
Matthew Dillon
DragonFly BSD Project

23 October 2003

●FreeBSD 4.x and 5.x directions
●Differentiating DragonFly, the basis for a project fork

● A different, more maintainable user threading API (syscall messaging)
● A different, more maintainable approach to MP design

● CPU Isolation by design using IPI messaging rather then by accident w/Mutexes
● Light Weight Kernel Threading with fewer hacks

●Project Goals
● Maintaining stability, producing production-capable releases
● A more consistent and more easily maintained message-based framework
● UP, MP, SSI Scaleability
● Userland VFS Development
● Machine-verified Package Management

●This Presentation
● Threading And Messaging
● Our approach to the Big Giant Lock problem. Why not mutexes?
● Our approach to achieving a Single System Image (SSI)

DragonFly Overview

DragonFly Threading and Messaging Model

Matthew Dillon
DragonFly BSD Project

23 October 2003

Light Weight Kernel Threading and User Processes

LWKT SUBSYSTEM

CPU #1

CPU #2

LWKT SCHEDULER
 (FIXED PRIORITY)

THREAD

THREAD

THREAD

LWKT SCHEDULER
 (FIXED PRIORITY)

THREAD

THREAD

THREAD

USERLAND PROCESS SCHEDULER

PROCESS2
CURPROC ON CPU1

PROCESS1

PROCESS2

PROCESS3

PROCESS4

PROCESS5

PROCESS6

PROCESS
SCHEDULER

RUNQ

PROCESS5
CURPROC ON CPU2

IPI Messaging
●ABSTRACTION PROMOTES CPU ISOLATION
●ASYNCHRONOUS IPI MESSAGING AVOIDS MUTEX OPS
●SIMPLE CRITICAL SECTIONS FOR LOCAL ACCESS
●MANY IPI OPS CAN BE PASSIVE / CONTRAST W/ RCU

CPU #1

THREAD1
ASYNC

IPI
MESSAGE

SCHEDULER

SCHEDULE
THREAD2

CPU #2

THREAD2

SCHEDULER

SCHEDULE
THREAD2

THREAD1

ALLOCATE
MEMORY
ON CPU#1

ALLOCATOR

THREAD2
FREE

MEMORY
OWNED BY

CPU #1

PASSIVE
IPI

MESSAGE

FREE
MEMORY

ON CPU #1

ALLOCATOR
ALLOCATOR

Light Weight Kernel Messaging
●AMIGA STYLE MESSAGES AND PORTS
●SEMI SYNCHRONOUS / PORT AGENT
●FAST SYNCHRONOUS PATH

PORT AGENT
PROCESSES MSG

TARGET PORT (OWNED BY T2)

APP SEND MSG

SYNC RETURN

THREAD #1

PORT AGENT
QUEUES MSG

TARGET PORT (OWNED BY T2)

APP

SEND MSG

EASYNC

THREAD #1

(WAKEUP T2)

REPLY PORT

(WAKEUP T1)WAITMSG

RETURN

THREAD #2

APP

GETMSG

REPLY MSG

APP
EXECUTE T2's CODE
IN T1's CONTEXT

Big Giant Lock Removal

Matthew Dillon
DragonFly BSD Project

23 October 2003

Current BGL Coverage

LWKT
SUBSYSTEM

INTERRUPT
THREADS

IDLE
THREAD

THREADS
(IN KERNEL)

THREADS
(IN USER)

IPI
MSGS

MEMORY SUB
SLAB CACHE

MEMORY SUB
KMEM ALLOC

SOFTINT
THREADS

=BGL NOT REQUIRED

=BGL REQUIRED

NETISR

FASTINT

NETIF

DISK

TIMER

SERIAL

CLOCK

ROUTE TBL

Next Stage BGL Removal

LWKT
SUBSYSTEM

INTERRUPT
THREADS

IDLE
THREAD

THREADS
(IN KERNEL)

THREADS
(IN USER)

IPI
MSGS

MEMORY SUB
SLAB CACHE

MEMORY SUB
KMEM ALLOC

SOFTINT
THREADS

=BGL REQUIRED

NETISR

FASTINT

NETIF

DISK

TIMER

SERIAL

CLOCK

=BGL NOT REQUIRED

ROUTE TBL

NETIF

NETISR TCP A
THREAD

BGL Removal – Network Detail

PROTO
SWITCH

NETISR TCP B
THREAD

NETISR UDP A
THREAD

NETISR UDP B
THREAD

Etc

Etc

PCB PCB PCB

PCB PCB PCB

PCB PCB PCB

PCB PCB PCB

PACKETS

●WORK BEING DONE BY JEFFREY HSU
●UTILIZES LWKT MSGS AND PORTS
●MULTIPLE THREADS PER PROTOCOL
●NO UNI-PROCESSOR PENALTY

=BGL NOT REQUIRED

Achieving a Single System Image (SSI)

Matthew Dillon
DragonFly BSD Project

23 October 2003

●CLUSTER MULTIPLE BOXES USING STANDARD NETWORK PROTOCOLS
●THE THREAD MESSAGING ABSTRACTION BECOMES VITAL
●THE CPU MESSAGING ABSTRACTION BECOMES VITAL (IPIs vs MUTEXs)
●IMPLEMENT A NETWORKED MESI CACHE COHERENCY MODEL
●PAGE-LEVEL CACHE COHERENCY, RANGE BASED LOCKING
●COPY DATA INDIRECTLY VIA THE CACHE COHERENCY MODEL
●GLOBAL FILE HANDLES, MESSAGING INTERFACE
●WHAT IS THE ULTIMATE TEST? PROCESS MIGRATION IN PIECES
●ADDING ROBUSTNESS (TIMEOUTS, TRANSACTIONS, VOTING)
●CONTRIBUTING RESOURCES TO A CLUSTER

Upcomming SSI Implementation Details

BOX2 BOX3

BOX4

BOX5

BOX1

Message Traffic MESH Topology
●ABSTRACTED LOGICAL LAYER TO MAKE MESH PER-CPU
●RESERVE BUFFER SPACE ON PER-CPU BASIS
●FLOW CONTROL MORE EASILY MANAGED USING DIRECT-CONNECT
●DIRECT CONNECT CAN BE ABSTRACTED OVER GENERAL GRAPH WITH ROUTING
●DATA SOURCE, TARGET MAY BE DIFFERENT FROM MESSAGE SOURCE, TARGET
●USE SEPARATE MESH FOR CACHE COHERENCY PROTOCOL AND DATA XFER
●USE TCP (FIRST MAKE IT WORK, THEN MAKE IT FAST, OR NOT AT ALL)

TCP

APP

THREAD #1 ON MACHINE 1

CREATE COPY,
WAKEUP T2

REPLY PORT1

(WAKEUP T1)WAITMSG

RETURN

THREAD #2 ON MACHINE 2

APP

GETMSG

REPLY MSG

PROXY FOR
PORT2

QUEUES MSG

SEND MSG

PROXY PORT2

EASYNC

PORT2

PROXY FOR
PORT1

QUEUES MSG

PROXY PORT1

MESH

MESH

CATASTROPHIC
FAILURE, DUPS,
 AND TIMEOUTS

●PROXY PORT REPRESENTS REAL PORT
●LOCAL COPY OF MESSAGE HELD UNTIL REMOTE REPLY OR FAILURE
●PROXY PORT HANDLES MESH FAILURES, TIMEOUTS, AND PROTOCOL ISSUES
●ASSOCIATED DATA HANDLED BY CACHE COHERENCY PROTOCOLS
●PATH FOR ASSOCIATED DATA DICTATED BY CACHE COHERENCY PROTOCOLS
●PATH FOR ASSOCIATED DATA CAN BE OPTIMIZED

Using Proxy Message Ports

CATASTROPHIC
FAILURE, DUPS,
 AND TIMEOUTS

DISCARD
COPY

MESI Cache Coherency
●MESI = MODIFIED EXCLUSIVE SHARED INVALID
●DATA SHARING IS VITAL FOR EFFICIENT OPERATION OVER WAN INTERFACES
●CACHE COHERENCY MAKES THE CLUSTER INVISIBLE
●MEI IS EASIER TO IMPLEMENT BUT FAR LESS EFFICIENT
●E->M, M->E TRANSITIONS REQUIRE NO MESSAGE TRAFFIC
●FLUSHING MODIFIED DATA CAN MOVE FROM 'M' TO EITHER 'E' OR 'S'
●MACHINE HOLDING E OR M DECIDES DISPOSITION, ELSE BS DECIDES DISPOSITION
●IF E/M HOLDER IS UNKNOWN, BACKING STORE CAN PROXY REQUEST

MACHINE 1 MACHINE 2 MACHINE 3

P1(S)

P1(M)

READ P1 P1(S)

WRITE P1 P1(I)

BACKING STORE
FOR P1

FLUSH P1 P1(E)

ACQ-M

M->E P1(I)

READ P1

DISK IO

P1(S)E->S P1(S)

EXCLU P1 P1(E) S->E/I INVAL P1(I)

(PROXY)

P2(M)

PS(S) M->S PS(S)FLUSH P2

MACHINE 4

Range Locking
●RESERVE OFFSET RANGE IN OBJECT FOR UPCOMING I/O OPERATION (HEURISTIC)
●PRESERVE UNIX READ/WRITE ATOMICY WITHOUT LIMITATION
●ALLOWS PARALLEL READS, WRITES, AND COMBINATIONS ON THE SAME FILE
●AGGREGATE INTO LARGER GRANULARITIES TO REDUCE MANAGEMENT OVERHEAD
●POTENTIALLY KEEP TRACK OF MESI STATUS IN A FIXED AMOUNT OF RAM
●RESERVE MULTIPLE RANGES TO SUPPORT TRANSACTIONS

READ TD1
(S)

WRITE TD2
(E,M)

WRITE TD3
(E,M)VM

OBJECT WRITE TD4
(STALLS)

READ TD5
(STALLS)

P1(S) P2(S) P4(S) P6(E) P7(S) P8(E) P9(E)

S ESE

●CREATE A SINGLE (S) RECORD FOR P1-P4 BY OBTAINING A SHARED LOCK ON P1-P4
●CREATE A SINGLE (E) RECORD FOR P8-P9
●AGGREGATE OR THROW AWAY RECORDS TO REDUCE MEMORY USE
●ADD SERIAL NUMBER TO VM PAGES TO ALLOW REVALIDATION OF CACHE STATUS
●CAN MANAGE CACHE ON A BYTE RANGE BASIS RATHER THEN ON A PAGE BASIS

MESI
INFO

Global File Handles
●ACCESSIBLE FROM ANY HOST WITHIN THE CLUSTER
●POTENTIALLY ACCESSIBLE FROM OUTSIDE THE CLUSTER
●ALLOWS DEVICE DRIVERS TO DECIDE WHETHER TO MIGRATE OR NOT
●DATA ASSOCIATED WITH I/O SEPARTELY MANAGED VIA CACHE COHERENCY MODEL

MACHINE 1

OPEN AAA AAA DRIVER

MACHINE 2 MACHINE 3

BBB DRIVEROPEN BBB

RD A / WR B
(COPY)

AAA DRIVER BBB DRIVER

BULK DATA
TRAFFIC

MESSAGE
TRAFFIC

AAA BBB

THREAD

THREAD1

MACHINE 1

Piecemeal Process Migration

THREAD2

THREAD3

PROGRAM A FILES

FD0

FD1

FD2

GD3

FD4

MACHINE 2

THREAD 2

PROGRAM AFILES

GD0

GD1

GD2

FD3

GD4

●CACHE COHERENCY MODEL ALLOWS ADDRESS-SPACE SHARING ACROSS MACHINES
●DRIVERS FOR FILE DESCRIPTORS CAN MIGRATE ASYNCHRONOUSLY
●SOME DRIVERS MIGHT STAY ON THE MACHINE HODING THE PHYSICAL STORAGE
●TTYS AND PIPES CAN MIGRATE COMPLETELY OVER
●SOCKETS ARE MORE COMPLEX, BUT MIGRATION IS STILL POSSIBLE

