLE MESSAGES AND PORTS
*SEMI SYNCHRONOUS / PORT AGENT
*FAST SYNCHRONOUS PATH

THREAD #1

TARGET PORT (OWNED BY T2)

EXECUTE T2's CODE
SEND MSG IN T1's CONTEXT
“SYNC RETURN
THREAD #1 THREAD #2

TARGET PORT (OWNED BY T2)
SEND MSG GETMSG
~ EASYNC
REPLY PORT
| ERASS N REPLY MSG
RETURN

Slab Allocator

PER-CPU LOCALIZATION
BACKED BY KERNEL_MAP
'NO MORE KMEM_ MAP

. cusm . CcPU#2
THREAD THREAD THREAD THREAD THREAD THREAD
v v v v v v

PER-CPU SLAB CACHE

PER-CPU SLAB CACHE

\ \
Y Y
*BULK=128K TYP
*HYSTERESIS W/FRE

KERNEL_MAP

Differences in Approach between DragonFly and FreeBSD-5

*CPU Localization verses Mutexes
*Thread based Serialization verses Mutexes

CPU Localization vs Mutexes
~ CPU#1 ~ CPU#2

DATA OWNED = YES
BY CPU #2? OPERATE
ON DATA
i NO

OPERATE

ON DATA

*API ABSTRACTION

*BLOCKING ISSUES IN MAINLINE CODE
*BLOCKING ISSUES WITH INTERRUPTS
CACHE MASTERSHIP CHANGES

COMPLEX RECURSIONS

*MUTEX OVERHEAD VERSES IPI OVERHEAD

OPERATE
ON DATA

Thread Based Serialization vs Mutexes

*WORK BEING DONE BY JEFFREY HSU NETISR TCP AM
*UTILIZES LWKT MSGS AND PORTS THREAD
*MULTIPLE THREADS PER PROTOCOL PCB | | PCB | PCB
*NO UNI-PROCESSOR PENALTY NETISR TCP B ——
THREAD
—»PACKETSF» PCB | | PCB | PCB
Etc
PROTO
NETIF > ohen
THREAD
PCB | | PCB | PCB
TCP THREAD THREAD
GRETMUTEX PCB | | PCB | PCB
Etc
GET WORK
REL MUTEX
GET MUTEX
PROTO SW
REL MUTEX

Kernel Differentiators Near-Term Work

* Robust IPC Messaging Mechanism
» Upcoming AMD64 Work

Robust IPC Messaging Mechanism

*CLIENT/SERVER UID+NAMED IPC RENDEZVOUS MODEL

*MESSAGES ARE AGGREGATED IN THE KERNEL TO SIMPLIFY SERVER
«/AUTO REPLY UNSERVICED MESSAGES ON SERVER EXIT

«AUTO REPLY TIMED OUT MESSAGES

LWKT IN-PLACE MESSAGING ABSTRACTION

CLIENT #1 - KERNEL

SERVER

CLIENT #2

Upcoming AMD64 Work

*64 BIT NATIVE MODE KERNEL

4-LEVEL MMU, SPECIAL CASE THE TOP LAYER, LINEARIZE PDE TABLE
SWITCH CHANGEOUT PML4 ENTRY REPRESENTING USERLAND
*DIRECT MAP PHYSICAL MEMORY IN KVM

SUPPORT 32 BIT EMULATION AND 32 BIT BINARY COMPATIBILITY

PML4 TABLE

*EACH TABLE HAS 512 ENTRIES o Gé JENTRY

PML4/PDP/PDE: 9 ADDRESS BITS (256TB TOTAL)

*PTE: 12 ADDRESS BITS (4K PAGES)

*PAE SUPPORTED ON PDE ENTRIES
PDP TABLE ~
1GB/ENTRY

8 EXISTING REGISTERS CAN HOLD 64 BITS

8 ADDITIONAL GENERAL (64 BIT) REGISTERS

*DESCRIPTOR TABLES ARE LARGER PDE TABLE ~
oMB/ENTRY
PTE TABLE ~
4KB/ENTRY

Achieving a Single System Image (SSI)

Matthew Dillon
DragonFly BSD Project
23 October 2003

Upcomming SSI Implementation Details

CLUSTER MULTIPLE BOXES USING STANDARD NETWORK PROTOCOLS
THE THREAD MESSAGING ABSTRACTION BECOMES VITAL

*THE CPU MESSAGING ABSTRACTION BECOMES VITAL (IPIs vs MUTEXSs)
- IMPLEMENT A NETWORKED MESI CACHE COHERENCY MODEL
*PAGE-LEVEL CACHE COHERENCY, RANGE BASED LOCKING

*COPY DATA INDIRECTLY VIA THE CACHE COHERENCY MODEL
*GLOBAL FILE HANDLES, MESSAGING INTERFACE

*WHAT IS THE ULTIMATE TEST? PROCESS MIGRATION IN PIECES
*/ADDING ROBUSTNESS (TIMEOUTS, TRANSACTIONS, VOTING)
*CONTRIBUTING RESOURCES TO A CLUSTER

Using Proxy Message Ports

*PROXY PORT REPRESENTS REAL PORT

*LOCAL COPY OF MESSAGE HELD UNTIL REMOTE REPLY OR FAILURE

*PROXY PORT HANDLES MESH FAILURES, TIMEOUTS, AND PROTOCOL ISSUES
*ASSOCIATED DATA HANDLED BY CACHE COHERENCY PROTOCOLS

*PATH FOR ASSOCIATED DATA DICTATED BY CACHE COHERENCY PROTOCOLS
*PATH FOR ASSOCIATED DATA CAN BE OPTIMIZED

SEND MS
~ EASYNC

>
MESH

GETMSG

REPLY MSG

WAITMSG
RETURN

MESH

MESI Cache Coherency

*MESI = MODIFIED EXCLUSIVE SHARED INVALID

*DATA SHARING IS VITAL FOR EFFICIENT OPERATION OVER WAN INTERFACES
CACHE COHERENCY MAKES THE CLUSTER INVISIBLE

*MEI IS EASIER TO IMPLEMENT BUT FAR LESS EFFICIENT

*E->M, M->E TRANSITIONS REQUIRE NO MESSAGE TRAFFIC

*FLUSHING MODIFIED DATA CAN MOVE FROM 'M' TO EITHER 'E' OR 'S’

*MACHINE HOLDING E OR M DECIDES DISPOSITION, ELSE BS DECIDES DISPOSITION
IF E/M HOLDER IS UNKNOWN, BACKING STORE CAN PROXY REQUEST

MACHINE 1 MACHINE 2 MACHINE 3 MACHINE 4

READ P1 | P1(S)

P1(S)

WRITE P1| P1(M) P2(M)

FLUSH P2 PS(S) 1 PS(S)

- Pi(S) & | (PROXY) " _ READP1 | P1(S)

FLUSH P1| P1(E)

BACKING STORE
FOR P1

Range Locking

*RESERVE OFFSET RANGE IN OBJECT FOR UPCOMING I/O OPERATION (HEURISTIC)
*PRESERVE UNIX READ/WRITE ATOMICY WITHOUT LIMITATION

ALLOWS PARALLEL READS, WRITES, AND COMBINATIONS ON THE SAME FILE
*/AGGREGATE INTO LARGER GRANULARITIES TO REDUCE MANAGEMENT OVERHEAD
POTENTIALLY KEEP TRACK OF MESI STATUS IN A FIXED AMOUNT OF RAM
*RESERVE MULTIPLE RANGES TO SUPPORT TRANSACTIONS

WRITE TD2
(E,M)

READ TD5
(STALLS)

WRITE TD3
(E,M)

OBJEC WRITE TD4
(STALLS)

*CREATE A SINGLE (S) RECORD FOR P1-P4 BY OBTAINING A SHARED LOCK ON P1-P4
*CREATE A SINGLE (E) RECORD FOR P8-Pg

*AGGREGATE OR THROW AWAY RECORDS TO REDUCE MEMORY USE

*/ADD SERIAL NUMBER TO VM PAGES TO ALLOW REVALIDATION OF CACHE STATUS
CAN MANAGE CACHE ON A BYTE RANGE BASIS RATHER THEN ON A PAGE BASIS

P1(S) | P2(S) P6(E) | P7(S) P8(E)| P9(E)

MESI
INFO

S E S E

Global File Handles

ACCESSIBLE FROM ANY HOST WITHIN THE CLUSTER

POTENTIALLY ACCESSIBLE FROM OUTSIDE THE CLUSTER

*ALLOWS DEVICE DRIVERS TO DECIDE WHETHER TO MIGRATE OR NOT

*DATA ASSOCIATED WITH I/0O SEPARTELY MANAGED VIA CACHE COHERENCY MODEI

AAA o BBB
BULK DATA
TRAFFIC
MACHINE 1 MACHINE 2 MACHINE 3
OPEN AAA | _ "l AAA DRIVER
OPENBBB | _ " BBB DRIVER
MESSAGE
RDA/WRB < © TRAFFIC L
(BT ~ | AAADRIVER BBB DRIVER
THREAD

Piecemeal Process Migration

*CACHE COHERENCY MODEL ALLOWS ADDRESS-SPACE SHARING ACROSS MACHINES
*DRIVERS FOR FILE DESCRIPTORS CAN MIGRATE ASYNCHRONOUSLY

SOME DRIVERS MIGHT STAY ON THE MACHINE HODING THE PHYSICAL STORAGE
*TTYS AND PIPES CAN MIGRATE COMPLETELY OVER

*SOCKETS ARE MORE COMPLEX, BUT MIGRATION IS STILL POSSIBLE

MACHINE 1 MACHINE 2
PROGRAM A FILES FILES PROGRAM A
THREAD1 HbE : e
FD1 > GD1
THREAD2 FD2 > GD2 » THREAD 2
GD3 » FD3
THREAD3 qu .

