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●FreeBSD 4.x and 5.x directions
●Differentiating DragonFly, the basis for a project fork

● A different, more maintainable user threading API (syscall messaging)
● A different, more maintainable approach to MP design

● CPU Isolation by design using IPI messaging rather then by accident w/Mutexes
● Light Weight Kernel Threading with fewer hacks

●Project Goals
● Maintaining stability, producing production-capable releases
● A more consistent and more easily maintained message-based framework
● UP, MP, SSI Scaleability
● Userland VFS Development
● Machine-verified Package Management

●This Presentation
● Threading And Messaging
● Our approach to the Big Giant Lock problem.  Why not mutexes?
● Our approach to achieving a Single System Image (SSI)

DragonFly Overview
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Light Weight Kernel Threading and User Processes
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IPI Messaging
●ABSTRACTION PROMOTES CPU ISOLATION
●ASYNCHRONOUS IPI MESSAGING AVOIDS MUTEX OPS
●SIMPLE CRITICAL SECTIONS FOR LOCAL ACCESS
●MANY IPI OPS CAN BE PASSIVE / CONTRAST W/ RCU
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Light Weight Kernel Messaging
●AMIGA STYLE MESSAGES AND PORTS
●SEMI SYNCHRONOUS / PORT AGENT
●FAST SYNCHRONOUS PATH

PORT AGENT
PROCESSES MSG

TARGET PORT (OWNED BY T2)

APP SEND MSG

SYNC RETURN

THREAD #1
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THREAD #1
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RETURN

THREAD #2
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GETMSG

REPLY MSG

APP
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Current BGL Coverage
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Next Stage BGL Removal
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NETIF

NETISR TCP A
THREAD

BGL Removal – Network Detail
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PACKETS

●WORK BEING DONE BY JEFFREY HSU
●UTILIZES LWKT MSGS AND PORTS
●MULTIPLE THREADS PER PROTOCOL
●NO UNI-PROCESSOR PENALTY

=BGL NOT REQUIRED
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●CLUSTER MULTIPLE BOXES USING STANDARD NETWORK PROTOCOLS
●THE THREAD MESSAGING ABSTRACTION BECOMES VITAL
●THE CPU MESSAGING ABSTRACTION BECOMES VITAL (IPIs vs MUTEXs) 
●IMPLEMENT A NETWORKED MESI CACHE COHERENCY MODEL
●PAGE-LEVEL CACHE COHERENCY, RANGE BASED LOCKING
●COPY DATA INDIRECTLY VIA THE CACHE COHERENCY MODEL
●GLOBAL FILE HANDLES, MESSAGING INTERFACE
●WHAT IS THE ULTIMATE TEST?  PROCESS MIGRATION IN PIECES
●ADDING ROBUSTNESS (TIMEOUTS, TRANSACTIONS, VOTING)
●CONTRIBUTING RESOURCES TO A CLUSTER

Upcomming SSI Implementation Details



BOX2 BOX3

BOX4

BOX5

BOX1

Message Traffic MESH Topology
●ABSTRACTED LOGICAL LAYER TO MAKE MESH PER-CPU
●RESERVE BUFFER SPACE ON PER-CPU BASIS
●FLOW CONTROL MORE EASILY MANAGED USING DIRECT-CONNECT
●DIRECT CONNECT CAN BE ABSTRACTED OVER GENERAL GRAPH WITH ROUTING
●DATA SOURCE, TARGET MAY BE DIFFERENT FROM MESSAGE SOURCE, TARGET
●USE SEPARATE MESH FOR CACHE COHERENCY PROTOCOL AND DATA XFER
●USE TCP (FIRST MAKE IT WORK, THEN MAKE IT FAST, OR NOT AT ALL)

TCP



APP

THREAD #1 ON MACHINE 1

CREATE COPY,
WAKEUP T2

REPLY PORT1

(WAKEUP T1)WAITMSG

RETURN

THREAD #2 ON MACHINE 2

APP

GETMSG

REPLY MSG

PROXY FOR
PORT2

QUEUES MSG

SEND MSG

PROXY PORT2

EASYNC

PORT2

PROXY FOR
PORT1

QUEUES MSG

PROXY PORT1

MESH

MESH

CATASTROPHIC
FAILURE, DUPS,
 AND TIMEOUTS

●PROXY PORT REPRESENTS REAL PORT
●LOCAL COPY OF MESSAGE HELD UNTIL REMOTE REPLY OR FAILURE
●PROXY PORT HANDLES MESH FAILURES, TIMEOUTS, AND PROTOCOL ISSUES
●ASSOCIATED DATA HANDLED BY CACHE COHERENCY PROTOCOLS
●PATH FOR ASSOCIATED DATA DICTATED BY CACHE COHERENCY PROTOCOLS
●PATH FOR ASSOCIATED DATA CAN BE OPTIMIZED

Using Proxy Message Ports

CATASTROPHIC
FAILURE, DUPS,
 AND TIMEOUTS

DISCARD
COPY



MESI Cache Coherency
●MESI = MODIFIED EXCLUSIVE SHARED INVALID
●DATA SHARING IS VITAL FOR EFFICIENT OPERATION OVER WAN INTERFACES
●CACHE COHERENCY MAKES THE CLUSTER INVISIBLE
●MEI IS EASIER TO IMPLEMENT BUT FAR LESS EFFICIENT
●E->M, M->E TRANSITIONS REQUIRE NO MESSAGE TRAFFIC
●FLUSHING MODIFIED DATA CAN MOVE FROM 'M' TO EITHER 'E' OR 'S'
●MACHINE HOLDING E OR M DECIDES DISPOSITION, ELSE BS DECIDES DISPOSITION
●IF E/M HOLDER IS UNKNOWN, BACKING STORE CAN PROXY REQUEST

MACHINE 1 MACHINE 2 MACHINE 3

P1(S)

P1(M)

READ P1 P1(S)

WRITE P1 P1(I)

BACKING STORE
FOR P1

FLUSH P1 P1(E)

ACQ-M

M->E P1(I)

READ P1

DISK IO

P1(S)E->S P1(S)

EXCLU P1 P1(E) S->E/I INVAL P1(I)

(PROXY)

P2(M)

PS(S) M->S PS(S)FLUSH P2

MACHINE 4



Range Locking
●RESERVE OFFSET RANGE IN OBJECT FOR UPCOMING I/O OPERATION (HEURISTIC)
●PRESERVE UNIX READ/WRITE ATOMICY WITHOUT LIMITATION
●ALLOWS PARALLEL READS, WRITES, AND COMBINATIONS ON THE SAME FILE
●AGGREGATE INTO LARGER GRANULARITIES TO REDUCE MANAGEMENT OVERHEAD
●POTENTIALLY KEEP TRACK OF MESI STATUS IN A FIXED AMOUNT OF RAM
●RESERVE MULTIPLE RANGES TO SUPPORT TRANSACTIONS

READ TD1
(S)

WRITE TD2
(E,M)

WRITE TD3
(E,M)VM

OBJECT WRITE TD4
(STALLS)

READ TD5
(STALLS)

P1(S) P2(S) P4(S) P6(E) P7(S) P8(E) P9(E)

S ESE

●CREATE A SINGLE (S) RECORD FOR P1-P4 BY OBTAINING A SHARED LOCK ON P1-P4
●CREATE A SINGLE (E) RECORD FOR P8-P9
●AGGREGATE OR THROW AWAY RECORDS TO REDUCE MEMORY USE
●ADD SERIAL NUMBER TO VM PAGES TO ALLOW REVALIDATION OF CACHE STATUS
●CAN MANAGE CACHE ON A BYTE RANGE BASIS RATHER THEN ON A PAGE BASIS

MESI
INFO



Global File Handles
●ACCESSIBLE FROM ANY HOST WITHIN THE CLUSTER
●POTENTIALLY ACCESSIBLE FROM OUTSIDE THE CLUSTER
●ALLOWS DEVICE DRIVERS TO DECIDE WHETHER TO MIGRATE OR NOT
●DATA ASSOCIATED WITH I/O SEPARTELY MANAGED VIA CACHE COHERENCY MODEL

MACHINE 1

OPEN AAA AAA DRIVER

MACHINE 2 MACHINE 3

BBB DRIVEROPEN BBB

RD A / WR B
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AAA DRIVER BBB DRIVER

BULK DATA
TRAFFIC

MESSAGE
TRAFFIC

AAA BBB

THREAD



THREAD1

MACHINE 1

Piecemeal Process Migration
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●CACHE COHERENCY MODEL ALLOWS ADDRESS-SPACE SHARING ACROSS MACHINES
●DRIVERS FOR FILE DESCRIPTORS CAN MIGRATE ASYNCHRONOUSLY
●SOME DRIVERS MIGHT STAY ON THE MACHINE HODING THE PHYSICAL STORAGE
●TTYS AND PIPES CAN MIGRATE COMPLETELY OVER
●SOCKETS ARE MORE COMPLEX, BUT MIGRATION IS STILL POSSIBLE


