sh_eth: unmap DMA buffers when freeing rings
[linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137         if (!rdev->constraints) {
138                 rdev_err(rdev, "no constraints\n");
139                 return false;
140         }
141
142         if (rdev->constraints->valid_ops_mask & ops)
143                 return true;
144
145         return false;
146 }
147
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150         if (rdev && rdev->supply)
151                 return rdev->supply->rdev;
152
153         return NULL;
154 }
155
156 /**
157  * regulator_lock_supply - lock a regulator and its supplies
158  * @rdev:         regulator source
159  */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162         int i;
163
164         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165                 mutex_lock_nested(&rdev->mutex, i);
166 }
167
168 /**
169  * regulator_unlock_supply - unlock a regulator and its supplies
170  * @rdev:         regulator source
171  */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174         struct regulator *supply;
175
176         while (1) {
177                 mutex_unlock(&rdev->mutex);
178                 supply = rdev->supply;
179
180                 if (!rdev->supply)
181                         return;
182
183                 rdev = supply->rdev;
184         }
185 }
186
187 /**
188  * of_get_regulator - get a regulator device node based on supply name
189  * @dev: Device pointer for the consumer (of regulator) device
190  * @supply: regulator supply name
191  *
192  * Extract the regulator device node corresponding to the supply name.
193  * returns the device node corresponding to the regulator if found, else
194  * returns NULL.
195  */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198         struct device_node *regnode = NULL;
199         char prop_name[32]; /* 32 is max size of property name */
200
201         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202
203         snprintf(prop_name, 32, "%s-supply", supply);
204         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205
206         if (!regnode) {
207                 dev_dbg(dev, "Looking up %s property in node %s failed\n",
208                                 prop_name, dev->of_node->full_name);
209                 return NULL;
210         }
211         return regnode;
212 }
213
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216                                    int *min_uV, int *max_uV)
217 {
218         BUG_ON(*min_uV > *max_uV);
219
220         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221                 rdev_err(rdev, "voltage operation not allowed\n");
222                 return -EPERM;
223         }
224
225         if (*max_uV > rdev->constraints->max_uV)
226                 *max_uV = rdev->constraints->max_uV;
227         if (*min_uV < rdev->constraints->min_uV)
228                 *min_uV = rdev->constraints->min_uV;
229
230         if (*min_uV > *max_uV) {
231                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232                          *min_uV, *max_uV);
233                 return -EINVAL;
234         }
235
236         return 0;
237 }
238
239 /* Make sure we select a voltage that suits the needs of all
240  * regulator consumers
241  */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243                                      int *min_uV, int *max_uV)
244 {
245         struct regulator *regulator;
246
247         list_for_each_entry(regulator, &rdev->consumer_list, list) {
248                 /*
249                  * Assume consumers that didn't say anything are OK
250                  * with anything in the constraint range.
251                  */
252                 if (!regulator->min_uV && !regulator->max_uV)
253                         continue;
254
255                 if (*max_uV > regulator->max_uV)
256                         *max_uV = regulator->max_uV;
257                 if (*min_uV < regulator->min_uV)
258                         *min_uV = regulator->min_uV;
259         }
260
261         if (*min_uV > *max_uV) {
262                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263                         *min_uV, *max_uV);
264                 return -EINVAL;
265         }
266
267         return 0;
268 }
269
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272                                         int *min_uA, int *max_uA)
273 {
274         BUG_ON(*min_uA > *max_uA);
275
276         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277                 rdev_err(rdev, "current operation not allowed\n");
278                 return -EPERM;
279         }
280
281         if (*max_uA > rdev->constraints->max_uA)
282                 *max_uA = rdev->constraints->max_uA;
283         if (*min_uA < rdev->constraints->min_uA)
284                 *min_uA = rdev->constraints->min_uA;
285
286         if (*min_uA > *max_uA) {
287                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288                          *min_uA, *max_uA);
289                 return -EINVAL;
290         }
291
292         return 0;
293 }
294
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev,
297                                     unsigned int *mode)
298 {
299         switch (*mode) {
300         case REGULATOR_MODE_FAST:
301         case REGULATOR_MODE_NORMAL:
302         case REGULATOR_MODE_IDLE:
303         case REGULATOR_MODE_STANDBY:
304                 break;
305         default:
306                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
307                 return -EINVAL;
308         }
309
310         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
311                 rdev_err(rdev, "mode operation not allowed\n");
312                 return -EPERM;
313         }
314
315         /* The modes are bitmasks, the most power hungry modes having
316          * the lowest values. If the requested mode isn't supported
317          * try higher modes. */
318         while (*mode) {
319                 if (rdev->constraints->valid_modes_mask & *mode)
320                         return 0;
321                 *mode /= 2;
322         }
323
324         return -EINVAL;
325 }
326
327 static ssize_t regulator_uV_show(struct device *dev,
328                                 struct device_attribute *attr, char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331         ssize_t ret;
332
333         mutex_lock(&rdev->mutex);
334         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
335         mutex_unlock(&rdev->mutex);
336
337         return ret;
338 }
339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
340
341 static ssize_t regulator_uA_show(struct device *dev,
342                                 struct device_attribute *attr, char *buf)
343 {
344         struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
347 }
348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
349
350 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
351                          char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return sprintf(buf, "%s\n", rdev_get_name(rdev));
356 }
357 static DEVICE_ATTR_RO(name);
358
359 static ssize_t regulator_print_opmode(char *buf, int mode)
360 {
361         switch (mode) {
362         case REGULATOR_MODE_FAST:
363                 return sprintf(buf, "fast\n");
364         case REGULATOR_MODE_NORMAL:
365                 return sprintf(buf, "normal\n");
366         case REGULATOR_MODE_IDLE:
367                 return sprintf(buf, "idle\n");
368         case REGULATOR_MODE_STANDBY:
369                 return sprintf(buf, "standby\n");
370         }
371         return sprintf(buf, "unknown\n");
372 }
373
374 static ssize_t regulator_opmode_show(struct device *dev,
375                                     struct device_attribute *attr, char *buf)
376 {
377         struct regulator_dev *rdev = dev_get_drvdata(dev);
378
379         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
380 }
381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
382
383 static ssize_t regulator_print_state(char *buf, int state)
384 {
385         if (state > 0)
386                 return sprintf(buf, "enabled\n");
387         else if (state == 0)
388                 return sprintf(buf, "disabled\n");
389         else
390                 return sprintf(buf, "unknown\n");
391 }
392
393 static ssize_t regulator_state_show(struct device *dev,
394                                    struct device_attribute *attr, char *buf)
395 {
396         struct regulator_dev *rdev = dev_get_drvdata(dev);
397         ssize_t ret;
398
399         mutex_lock(&rdev->mutex);
400         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
401         mutex_unlock(&rdev->mutex);
402
403         return ret;
404 }
405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
406
407 static ssize_t regulator_status_show(struct device *dev,
408                                    struct device_attribute *attr, char *buf)
409 {
410         struct regulator_dev *rdev = dev_get_drvdata(dev);
411         int status;
412         char *label;
413
414         status = rdev->desc->ops->get_status(rdev);
415         if (status < 0)
416                 return status;
417
418         switch (status) {
419         case REGULATOR_STATUS_OFF:
420                 label = "off";
421                 break;
422         case REGULATOR_STATUS_ON:
423                 label = "on";
424                 break;
425         case REGULATOR_STATUS_ERROR:
426                 label = "error";
427                 break;
428         case REGULATOR_STATUS_FAST:
429                 label = "fast";
430                 break;
431         case REGULATOR_STATUS_NORMAL:
432                 label = "normal";
433                 break;
434         case REGULATOR_STATUS_IDLE:
435                 label = "idle";
436                 break;
437         case REGULATOR_STATUS_STANDBY:
438                 label = "standby";
439                 break;
440         case REGULATOR_STATUS_BYPASS:
441                 label = "bypass";
442                 break;
443         case REGULATOR_STATUS_UNDEFINED:
444                 label = "undefined";
445                 break;
446         default:
447                 return -ERANGE;
448         }
449
450         return sprintf(buf, "%s\n", label);
451 }
452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
453
454 static ssize_t regulator_min_uA_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
463 }
464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
465
466 static ssize_t regulator_max_uA_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
475 }
476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
477
478 static ssize_t regulator_min_uV_show(struct device *dev,
479                                     struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483         if (!rdev->constraints)
484                 return sprintf(buf, "constraint not defined\n");
485
486         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
487 }
488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
489
490 static ssize_t regulator_max_uV_show(struct device *dev,
491                                     struct device_attribute *attr, char *buf)
492 {
493         struct regulator_dev *rdev = dev_get_drvdata(dev);
494
495         if (!rdev->constraints)
496                 return sprintf(buf, "constraint not defined\n");
497
498         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
499 }
500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
501
502 static ssize_t regulator_total_uA_show(struct device *dev,
503                                       struct device_attribute *attr, char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506         struct regulator *regulator;
507         int uA = 0;
508
509         mutex_lock(&rdev->mutex);
510         list_for_each_entry(regulator, &rdev->consumer_list, list)
511                 uA += regulator->uA_load;
512         mutex_unlock(&rdev->mutex);
513         return sprintf(buf, "%d\n", uA);
514 }
515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
516
517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
518                               char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521         return sprintf(buf, "%d\n", rdev->use_count);
522 }
523 static DEVICE_ATTR_RO(num_users);
524
525 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
526                          char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530         switch (rdev->desc->type) {
531         case REGULATOR_VOLTAGE:
532                 return sprintf(buf, "voltage\n");
533         case REGULATOR_CURRENT:
534                 return sprintf(buf, "current\n");
535         }
536         return sprintf(buf, "unknown\n");
537 }
538 static DEVICE_ATTR_RO(type);
539
540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
541                                 struct device_attribute *attr, char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
546 }
547 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
548                 regulator_suspend_mem_uV_show, NULL);
549
550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
551                                 struct device_attribute *attr, char *buf)
552 {
553         struct regulator_dev *rdev = dev_get_drvdata(dev);
554
555         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
556 }
557 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
558                 regulator_suspend_disk_uV_show, NULL);
559
560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
561                                 struct device_attribute *attr, char *buf)
562 {
563         struct regulator_dev *rdev = dev_get_drvdata(dev);
564
565         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
566 }
567 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
568                 regulator_suspend_standby_uV_show, NULL);
569
570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
571                                 struct device_attribute *attr, char *buf)
572 {
573         struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575         return regulator_print_opmode(buf,
576                 rdev->constraints->state_mem.mode);
577 }
578 static DEVICE_ATTR(suspend_mem_mode, 0444,
579                 regulator_suspend_mem_mode_show, NULL);
580
581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
582                                 struct device_attribute *attr, char *buf)
583 {
584         struct regulator_dev *rdev = dev_get_drvdata(dev);
585
586         return regulator_print_opmode(buf,
587                 rdev->constraints->state_disk.mode);
588 }
589 static DEVICE_ATTR(suspend_disk_mode, 0444,
590                 regulator_suspend_disk_mode_show, NULL);
591
592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
593                                 struct device_attribute *attr, char *buf)
594 {
595         struct regulator_dev *rdev = dev_get_drvdata(dev);
596
597         return regulator_print_opmode(buf,
598                 rdev->constraints->state_standby.mode);
599 }
600 static DEVICE_ATTR(suspend_standby_mode, 0444,
601                 regulator_suspend_standby_mode_show, NULL);
602
603 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
604                                    struct device_attribute *attr, char *buf)
605 {
606         struct regulator_dev *rdev = dev_get_drvdata(dev);
607
608         return regulator_print_state(buf,
609                         rdev->constraints->state_mem.enabled);
610 }
611 static DEVICE_ATTR(suspend_mem_state, 0444,
612                 regulator_suspend_mem_state_show, NULL);
613
614 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
615                                    struct device_attribute *attr, char *buf)
616 {
617         struct regulator_dev *rdev = dev_get_drvdata(dev);
618
619         return regulator_print_state(buf,
620                         rdev->constraints->state_disk.enabled);
621 }
622 static DEVICE_ATTR(suspend_disk_state, 0444,
623                 regulator_suspend_disk_state_show, NULL);
624
625 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
626                                    struct device_attribute *attr, char *buf)
627 {
628         struct regulator_dev *rdev = dev_get_drvdata(dev);
629
630         return regulator_print_state(buf,
631                         rdev->constraints->state_standby.enabled);
632 }
633 static DEVICE_ATTR(suspend_standby_state, 0444,
634                 regulator_suspend_standby_state_show, NULL);
635
636 static ssize_t regulator_bypass_show(struct device *dev,
637                                      struct device_attribute *attr, char *buf)
638 {
639         struct regulator_dev *rdev = dev_get_drvdata(dev);
640         const char *report;
641         bool bypass;
642         int ret;
643
644         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
645
646         if (ret != 0)
647                 report = "unknown";
648         else if (bypass)
649                 report = "enabled";
650         else
651                 report = "disabled";
652
653         return sprintf(buf, "%s\n", report);
654 }
655 static DEVICE_ATTR(bypass, 0444,
656                    regulator_bypass_show, NULL);
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static int drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         lockdep_assert_held_once(&rdev->mutex);
667
668         /*
669          * first check to see if we can set modes at all, otherwise just
670          * tell the consumer everything is OK.
671          */
672         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
673                 return 0;
674
675         if (!rdev->desc->ops->get_optimum_mode &&
676             !rdev->desc->ops->set_load)
677                 return 0;
678
679         if (!rdev->desc->ops->set_mode &&
680             !rdev->desc->ops->set_load)
681                 return -EINVAL;
682
683         /* calc total requested load */
684         list_for_each_entry(sibling, &rdev->consumer_list, list)
685                 current_uA += sibling->uA_load;
686
687         current_uA += rdev->constraints->system_load;
688
689         if (rdev->desc->ops->set_load) {
690                 /* set the optimum mode for our new total regulator load */
691                 err = rdev->desc->ops->set_load(rdev, current_uA);
692                 if (err < 0)
693                         rdev_err(rdev, "failed to set load %d\n", current_uA);
694         } else {
695                 /* get output voltage */
696                 output_uV = _regulator_get_voltage(rdev);
697                 if (output_uV <= 0) {
698                         rdev_err(rdev, "invalid output voltage found\n");
699                         return -EINVAL;
700                 }
701
702                 /* get input voltage */
703                 input_uV = 0;
704                 if (rdev->supply)
705                         input_uV = regulator_get_voltage(rdev->supply);
706                 if (input_uV <= 0)
707                         input_uV = rdev->constraints->input_uV;
708                 if (input_uV <= 0) {
709                         rdev_err(rdev, "invalid input voltage found\n");
710                         return -EINVAL;
711                 }
712
713                 /* now get the optimum mode for our new total regulator load */
714                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
715                                                          output_uV, current_uA);
716
717                 /* check the new mode is allowed */
718                 err = regulator_mode_constrain(rdev, &mode);
719                 if (err < 0) {
720                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
721                                  current_uA, input_uV, output_uV);
722                         return err;
723                 }
724
725                 err = rdev->desc->ops->set_mode(rdev, mode);
726                 if (err < 0)
727                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
728         }
729
730         return err;
731 }
732
733 static int suspend_set_state(struct regulator_dev *rdev,
734         struct regulator_state *rstate)
735 {
736         int ret = 0;
737
738         /* If we have no suspend mode configration don't set anything;
739          * only warn if the driver implements set_suspend_voltage or
740          * set_suspend_mode callback.
741          */
742         if (!rstate->enabled && !rstate->disabled) {
743                 if (rdev->desc->ops->set_suspend_voltage ||
744                     rdev->desc->ops->set_suspend_mode)
745                         rdev_warn(rdev, "No configuration\n");
746                 return 0;
747         }
748
749         if (rstate->enabled && rstate->disabled) {
750                 rdev_err(rdev, "invalid configuration\n");
751                 return -EINVAL;
752         }
753
754         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
755                 ret = rdev->desc->ops->set_suspend_enable(rdev);
756         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
757                 ret = rdev->desc->ops->set_suspend_disable(rdev);
758         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
759                 ret = 0;
760
761         if (ret < 0) {
762                 rdev_err(rdev, "failed to enabled/disable\n");
763                 return ret;
764         }
765
766         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
767                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
768                 if (ret < 0) {
769                         rdev_err(rdev, "failed to set voltage\n");
770                         return ret;
771                 }
772         }
773
774         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
775                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
776                 if (ret < 0) {
777                         rdev_err(rdev, "failed to set mode\n");
778                         return ret;
779                 }
780         }
781         return ret;
782 }
783
784 /* locks held by caller */
785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
786 {
787         if (!rdev->constraints)
788                 return -EINVAL;
789
790         switch (state) {
791         case PM_SUSPEND_STANDBY:
792                 return suspend_set_state(rdev,
793                         &rdev->constraints->state_standby);
794         case PM_SUSPEND_MEM:
795                 return suspend_set_state(rdev,
796                         &rdev->constraints->state_mem);
797         case PM_SUSPEND_MAX:
798                 return suspend_set_state(rdev,
799                         &rdev->constraints->state_disk);
800         default:
801                 return -EINVAL;
802         }
803 }
804
805 static void print_constraints(struct regulator_dev *rdev)
806 {
807         struct regulation_constraints *constraints = rdev->constraints;
808         char buf[160] = "";
809         size_t len = sizeof(buf) - 1;
810         int count = 0;
811         int ret;
812
813         if (constraints->min_uV && constraints->max_uV) {
814                 if (constraints->min_uV == constraints->max_uV)
815                         count += scnprintf(buf + count, len - count, "%d mV ",
816                                            constraints->min_uV / 1000);
817                 else
818                         count += scnprintf(buf + count, len - count,
819                                            "%d <--> %d mV ",
820                                            constraints->min_uV / 1000,
821                                            constraints->max_uV / 1000);
822         }
823
824         if (!constraints->min_uV ||
825             constraints->min_uV != constraints->max_uV) {
826                 ret = _regulator_get_voltage(rdev);
827                 if (ret > 0)
828                         count += scnprintf(buf + count, len - count,
829                                            "at %d mV ", ret / 1000);
830         }
831
832         if (constraints->uV_offset)
833                 count += scnprintf(buf + count, len - count, "%dmV offset ",
834                                    constraints->uV_offset / 1000);
835
836         if (constraints->min_uA && constraints->max_uA) {
837                 if (constraints->min_uA == constraints->max_uA)
838                         count += scnprintf(buf + count, len - count, "%d mA ",
839                                            constraints->min_uA / 1000);
840                 else
841                         count += scnprintf(buf + count, len - count,
842                                            "%d <--> %d mA ",
843                                            constraints->min_uA / 1000,
844                                            constraints->max_uA / 1000);
845         }
846
847         if (!constraints->min_uA ||
848             constraints->min_uA != constraints->max_uA) {
849                 ret = _regulator_get_current_limit(rdev);
850                 if (ret > 0)
851                         count += scnprintf(buf + count, len - count,
852                                            "at %d mA ", ret / 1000);
853         }
854
855         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
856                 count += scnprintf(buf + count, len - count, "fast ");
857         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
858                 count += scnprintf(buf + count, len - count, "normal ");
859         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
860                 count += scnprintf(buf + count, len - count, "idle ");
861         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
862                 count += scnprintf(buf + count, len - count, "standby");
863
864         if (!count)
865                 scnprintf(buf, len, "no parameters");
866
867         rdev_dbg(rdev, "%s\n", buf);
868
869         if ((constraints->min_uV != constraints->max_uV) &&
870             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
871                 rdev_warn(rdev,
872                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
873 }
874
875 static int machine_constraints_voltage(struct regulator_dev *rdev,
876         struct regulation_constraints *constraints)
877 {
878         const struct regulator_ops *ops = rdev->desc->ops;
879         int ret;
880
881         /* do we need to apply the constraint voltage */
882         if (rdev->constraints->apply_uV &&
883             rdev->constraints->min_uV && rdev->constraints->max_uV) {
884                 int target_min, target_max;
885                 int current_uV = _regulator_get_voltage(rdev);
886                 if (current_uV < 0) {
887                         rdev_err(rdev,
888                                  "failed to get the current voltage(%d)\n",
889                                  current_uV);
890                         return current_uV;
891                 }
892
893                 /*
894                  * If we're below the minimum voltage move up to the
895                  * minimum voltage, if we're above the maximum voltage
896                  * then move down to the maximum.
897                  */
898                 target_min = current_uV;
899                 target_max = current_uV;
900
901                 if (current_uV < rdev->constraints->min_uV) {
902                         target_min = rdev->constraints->min_uV;
903                         target_max = rdev->constraints->min_uV;
904                 }
905
906                 if (current_uV > rdev->constraints->max_uV) {
907                         target_min = rdev->constraints->max_uV;
908                         target_max = rdev->constraints->max_uV;
909                 }
910
911                 if (target_min != current_uV || target_max != current_uV) {
912                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
913                                   current_uV, target_min, target_max);
914                         ret = _regulator_do_set_voltage(
915                                 rdev, target_min, target_max);
916                         if (ret < 0) {
917                                 rdev_err(rdev,
918                                         "failed to apply %d-%duV constraint(%d)\n",
919                                         target_min, target_max, ret);
920                                 return ret;
921                         }
922                 }
923         }
924
925         /* constrain machine-level voltage specs to fit
926          * the actual range supported by this regulator.
927          */
928         if (ops->list_voltage && rdev->desc->n_voltages) {
929                 int     count = rdev->desc->n_voltages;
930                 int     i;
931                 int     min_uV = INT_MAX;
932                 int     max_uV = INT_MIN;
933                 int     cmin = constraints->min_uV;
934                 int     cmax = constraints->max_uV;
935
936                 /* it's safe to autoconfigure fixed-voltage supplies
937                    and the constraints are used by list_voltage. */
938                 if (count == 1 && !cmin) {
939                         cmin = 1;
940                         cmax = INT_MAX;
941                         constraints->min_uV = cmin;
942                         constraints->max_uV = cmax;
943                 }
944
945                 /* voltage constraints are optional */
946                 if ((cmin == 0) && (cmax == 0))
947                         return 0;
948
949                 /* else require explicit machine-level constraints */
950                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
951                         rdev_err(rdev, "invalid voltage constraints\n");
952                         return -EINVAL;
953                 }
954
955                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
956                 for (i = 0; i < count; i++) {
957                         int     value;
958
959                         value = ops->list_voltage(rdev, i);
960                         if (value <= 0)
961                                 continue;
962
963                         /* maybe adjust [min_uV..max_uV] */
964                         if (value >= cmin && value < min_uV)
965                                 min_uV = value;
966                         if (value <= cmax && value > max_uV)
967                                 max_uV = value;
968                 }
969
970                 /* final: [min_uV..max_uV] valid iff constraints valid */
971                 if (max_uV < min_uV) {
972                         rdev_err(rdev,
973                                  "unsupportable voltage constraints %u-%uuV\n",
974                                  min_uV, max_uV);
975                         return -EINVAL;
976                 }
977
978                 /* use regulator's subset of machine constraints */
979                 if (constraints->min_uV < min_uV) {
980                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
981                                  constraints->min_uV, min_uV);
982                         constraints->min_uV = min_uV;
983                 }
984                 if (constraints->max_uV > max_uV) {
985                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
986                                  constraints->max_uV, max_uV);
987                         constraints->max_uV = max_uV;
988                 }
989         }
990
991         return 0;
992 }
993
994 static int machine_constraints_current(struct regulator_dev *rdev,
995         struct regulation_constraints *constraints)
996 {
997         const struct regulator_ops *ops = rdev->desc->ops;
998         int ret;
999
1000         if (!constraints->min_uA && !constraints->max_uA)
1001                 return 0;
1002
1003         if (constraints->min_uA > constraints->max_uA) {
1004                 rdev_err(rdev, "Invalid current constraints\n");
1005                 return -EINVAL;
1006         }
1007
1008         if (!ops->set_current_limit || !ops->get_current_limit) {
1009                 rdev_warn(rdev, "Operation of current configuration missing\n");
1010                 return 0;
1011         }
1012
1013         /* Set regulator current in constraints range */
1014         ret = ops->set_current_limit(rdev, constraints->min_uA,
1015                         constraints->max_uA);
1016         if (ret < 0) {
1017                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1018                 return ret;
1019         }
1020
1021         return 0;
1022 }
1023
1024 static int _regulator_do_enable(struct regulator_dev *rdev);
1025
1026 /**
1027  * set_machine_constraints - sets regulator constraints
1028  * @rdev: regulator source
1029  * @constraints: constraints to apply
1030  *
1031  * Allows platform initialisation code to define and constrain
1032  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1033  * Constraints *must* be set by platform code in order for some
1034  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1035  * set_mode.
1036  */
1037 static int set_machine_constraints(struct regulator_dev *rdev,
1038         const struct regulation_constraints *constraints)
1039 {
1040         int ret = 0;
1041         const struct regulator_ops *ops = rdev->desc->ops;
1042
1043         if (constraints)
1044                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1045                                             GFP_KERNEL);
1046         else
1047                 rdev->constraints = kzalloc(sizeof(*constraints),
1048                                             GFP_KERNEL);
1049         if (!rdev->constraints)
1050                 return -ENOMEM;
1051
1052         ret = machine_constraints_voltage(rdev, rdev->constraints);
1053         if (ret != 0)
1054                 return ret;
1055
1056         ret = machine_constraints_current(rdev, rdev->constraints);
1057         if (ret != 0)
1058                 return ret;
1059
1060         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1061                 ret = ops->set_input_current_limit(rdev,
1062                                                    rdev->constraints->ilim_uA);
1063                 if (ret < 0) {
1064                         rdev_err(rdev, "failed to set input limit\n");
1065                         return ret;
1066                 }
1067         }
1068
1069         /* do we need to setup our suspend state */
1070         if (rdev->constraints->initial_state) {
1071                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1072                 if (ret < 0) {
1073                         rdev_err(rdev, "failed to set suspend state\n");
1074                         return ret;
1075                 }
1076         }
1077
1078         if (rdev->constraints->initial_mode) {
1079                 if (!ops->set_mode) {
1080                         rdev_err(rdev, "no set_mode operation\n");
1081                         return -EINVAL;
1082                 }
1083
1084                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1085                 if (ret < 0) {
1086                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1087                         return ret;
1088                 }
1089         }
1090
1091         /* If the constraints say the regulator should be on at this point
1092          * and we have control then make sure it is enabled.
1093          */
1094         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1095                 ret = _regulator_do_enable(rdev);
1096                 if (ret < 0 && ret != -EINVAL) {
1097                         rdev_err(rdev, "failed to enable\n");
1098                         return ret;
1099                 }
1100         }
1101
1102         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1103                 && ops->set_ramp_delay) {
1104                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1105                 if (ret < 0) {
1106                         rdev_err(rdev, "failed to set ramp_delay\n");
1107                         return ret;
1108                 }
1109         }
1110
1111         if (rdev->constraints->pull_down && ops->set_pull_down) {
1112                 ret = ops->set_pull_down(rdev);
1113                 if (ret < 0) {
1114                         rdev_err(rdev, "failed to set pull down\n");
1115                         return ret;
1116                 }
1117         }
1118
1119         if (rdev->constraints->soft_start && ops->set_soft_start) {
1120                 ret = ops->set_soft_start(rdev);
1121                 if (ret < 0) {
1122                         rdev_err(rdev, "failed to set soft start\n");
1123                         return ret;
1124                 }
1125         }
1126
1127         if (rdev->constraints->over_current_protection
1128                 && ops->set_over_current_protection) {
1129                 ret = ops->set_over_current_protection(rdev);
1130                 if (ret < 0) {
1131                         rdev_err(rdev, "failed to set over current protection\n");
1132                         return ret;
1133                 }
1134         }
1135
1136         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1137                 bool ad_state = (rdev->constraints->active_discharge ==
1138                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1139
1140                 ret = ops->set_active_discharge(rdev, ad_state);
1141                 if (ret < 0) {
1142                         rdev_err(rdev, "failed to set active discharge\n");
1143                         return ret;
1144                 }
1145         }
1146
1147         print_constraints(rdev);
1148         return 0;
1149 }
1150
1151 /**
1152  * set_supply - set regulator supply regulator
1153  * @rdev: regulator name
1154  * @supply_rdev: supply regulator name
1155  *
1156  * Called by platform initialisation code to set the supply regulator for this
1157  * regulator. This ensures that a regulators supply will also be enabled by the
1158  * core if it's child is enabled.
1159  */
1160 static int set_supply(struct regulator_dev *rdev,
1161                       struct regulator_dev *supply_rdev)
1162 {
1163         int err;
1164
1165         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166
1167         if (!try_module_get(supply_rdev->owner))
1168                 return -ENODEV;
1169
1170         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171         if (rdev->supply == NULL) {
1172                 err = -ENOMEM;
1173                 return err;
1174         }
1175         supply_rdev->open_count++;
1176
1177         return 0;
1178 }
1179
1180 /**
1181  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182  * @rdev:         regulator source
1183  * @consumer_dev_name: dev_name() string for device supply applies to
1184  * @supply:       symbolic name for supply
1185  *
1186  * Allows platform initialisation code to map physical regulator
1187  * sources to symbolic names for supplies for use by devices.  Devices
1188  * should use these symbolic names to request regulators, avoiding the
1189  * need to provide board-specific regulator names as platform data.
1190  */
1191 static int set_consumer_device_supply(struct regulator_dev *rdev,
1192                                       const char *consumer_dev_name,
1193                                       const char *supply)
1194 {
1195         struct regulator_map *node;
1196         int has_dev;
1197
1198         if (supply == NULL)
1199                 return -EINVAL;
1200
1201         if (consumer_dev_name != NULL)
1202                 has_dev = 1;
1203         else
1204                 has_dev = 0;
1205
1206         list_for_each_entry(node, &regulator_map_list, list) {
1207                 if (node->dev_name && consumer_dev_name) {
1208                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209                                 continue;
1210                 } else if (node->dev_name || consumer_dev_name) {
1211                         continue;
1212                 }
1213
1214                 if (strcmp(node->supply, supply) != 0)
1215                         continue;
1216
1217                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218                          consumer_dev_name,
1219                          dev_name(&node->regulator->dev),
1220                          node->regulator->desc->name,
1221                          supply,
1222                          dev_name(&rdev->dev), rdev_get_name(rdev));
1223                 return -EBUSY;
1224         }
1225
1226         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227         if (node == NULL)
1228                 return -ENOMEM;
1229
1230         node->regulator = rdev;
1231         node->supply = supply;
1232
1233         if (has_dev) {
1234                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235                 if (node->dev_name == NULL) {
1236                         kfree(node);
1237                         return -ENOMEM;
1238                 }
1239         }
1240
1241         list_add(&node->list, &regulator_map_list);
1242         return 0;
1243 }
1244
1245 static void unset_regulator_supplies(struct regulator_dev *rdev)
1246 {
1247         struct regulator_map *node, *n;
1248
1249         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250                 if (rdev == node->regulator) {
1251                         list_del(&node->list);
1252                         kfree(node->dev_name);
1253                         kfree(node);
1254                 }
1255         }
1256 }
1257
1258 #ifdef CONFIG_DEBUG_FS
1259 static ssize_t constraint_flags_read_file(struct file *file,
1260                                           char __user *user_buf,
1261                                           size_t count, loff_t *ppos)
1262 {
1263         const struct regulator *regulator = file->private_data;
1264         const struct regulation_constraints *c = regulator->rdev->constraints;
1265         char *buf;
1266         ssize_t ret;
1267
1268         if (!c)
1269                 return 0;
1270
1271         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1272         if (!buf)
1273                 return -ENOMEM;
1274
1275         ret = snprintf(buf, PAGE_SIZE,
1276                         "always_on: %u\n"
1277                         "boot_on: %u\n"
1278                         "apply_uV: %u\n"
1279                         "ramp_disable: %u\n"
1280                         "soft_start: %u\n"
1281                         "pull_down: %u\n"
1282                         "over_current_protection: %u\n",
1283                         c->always_on,
1284                         c->boot_on,
1285                         c->apply_uV,
1286                         c->ramp_disable,
1287                         c->soft_start,
1288                         c->pull_down,
1289                         c->over_current_protection);
1290
1291         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1292         kfree(buf);
1293
1294         return ret;
1295 }
1296
1297 #endif
1298
1299 static const struct file_operations constraint_flags_fops = {
1300 #ifdef CONFIG_DEBUG_FS
1301         .open = simple_open,
1302         .read = constraint_flags_read_file,
1303         .llseek = default_llseek,
1304 #endif
1305 };
1306
1307 #define REG_STR_SIZE    64
1308
1309 static struct regulator *create_regulator(struct regulator_dev *rdev,
1310                                           struct device *dev,
1311                                           const char *supply_name)
1312 {
1313         struct regulator *regulator;
1314         char buf[REG_STR_SIZE];
1315         int err, size;
1316
1317         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1318         if (regulator == NULL)
1319                 return NULL;
1320
1321         mutex_lock(&rdev->mutex);
1322         regulator->rdev = rdev;
1323         list_add(&regulator->list, &rdev->consumer_list);
1324
1325         if (dev) {
1326                 regulator->dev = dev;
1327
1328                 /* Add a link to the device sysfs entry */
1329                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1330                                  dev->kobj.name, supply_name);
1331                 if (size >= REG_STR_SIZE)
1332                         goto overflow_err;
1333
1334                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1335                 if (regulator->supply_name == NULL)
1336                         goto overflow_err;
1337
1338                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1339                                         buf);
1340                 if (err) {
1341                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1342                                   dev->kobj.name, err);
1343                         /* non-fatal */
1344                 }
1345         } else {
1346                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1347                 if (regulator->supply_name == NULL)
1348                         goto overflow_err;
1349         }
1350
1351         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1352                                                 rdev->debugfs);
1353         if (!regulator->debugfs) {
1354                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1355         } else {
1356                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1357                                    &regulator->uA_load);
1358                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1359                                    &regulator->min_uV);
1360                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1361                                    &regulator->max_uV);
1362                 debugfs_create_file("constraint_flags", 0444,
1363                                     regulator->debugfs, regulator,
1364                                     &constraint_flags_fops);
1365         }
1366
1367         /*
1368          * Check now if the regulator is an always on regulator - if
1369          * it is then we don't need to do nearly so much work for
1370          * enable/disable calls.
1371          */
1372         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1373             _regulator_is_enabled(rdev))
1374                 regulator->always_on = true;
1375
1376         mutex_unlock(&rdev->mutex);
1377         return regulator;
1378 overflow_err:
1379         list_del(&regulator->list);
1380         kfree(regulator);
1381         mutex_unlock(&rdev->mutex);
1382         return NULL;
1383 }
1384
1385 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1386 {
1387         if (rdev->constraints && rdev->constraints->enable_time)
1388                 return rdev->constraints->enable_time;
1389         if (!rdev->desc->ops->enable_time)
1390                 return rdev->desc->enable_time;
1391         return rdev->desc->ops->enable_time(rdev);
1392 }
1393
1394 static struct regulator_supply_alias *regulator_find_supply_alias(
1395                 struct device *dev, const char *supply)
1396 {
1397         struct regulator_supply_alias *map;
1398
1399         list_for_each_entry(map, &regulator_supply_alias_list, list)
1400                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1401                         return map;
1402
1403         return NULL;
1404 }
1405
1406 static void regulator_supply_alias(struct device **dev, const char **supply)
1407 {
1408         struct regulator_supply_alias *map;
1409
1410         map = regulator_find_supply_alias(*dev, *supply);
1411         if (map) {
1412                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1413                                 *supply, map->alias_supply,
1414                                 dev_name(map->alias_dev));
1415                 *dev = map->alias_dev;
1416                 *supply = map->alias_supply;
1417         }
1418 }
1419
1420 static int of_node_match(struct device *dev, const void *data)
1421 {
1422         return dev->of_node == data;
1423 }
1424
1425 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1426 {
1427         struct device *dev;
1428
1429         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1430
1431         return dev ? dev_to_rdev(dev) : NULL;
1432 }
1433
1434 static int regulator_match(struct device *dev, const void *data)
1435 {
1436         struct regulator_dev *r = dev_to_rdev(dev);
1437
1438         return strcmp(rdev_get_name(r), data) == 0;
1439 }
1440
1441 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1442 {
1443         struct device *dev;
1444
1445         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1446
1447         return dev ? dev_to_rdev(dev) : NULL;
1448 }
1449
1450 /**
1451  * regulator_dev_lookup - lookup a regulator device.
1452  * @dev: device for regulator "consumer".
1453  * @supply: Supply name or regulator ID.
1454  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1455  * lookup could succeed in the future.
1456  *
1457  * If successful, returns a struct regulator_dev that corresponds to the name
1458  * @supply and with the embedded struct device refcount incremented by one.
1459  * The refcount must be dropped by calling put_device().
1460  * On failure one of the following ERR-PTR-encoded values is returned:
1461  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1462  * in the future.
1463  */
1464 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1465                                                   const char *supply)
1466 {
1467         struct regulator_dev *r;
1468         struct device_node *node;
1469         struct regulator_map *map;
1470         const char *devname = NULL;
1471
1472         regulator_supply_alias(&dev, &supply);
1473
1474         /* first do a dt based lookup */
1475         if (dev && dev->of_node) {
1476                 node = of_get_regulator(dev, supply);
1477                 if (node) {
1478                         r = of_find_regulator_by_node(node);
1479                         if (r)
1480                                 return r;
1481
1482                         /*
1483                          * We have a node, but there is no device.
1484                          * assume it has not registered yet.
1485                          */
1486                         return ERR_PTR(-EPROBE_DEFER);
1487                 }
1488         }
1489
1490         /* if not found, try doing it non-dt way */
1491         if (dev)
1492                 devname = dev_name(dev);
1493
1494         r = regulator_lookup_by_name(supply);
1495         if (r)
1496                 return r;
1497
1498         mutex_lock(&regulator_list_mutex);
1499         list_for_each_entry(map, &regulator_map_list, list) {
1500                 /* If the mapping has a device set up it must match */
1501                 if (map->dev_name &&
1502                     (!devname || strcmp(map->dev_name, devname)))
1503                         continue;
1504
1505                 if (strcmp(map->supply, supply) == 0 &&
1506                     get_device(&map->regulator->dev)) {
1507                         r = map->regulator;
1508                         break;
1509                 }
1510         }
1511         mutex_unlock(&regulator_list_mutex);
1512
1513         if (r)
1514                 return r;
1515
1516         return ERR_PTR(-ENODEV);
1517 }
1518
1519 static int regulator_resolve_supply(struct regulator_dev *rdev)
1520 {
1521         struct regulator_dev *r;
1522         struct device *dev = rdev->dev.parent;
1523         int ret;
1524
1525         /* No supply to resovle? */
1526         if (!rdev->supply_name)
1527                 return 0;
1528
1529         /* Supply already resolved? */
1530         if (rdev->supply)
1531                 return 0;
1532
1533         r = regulator_dev_lookup(dev, rdev->supply_name);
1534         if (IS_ERR(r)) {
1535                 ret = PTR_ERR(r);
1536
1537                 if (ret == -ENODEV) {
1538                         /*
1539                          * No supply was specified for this regulator and
1540                          * there will never be one.
1541                          */
1542                         return 0;
1543                 }
1544
1545                 /* Did the lookup explicitly defer for us? */
1546                 if (ret == -EPROBE_DEFER)
1547                         return ret;
1548
1549                 if (have_full_constraints()) {
1550                         r = dummy_regulator_rdev;
1551                         get_device(&r->dev);
1552                 } else {
1553                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1554                                 rdev->supply_name, rdev->desc->name);
1555                         return -EPROBE_DEFER;
1556                 }
1557         }
1558
1559         /*
1560          * If the supply's parent device is not the same as the
1561          * regulator's parent device, then ensure the parent device
1562          * is bound before we resolve the supply, in case the parent
1563          * device get probe deferred and unregisters the supply.
1564          */
1565         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1566                 if (!device_is_bound(r->dev.parent)) {
1567                         put_device(&r->dev);
1568                         return -EPROBE_DEFER;
1569                 }
1570         }
1571
1572         /* Recursively resolve the supply of the supply */
1573         ret = regulator_resolve_supply(r);
1574         if (ret < 0) {
1575                 put_device(&r->dev);
1576                 return ret;
1577         }
1578
1579         ret = set_supply(rdev, r);
1580         if (ret < 0) {
1581                 put_device(&r->dev);
1582                 return ret;
1583         }
1584
1585         /* Cascade always-on state to supply */
1586         if (_regulator_is_enabled(rdev)) {
1587                 ret = regulator_enable(rdev->supply);
1588                 if (ret < 0) {
1589                         _regulator_put(rdev->supply);
1590                         rdev->supply = NULL;
1591                         return ret;
1592                 }
1593         }
1594
1595         return 0;
1596 }
1597
1598 /* Internal regulator request function */
1599 struct regulator *_regulator_get(struct device *dev, const char *id,
1600                                  enum regulator_get_type get_type)
1601 {
1602         struct regulator_dev *rdev;
1603         struct regulator *regulator;
1604         const char *devname = dev ? dev_name(dev) : "deviceless";
1605         int ret;
1606
1607         if (get_type >= MAX_GET_TYPE) {
1608                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1609                 return ERR_PTR(-EINVAL);
1610         }
1611
1612         if (id == NULL) {
1613                 pr_err("get() with no identifier\n");
1614                 return ERR_PTR(-EINVAL);
1615         }
1616
1617         rdev = regulator_dev_lookup(dev, id);
1618         if (IS_ERR(rdev)) {
1619                 ret = PTR_ERR(rdev);
1620
1621                 /*
1622                  * If regulator_dev_lookup() fails with error other
1623                  * than -ENODEV our job here is done, we simply return it.
1624                  */
1625                 if (ret != -ENODEV)
1626                         return ERR_PTR(ret);
1627
1628                 if (!have_full_constraints()) {
1629                         dev_warn(dev,
1630                                  "incomplete constraints, dummy supplies not allowed\n");
1631                         return ERR_PTR(-ENODEV);
1632                 }
1633
1634                 switch (get_type) {
1635                 case NORMAL_GET:
1636                         /*
1637                          * Assume that a regulator is physically present and
1638                          * enabled, even if it isn't hooked up, and just
1639                          * provide a dummy.
1640                          */
1641                         dev_warn(dev,
1642                                  "%s supply %s not found, using dummy regulator\n",
1643                                  devname, id);
1644                         rdev = dummy_regulator_rdev;
1645                         get_device(&rdev->dev);
1646                         break;
1647
1648                 case EXCLUSIVE_GET:
1649                         dev_warn(dev,
1650                                  "dummy supplies not allowed for exclusive requests\n");
1651                         /* fall through */
1652
1653                 default:
1654                         return ERR_PTR(-ENODEV);
1655                 }
1656         }
1657
1658         if (rdev->exclusive) {
1659                 regulator = ERR_PTR(-EPERM);
1660                 put_device(&rdev->dev);
1661                 return regulator;
1662         }
1663
1664         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1665                 regulator = ERR_PTR(-EBUSY);
1666                 put_device(&rdev->dev);
1667                 return regulator;
1668         }
1669
1670         ret = regulator_resolve_supply(rdev);
1671         if (ret < 0) {
1672                 regulator = ERR_PTR(ret);
1673                 put_device(&rdev->dev);
1674                 return regulator;
1675         }
1676
1677         if (!try_module_get(rdev->owner)) {
1678                 regulator = ERR_PTR(-EPROBE_DEFER);
1679                 put_device(&rdev->dev);
1680                 return regulator;
1681         }
1682
1683         regulator = create_regulator(rdev, dev, id);
1684         if (regulator == NULL) {
1685                 regulator = ERR_PTR(-ENOMEM);
1686                 put_device(&rdev->dev);
1687                 module_put(rdev->owner);
1688                 return regulator;
1689         }
1690
1691         rdev->open_count++;
1692         if (get_type == EXCLUSIVE_GET) {
1693                 rdev->exclusive = 1;
1694
1695                 ret = _regulator_is_enabled(rdev);
1696                 if (ret > 0)
1697                         rdev->use_count = 1;
1698                 else
1699                         rdev->use_count = 0;
1700         }
1701
1702         return regulator;
1703 }
1704
1705 /**
1706  * regulator_get - lookup and obtain a reference to a regulator.
1707  * @dev: device for regulator "consumer"
1708  * @id: Supply name or regulator ID.
1709  *
1710  * Returns a struct regulator corresponding to the regulator producer,
1711  * or IS_ERR() condition containing errno.
1712  *
1713  * Use of supply names configured via regulator_set_device_supply() is
1714  * strongly encouraged.  It is recommended that the supply name used
1715  * should match the name used for the supply and/or the relevant
1716  * device pins in the datasheet.
1717  */
1718 struct regulator *regulator_get(struct device *dev, const char *id)
1719 {
1720         return _regulator_get(dev, id, NORMAL_GET);
1721 }
1722 EXPORT_SYMBOL_GPL(regulator_get);
1723
1724 /**
1725  * regulator_get_exclusive - obtain exclusive access to a regulator.
1726  * @dev: device for regulator "consumer"
1727  * @id: Supply name or regulator ID.
1728  *
1729  * Returns a struct regulator corresponding to the regulator producer,
1730  * or IS_ERR() condition containing errno.  Other consumers will be
1731  * unable to obtain this regulator while this reference is held and the
1732  * use count for the regulator will be initialised to reflect the current
1733  * state of the regulator.
1734  *
1735  * This is intended for use by consumers which cannot tolerate shared
1736  * use of the regulator such as those which need to force the
1737  * regulator off for correct operation of the hardware they are
1738  * controlling.
1739  *
1740  * Use of supply names configured via regulator_set_device_supply() is
1741  * strongly encouraged.  It is recommended that the supply name used
1742  * should match the name used for the supply and/or the relevant
1743  * device pins in the datasheet.
1744  */
1745 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1746 {
1747         return _regulator_get(dev, id, EXCLUSIVE_GET);
1748 }
1749 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1750
1751 /**
1752  * regulator_get_optional - obtain optional access to a regulator.
1753  * @dev: device for regulator "consumer"
1754  * @id: Supply name or regulator ID.
1755  *
1756  * Returns a struct regulator corresponding to the regulator producer,
1757  * or IS_ERR() condition containing errno.
1758  *
1759  * This is intended for use by consumers for devices which can have
1760  * some supplies unconnected in normal use, such as some MMC devices.
1761  * It can allow the regulator core to provide stub supplies for other
1762  * supplies requested using normal regulator_get() calls without
1763  * disrupting the operation of drivers that can handle absent
1764  * supplies.
1765  *
1766  * Use of supply names configured via regulator_set_device_supply() is
1767  * strongly encouraged.  It is recommended that the supply name used
1768  * should match the name used for the supply and/or the relevant
1769  * device pins in the datasheet.
1770  */
1771 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1772 {
1773         return _regulator_get(dev, id, OPTIONAL_GET);
1774 }
1775 EXPORT_SYMBOL_GPL(regulator_get_optional);
1776
1777 /* regulator_list_mutex lock held by regulator_put() */
1778 static void _regulator_put(struct regulator *regulator)
1779 {
1780         struct regulator_dev *rdev;
1781
1782         if (IS_ERR_OR_NULL(regulator))
1783                 return;
1784
1785         lockdep_assert_held_once(&regulator_list_mutex);
1786
1787         rdev = regulator->rdev;
1788
1789         debugfs_remove_recursive(regulator->debugfs);
1790
1791         /* remove any sysfs entries */
1792         if (regulator->dev)
1793                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1794         mutex_lock(&rdev->mutex);
1795         list_del(&regulator->list);
1796
1797         rdev->open_count--;
1798         rdev->exclusive = 0;
1799         put_device(&rdev->dev);
1800         mutex_unlock(&rdev->mutex);
1801
1802         kfree(regulator->supply_name);
1803         kfree(regulator);
1804
1805         module_put(rdev->owner);
1806 }
1807
1808 /**
1809  * regulator_put - "free" the regulator source
1810  * @regulator: regulator source
1811  *
1812  * Note: drivers must ensure that all regulator_enable calls made on this
1813  * regulator source are balanced by regulator_disable calls prior to calling
1814  * this function.
1815  */
1816 void regulator_put(struct regulator *regulator)
1817 {
1818         mutex_lock(&regulator_list_mutex);
1819         _regulator_put(regulator);
1820         mutex_unlock(&regulator_list_mutex);
1821 }
1822 EXPORT_SYMBOL_GPL(regulator_put);
1823
1824 /**
1825  * regulator_register_supply_alias - Provide device alias for supply lookup
1826  *
1827  * @dev: device that will be given as the regulator "consumer"
1828  * @id: Supply name or regulator ID
1829  * @alias_dev: device that should be used to lookup the supply
1830  * @alias_id: Supply name or regulator ID that should be used to lookup the
1831  * supply
1832  *
1833  * All lookups for id on dev will instead be conducted for alias_id on
1834  * alias_dev.
1835  */
1836 int regulator_register_supply_alias(struct device *dev, const char *id,
1837                                     struct device *alias_dev,
1838                                     const char *alias_id)
1839 {
1840         struct regulator_supply_alias *map;
1841
1842         map = regulator_find_supply_alias(dev, id);
1843         if (map)
1844                 return -EEXIST;
1845
1846         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1847         if (!map)
1848                 return -ENOMEM;
1849
1850         map->src_dev = dev;
1851         map->src_supply = id;
1852         map->alias_dev = alias_dev;
1853         map->alias_supply = alias_id;
1854
1855         list_add(&map->list, &regulator_supply_alias_list);
1856
1857         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1858                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1859
1860         return 0;
1861 }
1862 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1863
1864 /**
1865  * regulator_unregister_supply_alias - Remove device alias
1866  *
1867  * @dev: device that will be given as the regulator "consumer"
1868  * @id: Supply name or regulator ID
1869  *
1870  * Remove a lookup alias if one exists for id on dev.
1871  */
1872 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1873 {
1874         struct regulator_supply_alias *map;
1875
1876         map = regulator_find_supply_alias(dev, id);
1877         if (map) {
1878                 list_del(&map->list);
1879                 kfree(map);
1880         }
1881 }
1882 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1883
1884 /**
1885  * regulator_bulk_register_supply_alias - register multiple aliases
1886  *
1887  * @dev: device that will be given as the regulator "consumer"
1888  * @id: List of supply names or regulator IDs
1889  * @alias_dev: device that should be used to lookup the supply
1890  * @alias_id: List of supply names or regulator IDs that should be used to
1891  * lookup the supply
1892  * @num_id: Number of aliases to register
1893  *
1894  * @return 0 on success, an errno on failure.
1895  *
1896  * This helper function allows drivers to register several supply
1897  * aliases in one operation.  If any of the aliases cannot be
1898  * registered any aliases that were registered will be removed
1899  * before returning to the caller.
1900  */
1901 int regulator_bulk_register_supply_alias(struct device *dev,
1902                                          const char *const *id,
1903                                          struct device *alias_dev,
1904                                          const char *const *alias_id,
1905                                          int num_id)
1906 {
1907         int i;
1908         int ret;
1909
1910         for (i = 0; i < num_id; ++i) {
1911                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1912                                                       alias_id[i]);
1913                 if (ret < 0)
1914                         goto err;
1915         }
1916
1917         return 0;
1918
1919 err:
1920         dev_err(dev,
1921                 "Failed to create supply alias %s,%s -> %s,%s\n",
1922                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1923
1924         while (--i >= 0)
1925                 regulator_unregister_supply_alias(dev, id[i]);
1926
1927         return ret;
1928 }
1929 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1930
1931 /**
1932  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1933  *
1934  * @dev: device that will be given as the regulator "consumer"
1935  * @id: List of supply names or regulator IDs
1936  * @num_id: Number of aliases to unregister
1937  *
1938  * This helper function allows drivers to unregister several supply
1939  * aliases in one operation.
1940  */
1941 void regulator_bulk_unregister_supply_alias(struct device *dev,
1942                                             const char *const *id,
1943                                             int num_id)
1944 {
1945         int i;
1946
1947         for (i = 0; i < num_id; ++i)
1948                 regulator_unregister_supply_alias(dev, id[i]);
1949 }
1950 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1951
1952
1953 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1954 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1955                                 const struct regulator_config *config)
1956 {
1957         struct regulator_enable_gpio *pin;
1958         struct gpio_desc *gpiod;
1959         int ret;
1960
1961         gpiod = gpio_to_desc(config->ena_gpio);
1962
1963         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1964                 if (pin->gpiod == gpiod) {
1965                         rdev_dbg(rdev, "GPIO %d is already used\n",
1966                                 config->ena_gpio);
1967                         goto update_ena_gpio_to_rdev;
1968                 }
1969         }
1970
1971         ret = gpio_request_one(config->ena_gpio,
1972                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1973                                 rdev_get_name(rdev));
1974         if (ret)
1975                 return ret;
1976
1977         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1978         if (pin == NULL) {
1979                 gpio_free(config->ena_gpio);
1980                 return -ENOMEM;
1981         }
1982
1983         pin->gpiod = gpiod;
1984         pin->ena_gpio_invert = config->ena_gpio_invert;
1985         list_add(&pin->list, &regulator_ena_gpio_list);
1986
1987 update_ena_gpio_to_rdev:
1988         pin->request_count++;
1989         rdev->ena_pin = pin;
1990         return 0;
1991 }
1992
1993 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1994 {
1995         struct regulator_enable_gpio *pin, *n;
1996
1997         if (!rdev->ena_pin)
1998                 return;
1999
2000         /* Free the GPIO only in case of no use */
2001         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2002                 if (pin->gpiod == rdev->ena_pin->gpiod) {
2003                         if (pin->request_count <= 1) {
2004                                 pin->request_count = 0;
2005                                 gpiod_put(pin->gpiod);
2006                                 list_del(&pin->list);
2007                                 kfree(pin);
2008                                 rdev->ena_pin = NULL;
2009                                 return;
2010                         } else {
2011                                 pin->request_count--;
2012                         }
2013                 }
2014         }
2015 }
2016
2017 /**
2018  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2019  * @rdev: regulator_dev structure
2020  * @enable: enable GPIO at initial use?
2021  *
2022  * GPIO is enabled in case of initial use. (enable_count is 0)
2023  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2024  */
2025 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2026 {
2027         struct regulator_enable_gpio *pin = rdev->ena_pin;
2028
2029         if (!pin)
2030                 return -EINVAL;
2031
2032         if (enable) {
2033                 /* Enable GPIO at initial use */
2034                 if (pin->enable_count == 0)
2035                         gpiod_set_value_cansleep(pin->gpiod,
2036                                                  !pin->ena_gpio_invert);
2037
2038                 pin->enable_count++;
2039         } else {
2040                 if (pin->enable_count > 1) {
2041                         pin->enable_count--;
2042                         return 0;
2043                 }
2044
2045                 /* Disable GPIO if not used */
2046                 if (pin->enable_count <= 1) {
2047                         gpiod_set_value_cansleep(pin->gpiod,
2048                                                  pin->ena_gpio_invert);
2049                         pin->enable_count = 0;
2050                 }
2051         }
2052
2053         return 0;
2054 }
2055
2056 /**
2057  * _regulator_enable_delay - a delay helper function
2058  * @delay: time to delay in microseconds
2059  *
2060  * Delay for the requested amount of time as per the guidelines in:
2061  *
2062  *     Documentation/timers/timers-howto.txt
2063  *
2064  * The assumption here is that regulators will never be enabled in
2065  * atomic context and therefore sleeping functions can be used.
2066  */
2067 static void _regulator_enable_delay(unsigned int delay)
2068 {
2069         unsigned int ms = delay / 1000;
2070         unsigned int us = delay % 1000;
2071
2072         if (ms > 0) {
2073                 /*
2074                  * For small enough values, handle super-millisecond
2075                  * delays in the usleep_range() call below.
2076                  */
2077                 if (ms < 20)
2078                         us += ms * 1000;
2079                 else
2080                         msleep(ms);
2081         }
2082
2083         /*
2084          * Give the scheduler some room to coalesce with any other
2085          * wakeup sources. For delays shorter than 10 us, don't even
2086          * bother setting up high-resolution timers and just busy-
2087          * loop.
2088          */
2089         if (us >= 10)
2090                 usleep_range(us, us + 100);
2091         else
2092                 udelay(us);
2093 }
2094
2095 static int _regulator_do_enable(struct regulator_dev *rdev)
2096 {
2097         int ret, delay;
2098
2099         /* Query before enabling in case configuration dependent.  */
2100         ret = _regulator_get_enable_time(rdev);
2101         if (ret >= 0) {
2102                 delay = ret;
2103         } else {
2104                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2105                 delay = 0;
2106         }
2107
2108         trace_regulator_enable(rdev_get_name(rdev));
2109
2110         if (rdev->desc->off_on_delay) {
2111                 /* if needed, keep a distance of off_on_delay from last time
2112                  * this regulator was disabled.
2113                  */
2114                 unsigned long start_jiffy = jiffies;
2115                 unsigned long intended, max_delay, remaining;
2116
2117                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2118                 intended = rdev->last_off_jiffy + max_delay;
2119
2120                 if (time_before(start_jiffy, intended)) {
2121                         /* calc remaining jiffies to deal with one-time
2122                          * timer wrapping.
2123                          * in case of multiple timer wrapping, either it can be
2124                          * detected by out-of-range remaining, or it cannot be
2125                          * detected and we gets a panelty of
2126                          * _regulator_enable_delay().
2127                          */
2128                         remaining = intended - start_jiffy;
2129                         if (remaining <= max_delay)
2130                                 _regulator_enable_delay(
2131                                                 jiffies_to_usecs(remaining));
2132                 }
2133         }
2134
2135         if (rdev->ena_pin) {
2136                 if (!rdev->ena_gpio_state) {
2137                         ret = regulator_ena_gpio_ctrl(rdev, true);
2138                         if (ret < 0)
2139                                 return ret;
2140                         rdev->ena_gpio_state = 1;
2141                 }
2142         } else if (rdev->desc->ops->enable) {
2143                 ret = rdev->desc->ops->enable(rdev);
2144                 if (ret < 0)
2145                         return ret;
2146         } else {
2147                 return -EINVAL;
2148         }
2149
2150         /* Allow the regulator to ramp; it would be useful to extend
2151          * this for bulk operations so that the regulators can ramp
2152          * together.  */
2153         trace_regulator_enable_delay(rdev_get_name(rdev));
2154
2155         _regulator_enable_delay(delay);
2156
2157         trace_regulator_enable_complete(rdev_get_name(rdev));
2158
2159         return 0;
2160 }
2161
2162 /* locks held by regulator_enable() */
2163 static int _regulator_enable(struct regulator_dev *rdev)
2164 {
2165         int ret;
2166
2167         lockdep_assert_held_once(&rdev->mutex);
2168
2169         /* check voltage and requested load before enabling */
2170         if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2171                 drms_uA_update(rdev);
2172
2173         if (rdev->use_count == 0) {
2174                 /* The regulator may on if it's not switchable or left on */
2175                 ret = _regulator_is_enabled(rdev);
2176                 if (ret == -EINVAL || ret == 0) {
2177                         if (!regulator_ops_is_valid(rdev,
2178                                         REGULATOR_CHANGE_STATUS))
2179                                 return -EPERM;
2180
2181                         ret = _regulator_do_enable(rdev);
2182                         if (ret < 0)
2183                                 return ret;
2184
2185                 } else if (ret < 0) {
2186                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2187                         return ret;
2188                 }
2189                 /* Fallthrough on positive return values - already enabled */
2190         }
2191
2192         rdev->use_count++;
2193
2194         return 0;
2195 }
2196
2197 /**
2198  * regulator_enable - enable regulator output
2199  * @regulator: regulator source
2200  *
2201  * Request that the regulator be enabled with the regulator output at
2202  * the predefined voltage or current value.  Calls to regulator_enable()
2203  * must be balanced with calls to regulator_disable().
2204  *
2205  * NOTE: the output value can be set by other drivers, boot loader or may be
2206  * hardwired in the regulator.
2207  */
2208 int regulator_enable(struct regulator *regulator)
2209 {
2210         struct regulator_dev *rdev = regulator->rdev;
2211         int ret = 0;
2212
2213         if (regulator->always_on)
2214                 return 0;
2215
2216         if (rdev->supply) {
2217                 ret = regulator_enable(rdev->supply);
2218                 if (ret != 0)
2219                         return ret;
2220         }
2221
2222         mutex_lock(&rdev->mutex);
2223         ret = _regulator_enable(rdev);
2224         mutex_unlock(&rdev->mutex);
2225
2226         if (ret != 0 && rdev->supply)
2227                 regulator_disable(rdev->supply);
2228
2229         return ret;
2230 }
2231 EXPORT_SYMBOL_GPL(regulator_enable);
2232
2233 static int _regulator_do_disable(struct regulator_dev *rdev)
2234 {
2235         int ret;
2236
2237         trace_regulator_disable(rdev_get_name(rdev));
2238
2239         if (rdev->ena_pin) {
2240                 if (rdev->ena_gpio_state) {
2241                         ret = regulator_ena_gpio_ctrl(rdev, false);
2242                         if (ret < 0)
2243                                 return ret;
2244                         rdev->ena_gpio_state = 0;
2245                 }
2246
2247         } else if (rdev->desc->ops->disable) {
2248                 ret = rdev->desc->ops->disable(rdev);
2249                 if (ret != 0)
2250                         return ret;
2251         }
2252
2253         /* cares about last_off_jiffy only if off_on_delay is required by
2254          * device.
2255          */
2256         if (rdev->desc->off_on_delay)
2257                 rdev->last_off_jiffy = jiffies;
2258
2259         trace_regulator_disable_complete(rdev_get_name(rdev));
2260
2261         return 0;
2262 }
2263
2264 /* locks held by regulator_disable() */
2265 static int _regulator_disable(struct regulator_dev *rdev)
2266 {
2267         int ret = 0;
2268
2269         lockdep_assert_held_once(&rdev->mutex);
2270
2271         if (WARN(rdev->use_count <= 0,
2272                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2273                 return -EIO;
2274
2275         /* are we the last user and permitted to disable ? */
2276         if (rdev->use_count == 1 &&
2277             (rdev->constraints && !rdev->constraints->always_on)) {
2278
2279                 /* we are last user */
2280                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2281                         ret = _notifier_call_chain(rdev,
2282                                                    REGULATOR_EVENT_PRE_DISABLE,
2283                                                    NULL);
2284                         if (ret & NOTIFY_STOP_MASK)
2285                                 return -EINVAL;
2286
2287                         ret = _regulator_do_disable(rdev);
2288                         if (ret < 0) {
2289                                 rdev_err(rdev, "failed to disable\n");
2290                                 _notifier_call_chain(rdev,
2291                                                 REGULATOR_EVENT_ABORT_DISABLE,
2292                                                 NULL);
2293                                 return ret;
2294                         }
2295                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2296                                         NULL);
2297                 }
2298
2299                 rdev->use_count = 0;
2300         } else if (rdev->use_count > 1) {
2301                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2302                         drms_uA_update(rdev);
2303
2304                 rdev->use_count--;
2305         }
2306
2307         return ret;
2308 }
2309
2310 /**
2311  * regulator_disable - disable regulator output
2312  * @regulator: regulator source
2313  *
2314  * Disable the regulator output voltage or current.  Calls to
2315  * regulator_enable() must be balanced with calls to
2316  * regulator_disable().
2317  *
2318  * NOTE: this will only disable the regulator output if no other consumer
2319  * devices have it enabled, the regulator device supports disabling and
2320  * machine constraints permit this operation.
2321  */
2322 int regulator_disable(struct regulator *regulator)
2323 {
2324         struct regulator_dev *rdev = regulator->rdev;
2325         int ret = 0;
2326
2327         if (regulator->always_on)
2328                 return 0;
2329
2330         mutex_lock(&rdev->mutex);
2331         ret = _regulator_disable(rdev);
2332         mutex_unlock(&rdev->mutex);
2333
2334         if (ret == 0 && rdev->supply)
2335                 regulator_disable(rdev->supply);
2336
2337         return ret;
2338 }
2339 EXPORT_SYMBOL_GPL(regulator_disable);
2340
2341 /* locks held by regulator_force_disable() */
2342 static int _regulator_force_disable(struct regulator_dev *rdev)
2343 {
2344         int ret = 0;
2345
2346         lockdep_assert_held_once(&rdev->mutex);
2347
2348         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2349                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2350         if (ret & NOTIFY_STOP_MASK)
2351                 return -EINVAL;
2352
2353         ret = _regulator_do_disable(rdev);
2354         if (ret < 0) {
2355                 rdev_err(rdev, "failed to force disable\n");
2356                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2357                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2358                 return ret;
2359         }
2360
2361         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2362                         REGULATOR_EVENT_DISABLE, NULL);
2363
2364         return 0;
2365 }
2366
2367 /**
2368  * regulator_force_disable - force disable regulator output
2369  * @regulator: regulator source
2370  *
2371  * Forcibly disable the regulator output voltage or current.
2372  * NOTE: this *will* disable the regulator output even if other consumer
2373  * devices have it enabled. This should be used for situations when device
2374  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2375  */
2376 int regulator_force_disable(struct regulator *regulator)
2377 {
2378         struct regulator_dev *rdev = regulator->rdev;
2379         int ret;
2380
2381         mutex_lock(&rdev->mutex);
2382         regulator->uA_load = 0;
2383         ret = _regulator_force_disable(regulator->rdev);
2384         mutex_unlock(&rdev->mutex);
2385
2386         if (rdev->supply)
2387                 while (rdev->open_count--)
2388                         regulator_disable(rdev->supply);
2389
2390         return ret;
2391 }
2392 EXPORT_SYMBOL_GPL(regulator_force_disable);
2393
2394 static void regulator_disable_work(struct work_struct *work)
2395 {
2396         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2397                                                   disable_work.work);
2398         int count, i, ret;
2399
2400         mutex_lock(&rdev->mutex);
2401
2402         BUG_ON(!rdev->deferred_disables);
2403
2404         count = rdev->deferred_disables;
2405         rdev->deferred_disables = 0;
2406
2407         for (i = 0; i < count; i++) {
2408                 ret = _regulator_disable(rdev);
2409                 if (ret != 0)
2410                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2411         }
2412
2413         mutex_unlock(&rdev->mutex);
2414
2415         if (rdev->supply) {
2416                 for (i = 0; i < count; i++) {
2417                         ret = regulator_disable(rdev->supply);
2418                         if (ret != 0) {
2419                                 rdev_err(rdev,
2420                                          "Supply disable failed: %d\n", ret);
2421                         }
2422                 }
2423         }
2424 }
2425
2426 /**
2427  * regulator_disable_deferred - disable regulator output with delay
2428  * @regulator: regulator source
2429  * @ms: miliseconds until the regulator is disabled
2430  *
2431  * Execute regulator_disable() on the regulator after a delay.  This
2432  * is intended for use with devices that require some time to quiesce.
2433  *
2434  * NOTE: this will only disable the regulator output if no other consumer
2435  * devices have it enabled, the regulator device supports disabling and
2436  * machine constraints permit this operation.
2437  */
2438 int regulator_disable_deferred(struct regulator *regulator, int ms)
2439 {
2440         struct regulator_dev *rdev = regulator->rdev;
2441
2442         if (regulator->always_on)
2443                 return 0;
2444
2445         if (!ms)
2446                 return regulator_disable(regulator);
2447
2448         mutex_lock(&rdev->mutex);
2449         rdev->deferred_disables++;
2450         mutex_unlock(&rdev->mutex);
2451
2452         queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2453                            msecs_to_jiffies(ms));
2454         return 0;
2455 }
2456 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2457
2458 static int _regulator_is_enabled(struct regulator_dev *rdev)
2459 {
2460         /* A GPIO control always takes precedence */
2461         if (rdev->ena_pin)
2462                 return rdev->ena_gpio_state;
2463
2464         /* If we don't know then assume that the regulator is always on */
2465         if (!rdev->desc->ops->is_enabled)
2466                 return 1;
2467
2468         return rdev->desc->ops->is_enabled(rdev);
2469 }
2470
2471 static int _regulator_list_voltage(struct regulator *regulator,
2472                                     unsigned selector, int lock)
2473 {
2474         struct regulator_dev *rdev = regulator->rdev;
2475         const struct regulator_ops *ops = rdev->desc->ops;
2476         int ret;
2477
2478         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2479                 return rdev->desc->fixed_uV;
2480
2481         if (ops->list_voltage) {
2482                 if (selector >= rdev->desc->n_voltages)
2483                         return -EINVAL;
2484                 if (lock)
2485                         mutex_lock(&rdev->mutex);
2486                 ret = ops->list_voltage(rdev, selector);
2487                 if (lock)
2488                         mutex_unlock(&rdev->mutex);
2489         } else if (rdev->supply) {
2490                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2491         } else {
2492                 return -EINVAL;
2493         }
2494
2495         if (ret > 0) {
2496                 if (ret < rdev->constraints->min_uV)
2497                         ret = 0;
2498                 else if (ret > rdev->constraints->max_uV)
2499                         ret = 0;
2500         }
2501
2502         return ret;
2503 }
2504
2505 /**
2506  * regulator_is_enabled - is the regulator output enabled
2507  * @regulator: regulator source
2508  *
2509  * Returns positive if the regulator driver backing the source/client
2510  * has requested that the device be enabled, zero if it hasn't, else a
2511  * negative errno code.
2512  *
2513  * Note that the device backing this regulator handle can have multiple
2514  * users, so it might be enabled even if regulator_enable() was never
2515  * called for this particular source.
2516  */
2517 int regulator_is_enabled(struct regulator *regulator)
2518 {
2519         int ret;
2520
2521         if (regulator->always_on)
2522                 return 1;
2523
2524         mutex_lock(&regulator->rdev->mutex);
2525         ret = _regulator_is_enabled(regulator->rdev);
2526         mutex_unlock(&regulator->rdev->mutex);
2527
2528         return ret;
2529 }
2530 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2531
2532 /**
2533  * regulator_count_voltages - count regulator_list_voltage() selectors
2534  * @regulator: regulator source
2535  *
2536  * Returns number of selectors, or negative errno.  Selectors are
2537  * numbered starting at zero, and typically correspond to bitfields
2538  * in hardware registers.
2539  */
2540 int regulator_count_voltages(struct regulator *regulator)
2541 {
2542         struct regulator_dev    *rdev = regulator->rdev;
2543
2544         if (rdev->desc->n_voltages)
2545                 return rdev->desc->n_voltages;
2546
2547         if (!rdev->supply)
2548                 return -EINVAL;
2549
2550         return regulator_count_voltages(rdev->supply);
2551 }
2552 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2553
2554 /**
2555  * regulator_list_voltage - enumerate supported voltages
2556  * @regulator: regulator source
2557  * @selector: identify voltage to list
2558  * Context: can sleep
2559  *
2560  * Returns a voltage that can be passed to @regulator_set_voltage(),
2561  * zero if this selector code can't be used on this system, or a
2562  * negative errno.
2563  */
2564 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2565 {
2566         return _regulator_list_voltage(regulator, selector, 1);
2567 }
2568 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2569
2570 /**
2571  * regulator_get_regmap - get the regulator's register map
2572  * @regulator: regulator source
2573  *
2574  * Returns the register map for the given regulator, or an ERR_PTR value
2575  * if the regulator doesn't use regmap.
2576  */
2577 struct regmap *regulator_get_regmap(struct regulator *regulator)
2578 {
2579         struct regmap *map = regulator->rdev->regmap;
2580
2581         return map ? map : ERR_PTR(-EOPNOTSUPP);
2582 }
2583
2584 /**
2585  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2586  * @regulator: regulator source
2587  * @vsel_reg: voltage selector register, output parameter
2588  * @vsel_mask: mask for voltage selector bitfield, output parameter
2589  *
2590  * Returns the hardware register offset and bitmask used for setting the
2591  * regulator voltage. This might be useful when configuring voltage-scaling
2592  * hardware or firmware that can make I2C requests behind the kernel's back,
2593  * for example.
2594  *
2595  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2596  * and 0 is returned, otherwise a negative errno is returned.
2597  */
2598 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2599                                          unsigned *vsel_reg,
2600                                          unsigned *vsel_mask)
2601 {
2602         struct regulator_dev *rdev = regulator->rdev;
2603         const struct regulator_ops *ops = rdev->desc->ops;
2604
2605         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2606                 return -EOPNOTSUPP;
2607
2608          *vsel_reg = rdev->desc->vsel_reg;
2609          *vsel_mask = rdev->desc->vsel_mask;
2610
2611          return 0;
2612 }
2613 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2614
2615 /**
2616  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2617  * @regulator: regulator source
2618  * @selector: identify voltage to list
2619  *
2620  * Converts the selector to a hardware-specific voltage selector that can be
2621  * directly written to the regulator registers. The address of the voltage
2622  * register can be determined by calling @regulator_get_hardware_vsel_register.
2623  *
2624  * On error a negative errno is returned.
2625  */
2626 int regulator_list_hardware_vsel(struct regulator *regulator,
2627                                  unsigned selector)
2628 {
2629         struct regulator_dev *rdev = regulator->rdev;
2630         const struct regulator_ops *ops = rdev->desc->ops;
2631
2632         if (selector >= rdev->desc->n_voltages)
2633                 return -EINVAL;
2634         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2635                 return -EOPNOTSUPP;
2636
2637         return selector;
2638 }
2639 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2640
2641 /**
2642  * regulator_get_linear_step - return the voltage step size between VSEL values
2643  * @regulator: regulator source
2644  *
2645  * Returns the voltage step size between VSEL values for linear
2646  * regulators, or return 0 if the regulator isn't a linear regulator.
2647  */
2648 unsigned int regulator_get_linear_step(struct regulator *regulator)
2649 {
2650         struct regulator_dev *rdev = regulator->rdev;
2651
2652         return rdev->desc->uV_step;
2653 }
2654 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2655
2656 /**
2657  * regulator_is_supported_voltage - check if a voltage range can be supported
2658  *
2659  * @regulator: Regulator to check.
2660  * @min_uV: Minimum required voltage in uV.
2661  * @max_uV: Maximum required voltage in uV.
2662  *
2663  * Returns a boolean or a negative error code.
2664  */
2665 int regulator_is_supported_voltage(struct regulator *regulator,
2666                                    int min_uV, int max_uV)
2667 {
2668         struct regulator_dev *rdev = regulator->rdev;
2669         int i, voltages, ret;
2670
2671         /* If we can't change voltage check the current voltage */
2672         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2673                 ret = regulator_get_voltage(regulator);
2674                 if (ret >= 0)
2675                         return min_uV <= ret && ret <= max_uV;
2676                 else
2677                         return ret;
2678         }
2679
2680         /* Any voltage within constrains range is fine? */
2681         if (rdev->desc->continuous_voltage_range)
2682                 return min_uV >= rdev->constraints->min_uV &&
2683                                 max_uV <= rdev->constraints->max_uV;
2684
2685         ret = regulator_count_voltages(regulator);
2686         if (ret < 0)
2687                 return ret;
2688         voltages = ret;
2689
2690         for (i = 0; i < voltages; i++) {
2691                 ret = regulator_list_voltage(regulator, i);
2692
2693                 if (ret >= min_uV && ret <= max_uV)
2694                         return 1;
2695         }
2696
2697         return 0;
2698 }
2699 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2700
2701 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2702                                  int max_uV)
2703 {
2704         const struct regulator_desc *desc = rdev->desc;
2705
2706         if (desc->ops->map_voltage)
2707                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2708
2709         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2710                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2711
2712         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2713                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2714
2715         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2716 }
2717
2718 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2719                                        int min_uV, int max_uV,
2720                                        unsigned *selector)
2721 {
2722         struct pre_voltage_change_data data;
2723         int ret;
2724
2725         data.old_uV = _regulator_get_voltage(rdev);
2726         data.min_uV = min_uV;
2727         data.max_uV = max_uV;
2728         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2729                                    &data);
2730         if (ret & NOTIFY_STOP_MASK)
2731                 return -EINVAL;
2732
2733         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2734         if (ret >= 0)
2735                 return ret;
2736
2737         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2738                              (void *)data.old_uV);
2739
2740         return ret;
2741 }
2742
2743 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2744                                            int uV, unsigned selector)
2745 {
2746         struct pre_voltage_change_data data;
2747         int ret;
2748
2749         data.old_uV = _regulator_get_voltage(rdev);
2750         data.min_uV = uV;
2751         data.max_uV = uV;
2752         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2753                                    &data);
2754         if (ret & NOTIFY_STOP_MASK)
2755                 return -EINVAL;
2756
2757         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2758         if (ret >= 0)
2759                 return ret;
2760
2761         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2762                              (void *)data.old_uV);
2763
2764         return ret;
2765 }
2766
2767 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2768                                        int old_uV, int new_uV)
2769 {
2770         unsigned int ramp_delay = 0;
2771
2772         if (rdev->constraints->ramp_delay)
2773                 ramp_delay = rdev->constraints->ramp_delay;
2774         else if (rdev->desc->ramp_delay)
2775                 ramp_delay = rdev->desc->ramp_delay;
2776
2777         if (ramp_delay == 0) {
2778                 rdev_dbg(rdev, "ramp_delay not set\n");
2779                 return 0;
2780         }
2781
2782         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2783 }
2784
2785 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2786                                      int min_uV, int max_uV)
2787 {
2788         int ret;
2789         int delay = 0;
2790         int best_val = 0;
2791         unsigned int selector;
2792         int old_selector = -1;
2793         const struct regulator_ops *ops = rdev->desc->ops;
2794         int old_uV = _regulator_get_voltage(rdev);
2795
2796         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2797
2798         min_uV += rdev->constraints->uV_offset;
2799         max_uV += rdev->constraints->uV_offset;
2800
2801         /*
2802          * If we can't obtain the old selector there is not enough
2803          * info to call set_voltage_time_sel().
2804          */
2805         if (_regulator_is_enabled(rdev) &&
2806             ops->set_voltage_time_sel && ops->get_voltage_sel) {
2807                 old_selector = ops->get_voltage_sel(rdev);
2808                 if (old_selector < 0)
2809                         return old_selector;
2810         }
2811
2812         if (ops->set_voltage) {
2813                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2814                                                   &selector);
2815
2816                 if (ret >= 0) {
2817                         if (ops->list_voltage)
2818                                 best_val = ops->list_voltage(rdev,
2819                                                              selector);
2820                         else
2821                                 best_val = _regulator_get_voltage(rdev);
2822                 }
2823
2824         } else if (ops->set_voltage_sel) {
2825                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2826                 if (ret >= 0) {
2827                         best_val = ops->list_voltage(rdev, ret);
2828                         if (min_uV <= best_val && max_uV >= best_val) {
2829                                 selector = ret;
2830                                 if (old_selector == selector)
2831                                         ret = 0;
2832                                 else
2833                                         ret = _regulator_call_set_voltage_sel(
2834                                                 rdev, best_val, selector);
2835                         } else {
2836                                 ret = -EINVAL;
2837                         }
2838                 }
2839         } else {
2840                 ret = -EINVAL;
2841         }
2842
2843         if (ret)
2844                 goto out;
2845
2846         if (ops->set_voltage_time_sel) {
2847                 /*
2848                  * Call set_voltage_time_sel if successfully obtained
2849                  * old_selector
2850                  */
2851                 if (old_selector >= 0 && old_selector != selector)
2852                         delay = ops->set_voltage_time_sel(rdev, old_selector,
2853                                                           selector);
2854         } else {
2855                 if (old_uV != best_val) {
2856                         if (ops->set_voltage_time)
2857                                 delay = ops->set_voltage_time(rdev, old_uV,
2858                                                               best_val);
2859                         else
2860                                 delay = _regulator_set_voltage_time(rdev,
2861                                                                     old_uV,
2862                                                                     best_val);
2863                 }
2864         }
2865
2866         if (delay < 0) {
2867                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2868                 delay = 0;
2869         }
2870
2871         /* Insert any necessary delays */
2872         if (delay >= 1000) {
2873                 mdelay(delay / 1000);
2874                 udelay(delay % 1000);
2875         } else if (delay) {
2876                 udelay(delay);
2877         }
2878
2879         if (best_val >= 0) {
2880                 unsigned long data = best_val;
2881
2882                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2883                                      (void *)data);
2884         }
2885
2886 out:
2887         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2888
2889         return ret;
2890 }
2891
2892 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2893                                           int min_uV, int max_uV)
2894 {
2895         struct regulator_dev *rdev = regulator->rdev;
2896         int ret = 0;
2897         int old_min_uV, old_max_uV;
2898         int current_uV;
2899         int best_supply_uV = 0;
2900         int supply_change_uV = 0;
2901
2902         /* If we're setting the same range as last time the change
2903          * should be a noop (some cpufreq implementations use the same
2904          * voltage for multiple frequencies, for example).
2905          */
2906         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2907                 goto out;
2908
2909         /* If we're trying to set a range that overlaps the current voltage,
2910          * return successfully even though the regulator does not support
2911          * changing the voltage.
2912          */
2913         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2914                 current_uV = _regulator_get_voltage(rdev);
2915                 if (min_uV <= current_uV && current_uV <= max_uV) {
2916                         regulator->min_uV = min_uV;
2917                         regulator->max_uV = max_uV;
2918                         goto out;
2919                 }
2920         }
2921
2922         /* sanity check */
2923         if (!rdev->desc->ops->set_voltage &&
2924             !rdev->desc->ops->set_voltage_sel) {
2925                 ret = -EINVAL;
2926                 goto out;
2927         }
2928
2929         /* constraints check */
2930         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2931         if (ret < 0)
2932                 goto out;
2933
2934         /* restore original values in case of error */
2935         old_min_uV = regulator->min_uV;
2936         old_max_uV = regulator->max_uV;
2937         regulator->min_uV = min_uV;
2938         regulator->max_uV = max_uV;
2939
2940         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2941         if (ret < 0)
2942                 goto out2;
2943
2944         if (rdev->supply && (rdev->desc->min_dropout_uV ||
2945                                 !rdev->desc->ops->get_voltage)) {
2946                 int current_supply_uV;
2947                 int selector;
2948
2949                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2950                 if (selector < 0) {
2951                         ret = selector;
2952                         goto out2;
2953                 }
2954
2955                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2956                 if (best_supply_uV < 0) {
2957                         ret = best_supply_uV;
2958                         goto out2;
2959                 }
2960
2961                 best_supply_uV += rdev->desc->min_dropout_uV;
2962
2963                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2964                 if (current_supply_uV < 0) {
2965                         ret = current_supply_uV;
2966                         goto out2;
2967                 }
2968
2969                 supply_change_uV = best_supply_uV - current_supply_uV;
2970         }
2971
2972         if (supply_change_uV > 0) {
2973                 ret = regulator_set_voltage_unlocked(rdev->supply,
2974                                 best_supply_uV, INT_MAX);
2975                 if (ret) {
2976                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2977                                         ret);
2978                         goto out2;
2979                 }
2980         }
2981
2982         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2983         if (ret < 0)
2984                 goto out2;
2985
2986         if (supply_change_uV < 0) {
2987                 ret = regulator_set_voltage_unlocked(rdev->supply,
2988                                 best_supply_uV, INT_MAX);
2989                 if (ret)
2990                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2991                                         ret);
2992                 /* No need to fail here */
2993                 ret = 0;
2994         }
2995
2996 out:
2997         return ret;
2998 out2:
2999         regulator->min_uV = old_min_uV;
3000         regulator->max_uV = old_max_uV;
3001
3002         return ret;
3003 }
3004
3005 /**
3006  * regulator_set_voltage - set regulator output voltage
3007  * @regulator: regulator source
3008  * @min_uV: Minimum required voltage in uV
3009  * @max_uV: Maximum acceptable voltage in uV
3010  *
3011  * Sets a voltage regulator to the desired output voltage. This can be set
3012  * during any regulator state. IOW, regulator can be disabled or enabled.
3013  *
3014  * If the regulator is enabled then the voltage will change to the new value
3015  * immediately otherwise if the regulator is disabled the regulator will
3016  * output at the new voltage when enabled.
3017  *
3018  * NOTE: If the regulator is shared between several devices then the lowest
3019  * request voltage that meets the system constraints will be used.
3020  * Regulator system constraints must be set for this regulator before
3021  * calling this function otherwise this call will fail.
3022  */
3023 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3024 {
3025         int ret = 0;
3026
3027         regulator_lock_supply(regulator->rdev);
3028
3029         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3030
3031         regulator_unlock_supply(regulator->rdev);
3032
3033         return ret;
3034 }
3035 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3036
3037 /**
3038  * regulator_set_voltage_time - get raise/fall time
3039  * @regulator: regulator source
3040  * @old_uV: starting voltage in microvolts
3041  * @new_uV: target voltage in microvolts
3042  *
3043  * Provided with the starting and ending voltage, this function attempts to
3044  * calculate the time in microseconds required to rise or fall to this new
3045  * voltage.
3046  */
3047 int regulator_set_voltage_time(struct regulator *regulator,
3048                                int old_uV, int new_uV)
3049 {
3050         struct regulator_dev *rdev = regulator->rdev;
3051         const struct regulator_ops *ops = rdev->desc->ops;
3052         int old_sel = -1;
3053         int new_sel = -1;
3054         int voltage;
3055         int i;
3056
3057         if (ops->set_voltage_time)
3058                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3059         else if (!ops->set_voltage_time_sel)
3060                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3061
3062         /* Currently requires operations to do this */
3063         if (!ops->list_voltage || !rdev->desc->n_voltages)
3064                 return -EINVAL;
3065
3066         for (i = 0; i < rdev->desc->n_voltages; i++) {
3067                 /* We only look for exact voltage matches here */
3068                 voltage = regulator_list_voltage(regulator, i);
3069                 if (voltage < 0)
3070                         return -EINVAL;
3071                 if (voltage == 0)
3072                         continue;
3073                 if (voltage == old_uV)
3074                         old_sel = i;
3075                 if (voltage == new_uV)
3076                         new_sel = i;
3077         }
3078
3079         if (old_sel < 0 || new_sel < 0)
3080                 return -EINVAL;
3081
3082         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3083 }
3084 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3085
3086 /**
3087  * regulator_set_voltage_time_sel - get raise/fall time
3088  * @rdev: regulator source device
3089  * @old_selector: selector for starting voltage
3090  * @new_selector: selector for target voltage
3091  *
3092  * Provided with the starting and target voltage selectors, this function
3093  * returns time in microseconds required to rise or fall to this new voltage
3094  *
3095  * Drivers providing ramp_delay in regulation_constraints can use this as their
3096  * set_voltage_time_sel() operation.
3097  */
3098 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3099                                    unsigned int old_selector,
3100                                    unsigned int new_selector)
3101 {
3102         int old_volt, new_volt;
3103
3104         /* sanity check */
3105         if (!rdev->desc->ops->list_voltage)
3106                 return -EINVAL;
3107
3108         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3109         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3110
3111         if (rdev->desc->ops->set_voltage_time)
3112                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3113                                                          new_volt);
3114         else
3115                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3116 }
3117 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3118
3119 /**
3120  * regulator_sync_voltage - re-apply last regulator output voltage
3121  * @regulator: regulator source
3122  *
3123  * Re-apply the last configured voltage.  This is intended to be used
3124  * where some external control source the consumer is cooperating with
3125  * has caused the configured voltage to change.
3126  */
3127 int regulator_sync_voltage(struct regulator *regulator)
3128 {
3129         struct regulator_dev *rdev = regulator->rdev;
3130         int ret, min_uV, max_uV;
3131
3132         mutex_lock(&rdev->mutex);
3133
3134         if (!rdev->desc->ops->set_voltage &&
3135             !rdev->desc->ops->set_voltage_sel) {
3136                 ret = -EINVAL;
3137                 goto out;
3138         }
3139
3140         /* This is only going to work if we've had a voltage configured. */
3141         if (!regulator->min_uV && !regulator->max_uV) {
3142                 ret = -EINVAL;
3143                 goto out;
3144         }
3145
3146         min_uV = regulator->min_uV;
3147         max_uV = regulator->max_uV;
3148
3149         /* This should be a paranoia check... */
3150         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3151         if (ret < 0)
3152                 goto out;
3153
3154         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3155         if (ret < 0)
3156                 goto out;
3157
3158         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3159
3160 out:
3161         mutex_unlock(&rdev->mutex);
3162         return ret;
3163 }
3164 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3165
3166 static int _regulator_get_voltage(struct regulator_dev *rdev)
3167 {
3168         int sel, ret;
3169         bool bypassed;
3170
3171         if (rdev->desc->ops->get_bypass) {
3172                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3173                 if (ret < 0)
3174                         return ret;
3175                 if (bypassed) {
3176                         /* if bypassed the regulator must have a supply */
3177                         if (!rdev->supply) {
3178                                 rdev_err(rdev,
3179                                          "bypassed regulator has no supply!\n");
3180                                 return -EPROBE_DEFER;
3181                         }
3182
3183                         return _regulator_get_voltage(rdev->supply->rdev);
3184                 }
3185         }
3186
3187         if (rdev->desc->ops->get_voltage_sel) {
3188                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3189                 if (sel < 0)
3190                         return sel;
3191                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3192         } else if (rdev->desc->ops->get_voltage) {
3193                 ret = rdev->desc->ops->get_voltage(rdev);
3194         } else if (rdev->desc->ops->list_voltage) {
3195                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3196         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3197                 ret = rdev->desc->fixed_uV;
3198         } else if (rdev->supply) {
3199                 ret = _regulator_get_voltage(rdev->supply->rdev);
3200         } else {
3201                 return -EINVAL;
3202         }
3203
3204         if (ret < 0)
3205                 return ret;
3206         return ret - rdev->constraints->uV_offset;
3207 }
3208
3209 /**
3210  * regulator_get_voltage - get regulator output voltage
3211  * @regulator: regulator source
3212  *
3213  * This returns the current regulator voltage in uV.
3214  *
3215  * NOTE: If the regulator is disabled it will return the voltage value. This
3216  * function should not be used to determine regulator state.
3217  */
3218 int regulator_get_voltage(struct regulator *regulator)
3219 {
3220         int ret;
3221
3222         regulator_lock_supply(regulator->rdev);
3223
3224         ret = _regulator_get_voltage(regulator->rdev);
3225
3226         regulator_unlock_supply(regulator->rdev);
3227
3228         return ret;
3229 }
3230 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3231
3232 /**
3233  * regulator_set_current_limit - set regulator output current limit
3234  * @regulator: regulator source
3235  * @min_uA: Minimum supported current in uA
3236  * @max_uA: Maximum supported current in uA
3237  *
3238  * Sets current sink to the desired output current. This can be set during
3239  * any regulator state. IOW, regulator can be disabled or enabled.
3240  *
3241  * If the regulator is enabled then the current will change to the new value
3242  * immediately otherwise if the regulator is disabled the regulator will
3243  * output at the new current when enabled.
3244  *
3245  * NOTE: Regulator system constraints must be set for this regulator before
3246  * calling this function otherwise this call will fail.
3247  */
3248 int regulator_set_current_limit(struct regulator *regulator,
3249                                int min_uA, int max_uA)
3250 {
3251         struct regulator_dev *rdev = regulator->rdev;
3252         int ret;
3253
3254         mutex_lock(&rdev->mutex);
3255
3256         /* sanity check */
3257         if (!rdev->desc->ops->set_current_limit) {
3258                 ret = -EINVAL;
3259                 goto out;
3260         }
3261
3262         /* constraints check */
3263         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3264         if (ret < 0)
3265                 goto out;
3266
3267         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3268 out:
3269         mutex_unlock(&rdev->mutex);
3270         return ret;
3271 }
3272 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3273
3274 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3275 {
3276         int ret;
3277
3278         mutex_lock(&rdev->mutex);
3279
3280         /* sanity check */
3281         if (!rdev->desc->ops->get_current_limit) {
3282                 ret = -EINVAL;
3283                 goto out;
3284         }
3285
3286         ret = rdev->desc->ops->get_current_limit(rdev);
3287 out:
3288         mutex_unlock(&rdev->mutex);
3289         return ret;
3290 }
3291
3292 /**
3293  * regulator_get_current_limit - get regulator output current
3294  * @regulator: regulator source
3295  *
3296  * This returns the current supplied by the specified current sink in uA.
3297  *
3298  * NOTE: If the regulator is disabled it will return the current value. This
3299  * function should not be used to determine regulator state.
3300  */
3301 int regulator_get_current_limit(struct regulator *regulator)
3302 {
3303         return _regulator_get_current_limit(regulator->rdev);
3304 }
3305 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3306
3307 /**
3308  * regulator_set_mode - set regulator operating mode
3309  * @regulator: regulator source
3310  * @mode: operating mode - one of the REGULATOR_MODE constants
3311  *
3312  * Set regulator operating mode to increase regulator efficiency or improve
3313  * regulation performance.
3314  *
3315  * NOTE: Regulator system constraints must be set for this regulator before
3316  * calling this function otherwise this call will fail.
3317  */
3318 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3319 {
3320         struct regulator_dev *rdev = regulator->rdev;
3321         int ret;
3322         int regulator_curr_mode;
3323
3324         mutex_lock(&rdev->mutex);
3325
3326         /* sanity check */
3327         if (!rdev->desc->ops->set_mode) {
3328                 ret = -EINVAL;
3329                 goto out;
3330         }
3331
3332         /* return if the same mode is requested */
3333         if (rdev->desc->ops->get_mode) {
3334                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3335                 if (regulator_curr_mode == mode) {
3336                         ret = 0;
3337                         goto out;
3338                 }
3339         }
3340
3341         /* constraints check */
3342         ret = regulator_mode_constrain(rdev, &mode);
3343         if (ret < 0)
3344                 goto out;
3345
3346         ret = rdev->desc->ops->set_mode(rdev, mode);
3347 out:
3348         mutex_unlock(&rdev->mutex);
3349         return ret;
3350 }
3351 EXPORT_SYMBOL_GPL(regulator_set_mode);
3352
3353 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3354 {
3355         int ret;
3356
3357         mutex_lock(&rdev->mutex);
3358
3359         /* sanity check */
3360         if (!rdev->desc->ops->get_mode) {
3361                 ret = -EINVAL;
3362                 goto out;
3363         }
3364
3365         ret = rdev->desc->ops->get_mode(rdev);
3366 out:
3367         mutex_unlock(&rdev->mutex);
3368         return ret;
3369 }
3370
3371 /**
3372  * regulator_get_mode - get regulator operating mode
3373  * @regulator: regulator source
3374  *
3375  * Get the current regulator operating mode.
3376  */
3377 unsigned int regulator_get_mode(struct regulator *regulator)
3378 {
3379         return _regulator_get_mode(regulator->rdev);
3380 }
3381 EXPORT_SYMBOL_GPL(regulator_get_mode);
3382
3383 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3384                                         unsigned int *flags)
3385 {
3386         int ret;
3387
3388         mutex_lock(&rdev->mutex);
3389
3390         /* sanity check */
3391         if (!rdev->desc->ops->get_error_flags) {
3392                 ret = -EINVAL;
3393                 goto out;
3394         }
3395
3396         ret = rdev->desc->ops->get_error_flags(rdev, flags);
3397 out:
3398         mutex_unlock(&rdev->mutex);
3399         return ret;
3400 }
3401
3402 /**
3403  * regulator_get_error_flags - get regulator error information
3404  * @regulator: regulator source
3405  * @flags: pointer to store error flags
3406  *
3407  * Get the current regulator error information.
3408  */
3409 int regulator_get_error_flags(struct regulator *regulator,
3410                                 unsigned int *flags)
3411 {
3412         return _regulator_get_error_flags(regulator->rdev, flags);
3413 }
3414 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3415
3416 /**
3417  * regulator_set_load - set regulator load
3418  * @regulator: regulator source
3419  * @uA_load: load current
3420  *
3421  * Notifies the regulator core of a new device load. This is then used by
3422  * DRMS (if enabled by constraints) to set the most efficient regulator
3423  * operating mode for the new regulator loading.
3424  *
3425  * Consumer devices notify their supply regulator of the maximum power
3426  * they will require (can be taken from device datasheet in the power
3427  * consumption tables) when they change operational status and hence power
3428  * state. Examples of operational state changes that can affect power
3429  * consumption are :-
3430  *
3431  *    o Device is opened / closed.
3432  *    o Device I/O is about to begin or has just finished.
3433  *    o Device is idling in between work.
3434  *
3435  * This information is also exported via sysfs to userspace.
3436  *
3437  * DRMS will sum the total requested load on the regulator and change
3438  * to the most efficient operating mode if platform constraints allow.
3439  *
3440  * On error a negative errno is returned.
3441  */
3442 int regulator_set_load(struct regulator *regulator, int uA_load)
3443 {
3444         struct regulator_dev *rdev = regulator->rdev;
3445         int ret;
3446
3447         mutex_lock(&rdev->mutex);
3448         regulator->uA_load = uA_load;
3449         ret = drms_uA_update(rdev);
3450         mutex_unlock(&rdev->mutex);
3451
3452         return ret;
3453 }
3454 EXPORT_SYMBOL_GPL(regulator_set_load);
3455
3456 /**
3457  * regulator_allow_bypass - allow the regulator to go into bypass mode
3458  *
3459  * @regulator: Regulator to configure
3460  * @enable: enable or disable bypass mode
3461  *
3462  * Allow the regulator to go into bypass mode if all other consumers
3463  * for the regulator also enable bypass mode and the machine
3464  * constraints allow this.  Bypass mode means that the regulator is
3465  * simply passing the input directly to the output with no regulation.
3466  */
3467 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3468 {
3469         struct regulator_dev *rdev = regulator->rdev;
3470         int ret = 0;
3471
3472         if (!rdev->desc->ops->set_bypass)
3473                 return 0;
3474
3475         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3476                 return 0;
3477
3478         mutex_lock(&rdev->mutex);
3479
3480         if (enable && !regulator->bypass) {
3481                 rdev->bypass_count++;
3482
3483                 if (rdev->bypass_count == rdev->open_count) {
3484                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3485                         if (ret != 0)
3486                                 rdev->bypass_count--;
3487                 }
3488
3489         } else if (!enable && regulator->bypass) {
3490                 rdev->bypass_count--;
3491
3492                 if (rdev->bypass_count != rdev->open_count) {
3493                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3494                         if (ret != 0)
3495                                 rdev->bypass_count++;
3496                 }
3497         }
3498
3499         if (ret == 0)
3500                 regulator->bypass = enable;
3501
3502         mutex_unlock(&rdev->mutex);
3503
3504         return ret;
3505 }
3506 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3507
3508 /**
3509  * regulator_register_notifier - register regulator event notifier
3510  * @regulator: regulator source
3511  * @nb: notifier block
3512  *
3513  * Register notifier block to receive regulator events.
3514  */
3515 int regulator_register_notifier(struct regulator *regulator,
3516                               struct notifier_block *nb)
3517 {
3518         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3519                                                 nb);
3520 }
3521 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3522
3523 /**
3524  * regulator_unregister_notifier - unregister regulator event notifier
3525  * @regulator: regulator source
3526  * @nb: notifier block
3527  *
3528  * Unregister regulator event notifier block.
3529  */
3530 int regulator_unregister_notifier(struct regulator *regulator,
3531                                 struct notifier_block *nb)
3532 {
3533         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3534                                                   nb);
3535 }
3536 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3537
3538 /* notify regulator consumers and downstream regulator consumers.
3539  * Note mutex must be held by caller.
3540  */
3541 static int _notifier_call_chain(struct regulator_dev *rdev,
3542                                   unsigned long event, void *data)
3543 {
3544         /* call rdev chain first */
3545         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3546 }
3547
3548 /**
3549  * regulator_bulk_get - get multiple regulator consumers
3550  *
3551  * @dev:           Device to supply
3552  * @num_consumers: Number of consumers to register
3553  * @consumers:     Configuration of consumers; clients are stored here.
3554  *
3555  * @return 0 on success, an errno on failure.
3556  *
3557  * This helper function allows drivers to get several regulator
3558  * consumers in one operation.  If any of the regulators cannot be
3559  * acquired then any regulators that were allocated will be freed
3560  * before returning to the caller.
3561  */
3562 int regulator_bulk_get(struct device *dev, int num_consumers,
3563                        struct regulator_bulk_data *consumers)
3564 {
3565         int i;
3566         int ret;
3567
3568         for (i = 0; i < num_consumers; i++)
3569                 consumers[i].consumer = NULL;
3570
3571         for (i = 0; i < num_consumers; i++) {
3572                 consumers[i].consumer = regulator_get(dev,
3573                                                       consumers[i].supply);
3574                 if (IS_ERR(consumers[i].consumer)) {
3575                         ret = PTR_ERR(consumers[i].consumer);
3576                         dev_err(dev, "Failed to get supply '%s': %d\n",
3577                                 consumers[i].supply, ret);
3578                         consumers[i].consumer = NULL;
3579                         goto err;
3580                 }
3581         }
3582
3583         return 0;
3584
3585 err:
3586         while (--i >= 0)
3587                 regulator_put(consumers[i].consumer);
3588
3589         return ret;
3590 }
3591 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3592
3593 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3594 {
3595         struct regulator_bulk_data *bulk = data;
3596
3597         bulk->ret = regulator_enable(bulk->consumer);
3598 }
3599
3600 /**
3601  * regulator_bulk_enable - enable multiple regulator consumers
3602  *
3603  * @num_consumers: Number of consumers
3604  * @consumers:     Consumer data; clients are stored here.
3605  * @return         0 on success, an errno on failure
3606  *
3607  * This convenience API allows consumers to enable multiple regulator
3608  * clients in a single API call.  If any consumers cannot be enabled
3609  * then any others that were enabled will be disabled again prior to
3610  * return.
3611  */
3612 int regulator_bulk_enable(int num_consumers,
3613                           struct regulator_bulk_data *consumers)
3614 {
3615         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3616         int i;
3617         int ret = 0;
3618
3619         for (i = 0; i < num_consumers; i++) {
3620                 if (consumers[i].consumer->always_on)
3621                         consumers[i].ret = 0;
3622                 else
3623                         async_schedule_domain(regulator_bulk_enable_async,
3624                                               &consumers[i], &async_domain);
3625         }
3626
3627         async_synchronize_full_domain(&async_domain);
3628
3629         /* If any consumer failed we need to unwind any that succeeded */
3630         for (i = 0; i < num_consumers; i++) {
3631                 if (consumers[i].ret != 0) {
3632                         ret = consumers[i].ret;
3633                         goto err;
3634                 }
3635         }
3636
3637         return 0;
3638
3639 err:
3640         for (i = 0; i < num_consumers; i++) {
3641                 if (consumers[i].ret < 0)
3642                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3643                                consumers[i].ret);
3644                 else
3645                         regulator_disable(consumers[i].consumer);
3646         }
3647
3648         return ret;
3649 }
3650 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3651
3652 /**
3653  * regulator_bulk_disable - disable multiple regulator consumers
3654  *
3655  * @num_consumers: Number of consumers
3656  * @consumers:     Consumer data; clients are stored here.
3657  * @return         0 on success, an errno on failure
3658  *
3659  * This convenience API allows consumers to disable multiple regulator
3660  * clients in a single API call.  If any consumers cannot be disabled
3661  * then any others that were disabled will be enabled again prior to
3662  * return.
3663  */
3664 int regulator_bulk_disable(int num_consumers,
3665                            struct regulator_bulk_data *consumers)
3666 {
3667         int i;
3668         int ret, r;
3669
3670         for (i = num_consumers - 1; i >= 0; --i) {
3671                 ret = regulator_disable(consumers[i].consumer);
3672                 if (ret != 0)
3673                         goto err;
3674         }
3675
3676         return 0;
3677
3678 err:
3679         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3680         for (++i; i < num_consumers; ++i) {
3681                 r = regulator_enable(consumers[i].consumer);
3682                 if (r != 0)
3683                         pr_err("Failed to re-enable %s: %d\n",
3684                                consumers[i].supply, r);
3685         }
3686
3687         return ret;
3688 }
3689 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3690
3691 /**
3692  * regulator_bulk_force_disable - force disable multiple regulator consumers
3693  *
3694  * @num_consumers: Number of consumers
3695  * @consumers:     Consumer data; clients are stored here.
3696  * @return         0 on success, an errno on failure
3697  *
3698  * This convenience API allows consumers to forcibly disable multiple regulator
3699  * clients in a single API call.
3700  * NOTE: This should be used for situations when device damage will
3701  * likely occur if the regulators are not disabled (e.g. over temp).
3702  * Although regulator_force_disable function call for some consumers can
3703  * return error numbers, the function is called for all consumers.
3704  */
3705 int regulator_bulk_force_disable(int num_consumers,
3706                            struct regulator_bulk_data *consumers)
3707 {
3708         int i;
3709         int ret = 0;
3710
3711         for (i = 0; i < num_consumers; i++) {
3712                 consumers[i].ret =
3713                             regulator_force_disable(consumers[i].consumer);
3714
3715                 /* Store first error for reporting */
3716                 if (consumers[i].ret && !ret)
3717                         ret = consumers[i].ret;
3718         }
3719
3720         return ret;
3721 }
3722 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3723
3724 /**
3725  * regulator_bulk_free - free multiple regulator consumers
3726  *
3727  * @num_consumers: Number of consumers
3728  * @consumers:     Consumer data; clients are stored here.
3729  *
3730  * This convenience API allows consumers to free multiple regulator
3731  * clients in a single API call.
3732  */
3733 void regulator_bulk_free(int num_consumers,
3734                          struct regulator_bulk_data *consumers)
3735 {
3736         int i;
3737
3738         for (i = 0; i < num_consumers; i++) {
3739                 regulator_put(consumers[i].consumer);
3740                 consumers[i].consumer = NULL;
3741         }
3742 }
3743 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3744
3745 /**
3746  * regulator_notifier_call_chain - call regulator event notifier
3747  * @rdev: regulator source
3748  * @event: notifier block
3749  * @data: callback-specific data.
3750  *
3751  * Called by regulator drivers to notify clients a regulator event has
3752  * occurred. We also notify regulator clients downstream.
3753  * Note lock must be held by caller.
3754  */
3755 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3756                                   unsigned long event, void *data)
3757 {
3758         lockdep_assert_held_once(&rdev->mutex);
3759
3760         _notifier_call_chain(rdev, event, data);
3761         return NOTIFY_DONE;
3762
3763 }
3764 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3765
3766 /**
3767  * regulator_mode_to_status - convert a regulator mode into a status
3768  *
3769  * @mode: Mode to convert
3770  *
3771  * Convert a regulator mode into a status.
3772  */
3773 int regulator_mode_to_status(unsigned int mode)
3774 {
3775         switch (mode) {
3776         case REGULATOR_MODE_FAST:
3777                 return REGULATOR_STATUS_FAST;
3778         case REGULATOR_MODE_NORMAL:
3779                 return REGULATOR_STATUS_NORMAL;
3780         case REGULATOR_MODE_IDLE:
3781                 return REGULATOR_STATUS_IDLE;
3782         case REGULATOR_MODE_STANDBY:
3783                 return REGULATOR_STATUS_STANDBY;
3784         default:
3785                 return REGULATOR_STATUS_UNDEFINED;
3786         }
3787 }
3788 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3789
3790 static struct attribute *regulator_dev_attrs[] = {
3791         &dev_attr_name.attr,
3792         &dev_attr_num_users.attr,
3793         &dev_attr_type.attr,
3794         &dev_attr_microvolts.attr,
3795         &dev_attr_microamps.attr,
3796         &dev_attr_opmode.attr,
3797         &dev_attr_state.attr,
3798         &dev_attr_status.attr,
3799         &dev_attr_bypass.attr,
3800         &dev_attr_requested_microamps.attr,
3801         &dev_attr_min_microvolts.attr,
3802         &dev_attr_max_microvolts.attr,
3803         &dev_attr_min_microamps.attr,
3804         &dev_attr_max_microamps.attr,
3805         &dev_attr_suspend_standby_state.attr,
3806         &dev_attr_suspend_mem_state.attr,
3807         &dev_attr_suspend_disk_state.attr,
3808         &dev_attr_suspend_standby_microvolts.attr,
3809         &dev_attr_suspend_mem_microvolts.attr,
3810         &dev_attr_suspend_disk_microvolts.attr,
3811         &dev_attr_suspend_standby_mode.attr,
3812         &dev_attr_suspend_mem_mode.attr,
3813         &dev_attr_suspend_disk_mode.attr,
3814         NULL
3815 };
3816
3817 /*
3818  * To avoid cluttering sysfs (and memory) with useless state, only
3819  * create attributes that can be meaningfully displayed.
3820  */
3821 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3822                                          struct attribute *attr, int idx)
3823 {
3824         struct device *dev = kobj_to_dev(kobj);
3825         struct regulator_dev *rdev = dev_to_rdev(dev);
3826         const struct regulator_ops *ops = rdev->desc->ops;
3827         umode_t mode = attr->mode;
3828
3829         /* these three are always present */
3830         if (attr == &dev_attr_name.attr ||
3831             attr == &dev_attr_num_users.attr ||
3832             attr == &dev_attr_type.attr)
3833                 return mode;
3834
3835         /* some attributes need specific methods to be displayed */
3836         if (attr == &dev_attr_microvolts.attr) {
3837                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3838                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3839                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3840                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3841                         return mode;
3842                 return 0;
3843         }
3844
3845         if (attr == &dev_attr_microamps.attr)
3846                 return ops->get_current_limit ? mode : 0;
3847
3848         if (attr == &dev_attr_opmode.attr)
3849                 return ops->get_mode ? mode : 0;
3850
3851         if (attr == &dev_attr_state.attr)
3852                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3853
3854         if (attr == &dev_attr_status.attr)
3855                 return ops->get_status ? mode : 0;
3856
3857         if (attr == &dev_attr_bypass.attr)
3858                 return ops->get_bypass ? mode : 0;
3859
3860         /* some attributes are type-specific */
3861         if (attr == &dev_attr_requested_microamps.attr)
3862                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3863
3864         /* constraints need specific supporting methods */
3865         if (attr == &dev_attr_min_microvolts.attr ||
3866             attr == &dev_attr_max_microvolts.attr)
3867                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3868
3869         if (attr == &dev_attr_min_microamps.attr ||
3870             attr == &dev_attr_max_microamps.attr)
3871                 return ops->set_current_limit ? mode : 0;
3872
3873         if (attr == &dev_attr_suspend_standby_state.attr ||
3874             attr == &dev_attr_suspend_mem_state.attr ||
3875             attr == &dev_attr_suspend_disk_state.attr)
3876                 return mode;
3877
3878         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3879             attr == &dev_attr_suspend_mem_microvolts.attr ||
3880             attr == &dev_attr_suspend_disk_microvolts.attr)
3881                 return ops->set_suspend_voltage ? mode : 0;
3882
3883         if (attr == &dev_attr_suspend_standby_mode.attr ||
3884             attr == &dev_attr_suspend_mem_mode.attr ||
3885             attr == &dev_attr_suspend_disk_mode.attr)
3886                 return ops->set_suspend_mode ? mode : 0;
3887
3888         return mode;
3889 }
3890
3891 static const struct attribute_group regulator_dev_group = {
3892         .attrs = regulator_dev_attrs,
3893         .is_visible = regulator_attr_is_visible,
3894 };
3895
3896 static const struct attribute_group *regulator_dev_groups[] = {
3897         &regulator_dev_group,
3898         NULL
3899 };
3900
3901 static void regulator_dev_release(struct device *dev)
3902 {
3903         struct regulator_dev *rdev = dev_get_drvdata(dev);
3904
3905         kfree(rdev->constraints);
3906         of_node_put(rdev->dev.of_node);
3907         kfree(rdev);
3908 }
3909
3910 static struct class regulator_class = {
3911         .name = "regulator",
3912         .dev_release = regulator_dev_release,
3913         .dev_groups = regulator_dev_groups,
3914 };
3915
3916 static void rdev_init_debugfs(struct regulator_dev *rdev)
3917 {
3918         struct device *parent = rdev->dev.parent;
3919         const char *rname = rdev_get_name(rdev);
3920         char name[NAME_MAX];
3921
3922         /* Avoid duplicate debugfs directory names */
3923         if (parent && rname == rdev->desc->name) {
3924                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3925                          rname);
3926                 rname = name;
3927         }
3928
3929         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3930         if (!rdev->debugfs) {
3931                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3932                 return;
3933         }
3934
3935         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3936                            &rdev->use_count);
3937         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3938                            &rdev->open_count);
3939         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3940                            &rdev->bypass_count);
3941 }
3942
3943 static int regulator_register_resolve_supply(struct device *dev, void *data)
3944 {
3945         struct regulator_dev *rdev = dev_to_rdev(dev);
3946
3947         if (regulator_resolve_supply(rdev))
3948                 rdev_dbg(rdev, "unable to resolve supply\n");
3949
3950         return 0;
3951 }
3952
3953 /**
3954  * regulator_register - register regulator
3955  * @regulator_desc: regulator to register
3956  * @cfg: runtime configuration for regulator
3957  *
3958  * Called by regulator drivers to register a regulator.
3959  * Returns a valid pointer to struct regulator_dev on success
3960  * or an ERR_PTR() on error.
3961  */
3962 struct regulator_dev *
3963 regulator_register(const struct regulator_desc *regulator_desc,
3964                    const struct regulator_config *cfg)
3965 {
3966         const struct regulation_constraints *constraints = NULL;
3967         const struct regulator_init_data *init_data;
3968         struct regulator_config *config = NULL;
3969         static atomic_t regulator_no = ATOMIC_INIT(-1);
3970         struct regulator_dev *rdev;
3971         struct device *dev;
3972         int ret, i;
3973
3974         if (regulator_desc == NULL || cfg == NULL)
3975                 return ERR_PTR(-EINVAL);
3976
3977         dev = cfg->dev;
3978         WARN_ON(!dev);
3979
3980         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3981                 return ERR_PTR(-EINVAL);
3982
3983         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3984             regulator_desc->type != REGULATOR_CURRENT)
3985                 return ERR_PTR(-EINVAL);
3986
3987         /* Only one of each should be implemented */
3988         WARN_ON(regulator_desc->ops->get_voltage &&
3989                 regulator_desc->ops->get_voltage_sel);
3990         WARN_ON(regulator_desc->ops->set_voltage &&
3991                 regulator_desc->ops->set_voltage_sel);
3992
3993         /* If we're using selectors we must implement list_voltage. */
3994         if (regulator_desc->ops->get_voltage_sel &&
3995             !regulator_desc->ops->list_voltage) {
3996                 return ERR_PTR(-EINVAL);
3997         }
3998         if (regulator_desc->ops->set_voltage_sel &&
3999             !regulator_desc->ops->list_voltage) {
4000                 return ERR_PTR(-EINVAL);
4001         }
4002
4003         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4004         if (rdev == NULL)
4005                 return ERR_PTR(-ENOMEM);
4006
4007         /*
4008          * Duplicate the config so the driver could override it after
4009          * parsing init data.
4010          */
4011         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4012         if (config == NULL) {
4013                 kfree(rdev);
4014                 return ERR_PTR(-ENOMEM);
4015         }
4016
4017         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4018                                                &rdev->dev.of_node);
4019         if (!init_data) {
4020                 init_data = config->init_data;
4021                 rdev->dev.of_node = of_node_get(config->of_node);
4022         }
4023
4024         mutex_init(&rdev->mutex);
4025         rdev->reg_data = config->driver_data;
4026         rdev->owner = regulator_desc->owner;
4027         rdev->desc = regulator_desc;
4028         if (config->regmap)
4029                 rdev->regmap = config->regmap;
4030         else if (dev_get_regmap(dev, NULL))
4031                 rdev->regmap = dev_get_regmap(dev, NULL);
4032         else if (dev->parent)
4033                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4034         INIT_LIST_HEAD(&rdev->consumer_list);
4035         INIT_LIST_HEAD(&rdev->list);
4036         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4037         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4038
4039         /* preform any regulator specific init */
4040         if (init_data && init_data->regulator_init) {
4041                 ret = init_data->regulator_init(rdev->reg_data);
4042                 if (ret < 0)
4043                         goto clean;
4044         }
4045
4046         if ((config->ena_gpio || config->ena_gpio_initialized) &&
4047             gpio_is_valid(config->ena_gpio)) {
4048                 mutex_lock(&regulator_list_mutex);
4049                 ret = regulator_ena_gpio_request(rdev, config);
4050                 mutex_unlock(&regulator_list_mutex);
4051                 if (ret != 0) {
4052                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4053                                  config->ena_gpio, ret);
4054                         goto clean;
4055                 }
4056         }
4057
4058         /* register with sysfs */
4059         rdev->dev.class = &regulator_class;
4060         rdev->dev.parent = dev;
4061         dev_set_name(&rdev->dev, "regulator.%lu",
4062                     (unsigned long) atomic_inc_return(&regulator_no));
4063
4064         /* set regulator constraints */
4065         if (init_data)
4066                 constraints = &init_data->constraints;
4067
4068         if (init_data && init_data->supply_regulator)
4069                 rdev->supply_name = init_data->supply_regulator;
4070         else if (regulator_desc->supply_name)
4071                 rdev->supply_name = regulator_desc->supply_name;
4072
4073         /*
4074          * Attempt to resolve the regulator supply, if specified,
4075          * but don't return an error if we fail because we will try
4076          * to resolve it again later as more regulators are added.
4077          */
4078         if (regulator_resolve_supply(rdev))
4079                 rdev_dbg(rdev, "unable to resolve supply\n");
4080
4081         ret = set_machine_constraints(rdev, constraints);
4082         if (ret < 0)
4083                 goto wash;
4084
4085         /* add consumers devices */
4086         if (init_data) {
4087                 mutex_lock(&regulator_list_mutex);
4088                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4089                         ret = set_consumer_device_supply(rdev,
4090                                 init_data->consumer_supplies[i].dev_name,
4091                                 init_data->consumer_supplies[i].supply);
4092                         if (ret < 0) {
4093                                 mutex_unlock(&regulator_list_mutex);
4094                                 dev_err(dev, "Failed to set supply %s\n",
4095                                         init_data->consumer_supplies[i].supply);
4096                                 goto unset_supplies;
4097                         }
4098                 }
4099                 mutex_unlock(&regulator_list_mutex);
4100         }
4101
4102         ret = device_register(&rdev->dev);
4103         if (ret != 0) {
4104                 put_device(&rdev->dev);
4105                 goto unset_supplies;
4106         }
4107
4108         dev_set_drvdata(&rdev->dev, rdev);
4109         rdev_init_debugfs(rdev);
4110
4111         /* try to resolve regulators supply since a new one was registered */
4112         class_for_each_device(&regulator_class, NULL, NULL,
4113                               regulator_register_resolve_supply);
4114         kfree(config);
4115         return rdev;
4116
4117 unset_supplies:
4118         mutex_lock(&regulator_list_mutex);
4119         unset_regulator_supplies(rdev);
4120         mutex_unlock(&regulator_list_mutex);
4121 wash:
4122         kfree(rdev->constraints);
4123         mutex_lock(&regulator_list_mutex);
4124         regulator_ena_gpio_free(rdev);
4125         mutex_unlock(&regulator_list_mutex);
4126 clean:
4127         kfree(rdev);
4128         kfree(config);
4129         return ERR_PTR(ret);
4130 }
4131 EXPORT_SYMBOL_GPL(regulator_register);
4132
4133 /**
4134  * regulator_unregister - unregister regulator
4135  * @rdev: regulator to unregister
4136  *
4137  * Called by regulator drivers to unregister a regulator.
4138  */
4139 void regulator_unregister(struct regulator_dev *rdev)
4140 {
4141         if (rdev == NULL)
4142                 return;
4143
4144         if (rdev->supply) {
4145                 while (rdev->use_count--)
4146                         regulator_disable(rdev->supply);
4147                 regulator_put(rdev->supply);
4148         }
4149         mutex_lock(&regulator_list_mutex);
4150         debugfs_remove_recursive(rdev->debugfs);
4151         flush_work(&rdev->disable_work.work);
4152         WARN_ON(rdev->open_count);
4153         unset_regulator_supplies(rdev);
4154         list_del(&rdev->list);
4155         regulator_ena_gpio_free(rdev);
4156         mutex_unlock(&regulator_list_mutex);
4157         device_unregister(&rdev->dev);
4158 }
4159 EXPORT_SYMBOL_GPL(regulator_unregister);
4160
4161 static int _regulator_suspend_prepare(struct device *dev, void *data)
4162 {
4163         struct regulator_dev *rdev = dev_to_rdev(dev);
4164         const suspend_state_t *state = data;
4165         int ret;
4166
4167         mutex_lock(&rdev->mutex);
4168         ret = suspend_prepare(rdev, *state);
4169         mutex_unlock(&rdev->mutex);
4170
4171         return ret;
4172 }
4173
4174 /**
4175  * regulator_suspend_prepare - prepare regulators for system wide suspend
4176  * @state: system suspend state
4177  *
4178  * Configure each regulator with it's suspend operating parameters for state.
4179  * This will usually be called by machine suspend code prior to supending.
4180  */
4181 int regulator_suspend_prepare(suspend_state_t state)
4182 {
4183         /* ON is handled by regulator active state */
4184         if (state == PM_SUSPEND_ON)
4185                 return -EINVAL;
4186
4187         return class_for_each_device(&regulator_class, NULL, &state,
4188                                      _regulator_suspend_prepare);
4189 }
4190 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4191
4192 static int _regulator_suspend_finish(struct device *dev, void *data)
4193 {
4194         struct regulator_dev *rdev = dev_to_rdev(dev);
4195         int ret;
4196
4197         mutex_lock(&rdev->mutex);
4198         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4199                 if (!_regulator_is_enabled(rdev)) {
4200                         ret = _regulator_do_enable(rdev);
4201                         if (ret)
4202                                 dev_err(dev,
4203                                         "Failed to resume regulator %d\n",
4204                                         ret);
4205                 }
4206         } else {
4207                 if (!have_full_constraints())
4208                         goto unlock;
4209                 if (!_regulator_is_enabled(rdev))
4210                         goto unlock;
4211
4212                 ret = _regulator_do_disable(rdev);
4213                 if (ret)
4214                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4215         }
4216 unlock:
4217         mutex_unlock(&rdev->mutex);
4218
4219         /* Keep processing regulators in spite of any errors */
4220         return 0;
4221 }
4222
4223 /**
4224  * regulator_suspend_finish - resume regulators from system wide suspend
4225  *
4226  * Turn on regulators that might be turned off by regulator_suspend_prepare
4227  * and that should be turned on according to the regulators properties.
4228  */
4229 int regulator_suspend_finish(void)
4230 {
4231         return class_for_each_device(&regulator_class, NULL, NULL,
4232                                      _regulator_suspend_finish);
4233 }
4234 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4235
4236 /**
4237  * regulator_has_full_constraints - the system has fully specified constraints
4238  *
4239  * Calling this function will cause the regulator API to disable all
4240  * regulators which have a zero use count and don't have an always_on
4241  * constraint in a late_initcall.
4242  *
4243  * The intention is that this will become the default behaviour in a
4244  * future kernel release so users are encouraged to use this facility
4245  * now.
4246  */
4247 void regulator_has_full_constraints(void)
4248 {
4249         has_full_constraints = 1;
4250 }
4251 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4252
4253 /**
4254  * rdev_get_drvdata - get rdev regulator driver data
4255  * @rdev: regulator
4256  *
4257  * Get rdev regulator driver private data. This call can be used in the
4258  * regulator driver context.
4259  */
4260 void *rdev_get_drvdata(struct regulator_dev *rdev)
4261 {
4262         return rdev->reg_data;
4263 }
4264 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4265
4266 /**
4267  * regulator_get_drvdata - get regulator driver data
4268  * @regulator: regulator
4269  *
4270  * Get regulator driver private data. This call can be used in the consumer
4271  * driver context when non API regulator specific functions need to be called.
4272  */
4273 void *regulator_get_drvdata(struct regulator *regulator)
4274 {
4275         return regulator->rdev->reg_data;
4276 }
4277 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4278
4279 /**
4280  * regulator_set_drvdata - set regulator driver data
4281  * @regulator: regulator
4282  * @data: data
4283  */
4284 void regulator_set_drvdata(struct regulator *regulator, void *data)
4285 {
4286         regulator->rdev->reg_data = data;
4287 }
4288 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4289
4290 /**
4291  * regulator_get_id - get regulator ID
4292  * @rdev: regulator
4293  */
4294 int rdev_get_id(struct regulator_dev *rdev)
4295 {
4296         return rdev->desc->id;
4297 }
4298 EXPORT_SYMBOL_GPL(rdev_get_id);
4299
4300 struct device *rdev_get_dev(struct regulator_dev *rdev)
4301 {
4302         return &rdev->dev;
4303 }
4304 EXPORT_SYMBOL_GPL(rdev_get_dev);
4305
4306 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4307 {
4308         return reg_init_data->driver_data;
4309 }
4310 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4311
4312 #ifdef CONFIG_DEBUG_FS
4313 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4314                                     size_t count, loff_t *ppos)
4315 {
4316         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4317         ssize_t len, ret = 0;
4318         struct regulator_map *map;
4319
4320         if (!buf)
4321                 return -ENOMEM;
4322
4323         list_for_each_entry(map, &regulator_map_list, list) {
4324                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4325                                "%s -> %s.%s\n",
4326                                rdev_get_name(map->regulator), map->dev_name,
4327                                map->supply);
4328                 if (len >= 0)
4329                         ret += len;
4330                 if (ret > PAGE_SIZE) {
4331                         ret = PAGE_SIZE;
4332                         break;
4333                 }
4334         }
4335
4336         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4337
4338         kfree(buf);
4339
4340         return ret;
4341 }
4342 #endif
4343
4344 static const struct file_operations supply_map_fops = {
4345 #ifdef CONFIG_DEBUG_FS
4346         .read = supply_map_read_file,
4347         .llseek = default_llseek,
4348 #endif
4349 };
4350
4351 #ifdef CONFIG_DEBUG_FS
4352 struct summary_data {
4353         struct seq_file *s;
4354         struct regulator_dev *parent;
4355         int level;
4356 };
4357
4358 static void regulator_summary_show_subtree(struct seq_file *s,
4359                                            struct regulator_dev *rdev,
4360                                            int level);
4361
4362 static int regulator_summary_show_children(struct device *dev, void *data)
4363 {
4364         struct regulator_dev *rdev = dev_to_rdev(dev);
4365         struct summary_data *summary_data = data;
4366
4367         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4368                 regulator_summary_show_subtree(summary_data->s, rdev,
4369                                                summary_data->level + 1);
4370
4371         return 0;
4372 }
4373
4374 static void regulator_summary_show_subtree(struct seq_file *s,
4375                                            struct regulator_dev *rdev,
4376                                            int level)
4377 {
4378         struct regulation_constraints *c;
4379         struct regulator *consumer;
4380         struct summary_data summary_data;
4381
4382         if (!rdev)
4383                 return;
4384
4385         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4386                    level * 3 + 1, "",
4387                    30 - level * 3, rdev_get_name(rdev),
4388                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4389
4390         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4391         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4392
4393         c = rdev->constraints;
4394         if (c) {
4395                 switch (rdev->desc->type) {
4396                 case REGULATOR_VOLTAGE:
4397                         seq_printf(s, "%5dmV %5dmV ",
4398                                    c->min_uV / 1000, c->max_uV / 1000);
4399                         break;
4400                 case REGULATOR_CURRENT:
4401                         seq_printf(s, "%5dmA %5dmA ",
4402                                    c->min_uA / 1000, c->max_uA / 1000);
4403                         break;
4404                 }
4405         }
4406
4407         seq_puts(s, "\n");
4408
4409         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4410                 if (consumer->dev && consumer->dev->class == &regulator_class)
4411                         continue;
4412
4413                 seq_printf(s, "%*s%-*s ",
4414                            (level + 1) * 3 + 1, "",
4415                            30 - (level + 1) * 3,
4416                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
4417
4418                 switch (rdev->desc->type) {
4419                 case REGULATOR_VOLTAGE:
4420                         seq_printf(s, "%37dmV %5dmV",
4421                                    consumer->min_uV / 1000,
4422                                    consumer->max_uV / 1000);
4423                         break;
4424                 case REGULATOR_CURRENT:
4425                         break;
4426                 }
4427
4428                 seq_puts(s, "\n");
4429         }
4430
4431         summary_data.s = s;
4432         summary_data.level = level;
4433         summary_data.parent = rdev;
4434
4435         class_for_each_device(&regulator_class, NULL, &summary_data,
4436                               regulator_summary_show_children);
4437 }
4438
4439 static int regulator_summary_show_roots(struct device *dev, void *data)
4440 {
4441         struct regulator_dev *rdev = dev_to_rdev(dev);
4442         struct seq_file *s = data;
4443
4444         if (!rdev->supply)
4445                 regulator_summary_show_subtree(s, rdev, 0);
4446
4447         return 0;
4448 }
4449
4450 static int regulator_summary_show(struct seq_file *s, void *data)
4451 {
4452         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4453         seq_puts(s, "-------------------------------------------------------------------------------\n");
4454
4455         class_for_each_device(&regulator_class, NULL, s,
4456                               regulator_summary_show_roots);
4457
4458         return 0;
4459 }
4460
4461 static int regulator_summary_open(struct inode *inode, struct file *file)
4462 {
4463         return single_open(file, regulator_summary_show, inode->i_private);
4464 }
4465 #endif
4466
4467 static const struct file_operations regulator_summary_fops = {
4468 #ifdef CONFIG_DEBUG_FS
4469         .open           = regulator_summary_open,
4470         .read           = seq_read,
4471         .llseek         = seq_lseek,
4472         .release        = single_release,
4473 #endif
4474 };
4475
4476 static int __init regulator_init(void)
4477 {
4478         int ret;
4479
4480         ret = class_register(&regulator_class);
4481
4482         debugfs_root = debugfs_create_dir("regulator", NULL);
4483         if (!debugfs_root)
4484                 pr_warn("regulator: Failed to create debugfs directory\n");
4485
4486         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4487                             &supply_map_fops);
4488
4489         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4490                             NULL, &regulator_summary_fops);
4491
4492         regulator_dummy_init();
4493
4494         return ret;
4495 }
4496
4497 /* init early to allow our consumers to complete system booting */
4498 core_initcall(regulator_init);
4499
4500 static int __init regulator_late_cleanup(struct device *dev, void *data)
4501 {
4502         struct regulator_dev *rdev = dev_to_rdev(dev);
4503         const struct regulator_ops *ops = rdev->desc->ops;
4504         struct regulation_constraints *c = rdev->constraints;
4505         int enabled, ret;
4506
4507         if (c && c->always_on)
4508                 return 0;
4509
4510         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4511                 return 0;
4512
4513         mutex_lock(&rdev->mutex);
4514
4515         if (rdev->use_count)
4516                 goto unlock;
4517
4518         /* If we can't read the status assume it's on. */
4519         if (ops->is_enabled)
4520                 enabled = ops->is_enabled(rdev);
4521         else
4522                 enabled = 1;
4523
4524         if (!enabled)
4525                 goto unlock;
4526
4527         if (have_full_constraints()) {
4528                 /* We log since this may kill the system if it goes
4529                  * wrong. */
4530                 rdev_info(rdev, "disabling\n");
4531                 ret = _regulator_do_disable(rdev);
4532                 if (ret != 0)
4533                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4534         } else {
4535                 /* The intention is that in future we will
4536                  * assume that full constraints are provided
4537                  * so warn even if we aren't going to do
4538                  * anything here.
4539                  */
4540                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4541         }
4542
4543 unlock:
4544         mutex_unlock(&rdev->mutex);
4545
4546         return 0;
4547 }
4548
4549 static int __init regulator_init_complete(void)
4550 {
4551         /*
4552          * Since DT doesn't provide an idiomatic mechanism for
4553          * enabling full constraints and since it's much more natural
4554          * with DT to provide them just assume that a DT enabled
4555          * system has full constraints.
4556          */
4557         if (of_have_populated_dt())
4558                 has_full_constraints = true;
4559
4560         /*
4561          * Regulators may had failed to resolve their input supplies
4562          * when were registered, either because the input supply was
4563          * not registered yet or because its parent device was not
4564          * bound yet. So attempt to resolve the input supplies for
4565          * pending regulators before trying to disable unused ones.
4566          */
4567         class_for_each_device(&regulator_class, NULL, NULL,
4568                               regulator_register_resolve_supply);
4569
4570         /* If we have a full configuration then disable any regulators
4571          * we have permission to change the status for and which are
4572          * not in use or always_on.  This is effectively the default
4573          * for DT and ACPI as they have full constraints.
4574          */
4575         class_for_each_device(&regulator_class, NULL, NULL,
4576                               regulator_late_cleanup);
4577
4578         return 0;
4579 }
4580 late_initcall_sync(regulator_init_complete);