Done in GSoC 2010
[ikiwiki.git] / docs / developer / gsoc2010 / index.mdwn
1 [[!meta title="Google Summer of Code 2010"]]
2
3 [[!toc  levels=0]]
4
5 DragonFly BSD is participating in the Google Summer of Code program for 2010.
6
7
8 Have a look at our SoC pages from [[2008|docs/developer/GoogleSoC2008/]] and [[2009|docs/developer/gsoc2009]] to get an overview about prior year's projects.  The [Projects Page](/docs/developer/ProjectsPage/) is also a potential source of ideas.
9
10
11 For more details on Google's Summer of Code: [Google's SoC page](http://socghop.appspot.com/)
12
13 Note to prospective students: These project proposals are meant to be a first approximation; we're looking forward to your own suggestions (even for completely new directions) and will try to integrate your ideas to make the GSoC project more interesting to all parties. Even when a proposal is very specific about the goals that must be achieved and the path that should be taken, these are always negotiable. Keep in mind that we have tried to limit our proposals to those that (based on our past experience) are appropriate for the GSoC program.
14
15 Legend:
16
17 * Prerequisites: knowledge that the student should have before starting the project. It may be possible to acquire the knowledge in the course of the project, but the estimated difficulty would increase substantially. On the bright side, you can expect to have a much deeper understanding of these fields (and gain some real-world experience) after you successfully complete the respective project.
18 * Difficulty: Estimated difficulty of the project, taking into account the complexity of the task and the time constraints of the GSoC program.
19 * Contact point: The person you should contact for any further information or clarifications.
20
21 #### Project ideas
22
23 ##### VFS Quota System
24 * Create a new kernel subsystem to manage quota's in a filesystem agnostic manner by interfacing with the kernel VFS layer.
25 * Create filesystem-agnostic quota support tools for userland that obtain information in the same manner as eg: du(1) instead of parsing the filesystem internals directly as the existing quota tools do (see quotacheck(8), repquota(8), edquota(8), ...).
26 * The quota file storage can be modeled after the existing UFS code that does the same, but should use the more general bytes, files and/or directories metrics instead of the somewhat UFS-specific blocks and inodes.
27
28 Meta information:
29
30 * Prerequisites: C, introductory filesystems internals
31 * Difficulty: Moderate
32 * Contact point: Samuel J. Greear <sjg@thesjg.com>
33
34 ---
35
36 ##### HAMMER Data dedup
37
38 The HAMMER filesystem is very efficient in sharing data between its fine-grained
39 snapshots, but when you copy (or otherwise duplicate) a file or directory tree, the data
40 is no longer shared. This is suboptimal because then we make poor use of disk space
41 and the same data gets cached multiple times wasting precious RAM space.
42
43 The goal of this project is to add a data de-duplication mechanism to the HAMMER
44 filesystem. A reasonable approach would be to detect potential data matches using
45 CRCs during pruning runs. Then you could verify there is actual duplication of data
46 (i.e. the match is not a false positive), collapse the B-Tree data reference and account for the
47 additional reference in the allocation blockmap.
48
49 Meta information:
50
51 * Prerequisites: C, modern filesystem internals
52 * Difficulty: Moderate
53 * Contact point: dillon
54
55 ---
56
57 ##### Implement i386 32-bit ABI for x86_64 64-bit kernel
58 * Add a 32-bit syscall table which translates 32-bit
59   system calls to 64-bit.
60 * Add support for 32 bit compatibility mode operation
61   and ELF binary detection.
62
63 The idea here is to support the execution of 32 bit DragonFly binaries in 64 bit DragonFly environments, something numerous other operating systems have done.  Several things must be done to support this.  First, the appropriate control bits must be set to execute in 32-bit compatibility mode while in usermode instead of 64-bit mode.  Second, when a system call is made from 32-bit mode a translation layer is needed to translate the system call into the 64-bit requivalent within the kernel.  Third, the signal handler and trampoline code needs to operate on the 32-bit signal frame.  Fourth, the 32 and 64 bit ELF loaders both have to be in the kernel at the same time, which may require some messing around with procedure names and include files since originally the source was designed to be one or the other.
64
65 There are several hundred system calls which translates to a great deal of 'grunt work' when it comes time to actually do all the translations.
66
67 Meta information:
68
69 * Prerequisites: C
70 * Difficulty: Difficult (lots of moving parts, particularly the trapframes)
71 * Contact point: dillon
72
73 ---
74
75 ##### Implement ARC algorithm extension for the vnode free list
76 * Vnode recycling is LRU and can't efficiently handle data sets which
77   exceed the maxvnode limit.  When the maxvnode limit is reached the kernel
78   starts throwing away cached vnodes along with their VM objects (and thus
79   all related cached file data).
80
81 * What we would like to do is implement an ARC algorithm for the free
82   vnodes to determine which ones to throw away and potentially combine
83   this with further caching of the related VM object even after the vnode
84   is thrown away by associating it with a mount point and inode number,
85   until memory pressure forces all of its pages out.
86
87 * For this project the student can choose to just implement the VM object
88   retention portion and not try to implement an ARC algorithm (which can
89   be considerably more complex).
90
91 Meta information:
92
93 * Prerequisites: C, OS internals
94 * Difficulty: Modest without ARC (Very difficult with ARC)
95 * Contact point: dillon
96
97 ---
98
99 ##### Implement swapoff
100 * We have swapon to add swap space, we need a swapoff to
101   remove it.
102
103 Meta information:
104
105 * Prerequisites: C, elementary OS memory management
106 * Difficulty: Modest
107 * Contact point: dillon
108
109 ---
110
111 ##### Make DragonFly NUMA-aware 
112
113 * Parse related ACPI tables 
114 * NUMA-aware memory allocation
115 * References:
116 [ACPI SLIT parser](http://mail-index.netbsd.org/tech-kern/2009/11/23/msg006518.html)
117 [ACPI SRAT parser](http://mail-index.netbsd.org/tech-kern/2009/11/23/msg006517.html)
118 [NetBSD NUMA diff](http://www.netbsd.org/~cegger/numa2.diff)
119 [NetBSD NUMA x86 diff](http://www.netbsd.org/~cegger/numa_x86.diff) (These patches now in NetBSD tree)
120
121 Meta information:
122
123 * Prerequisites: C, introductory computer architecture
124 * Difficulty: Easy
125 * Contact point: kernel@crater.dragonflybsd.org
126
127 ---
128
129 ##### Port DragonFly to Xen platform
130
131 Meta information:
132
133 * Prerequisites: C, x86 assembly
134 * Difficulty: Hard
135 * Contact point: kernel@crater.dragonflybsd.org
136
137 ---
138
139 ##### Port valgrind to DragonFlyBSD
140
141 Valgrind is a very useful tool on a system like DragonFly that's under heavy development. Since valgrind is very target specific, a student doing the port will have to get acquainted with many low level details of the system libraries and the user<->kernel interface (system calls, signal delivery, threading...). This is a project that should appeal to aspiring systems programmers. Ideally, we would want the port to be usable with vkernel processes, thus enabling complex checking of the core kernel code.
142
143 The goal of this project is to port valgrind to the DragonFlyBSD platform so that at least the memcheck tool runs sufficiently well to be useful. This is in itself a challenging task. If time remains, the student should try to get at least a trivial valgrind tool to work on a vkernel process.
144
145 Meta information:
146
147 * Prerequisites: C, x86 assembly, low-level OS internals
148 * Difficulty: Hard
149 * Contact point: Aggelos Economopoulos <aoiko@cc.ece.ntua.gr>
150
151 ---
152
153 ##### Adapt pkgsrc to create a package system with dependency independence.
154 * Create a set of tools that modifies how the pkgsrc packages are installed, allowing for the ability to upgrade individual packages, without stopping applications that depend on said packages from working. One method of achieving this is detailed at http://www.dragonflybsd.org/goals/#packages but other methods may be possible. PC-BSD have written a tool called PBI Builder which modifies FreeBSD ports for their dependency independence PBI system, this could be used as a starting point for the DragonFly BSD tools.
155
156 Meta information:
157
158 * Prerequisites: C
159 * Difficulty: ?
160 * Contact point: kernel@crater.dragonflybsd.org
161
162 ---
163
164 ##### Implement virtio drivers on DragonFly to speed up DragonFly as a KVM guest
165
166 As virtualization is coming more and more and KVM will be a strong player in that field,
167 we want DragonFly to have top-notch support for this virtualization platform. For this
168 purpose, we'd like to have a virtio-based implementation of a paravirtualized disk and
169 network driver. [virtio](http://www.ibm.com/developerworks/linux/library/l-virtio/index.html)
170 is an abstraction to a ring buffer that is shared between the host and the guest. On top of this
171 abstraction, one can build a variety of paravirtualized devices, as specified in
172 [virtio-spec](http://ozlabs.org/~rusty/virtio-spec/virtio-spec-0.8.6.pdf).
173
174 The goal of this project is to create a virtio-ring implementation and then to implement drivers
175 for the network and block devices described in the specification linked to above. This is a great
176 project for a student who wants to get experience writing (real-world, high-performance) device
177 drivers without having to deal with the quirks of real hardware.
178
179 Meta information:
180
181 * Prerequisites: C, elementary OS internals
182 * Difficulty: Easy
183 * Contact point: Aggelos Economopoulos <aoiko@cc.ece.ntua.gr>, kernel@crater.dragonflybsd.org
184
185 ---
186
187 ##### Port FUSE or PUFFS from FreeBSD/NetBSD
188
189 * http://www.netbsd.org/docs/puffs/
190 * This would make many userspace filesystems available to DragonFly, e.g. sshfs to mention only one.
191
192 Meta information:
193
194 * Prerequisites: C, elementary OS internals
195 * Difficulty: Medium
196 * Contact point: Michael Neumann <mneumann@ntecs.de>
197
198 ---
199
200 ##### Make vkernels checkpointable
201
202 * See checkpt(1).
203 * Teach the checkpt syscall how to checkpoint multiple vmspaces.
204 * Add code to the vkernel which gets triggered on SIGCKPT to dump/load e.g. the current state of network drivers.
205 * This would allow us to save and restore or even migrate a complete DragonFly operating system running on the vkernel platform.
206 This could be especially handy on laptops (if we'd get X11 operating in vkernels).
207 * See also: http://www.dragonflybsd.org/docs/developer/CheckpointFeatures/
208
209 Meta information:
210
211 * Prerequisites: C, OS internals
212 * Difficulty: Medium
213 * Contact point: Michael Neumann <mneumann@ntecs.de>
214
215 ---
216
217 ##### HAMMER compression
218
219 * Compress blocks as they get written to disk.
220 * Only file data (rec_type == DATA) should be compressed, not meta-data.
221 * the CRC should be that of the uncompressed data.
222 * ideally you'd need to associate the uncompressed data with the buffer cache buffer somehow, so that decompression is only performed once.
223 * compression could be turned on a per-file or per-pfs basis.
224 * gzip compression would be just fine at first.
225
226 Doing compression would require flagging the data record as being compressed and also require double-buffering since
227 the buffer cache buffer associated with the uncompressed data might have holes in it and otherwise referenced by user
228 programs and cannot serve as a buffer for in-place compression or decompression.
229
230 The direct read / direct write mechanic would almost certainly have to be disabled for compressed buffers and the
231 small-data zone would probably have to be used (the large-data zone is designed only for use with 16K or 64K buffers).
232
233 Meta information:
234
235 * Prerequisites: C, filesystem internals
236 * Difficulty: Difficult
237 * Contact point: Michael Neumann <mneumann@ntecs.de>
238
239 ---
240
241
242 ##### Port usb4bsd
243 * Port the whole usb4bsd stuff to DragonFly, as our own usb stack is too outdated.
244
245 * The usb4bsd branch of hselasky (?) has several userland wrappers and quite good abstraction to simplify the porting.
246
247 * (is polachok doing this or not?)
248
249 Meta information:
250
251 * Prerequisites: C, OS internals
252 * Difficulty: Moderate
253 * Contact point: kernel@crater.dragonflybsd.org
254
255 ---
256
257 ##### Userland System V Shared Memory / Semaphore / Message Queue implementation
258 * Implement some or all of these subsystems in their entirety, or as completely as possible in userland using a daemon, mmap and the DragonFly umtx_sleep(2)/umtx_wakeup(2) or other userland facilities.
259 * Any security or other major hurdles to this approach that would likely have to be implemented in-kernel should be noted in the students application.
260 * Test and benchmark the new facilities with heavy SysV consumers such as PostgreSQL
261 * Identify performance tradeoffs made in the userland implementation versus the existing kernel implementation. If time permits identify and apply solutions to these tradeoffs so that the userland implementation performs on par with or better than the kernel implementation.
262
263 Meta information:
264
265 * Prerequisites: C, x86 assembly
266 * Difficulty: Moderate
267 * Contact point: Samuel J. Greear <sjg@thesjg.com>
268
269 ---
270
271
272 ##### Update our interrupt routing and PCI code
273 * Update our interrupt routing to ACPI interrupt routing instead of relying on the mptable exclusively
274 * Update the PCI code to take advantage of MSI (Message Signalled Interrupts)
275
276 Meta information:
277
278 * Prerequisites: C, OS internals 
279 * Difficulty: Hard
280 * Contact point: kernel@crater.dragonflybsd.org
281
282 ---
283
284 ##### Proportional RSS
285
286 The Resident Stack Size displayed by top keeps track of the number of resident pages in
287 a certain process's adress space. It is very useful to locate memory hogs, but doesn't take
288 into account page sharing. For example, if N processes map library L and L's resident pages
289 are 1G, this 1G is added to the RSS of all N processes. A more useful number would be the
290 Proportional (or Effective) RSS, for which we divide the number of mapped shared pages by
291 the number of processes sharing each page. So in the previous example we would add 1GB/N
292 to each process that has L mapped.
293
294 The goal of this project is to hack the kernel to allow for effective calculation of the
295 Proportional RSS and modify top to use it in addition to the RSS (i.e. it should display it by
296 default and be able to sort based on it).
297
298 Meta information:
299
300 * Prerequisites: C, Elementary OS internals
301 * Difficulty: Easy
302 * Contact point: Aggelos Economopoulos <aoiko@cc.ece.ntua.gr>
303
304 ---
305
306  (please add)