
 1

The DragonFlyBSD Operating System
Jeffrey M. Hsu, Member, FreeBSD and DragonFlyBSD

Abstract— The DragonFlyBSD operating system is a fork of

the highly successful FreeBSD operating system. Its goals are to
maintain the high quality and performance of the FreeBSD 4
branch, while exploiting new concepts to further improve
performance and stability. In this paper, we discuss the
motivation for a new BSD operating system, new concepts being
explored in the BSD context, the software infrastructure put in
place to explore these concepts, and their application to the
network subsystem in particular.

Index Terms— Message passing, Multiprocessing, Network
operating systems, Protocols, System software.

I. INTRODUCTION

T HE DragonFlyBSD operating system is a fork of the
highly successful FreeBSD operating system. Its goals are

to maintain the high quality and performance of the FreeBSD
4 branch, while exploring new concepts to further improve
performance and stability. It departs from its predecessor in a
number of ways, most notably, in place of the symmetric
multiprocessing support being added to the upcoming
FreeBSD 5 branch, DragonFlyBSD uses the concepts of
partitioning and replication layered on top of a message
passing system to implement lock-free scalability on
symmetric as well as non-symmetric NUMA multiprocessors.
The lightweight message passing system is also used as the
basis for user-land messaging. This allows for a degree of
extensibility and application-specific customization not
possible in traditional monolithic kernels. In this paper, we
discuss the motivation for a new BSD operating system, new
concepts, the software infrastructure put in place to explore
these concepts, and their application to the network subsystem
in particular.

II. PROJECT OVERVIEW
The DragonFlyBSD project was started by Mathew Dillon

and announced in July of 2003. It is currently comprised of 16
committers with write privileges to the source repository and a
community of outside contributors who submit bug patches
and help with testing. The source base was forked off the
RELENG_4 branch of FreeBSD on June 16, 2003 and
consists of 19,037 source files spread out among 2122

directories with slightly over 8 million lines of code, 2 million
of which are in the kernel.

The project has a number of resources available to the
public, including an on-line CVS repository with mirror sites,
accessible through the web as well as the cvsup service,
mailing list forums, and a bug submission system.

Manuscript received March 11, 2004.
Jeffrey M. Hsu is with the FreeBSD and DragonFlyBSD projects,

California, 95135 USA (phone: 408-270-6175; fax: 408-528-5773; e-mail:
hsu@ freebsd.org or hsu@dragonflybsd.org).

III. MOTIVATION

A. Technical Goals
The DragonFlyBSD operating system has several long-

range technical goals that it hopes to accomplish within the
next few years. The first goal is to add lightweight threads to
the BSD kernel. These threads are lightweight in the sense
that, while user processes have an associated thread and a
process context, kernel processes are pure threads with no
process context. The threading model makes several
guarantees with respect to scheduling to ensure high
performance and simplify reasoning about concurrency. We
shall describe the lightweight kernel threading model more
fully later on.

Another technical goal is to implement a message passing
system for use both within the kernel as well as between
kernel and user land threads. System calls can then be
implemented as messages and new application-specific system
calls can be added easily. The message passing system is also
integral to future plans for clustering and single system image
(SSI) support.

The next goal is to add multiprocessor support to the kernel
using a thread serialization paradigm where resources are
owned by a particular processor and messages passed to
perform an operation on that resource. Through judicious
application of partitioning and replication along with lock-free
synchronization techniques, we believe we can achieve greater
scalability as the number of processors increase than a system
that has locking overhead and contention for shared resources.

From an implementation point of view, the multiprocessing
work requires a cleanup in the existing code base of old
assumptions and dependencies that no longer hold in an MP
environment, such as being able to access the current running
process. We want to go further along these lines and decouple
some of the dependencies in the I/O subsystem on the current
address space, generalizing them to work with virtual memory
objects instead. The end goal is to be able to run device
drivers and large subsystems such as the VFS layer in user-
land. This facilitates development of new drivers and
filesystems. When application-specific customizations are
factored in, running in user-land can potentially result in an

 2

increase, rather than decrease, in end-application performance.
Also along the theme of pushing functionality out to user-

land, DragonFlyBSD will implement a threads package where
thread scheduling is performed in user-land. Kernel support
in the form of shared memory regions and batched message
passing will allow similar efficiencies to the Scheduler
Activations model [10] adopted by earlier versions of Solaris
and by FreeBSD 5.

B. Efficiency through scale
The effects of size on an organization are well-noted in

many diverse fields [1][7]. For example, as a corporation gets
bigger, it is no longer able to move as nimbly and introduce
new products in new markets as quickly as its smaller
counterparts [1]. In classroom settings, teachers know well
that smaller class sizes lead to more class interaction. The
FreeBSD organization has grown tremendously and rapidly in
its successful 10 year run --- so much so that it now suffers
from many of the same symptoms that large organization do.
By reorganizing in a smaller group, we aim to improve
interaction, to exchange ideas more freely, and to recapture
the rapid pace of innovation that FreeBSD had in its earlier
days.

IV. CONCEPTS

A. Non-uniform Memory Access
The illusion of the symmetric multiprocessor (SMP)

hardware model where memory access costs are uniform
throughout the memory space that hardware designers have
implemented in the past for the benefit of systems people to
simplify system software is getting harder to maintain as
processor speeds continue to increase faster than memory or
I/O bus speeds. In fact, already the Intel Itanium and the AMD
64-bit processors are decidedly NUMA in nature.

The SMP software model where any processor can field
any interrupt and any processor can run any available process
has severe cache performance penalties when run on a NUMA
architecture because modern CPUs only run well out of cache.
SMP systems usually have to resort to some sort of scheduler
modifications to gain cache affinity and run reasonably well.

Rather than starting with a SMP viewpoint and then trying
to match it to NUMA reality, DragonFlyBSD starts out with a
NUMA-centric view of the world and explicitly partitions the
workload among multiple processors. For threads, this show
up in the form of guarantees that a running thread will never
be pre-empted by another processor nor will it ever be pre-
empted by a non-interrupt thread. This means code can be
written to effectively utilize and cache per-cpu global data
without obtaining any locks. We shall see later on how the
network subsystem takes advantage of this to explicitly
partition TCP connections among multiple processors.

B. Partitioning and replication
DragonFlyBSD adopts a similar approach to the IBM K42

research operating system [2] in preferring the techniques of
partitioning and replication along with lock-free
synchronization techniques [3][27] over mutex locking and
other traditional forms of SMP concurrency control. Unlike
K42 which was written in C++, provides a Linux application
environment [4], and only runs on 64-bit processor
architectures, DragonFlyBSD applies these techniques directly
to a BSD kernel running on both 32-bit as well as 64-bit
processor architectures.

C. Application-specific customization
Much of the OS research for the past 10 years has dealt with

application-specific customizations [5][6] and the huge
performance benefits associated with closer integration
between user-land and OS facilities. For example, by
exploiting extensibility, the Exokernel project found in [11] a
2x improvement in web-server performance. For a filesystem
implemented in user-land, it found no performance
degradation on most operations and even a 4x improvement
on one operation. To allow for a similar degree of application-
specific customization, DragonFlyBSD plans to export the
message passing facility to user-land. Because both kernel
and user-land threads are based on the same underlying
LWKT infrastructure, there is no appreciable difference
between passing a message to a user-land thread versus a
kernel thread.

V. INFRASTRUCTURE

A. Lightweight Kernel Threads
The Lightweight Kernel Threads (LWKT) system

decouples the traditional Unix notions of an execution context
from a VM address space. This is similar to what many other
systems such as Solaris [8] and FreeBSD [9] have done as part
of their MP and threads support. The API for the LWKT
system is shown in Table I.

The LWKT system has a number of features designed to
remove or reduce contention between processors:

• Each processor has its own self-contained threads
scheduler. Threads are tied to a processor and can
only move under special circumstances.

• A thread can only be pre-empted by an interrupt
thread. Both fast interrupts, where the interrupt is
handled in the current thread context, and threaded
interrupts, where the LWKT scheduler switches to
the interrupt thread and back when it’s done, are
supported by the LWKT system.

Cross-processor scheduling is implemented via
asynchronous inter-processor interrupts. Because these
messages can be batched for a given interrupt, the system
exhibits graceful degradation under load.

A lot of work went into separating the LWKT scheduler
from the user process scheduler. The LKWT thread scheduler
is MP-safe and utilizes a fast per-cpu fixed-priority round-
robin scheme with a well-defined API for communicating

 3

with other processors’ schedulers. The traditional BSD multi-
level scheduler is implemented on top of the threads
scheduler. Additionally, the LWKT subsystem provides a
clean API for implementing alternative user process
schedulers if desired.

B. Message passing system
The message passing system is comprised of ports on which

threads send and receive messages. The API for the message
passing system is shown in Table II.

Cross-processor message passing is currently implemented
with a software crossbar switch and a lock-free ring buffer.
This extends the lock-free path all the way down from the
kernel subsystems to the messaging layer.

VI. NETWORK SUBSYSTEM
Previous efforts on speeding up networking can be

classified into two categories, algorithmic enhancements to

the network protocols
implementation details, wh
from some special interacti
category of protocol en
incorporated some of
enhancements such as the
larger congestion window
Eifel detection for spuri

ME

Function

lwkt_initmsg Initializ
set to th

void lw

lwkt_domsg Send a

void lw
msg)

lwkt_sendmsg Send a

int lwkt
msg)

lwkt_replymsg Sends a

void lw

lwkt_getport Retriev
messag
pending

void lw

lwkt_waitport Waits f

void *lw
lwkt_m

lwkt_initport Initializ
specifie

void lw

lwkt_initmsg_rp Initializ

void lw
lwkt_po

lwkt_reinitmsg The me
MSGF_
and MS
messag

void lw
lwkt_po

lwkt_beginmsg Puts the

int lwkt
msg)

lwkt_forwardmsg Puts the

int lwkt
lwkt_m

lwkt_waitmsg Waits f

int lwkt

lwkt_abortmsg Aborts

void lw

L

Function

lwkt_alloc_thread Allocat
lwkt_cr

thread_
 int cp

lwkt_free_thread Dealloc

void lw
lwkt_create Create a

int lwkt
 struct
 int td

lwkt_exit Destroy

void lw
lwkt_switch Switch

process

void lw

lwkt_yield Yield to

void lw

lwkt_block Block o

void l
*wmesg

lwkt_signal Signal a

void lw

crit_enter Raising
possible
switchin
critical

void cri

crit_exit Leave c

void cri

TABLE II
SSAGING API

Description

es msg with command. The reply port is
e message port for the current thread.

kt_initmsg(lwkt_msg_t msg, int cmd)
message synchronously.

kt_sendmsg(lwkt_port_t port, lwkt_msg_t

message asynchronously.

_domsg(lwkt_port_t port, lwkt_msg_t

 reply to the message.

kt_replymsg(lwkt_msg_t msg, int error)
e the next message from the port's
e queue, return NULL if no messages are
. The calling thread must own the port.

kt_getport(lwkt_port_t port)
or a message to arrive on a port.

kt_waitport(lwkt_port_t port,
sg_t msg)
e a port for use and assign it to the
d thread.

kt_initport(lwkt_port_t port, thread_t td)
es msg with a port and command.

kt_initmsg_rp(lwkt_msg_t msg,
rt_t rport, int cmd)

ssage flags are all cleared except for
ASYNC, which retains the old setting,
GF_DONE, which is always set. The
e port is reset to the passed in value.

kt_reinitmsg(lwkt_msg_t msg,
rt_t rport)
 message onto the port.

_beginmsg(lwkt_port_t port, lwkt_msg_t

 message onto the port.

_forwardmsg(lwkt_port_t port,
sg_t msg)
or reply to message.

_waitmsg(lwkt_msg_t msg)
the message.

kt_abortmsg(lwkt_msg_t msg)
TABLE I
WKT API

Description

e a new thread on cpu. Called by
eate().

t lwkt_alloc_thread(struct thread *td,
u)
ates thread.

kt_free_thread(thread_t td)
 new thread.

_create(void (*func)(void *), void *arg,
 thread **tdp, thread_t template,
flags, int cpu, const char *fmt, ...)
 a thread.

kt_exit(void)
to the next runnable thread on this

or.

kt_switch(void
 equal or higher priority threads.

kt_yield(void)
n the specified wait queue until signaled.

wkt_block(lwkt_wait_t w, const char
)
 wait queue.

kt_signal(lwkt_wait_t w, int gencnt)
 a thread's priority above the highest
 interrupting priority. Synchronous
g and blocking are allowed while in a

section.

t_enter(void)
ritical section.

t_exit(void)
and advantages accrued from
ether in hardware or software or
on among the two. Under the first
hancements, DragonFlyBSD has
the more recent networking
NewReno [16] set of corrections,
sizes on connection startup [17],

ous retransmits [18], right-edge

 4

recovery, also known as Limited Transmit [19], and early
retransmit of lost data [20]. Collectively, these greatly
improve network performance under a range of real-life
network situations. For example, Balakrishnan et al. found in
[30] that under the conditions where Limited Transmit applies,
NewReno plus Limited Transmit is more than twice as fast as
SACK. Additional algorithmic improvements are planned for
high-speed networking as they come down the standards track
[21][22][23][24].

On the implementation side, DragonFlyBSD has made a
number of improvements to clean up the code and speed up
network operations. For example, UDP transmissions no
longer need to do a temporary pseudo-connect, a major
bottleneck which Partridge had identified to be one third of
the cost of UDP transmissions [28][29]. TCP connection setup
through the syncache no longer does a number of relatively
expensive processor priority level changes and some
unnecessary allocation failure checks and their attendant
recovery code have been removed. DragonFlyBSD also takes
full advantage of hardware support when available. For
example, it supports segmenting TCP packets in hardware1.
But perhaps the most radical work has been done on taking
advantage of multiple processors.

The work to distribute network processing across multiple
processors was carried out in several stages. The first stage
was to create per-protocol handling threads. While the run-to-
completion style of protocol processing [12][13] may have
been in vogue several years ago, now, the key to getting
modern processors to run fast is definitely I-cache footprint
[14] and sending messages to protocol threads allows for a
form of cohort scheduling [15] where protocol processing
occurs in batches, helping to improve cache locality.

So, the network subsystem uses messaging extensively. The
bottom half of the kernel, the interrupt thread, sends a
message to the protocol thread to hand off an incoming
packet. From the top-half of the kernel, system calls made by
user processes are turned into messages and dispatched to the
appropriate protocol thread. Because the top-half and the
bottom-half of the kernel use the same method for selecting
which protocol thread to dispatch a request to, access to a
given connection is effectively serialized by this process and
no locks are required for synchronization. In addition,
because a protocol thread is started on each processor for
TCP, two or more TCP connections can be processed in
parallel. Furthermore, Selahi found in [31] that this form of
parallelism scales better than the SMP locking approach as the
number of processor increases.

Protocol thread management is delegated to the individual
protocol module, so the rest of the kernel and networking
stack does not need to know how many threads nor which
processor those threads were bound to. There is a function
pointer that the generic network dispatch routine calls to

determine which protocol thread to dispatch a packet to.
Figure I shows the code for the dispatch function for the IP
protocol. The generic network dispatch code calls this routine
on receipt of an IP packet. Note how each protocol has
control over which type of traffic it wishes to distribute to
multiple processors and how. The UDP dispatch function
currently uses the same demultiplexing logic as TCP for non-
multicast UDP packets, but it could just as readily do round-
robin, which would implement the hybrid IPS strategy
described by Selahi in [31].

 FIGURE I

Thread creation is done during protocol initialization and

each protocol has control over how many threads it wishes to
create. At the moment, due to time constraints and
prioritization of developer resources, DragonFlyBSD only
creates multiple protocol processing thread for the widely

static __inline int
INP_MPORT_HASH(in_addr_t src, in_addr_t dst, in_port_t sport,
in_port_t dport)
{
 return ((src ^ sport ^ dst ^ dport) & ncpus2_mask);
}

/*
 * Map a packet to a protocol processing thread.
 */
lwkt_port_t
ip_mport(struct mbuf *m)
{
 struct ip *ip = mtod(m, struct ip *);
 int iphlen;
 struct tcphdr *th;
 struct udphdr *uh;
 lwkt_port_t port;
 int cpu;

 iphlen = ip->ip_hl << 2;

 switch (ip->ip_p) {
 case IPPROTO_TCP:
 th = (struct tcphdr *)((caddr_t)ip + iphlen);
 cpu = INP_MPORT_HASH(ip->ip_src.s_addr, ip->ip_dst.s_addr,
 th->th_sport, th->th_dport);
 port = &tcp_thread[cpu].td_msgport;
 break;
 case IPPROTO_UDP:
 uh = (struct udphdr *)((caddr_t)ip + iphlen);
 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
 cpu = 0; /* multicast data structures not parallelized yet */
 } else {
 cpu = INP_MPORT_HASH(ip->ip_src.s_addr,
 ip->ip_dst.s_addr, uh->uh_sport, uh->uh_dport);
 }
 port = &udp_thread[cpu].td_msgport;
 break;
 default:
 port = &netisr_cpu[0].td_msgport;
 break;
 }

 return (port);
}

1 “The performance gains offered by TCP Segmentation Offload (TSO)

were so substantial in the Microsoft operating system that Intel took advantage
of them in the Linux environment. … Intel has found a 60% reduction in CPU
utilization and an increase in throughput.” [32]

 5

used TCP and UDP protocols. However, as illustrated by
Figure I, the design allows for incremental deployment of MP
support, so other protocols can readily be distributed as
needed. This is in stark contrast to the all-or-nothing
requirement enforced by the SMP locking approach [33].

VII. STATUS
Much of the infrastructure, including the lightweight

threads and messaging system, has been completed, and is in
use throughout the rest of the system. Additional facilities
such as the user-land messaging are close to completion --- an
early form has been committed to the source repository.

Work is progressing on the individual subsystems. A new
name cache has been written. Portions of the device driver
framework have been converted to message passing style. The
network stack already distributes packets to protocol threads
running on multiple processors, from both the lower-half
interrupt handler and the upper-half system call handling
code.

The system is available today from the project web site and
its mirror web sites. It runs reliably, and, in preliminary
testing, performs comparably to its FreeBSD 4 predecessor
and noticeably better than FreeBSD 5. The first formal release
of DragonFlyBSD is scheduled for June of 2004.

VIII. CONCLUSION
The DragonFlyBSD operating system applies recent

concepts in operating system research to the FreeBSD 4
operating system. By building base infrastructure facilities and
through careful redesign of the API between traditional kernel
modules, we hope to bring the advantages of multiprocessing
and other more recent advances to BSD, while maintaining or
improving upon the stability and high performance of the
traditional monolithic kernel.

ACKNOWLEDGMENT
The base LWKT and message passing architecture for

DragonFlyBSD was conceived by Matthew Dillon based on
his previous experience working on a number of operating
systems. Matt also implemented the underlying infrastructure
discussed in this paper and provided helpful comments on an
earlier draft.

REFERENCES
[1] C. M. Christensen, The Innovator's Dilemma: When New Technologies

Cause Great Firms to Fail (Management of Innovation and Change
Series). Harvard Business School Press, June 1997.

[2] J. Appavoo, K. Hui, M. Stumm, et al. (2002, August). K42 Overview.
IBM Research. Available: http://www.research.ibm.com/K42

[3] P. McKenney, J. Appavoo, A. Kleen, et al, “Read-Copy Update,”
Ottawa Linux Symposium, July 2001.

[4] J. Appavoo, M. Auslander, D. Da Silva, et al, “Providing a Linux API on
the Scalable K42 Kernel,” Proceedings of Freenix 2003, pp. 323-326.

[5] D. Engler, M. Kaashoek, and J. O’Toole Jr, “Exokernel: an operating
system architecture for application-level resource management,” ACM
Symposium on Operating System Principles, vol 29, 3-6 December 1995.

[6] B. Bershad, S. Savage, P. Pardyak, et al, “Extensibility, Safety and
Performance in the SPIN Operating System,” Proceedings of the 15th
ACM Symposium on Operating System Principles, pp. 267-284.

[7] M. Elvin, The Pattern of the Chinese Past. Stanford: CA, Stanford
University Press, 1973.

[8] J. Mauro and R. McDougall, Solaris Internals: Core Kernel Architecture.
Palo Alto: CA. USA. Prentice Hall, 2001.

[9] J. Evans and J. Elischer, (2000). Kernel-Scheduled Entities for FreeBSD.
Available: http://www.freebsd.org/kse

[10] T. Anderson, B. Bershad, E. Lazowska, and H. Levy, “Effective Kernel
Support for the User-level Management of Parallelism,” ACM
Transactions on Computer Systems, vol 10, February 1992, pp. 53-79.

[11] M. Kaashoek, D. Engler, G. Ganger, H. Briceno, R. Hunt, D. Mazieres,
T. Pinckney, R. Grimm, J. Jannotti, and K. Mackenzie, “Application
Performance and Flexibility on Exokernel Systems,” ACM Symposium
on Operating System Principles, October 1997.

[12] P. Druschel and G. Banga, “Lazy Receiver Processing (LRP): A
Network Subsytem Architecture for Server Systems,” Proceedings of
the 2nd Symposium on OS Design and Implementation (OSDI ’96), 1996.

[13] J. Mogul, “Eliminating Receive Livelock in an Interrupt-driven Kernel,”
Proceedings of the 1996 Usenix Technical Conference, pp. 99-111,
1996.

[14] D. Mosberger, L.L. Peterson, P.G. Bridges, and S. O’Mallery, “Analysis
of Techniques to Improve Protocol Latency,” Proceedings of Sigcomm
96, August 1996.

[15] J. Larus and M. Parkes, “Using Cohort Scheduling to Enhance Server
Performance,” Proceedings of the 2002 Usenix Technical Conference,
pp. 103-114, 2002.

[16] S. Floyd, The NewReno “Modification to TCP’s Fast Recovery
Algorithm,” RFC2582, April 1999.

[17] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s Initial
Window,” RFC 2414, Sept 1998.

[18] R. Ludwig and M. Meyer, “The Eifel Detection Algorithm for TCP,”
RFC3522, April 2003.

[19] M. Allman, H. Balakrishnan, and S. Floyd, “Enhancing TCP’s Loss
Recovery Using Limited Transmit,” RFC 3042, January 2001.

[20] M. Allman, U. Ayesta, and J. Blanton, “Early Retransmit for TCP and
SCTP,” draft-allman-tcp-early-rexmt-02.txt, August 2003.

[21] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective
Acknowledgement Options,” RFC 2018, October 1996.

[22] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An Extension to the
Selective Acknowledgement (SACK) Option for TCP,” RFC 2883, July
2000.

[23] S. Floyd, “HighSpeed TCP for Large Congestion Windows,” RFC 3649,
December 2003.

[24] S. Floyd, “Limited Slow-Start for TCP with Large Congestion
Windows,” draft-ietf-tsvwg-slowstart-00.txt, July 2003.

[25] M. Dillon, “DragonFly - I/O Device Oprations.” Available:
http://www.dragonflybsd.org:/goals/iomodel.cgi

[26] M. Dillon, “DragonFly - VFS/filesystem Device Operations.” Available:
http://www.dragonflybsd.org:/goals/vfsmodel.cgi

[27] M. Greenwald and D. Cheriton, The Synergy Between Non-blocking
Synchronization and Operating System Structure, Usenix 2nd Symposium
on OS Design and Implementation (OSDI’ 96), Seattle: WA USA,
October 1996.

[28] G. Wright and R. Stevens, TCP/IP Illustrated: The Implementation,
Volume 2, chapter 23, section 6, p. 763, Addison-Wesley, January 1995.

[29] C. Partridge and S. Pink, "A Faster UDP," IEEE/ACM Trans. on
Networking, Vol. 1, No. 4, August 1993.

[30] H. Balakrishnan, V. Padmanabhan, S. Seshan, M. Stemm, and R. Katz.
“TCP Behavior of a Busy Web Server: Analysis and Improvements,”
Proceedings of the 1998 IEEE INFOCOM Conference, San Francisco,
CA, March 1998.

[31] J. Salehi, J. Kurose, D. Towsley, “Scheduling for cache affinity in
parallelized communication protocols,” University of Massachusetts
Technical Report UM-CS-1994-075, Amherst: MA, USA, Oct. 1994.

[32] G. Gumanow, “Keeping Pace with the Rapid Adoption of Linux,” Power
Solutions, pp.8-12, Feb 2003.
Available: http://ftp.us.dell.com/app/1q03-Int.pdf

http://www.research.ibm.com/K42
http://www.freebsd.org/kse
http://www.dragonflybsd.org:/goals/device.cgi
http://www.dragonflybsd.org:/goals/io.cgi

 6

[33] J. Hsu, “Reasoning about SMP in FreeBSD”, Proceedings of BSDCon
2003, San Mateo: CA USA, February 2003.

Jeffrey M. Hsu became a member the FreeBSD project in 1994 as one of its
first 10 committers. He has contributed to many sections of the operating
system in areas such as the networking stack, Java, and a large number of the
early ports in the language category. He was offered commit bits to both the
OpenBSD and DragonFlyBSD projects when they were first being formed and
is active in the DragonFlyBSD project today. He was born in Taiwan and
grew up in the United States. He holds a degree from U.C. Berkeley in
computer science.
 In the past, he has consulted for leading companies such as the Western
Software Laboratory division of Digital Equipment Corporation, Cygnus,
Encanto, Netscape, ClickArray, and Firetide on wireless routing. He currently
consults for Wasabi Systems on improving the performance of the NetBSD
networking stack and for other companies using BSD in their products. In
other activities, he enjoys teaching, writing, and giving talks.

	INTRODUCTION
	Project overview
	Motivation
	Technical Goals
	Efficiency through scale

	Concepts
	Non-uniform Memory Access
	Partitioning and replication
	Application-specific customization

	Infrastructure
	Lightweight Kernel Threads
	Message passing system

	Network subsystem
	status
	Conclusion

