btrfs: sync ioctl, handle errors after transaction start
[linux.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62
63 #include "qgroup.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
69
70 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71
72 static const char *btrfs_decode_error(int errno)
73 {
74         char *errstr = "unknown";
75
76         switch (errno) {
77         case -EIO:
78                 errstr = "IO failure";
79                 break;
80         case -ENOMEM:
81                 errstr = "Out of memory";
82                 break;
83         case -EROFS:
84                 errstr = "Readonly filesystem";
85                 break;
86         case -EEXIST:
87                 errstr = "Object already exists";
88                 break;
89         case -ENOSPC:
90                 errstr = "No space left";
91                 break;
92         case -ENOENT:
93                 errstr = "No such entry";
94                 break;
95         }
96
97         return errstr;
98 }
99
100 static void save_error_info(struct btrfs_fs_info *fs_info)
101 {
102         /*
103          * today we only save the error info into ram.  Long term we'll
104          * also send it down to the disk
105          */
106         set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
107 }
108
109 /* btrfs handle error by forcing the filesystem readonly */
110 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111 {
112         struct super_block *sb = fs_info->sb;
113
114         if (sb->s_flags & MS_RDONLY)
115                 return;
116
117         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
118                 sb->s_flags |= MS_RDONLY;
119                 btrfs_info(fs_info, "forced readonly");
120                 /*
121                  * Note that a running device replace operation is not
122                  * canceled here although there is no way to update
123                  * the progress. It would add the risk of a deadlock,
124                  * therefore the canceling is ommited. The only penalty
125                  * is that some I/O remains active until the procedure
126                  * completes. The next time when the filesystem is
127                  * mounted writeable again, the device replace
128                  * operation continues.
129                  */
130         }
131 }
132
133 #ifdef CONFIG_PRINTK
134 /*
135  * __btrfs_std_error decodes expected errors from the caller and
136  * invokes the approciate error response.
137  */
138 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
139                        unsigned int line, int errno, const char *fmt, ...)
140 {
141         struct super_block *sb = fs_info->sb;
142         const char *errstr;
143
144         /*
145          * Special case: if the error is EROFS, and we're already
146          * under MS_RDONLY, then it is safe here.
147          */
148         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
149                 return;
150
151         errstr = btrfs_decode_error(errno);
152         if (fmt) {
153                 struct va_format vaf;
154                 va_list args;
155
156                 va_start(args, fmt);
157                 vaf.fmt = fmt;
158                 vaf.va = &args;
159
160                 printk(KERN_CRIT
161                         "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
162                         sb->s_id, function, line, errno, errstr, &vaf);
163                 va_end(args);
164         } else {
165                 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
166                         sb->s_id, function, line, errno, errstr);
167         }
168
169         /* Don't go through full error handling during mount */
170         save_error_info(fs_info);
171         if (sb->s_flags & MS_BORN)
172                 btrfs_handle_error(fs_info);
173 }
174
175 static const char * const logtypes[] = {
176         "emergency",
177         "alert",
178         "critical",
179         "error",
180         "warning",
181         "notice",
182         "info",
183         "debug",
184 };
185
186 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
187 {
188         struct super_block *sb = fs_info->sb;
189         char lvl[4];
190         struct va_format vaf;
191         va_list args;
192         const char *type = logtypes[4];
193         int kern_level;
194
195         va_start(args, fmt);
196
197         kern_level = printk_get_level(fmt);
198         if (kern_level) {
199                 size_t size = printk_skip_level(fmt) - fmt;
200                 memcpy(lvl, fmt,  size);
201                 lvl[size] = '\0';
202                 fmt += size;
203                 type = logtypes[kern_level - '0'];
204         } else
205                 *lvl = '\0';
206
207         vaf.fmt = fmt;
208         vaf.va = &args;
209
210         printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
211
212         va_end(args);
213 }
214
215 #else
216
217 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
218                        unsigned int line, int errno, const char *fmt, ...)
219 {
220         struct super_block *sb = fs_info->sb;
221
222         /*
223          * Special case: if the error is EROFS, and we're already
224          * under MS_RDONLY, then it is safe here.
225          */
226         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
227                 return;
228
229         /* Don't go through full error handling during mount */
230         if (sb->s_flags & MS_BORN) {
231                 save_error_info(fs_info);
232                 btrfs_handle_error(fs_info);
233         }
234 }
235 #endif
236
237 /*
238  * We only mark the transaction aborted and then set the file system read-only.
239  * This will prevent new transactions from starting or trying to join this
240  * one.
241  *
242  * This means that error recovery at the call site is limited to freeing
243  * any local memory allocations and passing the error code up without
244  * further cleanup. The transaction should complete as it normally would
245  * in the call path but will return -EIO.
246  *
247  * We'll complete the cleanup in btrfs_end_transaction and
248  * btrfs_commit_transaction.
249  */
250 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
251                                struct btrfs_root *root, const char *function,
252                                unsigned int line, int errno)
253 {
254         /*
255          * Report first abort since mount
256          */
257         if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
258                                 &root->fs_info->fs_state)) {
259                 WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
260                                 errno);
261         }
262         trans->aborted = errno;
263         /* Nothing used. The other threads that have joined this
264          * transaction may be able to continue. */
265         if (!trans->blocks_used && list_empty(&trans->new_bgs)) {
266                 const char *errstr;
267
268                 errstr = btrfs_decode_error(errno);
269                 btrfs_warn(root->fs_info,
270                            "%s:%d: Aborting unused transaction(%s).",
271                            function, line, errstr);
272                 return;
273         }
274         ACCESS_ONCE(trans->transaction->aborted) = errno;
275         /* Wake up anybody who may be waiting on this transaction */
276         wake_up(&root->fs_info->transaction_wait);
277         wake_up(&root->fs_info->transaction_blocked_wait);
278         __btrfs_std_error(root->fs_info, function, line, errno, NULL);
279 }
280 /*
281  * __btrfs_panic decodes unexpected, fatal errors from the caller,
282  * issues an alert, and either panics or BUGs, depending on mount options.
283  */
284 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
285                    unsigned int line, int errno, const char *fmt, ...)
286 {
287         char *s_id = "<unknown>";
288         const char *errstr;
289         struct va_format vaf = { .fmt = fmt };
290         va_list args;
291
292         if (fs_info)
293                 s_id = fs_info->sb->s_id;
294
295         va_start(args, fmt);
296         vaf.va = &args;
297
298         errstr = btrfs_decode_error(errno);
299         if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
300                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
301                         s_id, function, line, &vaf, errno, errstr);
302
303         btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
304                    function, line, &vaf, errno, errstr);
305         va_end(args);
306         /* Caller calls BUG() */
307 }
308
309 static void btrfs_put_super(struct super_block *sb)
310 {
311         close_ctree(btrfs_sb(sb)->tree_root);
312 }
313
314 enum {
315         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
316         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
317         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
318         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
319         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
320         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
321         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
322         Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
323         Opt_check_integrity, Opt_check_integrity_including_extent_data,
324         Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
325         Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
326         Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
327         Opt_datasum, Opt_treelog, Opt_noinode_cache,
328         Opt_err,
329 };
330
331 static match_table_t tokens = {
332         {Opt_degraded, "degraded"},
333         {Opt_subvol, "subvol=%s"},
334         {Opt_subvolid, "subvolid=%s"},
335         {Opt_device, "device=%s"},
336         {Opt_nodatasum, "nodatasum"},
337         {Opt_datasum, "datasum"},
338         {Opt_nodatacow, "nodatacow"},
339         {Opt_datacow, "datacow"},
340         {Opt_nobarrier, "nobarrier"},
341         {Opt_barrier, "barrier"},
342         {Opt_max_inline, "max_inline=%s"},
343         {Opt_alloc_start, "alloc_start=%s"},
344         {Opt_thread_pool, "thread_pool=%d"},
345         {Opt_compress, "compress"},
346         {Opt_compress_type, "compress=%s"},
347         {Opt_compress_force, "compress-force"},
348         {Opt_compress_force_type, "compress-force=%s"},
349         {Opt_ssd, "ssd"},
350         {Opt_ssd_spread, "ssd_spread"},
351         {Opt_nossd, "nossd"},
352         {Opt_acl, "acl"},
353         {Opt_noacl, "noacl"},
354         {Opt_notreelog, "notreelog"},
355         {Opt_treelog, "treelog"},
356         {Opt_flushoncommit, "flushoncommit"},
357         {Opt_noflushoncommit, "noflushoncommit"},
358         {Opt_ratio, "metadata_ratio=%d"},
359         {Opt_discard, "discard"},
360         {Opt_nodiscard, "nodiscard"},
361         {Opt_space_cache, "space_cache"},
362         {Opt_clear_cache, "clear_cache"},
363         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
364         {Opt_enospc_debug, "enospc_debug"},
365         {Opt_noenospc_debug, "noenospc_debug"},
366         {Opt_subvolrootid, "subvolrootid=%d"},
367         {Opt_defrag, "autodefrag"},
368         {Opt_nodefrag, "noautodefrag"},
369         {Opt_inode_cache, "inode_cache"},
370         {Opt_noinode_cache, "noinode_cache"},
371         {Opt_no_space_cache, "nospace_cache"},
372         {Opt_recovery, "recovery"},
373         {Opt_skip_balance, "skip_balance"},
374         {Opt_check_integrity, "check_int"},
375         {Opt_check_integrity_including_extent_data, "check_int_data"},
376         {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
377         {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
378         {Opt_fatal_errors, "fatal_errors=%s"},
379         {Opt_commit_interval, "commit=%d"},
380         {Opt_err, NULL},
381 };
382
383 /*
384  * Regular mount options parser.  Everything that is needed only when
385  * reading in a new superblock is parsed here.
386  * XXX JDM: This needs to be cleaned up for remount.
387  */
388 int btrfs_parse_options(struct btrfs_root *root, char *options)
389 {
390         struct btrfs_fs_info *info = root->fs_info;
391         substring_t args[MAX_OPT_ARGS];
392         char *p, *num, *orig = NULL;
393         u64 cache_gen;
394         int intarg;
395         int ret = 0;
396         char *compress_type;
397         bool compress_force = false;
398
399         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
400         if (cache_gen)
401                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
402
403         if (!options)
404                 goto out;
405
406         /*
407          * strsep changes the string, duplicate it because parse_options
408          * gets called twice
409          */
410         options = kstrdup(options, GFP_NOFS);
411         if (!options)
412                 return -ENOMEM;
413
414         orig = options;
415
416         while ((p = strsep(&options, ",")) != NULL) {
417                 int token;
418                 if (!*p)
419                         continue;
420
421                 token = match_token(p, tokens, args);
422                 switch (token) {
423                 case Opt_degraded:
424                         btrfs_info(root->fs_info, "allowing degraded mounts");
425                         btrfs_set_opt(info->mount_opt, DEGRADED);
426                         break;
427                 case Opt_subvol:
428                 case Opt_subvolid:
429                 case Opt_subvolrootid:
430                 case Opt_device:
431                         /*
432                          * These are parsed by btrfs_parse_early_options
433                          * and can be happily ignored here.
434                          */
435                         break;
436                 case Opt_nodatasum:
437                         btrfs_set_and_info(root, NODATASUM,
438                                            "setting nodatasum");
439                         break;
440                 case Opt_datasum:
441                         if (btrfs_test_opt(root, NODATASUM)) {
442                                 if (btrfs_test_opt(root, NODATACOW))
443                                         btrfs_info(root->fs_info, "setting datasum, datacow enabled");
444                                 else
445                                         btrfs_info(root->fs_info, "setting datasum");
446                         }
447                         btrfs_clear_opt(info->mount_opt, NODATACOW);
448                         btrfs_clear_opt(info->mount_opt, NODATASUM);
449                         break;
450                 case Opt_nodatacow:
451                         if (!btrfs_test_opt(root, NODATACOW)) {
452                                 if (!btrfs_test_opt(root, COMPRESS) ||
453                                     !btrfs_test_opt(root, FORCE_COMPRESS)) {
454                                         btrfs_info(root->fs_info,
455                                                    "setting nodatacow, compression disabled");
456                                 } else {
457                                         btrfs_info(root->fs_info, "setting nodatacow");
458                                 }
459                         }
460                         btrfs_clear_opt(info->mount_opt, COMPRESS);
461                         btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
462                         btrfs_set_opt(info->mount_opt, NODATACOW);
463                         btrfs_set_opt(info->mount_opt, NODATASUM);
464                         break;
465                 case Opt_datacow:
466                         btrfs_clear_and_info(root, NODATACOW,
467                                              "setting datacow");
468                         break;
469                 case Opt_compress_force:
470                 case Opt_compress_force_type:
471                         compress_force = true;
472                         /* Fallthrough */
473                 case Opt_compress:
474                 case Opt_compress_type:
475                         if (token == Opt_compress ||
476                             token == Opt_compress_force ||
477                             strcmp(args[0].from, "zlib") == 0) {
478                                 compress_type = "zlib";
479                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
480                                 btrfs_set_opt(info->mount_opt, COMPRESS);
481                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
482                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
483                         } else if (strcmp(args[0].from, "lzo") == 0) {
484                                 compress_type = "lzo";
485                                 info->compress_type = BTRFS_COMPRESS_LZO;
486                                 btrfs_set_opt(info->mount_opt, COMPRESS);
487                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
488                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
489                                 btrfs_set_fs_incompat(info, COMPRESS_LZO);
490                         } else if (strncmp(args[0].from, "no", 2) == 0) {
491                                 compress_type = "no";
492                                 btrfs_clear_opt(info->mount_opt, COMPRESS);
493                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
494                                 compress_force = false;
495                         } else {
496                                 ret = -EINVAL;
497                                 goto out;
498                         }
499
500                         if (compress_force) {
501                                 btrfs_set_and_info(root, FORCE_COMPRESS,
502                                                    "force %s compression",
503                                                    compress_type);
504                         } else {
505                                 if (!btrfs_test_opt(root, COMPRESS))
506                                         btrfs_info(root->fs_info,
507                                                    "btrfs: use %s compression",
508                                                    compress_type);
509                                 /*
510                                  * If we remount from compress-force=xxx to
511                                  * compress=xxx, we need clear FORCE_COMPRESS
512                                  * flag, otherwise, there is no way for users
513                                  * to disable forcible compression separately.
514                                  */
515                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
516                         }
517                         break;
518                 case Opt_ssd:
519                         btrfs_set_and_info(root, SSD,
520                                            "use ssd allocation scheme");
521                         break;
522                 case Opt_ssd_spread:
523                         btrfs_set_and_info(root, SSD_SPREAD,
524                                            "use spread ssd allocation scheme");
525                         btrfs_set_opt(info->mount_opt, SSD);
526                         break;
527                 case Opt_nossd:
528                         btrfs_set_and_info(root, NOSSD,
529                                              "not using ssd allocation scheme");
530                         btrfs_clear_opt(info->mount_opt, SSD);
531                         break;
532                 case Opt_barrier:
533                         btrfs_clear_and_info(root, NOBARRIER,
534                                              "turning on barriers");
535                         break;
536                 case Opt_nobarrier:
537                         btrfs_set_and_info(root, NOBARRIER,
538                                            "turning off barriers");
539                         break;
540                 case Opt_thread_pool:
541                         ret = match_int(&args[0], &intarg);
542                         if (ret) {
543                                 goto out;
544                         } else if (intarg > 0) {
545                                 info->thread_pool_size = intarg;
546                         } else {
547                                 ret = -EINVAL;
548                                 goto out;
549                         }
550                         break;
551                 case Opt_max_inline:
552                         num = match_strdup(&args[0]);
553                         if (num) {
554                                 info->max_inline = memparse(num, NULL);
555                                 kfree(num);
556
557                                 if (info->max_inline) {
558                                         info->max_inline = min_t(u64,
559                                                 info->max_inline,
560                                                 root->sectorsize);
561                                 }
562                                 btrfs_info(root->fs_info, "max_inline at %llu",
563                                         info->max_inline);
564                         } else {
565                                 ret = -ENOMEM;
566                                 goto out;
567                         }
568                         break;
569                 case Opt_alloc_start:
570                         num = match_strdup(&args[0]);
571                         if (num) {
572                                 mutex_lock(&info->chunk_mutex);
573                                 info->alloc_start = memparse(num, NULL);
574                                 mutex_unlock(&info->chunk_mutex);
575                                 kfree(num);
576                                 btrfs_info(root->fs_info, "allocations start at %llu",
577                                         info->alloc_start);
578                         } else {
579                                 ret = -ENOMEM;
580                                 goto out;
581                         }
582                         break;
583                 case Opt_acl:
584 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
585                         root->fs_info->sb->s_flags |= MS_POSIXACL;
586                         break;
587 #else
588                         btrfs_err(root->fs_info,
589                                 "support for ACL not compiled in!");
590                         ret = -EINVAL;
591                         goto out;
592 #endif
593                 case Opt_noacl:
594                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
595                         break;
596                 case Opt_notreelog:
597                         btrfs_set_and_info(root, NOTREELOG,
598                                            "disabling tree log");
599                         break;
600                 case Opt_treelog:
601                         btrfs_clear_and_info(root, NOTREELOG,
602                                              "enabling tree log");
603                         break;
604                 case Opt_flushoncommit:
605                         btrfs_set_and_info(root, FLUSHONCOMMIT,
606                                            "turning on flush-on-commit");
607                         break;
608                 case Opt_noflushoncommit:
609                         btrfs_clear_and_info(root, FLUSHONCOMMIT,
610                                              "turning off flush-on-commit");
611                         break;
612                 case Opt_ratio:
613                         ret = match_int(&args[0], &intarg);
614                         if (ret) {
615                                 goto out;
616                         } else if (intarg >= 0) {
617                                 info->metadata_ratio = intarg;
618                                 btrfs_info(root->fs_info, "metadata ratio %d",
619                                        info->metadata_ratio);
620                         } else {
621                                 ret = -EINVAL;
622                                 goto out;
623                         }
624                         break;
625                 case Opt_discard:
626                         btrfs_set_and_info(root, DISCARD,
627                                            "turning on discard");
628                         break;
629                 case Opt_nodiscard:
630                         btrfs_clear_and_info(root, DISCARD,
631                                              "turning off discard");
632                         break;
633                 case Opt_space_cache:
634                         btrfs_set_and_info(root, SPACE_CACHE,
635                                            "enabling disk space caching");
636                         break;
637                 case Opt_rescan_uuid_tree:
638                         btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
639                         break;
640                 case Opt_no_space_cache:
641                         btrfs_clear_and_info(root, SPACE_CACHE,
642                                              "disabling disk space caching");
643                         break;
644                 case Opt_inode_cache:
645                         btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
646                                            "enabling inode map caching");
647                         break;
648                 case Opt_noinode_cache:
649                         btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
650                                              "disabling inode map caching");
651                         break;
652                 case Opt_clear_cache:
653                         btrfs_set_and_info(root, CLEAR_CACHE,
654                                            "force clearing of disk cache");
655                         break;
656                 case Opt_user_subvol_rm_allowed:
657                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
658                         break;
659                 case Opt_enospc_debug:
660                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
661                         break;
662                 case Opt_noenospc_debug:
663                         btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
664                         break;
665                 case Opt_defrag:
666                         btrfs_set_and_info(root, AUTO_DEFRAG,
667                                            "enabling auto defrag");
668                         break;
669                 case Opt_nodefrag:
670                         btrfs_clear_and_info(root, AUTO_DEFRAG,
671                                              "disabling auto defrag");
672                         break;
673                 case Opt_recovery:
674                         btrfs_info(root->fs_info, "enabling auto recovery");
675                         btrfs_set_opt(info->mount_opt, RECOVERY);
676                         break;
677                 case Opt_skip_balance:
678                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
679                         break;
680 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
681                 case Opt_check_integrity_including_extent_data:
682                         btrfs_info(root->fs_info,
683                                    "enabling check integrity including extent data");
684                         btrfs_set_opt(info->mount_opt,
685                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
686                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
687                         break;
688                 case Opt_check_integrity:
689                         btrfs_info(root->fs_info, "enabling check integrity");
690                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
691                         break;
692                 case Opt_check_integrity_print_mask:
693                         ret = match_int(&args[0], &intarg);
694                         if (ret) {
695                                 goto out;
696                         } else if (intarg >= 0) {
697                                 info->check_integrity_print_mask = intarg;
698                                 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
699                                        info->check_integrity_print_mask);
700                         } else {
701                                 ret = -EINVAL;
702                                 goto out;
703                         }
704                         break;
705 #else
706                 case Opt_check_integrity_including_extent_data:
707                 case Opt_check_integrity:
708                 case Opt_check_integrity_print_mask:
709                         btrfs_err(root->fs_info,
710                                 "support for check_integrity* not compiled in!");
711                         ret = -EINVAL;
712                         goto out;
713 #endif
714                 case Opt_fatal_errors:
715                         if (strcmp(args[0].from, "panic") == 0)
716                                 btrfs_set_opt(info->mount_opt,
717                                               PANIC_ON_FATAL_ERROR);
718                         else if (strcmp(args[0].from, "bug") == 0)
719                                 btrfs_clear_opt(info->mount_opt,
720                                               PANIC_ON_FATAL_ERROR);
721                         else {
722                                 ret = -EINVAL;
723                                 goto out;
724                         }
725                         break;
726                 case Opt_commit_interval:
727                         intarg = 0;
728                         ret = match_int(&args[0], &intarg);
729                         if (ret < 0) {
730                                 btrfs_err(root->fs_info, "invalid commit interval");
731                                 ret = -EINVAL;
732                                 goto out;
733                         }
734                         if (intarg > 0) {
735                                 if (intarg > 300) {
736                                         btrfs_warn(root->fs_info, "excessive commit interval %d",
737                                                         intarg);
738                                 }
739                                 info->commit_interval = intarg;
740                         } else {
741                                 btrfs_info(root->fs_info, "using default commit interval %ds",
742                                     BTRFS_DEFAULT_COMMIT_INTERVAL);
743                                 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
744                         }
745                         break;
746                 case Opt_err:
747                         btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
748                         ret = -EINVAL;
749                         goto out;
750                 default:
751                         break;
752                 }
753         }
754 out:
755         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
756                 btrfs_info(root->fs_info, "disk space caching is enabled");
757         kfree(orig);
758         return ret;
759 }
760
761 /*
762  * Parse mount options that are required early in the mount process.
763  *
764  * All other options will be parsed on much later in the mount process and
765  * only when we need to allocate a new super block.
766  */
767 static int btrfs_parse_early_options(const char *options, fmode_t flags,
768                 void *holder, char **subvol_name, u64 *subvol_objectid,
769                 struct btrfs_fs_devices **fs_devices)
770 {
771         substring_t args[MAX_OPT_ARGS];
772         char *device_name, *opts, *orig, *p;
773         char *num = NULL;
774         int error = 0;
775
776         if (!options)
777                 return 0;
778
779         /*
780          * strsep changes the string, duplicate it because parse_options
781          * gets called twice
782          */
783         opts = kstrdup(options, GFP_KERNEL);
784         if (!opts)
785                 return -ENOMEM;
786         orig = opts;
787
788         while ((p = strsep(&opts, ",")) != NULL) {
789                 int token;
790                 if (!*p)
791                         continue;
792
793                 token = match_token(p, tokens, args);
794                 switch (token) {
795                 case Opt_subvol:
796                         kfree(*subvol_name);
797                         *subvol_name = match_strdup(&args[0]);
798                         if (!*subvol_name) {
799                                 error = -ENOMEM;
800                                 goto out;
801                         }
802                         break;
803                 case Opt_subvolid:
804                         num = match_strdup(&args[0]);
805                         if (num) {
806                                 *subvol_objectid = memparse(num, NULL);
807                                 kfree(num);
808                                 /* we want the original fs_tree */
809                                 if (!*subvol_objectid)
810                                         *subvol_objectid =
811                                                 BTRFS_FS_TREE_OBJECTID;
812                         } else {
813                                 error = -EINVAL;
814                                 goto out;
815                         }
816                         break;
817                 case Opt_subvolrootid:
818                         printk(KERN_WARNING
819                                 "BTRFS: 'subvolrootid' mount option is deprecated and has "
820                                 "no effect\n");
821                         break;
822                 case Opt_device:
823                         device_name = match_strdup(&args[0]);
824                         if (!device_name) {
825                                 error = -ENOMEM;
826                                 goto out;
827                         }
828                         error = btrfs_scan_one_device(device_name,
829                                         flags, holder, fs_devices);
830                         kfree(device_name);
831                         if (error)
832                                 goto out;
833                         break;
834                 default:
835                         break;
836                 }
837         }
838
839 out:
840         kfree(orig);
841         return error;
842 }
843
844 static struct dentry *get_default_root(struct super_block *sb,
845                                        u64 subvol_objectid)
846 {
847         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
848         struct btrfs_root *root = fs_info->tree_root;
849         struct btrfs_root *new_root;
850         struct btrfs_dir_item *di;
851         struct btrfs_path *path;
852         struct btrfs_key location;
853         struct inode *inode;
854         u64 dir_id;
855         int new = 0;
856
857         /*
858          * We have a specific subvol we want to mount, just setup location and
859          * go look up the root.
860          */
861         if (subvol_objectid) {
862                 location.objectid = subvol_objectid;
863                 location.type = BTRFS_ROOT_ITEM_KEY;
864                 location.offset = (u64)-1;
865                 goto find_root;
866         }
867
868         path = btrfs_alloc_path();
869         if (!path)
870                 return ERR_PTR(-ENOMEM);
871         path->leave_spinning = 1;
872
873         /*
874          * Find the "default" dir item which points to the root item that we
875          * will mount by default if we haven't been given a specific subvolume
876          * to mount.
877          */
878         dir_id = btrfs_super_root_dir(fs_info->super_copy);
879         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
880         if (IS_ERR(di)) {
881                 btrfs_free_path(path);
882                 return ERR_CAST(di);
883         }
884         if (!di) {
885                 /*
886                  * Ok the default dir item isn't there.  This is weird since
887                  * it's always been there, but don't freak out, just try and
888                  * mount to root most subvolume.
889                  */
890                 btrfs_free_path(path);
891                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
892                 new_root = fs_info->fs_root;
893                 goto setup_root;
894         }
895
896         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
897         btrfs_free_path(path);
898
899 find_root:
900         new_root = btrfs_read_fs_root_no_name(fs_info, &location);
901         if (IS_ERR(new_root))
902                 return ERR_CAST(new_root);
903
904         dir_id = btrfs_root_dirid(&new_root->root_item);
905 setup_root:
906         location.objectid = dir_id;
907         location.type = BTRFS_INODE_ITEM_KEY;
908         location.offset = 0;
909
910         inode = btrfs_iget(sb, &location, new_root, &new);
911         if (IS_ERR(inode))
912                 return ERR_CAST(inode);
913
914         /*
915          * If we're just mounting the root most subvol put the inode and return
916          * a reference to the dentry.  We will have already gotten a reference
917          * to the inode in btrfs_fill_super so we're good to go.
918          */
919         if (!new && sb->s_root->d_inode == inode) {
920                 iput(inode);
921                 return dget(sb->s_root);
922         }
923
924         return d_obtain_root(inode);
925 }
926
927 static int btrfs_fill_super(struct super_block *sb,
928                             struct btrfs_fs_devices *fs_devices,
929                             void *data, int silent)
930 {
931         struct inode *inode;
932         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
933         struct btrfs_key key;
934         int err;
935
936         sb->s_maxbytes = MAX_LFS_FILESIZE;
937         sb->s_magic = BTRFS_SUPER_MAGIC;
938         sb->s_op = &btrfs_super_ops;
939         sb->s_d_op = &btrfs_dentry_operations;
940         sb->s_export_op = &btrfs_export_ops;
941         sb->s_xattr = btrfs_xattr_handlers;
942         sb->s_time_gran = 1;
943 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
944         sb->s_flags |= MS_POSIXACL;
945 #endif
946         sb->s_flags |= MS_I_VERSION;
947         err = open_ctree(sb, fs_devices, (char *)data);
948         if (err) {
949                 printk(KERN_ERR "BTRFS: open_ctree failed\n");
950                 return err;
951         }
952
953         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
954         key.type = BTRFS_INODE_ITEM_KEY;
955         key.offset = 0;
956         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
957         if (IS_ERR(inode)) {
958                 err = PTR_ERR(inode);
959                 goto fail_close;
960         }
961
962         sb->s_root = d_make_root(inode);
963         if (!sb->s_root) {
964                 err = -ENOMEM;
965                 goto fail_close;
966         }
967
968         save_mount_options(sb, data);
969         cleancache_init_fs(sb);
970         sb->s_flags |= MS_ACTIVE;
971         return 0;
972
973 fail_close:
974         close_ctree(fs_info->tree_root);
975         return err;
976 }
977
978 int btrfs_sync_fs(struct super_block *sb, int wait)
979 {
980         struct btrfs_trans_handle *trans;
981         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
982         struct btrfs_root *root = fs_info->tree_root;
983
984         trace_btrfs_sync_fs(wait);
985
986         if (!wait) {
987                 filemap_flush(fs_info->btree_inode->i_mapping);
988                 return 0;
989         }
990
991         btrfs_wait_ordered_roots(fs_info, -1);
992
993         trans = btrfs_attach_transaction_barrier(root);
994         if (IS_ERR(trans)) {
995                 /* no transaction, don't bother */
996                 if (PTR_ERR(trans) == -ENOENT) {
997                         /*
998                          * Exit unless we have some pending changes
999                          * that need to go through commit
1000                          */
1001                         if (fs_info->pending_changes == 0)
1002                                 return 0;
1003                         trans = btrfs_start_transaction(root, 0);
1004                 }
1005                 if (IS_ERR(trans))
1006                         return PTR_ERR(trans);
1007         }
1008         return btrfs_commit_transaction(trans, root);
1009 }
1010
1011 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1012 {
1013         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1014         struct btrfs_root *root = info->tree_root;
1015         char *compress_type;
1016
1017         if (btrfs_test_opt(root, DEGRADED))
1018                 seq_puts(seq, ",degraded");
1019         if (btrfs_test_opt(root, NODATASUM))
1020                 seq_puts(seq, ",nodatasum");
1021         if (btrfs_test_opt(root, NODATACOW))
1022                 seq_puts(seq, ",nodatacow");
1023         if (btrfs_test_opt(root, NOBARRIER))
1024                 seq_puts(seq, ",nobarrier");
1025         if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1026                 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1027         if (info->alloc_start != 0)
1028                 seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1029         if (info->thread_pool_size !=  min_t(unsigned long,
1030                                              num_online_cpus() + 2, 8))
1031                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1032         if (btrfs_test_opt(root, COMPRESS)) {
1033                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1034                         compress_type = "zlib";
1035                 else
1036                         compress_type = "lzo";
1037                 if (btrfs_test_opt(root, FORCE_COMPRESS))
1038                         seq_printf(seq, ",compress-force=%s", compress_type);
1039                 else
1040                         seq_printf(seq, ",compress=%s", compress_type);
1041         }
1042         if (btrfs_test_opt(root, NOSSD))
1043                 seq_puts(seq, ",nossd");
1044         if (btrfs_test_opt(root, SSD_SPREAD))
1045                 seq_puts(seq, ",ssd_spread");
1046         else if (btrfs_test_opt(root, SSD))
1047                 seq_puts(seq, ",ssd");
1048         if (btrfs_test_opt(root, NOTREELOG))
1049                 seq_puts(seq, ",notreelog");
1050         if (btrfs_test_opt(root, FLUSHONCOMMIT))
1051                 seq_puts(seq, ",flushoncommit");
1052         if (btrfs_test_opt(root, DISCARD))
1053                 seq_puts(seq, ",discard");
1054         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1055                 seq_puts(seq, ",noacl");
1056         if (btrfs_test_opt(root, SPACE_CACHE))
1057                 seq_puts(seq, ",space_cache");
1058         else
1059                 seq_puts(seq, ",nospace_cache");
1060         if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1061                 seq_puts(seq, ",rescan_uuid_tree");
1062         if (btrfs_test_opt(root, CLEAR_CACHE))
1063                 seq_puts(seq, ",clear_cache");
1064         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1065                 seq_puts(seq, ",user_subvol_rm_allowed");
1066         if (btrfs_test_opt(root, ENOSPC_DEBUG))
1067                 seq_puts(seq, ",enospc_debug");
1068         if (btrfs_test_opt(root, AUTO_DEFRAG))
1069                 seq_puts(seq, ",autodefrag");
1070         if (btrfs_test_opt(root, INODE_MAP_CACHE))
1071                 seq_puts(seq, ",inode_cache");
1072         if (btrfs_test_opt(root, SKIP_BALANCE))
1073                 seq_puts(seq, ",skip_balance");
1074         if (btrfs_test_opt(root, RECOVERY))
1075                 seq_puts(seq, ",recovery");
1076 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1077         if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1078                 seq_puts(seq, ",check_int_data");
1079         else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1080                 seq_puts(seq, ",check_int");
1081         if (info->check_integrity_print_mask)
1082                 seq_printf(seq, ",check_int_print_mask=%d",
1083                                 info->check_integrity_print_mask);
1084 #endif
1085         if (info->metadata_ratio)
1086                 seq_printf(seq, ",metadata_ratio=%d",
1087                                 info->metadata_ratio);
1088         if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1089                 seq_puts(seq, ",fatal_errors=panic");
1090         if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1091                 seq_printf(seq, ",commit=%d", info->commit_interval);
1092         return 0;
1093 }
1094
1095 static int btrfs_test_super(struct super_block *s, void *data)
1096 {
1097         struct btrfs_fs_info *p = data;
1098         struct btrfs_fs_info *fs_info = btrfs_sb(s);
1099
1100         return fs_info->fs_devices == p->fs_devices;
1101 }
1102
1103 static int btrfs_set_super(struct super_block *s, void *data)
1104 {
1105         int err = set_anon_super(s, data);
1106         if (!err)
1107                 s->s_fs_info = data;
1108         return err;
1109 }
1110
1111 /*
1112  * subvolumes are identified by ino 256
1113  */
1114 static inline int is_subvolume_inode(struct inode *inode)
1115 {
1116         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1117                 return 1;
1118         return 0;
1119 }
1120
1121 /*
1122  * This will strip out the subvol=%s argument for an argument string and add
1123  * subvolid=0 to make sure we get the actual tree root for path walking to the
1124  * subvol we want.
1125  */
1126 static char *setup_root_args(char *args)
1127 {
1128         unsigned len = strlen(args) + 2 + 1;
1129         char *src, *dst, *buf;
1130
1131         /*
1132          * We need the same args as before, but with this substitution:
1133          * s!subvol=[^,]+!subvolid=0!
1134          *
1135          * Since the replacement string is up to 2 bytes longer than the
1136          * original, allocate strlen(args) + 2 + 1 bytes.
1137          */
1138
1139         src = strstr(args, "subvol=");
1140         /* This shouldn't happen, but just in case.. */
1141         if (!src)
1142                 return NULL;
1143
1144         buf = dst = kmalloc(len, GFP_NOFS);
1145         if (!buf)
1146                 return NULL;
1147
1148         /*
1149          * If the subvol= arg is not at the start of the string,
1150          * copy whatever precedes it into buf.
1151          */
1152         if (src != args) {
1153                 *src++ = '\0';
1154                 strcpy(buf, args);
1155                 dst += strlen(args);
1156         }
1157
1158         strcpy(dst, "subvolid=0");
1159         dst += strlen("subvolid=0");
1160
1161         /*
1162          * If there is a "," after the original subvol=... string,
1163          * copy that suffix into our buffer.  Otherwise, we're done.
1164          */
1165         src = strchr(src, ',');
1166         if (src)
1167                 strcpy(dst, src);
1168
1169         return buf;
1170 }
1171
1172 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1173                                    const char *device_name, char *data)
1174 {
1175         struct dentry *root;
1176         struct vfsmount *mnt;
1177         char *newargs;
1178
1179         newargs = setup_root_args(data);
1180         if (!newargs)
1181                 return ERR_PTR(-ENOMEM);
1182         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1183                              newargs);
1184
1185         if (PTR_RET(mnt) == -EBUSY) {
1186                 if (flags & MS_RDONLY) {
1187                         mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name,
1188                                              newargs);
1189                 } else {
1190                         int r;
1191                         mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name,
1192                                              newargs);
1193                         if (IS_ERR(mnt)) {
1194                                 kfree(newargs);
1195                                 return ERR_CAST(mnt);
1196                         }
1197
1198                         r = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1199                         if (r < 0) {
1200                                 /* FIXME: release vfsmount mnt ??*/
1201                                 kfree(newargs);
1202                                 return ERR_PTR(r);
1203                         }
1204                 }
1205         }
1206
1207         kfree(newargs);
1208
1209         if (IS_ERR(mnt))
1210                 return ERR_CAST(mnt);
1211
1212         root = mount_subtree(mnt, subvol_name);
1213
1214         if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1215                 struct super_block *s = root->d_sb;
1216                 dput(root);
1217                 root = ERR_PTR(-EINVAL);
1218                 deactivate_locked_super(s);
1219                 printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1220                                 subvol_name);
1221         }
1222
1223         return root;
1224 }
1225
1226 static int parse_security_options(char *orig_opts,
1227                                   struct security_mnt_opts *sec_opts)
1228 {
1229         char *secdata = NULL;
1230         int ret = 0;
1231
1232         secdata = alloc_secdata();
1233         if (!secdata)
1234                 return -ENOMEM;
1235         ret = security_sb_copy_data(orig_opts, secdata);
1236         if (ret) {
1237                 free_secdata(secdata);
1238                 return ret;
1239         }
1240         ret = security_sb_parse_opts_str(secdata, sec_opts);
1241         free_secdata(secdata);
1242         return ret;
1243 }
1244
1245 static int setup_security_options(struct btrfs_fs_info *fs_info,
1246                                   struct super_block *sb,
1247                                   struct security_mnt_opts *sec_opts)
1248 {
1249         int ret = 0;
1250
1251         /*
1252          * Call security_sb_set_mnt_opts() to check whether new sec_opts
1253          * is valid.
1254          */
1255         ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1256         if (ret)
1257                 return ret;
1258
1259 #ifdef CONFIG_SECURITY
1260         if (!fs_info->security_opts.num_mnt_opts) {
1261                 /* first time security setup, copy sec_opts to fs_info */
1262                 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1263         } else {
1264                 /*
1265                  * Since SELinux(the only one supports security_mnt_opts) does
1266                  * NOT support changing context during remount/mount same sb,
1267                  * This must be the same or part of the same security options,
1268                  * just free it.
1269                  */
1270                 security_free_mnt_opts(sec_opts);
1271         }
1272 #endif
1273         return ret;
1274 }
1275
1276 /*
1277  * Find a superblock for the given device / mount point.
1278  *
1279  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1280  *        for multiple device setup.  Make sure to keep it in sync.
1281  */
1282 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1283                 const char *device_name, void *data)
1284 {
1285         struct block_device *bdev = NULL;
1286         struct super_block *s;
1287         struct dentry *root;
1288         struct btrfs_fs_devices *fs_devices = NULL;
1289         struct btrfs_fs_info *fs_info = NULL;
1290         struct security_mnt_opts new_sec_opts;
1291         fmode_t mode = FMODE_READ;
1292         char *subvol_name = NULL;
1293         u64 subvol_objectid = 0;
1294         int error = 0;
1295
1296         if (!(flags & MS_RDONLY))
1297                 mode |= FMODE_WRITE;
1298
1299         error = btrfs_parse_early_options(data, mode, fs_type,
1300                                           &subvol_name, &subvol_objectid,
1301                                           &fs_devices);
1302         if (error) {
1303                 kfree(subvol_name);
1304                 return ERR_PTR(error);
1305         }
1306
1307         if (subvol_name) {
1308                 root = mount_subvol(subvol_name, flags, device_name, data);
1309                 kfree(subvol_name);
1310                 return root;
1311         }
1312
1313         security_init_mnt_opts(&new_sec_opts);
1314         if (data) {
1315                 error = parse_security_options(data, &new_sec_opts);
1316                 if (error)
1317                         return ERR_PTR(error);
1318         }
1319
1320         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1321         if (error)
1322                 goto error_sec_opts;
1323
1324         /*
1325          * Setup a dummy root and fs_info for test/set super.  This is because
1326          * we don't actually fill this stuff out until open_ctree, but we need
1327          * it for searching for existing supers, so this lets us do that and
1328          * then open_ctree will properly initialize everything later.
1329          */
1330         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1331         if (!fs_info) {
1332                 error = -ENOMEM;
1333                 goto error_sec_opts;
1334         }
1335
1336         fs_info->fs_devices = fs_devices;
1337
1338         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1339         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1340         security_init_mnt_opts(&fs_info->security_opts);
1341         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1342                 error = -ENOMEM;
1343                 goto error_fs_info;
1344         }
1345
1346         error = btrfs_open_devices(fs_devices, mode, fs_type);
1347         if (error)
1348                 goto error_fs_info;
1349
1350         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1351                 error = -EACCES;
1352                 goto error_close_devices;
1353         }
1354
1355         bdev = fs_devices->latest_bdev;
1356         s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1357                  fs_info);
1358         if (IS_ERR(s)) {
1359                 error = PTR_ERR(s);
1360                 goto error_close_devices;
1361         }
1362
1363         if (s->s_root) {
1364                 btrfs_close_devices(fs_devices);
1365                 free_fs_info(fs_info);
1366                 if ((flags ^ s->s_flags) & MS_RDONLY)
1367                         error = -EBUSY;
1368         } else {
1369                 char b[BDEVNAME_SIZE];
1370
1371                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1372                 btrfs_sb(s)->bdev_holder = fs_type;
1373                 error = btrfs_fill_super(s, fs_devices, data,
1374                                          flags & MS_SILENT ? 1 : 0);
1375         }
1376
1377         root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1378         if (IS_ERR(root)) {
1379                 deactivate_locked_super(s);
1380                 error = PTR_ERR(root);
1381                 goto error_sec_opts;
1382         }
1383
1384         fs_info = btrfs_sb(s);
1385         error = setup_security_options(fs_info, s, &new_sec_opts);
1386         if (error) {
1387                 dput(root);
1388                 deactivate_locked_super(s);
1389                 goto error_sec_opts;
1390         }
1391
1392         return root;
1393
1394 error_close_devices:
1395         btrfs_close_devices(fs_devices);
1396 error_fs_info:
1397         free_fs_info(fs_info);
1398 error_sec_opts:
1399         security_free_mnt_opts(&new_sec_opts);
1400         return ERR_PTR(error);
1401 }
1402
1403 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1404                                      int new_pool_size, int old_pool_size)
1405 {
1406         if (new_pool_size == old_pool_size)
1407                 return;
1408
1409         fs_info->thread_pool_size = new_pool_size;
1410
1411         btrfs_info(fs_info, "resize thread pool %d -> %d",
1412                old_pool_size, new_pool_size);
1413
1414         btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1415         btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1416         btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1417         btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1418         btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1419         btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1420         btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1421                                 new_pool_size);
1422         btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1423         btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1424         btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1425         btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1426         btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1427                                 new_pool_size);
1428 }
1429
1430 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1431 {
1432         set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1433 }
1434
1435 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1436                                        unsigned long old_opts, int flags)
1437 {
1438         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1439             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1440              (flags & MS_RDONLY))) {
1441                 /* wait for any defraggers to finish */
1442                 wait_event(fs_info->transaction_wait,
1443                            (atomic_read(&fs_info->defrag_running) == 0));
1444                 if (flags & MS_RDONLY)
1445                         sync_filesystem(fs_info->sb);
1446         }
1447 }
1448
1449 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1450                                          unsigned long old_opts)
1451 {
1452         /*
1453          * We need cleanup all defragable inodes if the autodefragment is
1454          * close or the fs is R/O.
1455          */
1456         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1457             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1458              (fs_info->sb->s_flags & MS_RDONLY))) {
1459                 btrfs_cleanup_defrag_inodes(fs_info);
1460         }
1461
1462         clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1463 }
1464
1465 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1466 {
1467         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1468         struct btrfs_root *root = fs_info->tree_root;
1469         unsigned old_flags = sb->s_flags;
1470         unsigned long old_opts = fs_info->mount_opt;
1471         unsigned long old_compress_type = fs_info->compress_type;
1472         u64 old_max_inline = fs_info->max_inline;
1473         u64 old_alloc_start = fs_info->alloc_start;
1474         int old_thread_pool_size = fs_info->thread_pool_size;
1475         unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1476         int ret;
1477
1478         sync_filesystem(sb);
1479         btrfs_remount_prepare(fs_info);
1480
1481         if (data) {
1482                 struct security_mnt_opts new_sec_opts;
1483
1484                 security_init_mnt_opts(&new_sec_opts);
1485                 ret = parse_security_options(data, &new_sec_opts);
1486                 if (ret)
1487                         goto restore;
1488                 ret = setup_security_options(fs_info, sb,
1489                                              &new_sec_opts);
1490                 if (ret) {
1491                         security_free_mnt_opts(&new_sec_opts);
1492                         goto restore;
1493                 }
1494         }
1495
1496         ret = btrfs_parse_options(root, data);
1497         if (ret) {
1498                 ret = -EINVAL;
1499                 goto restore;
1500         }
1501
1502         btrfs_remount_begin(fs_info, old_opts, *flags);
1503         btrfs_resize_thread_pool(fs_info,
1504                 fs_info->thread_pool_size, old_thread_pool_size);
1505
1506         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1507                 goto out;
1508
1509         if (*flags & MS_RDONLY) {
1510                 /*
1511                  * this also happens on 'umount -rf' or on shutdown, when
1512                  * the filesystem is busy.
1513                  */
1514                 cancel_work_sync(&fs_info->async_reclaim_work);
1515
1516                 /* wait for the uuid_scan task to finish */
1517                 down(&fs_info->uuid_tree_rescan_sem);
1518                 /* avoid complains from lockdep et al. */
1519                 up(&fs_info->uuid_tree_rescan_sem);
1520
1521                 sb->s_flags |= MS_RDONLY;
1522
1523                 btrfs_dev_replace_suspend_for_unmount(fs_info);
1524                 btrfs_scrub_cancel(fs_info);
1525                 btrfs_pause_balance(fs_info);
1526
1527                 ret = btrfs_commit_super(root);
1528                 if (ret)
1529                         goto restore;
1530         } else {
1531                 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1532                         btrfs_err(fs_info,
1533                                 "Remounting read-write after error is not allowed");
1534                         ret = -EINVAL;
1535                         goto restore;
1536                 }
1537                 if (fs_info->fs_devices->rw_devices == 0) {
1538                         ret = -EACCES;
1539                         goto restore;
1540                 }
1541
1542                 if (fs_info->fs_devices->missing_devices >
1543                      fs_info->num_tolerated_disk_barrier_failures &&
1544                     !(*flags & MS_RDONLY)) {
1545                         btrfs_warn(fs_info,
1546                                 "too many missing devices, writeable remount is not allowed");
1547                         ret = -EACCES;
1548                         goto restore;
1549                 }
1550
1551                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1552                         ret = -EINVAL;
1553                         goto restore;
1554                 }
1555
1556                 ret = btrfs_cleanup_fs_roots(fs_info);
1557                 if (ret)
1558                         goto restore;
1559
1560                 /* recover relocation */
1561                 mutex_lock(&fs_info->cleaner_mutex);
1562                 ret = btrfs_recover_relocation(root);
1563                 mutex_unlock(&fs_info->cleaner_mutex);
1564                 if (ret)
1565                         goto restore;
1566
1567                 ret = btrfs_resume_balance_async(fs_info);
1568                 if (ret)
1569                         goto restore;
1570
1571                 ret = btrfs_resume_dev_replace_async(fs_info);
1572                 if (ret) {
1573                         btrfs_warn(fs_info, "failed to resume dev_replace");
1574                         goto restore;
1575                 }
1576
1577                 if (!fs_info->uuid_root) {
1578                         btrfs_info(fs_info, "creating UUID tree");
1579                         ret = btrfs_create_uuid_tree(fs_info);
1580                         if (ret) {
1581                                 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1582                                 goto restore;
1583                         }
1584                 }
1585                 sb->s_flags &= ~MS_RDONLY;
1586         }
1587 out:
1588         wake_up_process(fs_info->transaction_kthread);
1589         btrfs_remount_cleanup(fs_info, old_opts);
1590         return 0;
1591
1592 restore:
1593         /* We've hit an error - don't reset MS_RDONLY */
1594         if (sb->s_flags & MS_RDONLY)
1595                 old_flags |= MS_RDONLY;
1596         sb->s_flags = old_flags;
1597         fs_info->mount_opt = old_opts;
1598         fs_info->compress_type = old_compress_type;
1599         fs_info->max_inline = old_max_inline;
1600         mutex_lock(&fs_info->chunk_mutex);
1601         fs_info->alloc_start = old_alloc_start;
1602         mutex_unlock(&fs_info->chunk_mutex);
1603         btrfs_resize_thread_pool(fs_info,
1604                 old_thread_pool_size, fs_info->thread_pool_size);
1605         fs_info->metadata_ratio = old_metadata_ratio;
1606         btrfs_remount_cleanup(fs_info, old_opts);
1607         return ret;
1608 }
1609
1610 /* Used to sort the devices by max_avail(descending sort) */
1611 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1612                                        const void *dev_info2)
1613 {
1614         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1615             ((struct btrfs_device_info *)dev_info2)->max_avail)
1616                 return -1;
1617         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1618                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1619                 return 1;
1620         else
1621         return 0;
1622 }
1623
1624 /*
1625  * sort the devices by max_avail, in which max free extent size of each device
1626  * is stored.(Descending Sort)
1627  */
1628 static inline void btrfs_descending_sort_devices(
1629                                         struct btrfs_device_info *devices,
1630                                         size_t nr_devices)
1631 {
1632         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1633              btrfs_cmp_device_free_bytes, NULL);
1634 }
1635
1636 /*
1637  * The helper to calc the free space on the devices that can be used to store
1638  * file data.
1639  */
1640 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1641 {
1642         struct btrfs_fs_info *fs_info = root->fs_info;
1643         struct btrfs_device_info *devices_info;
1644         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1645         struct btrfs_device *device;
1646         u64 skip_space;
1647         u64 type;
1648         u64 avail_space;
1649         u64 used_space;
1650         u64 min_stripe_size;
1651         int min_stripes = 1, num_stripes = 1;
1652         int i = 0, nr_devices;
1653         int ret;
1654
1655         /*
1656          * We aren't under the device list lock, so this is racey-ish, but good
1657          * enough for our purposes.
1658          */
1659         nr_devices = fs_info->fs_devices->open_devices;
1660         if (!nr_devices) {
1661                 smp_mb();
1662                 nr_devices = fs_info->fs_devices->open_devices;
1663                 ASSERT(nr_devices);
1664                 if (!nr_devices) {
1665                         *free_bytes = 0;
1666                         return 0;
1667                 }
1668         }
1669
1670         devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1671                                GFP_NOFS);
1672         if (!devices_info)
1673                 return -ENOMEM;
1674
1675         /* calc min stripe number for data space alloction */
1676         type = btrfs_get_alloc_profile(root, 1);
1677         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1678                 min_stripes = 2;
1679                 num_stripes = nr_devices;
1680         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1681                 min_stripes = 2;
1682                 num_stripes = 2;
1683         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1684                 min_stripes = 4;
1685                 num_stripes = 4;
1686         }
1687
1688         if (type & BTRFS_BLOCK_GROUP_DUP)
1689                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1690         else
1691                 min_stripe_size = BTRFS_STRIPE_LEN;
1692
1693         if (fs_info->alloc_start)
1694                 mutex_lock(&fs_devices->device_list_mutex);
1695         rcu_read_lock();
1696         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1697                 if (!device->in_fs_metadata || !device->bdev ||
1698                     device->is_tgtdev_for_dev_replace)
1699                         continue;
1700
1701                 if (i >= nr_devices)
1702                         break;
1703
1704                 avail_space = device->total_bytes - device->bytes_used;
1705
1706                 /* align with stripe_len */
1707                 do_div(avail_space, BTRFS_STRIPE_LEN);
1708                 avail_space *= BTRFS_STRIPE_LEN;
1709
1710                 /*
1711                  * In order to avoid overwritting the superblock on the drive,
1712                  * btrfs starts at an offset of at least 1MB when doing chunk
1713                  * allocation.
1714                  */
1715                 skip_space = 1024 * 1024;
1716
1717                 /* user can set the offset in fs_info->alloc_start. */
1718                 if (fs_info->alloc_start &&
1719                     fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1720                     device->total_bytes) {
1721                         rcu_read_unlock();
1722                         skip_space = max(fs_info->alloc_start, skip_space);
1723
1724                         /*
1725                          * btrfs can not use the free space in
1726                          * [0, skip_space - 1], we must subtract it from the
1727                          * total. In order to implement it, we account the used
1728                          * space in this range first.
1729                          */
1730                         ret = btrfs_account_dev_extents_size(device, 0,
1731                                                              skip_space - 1,
1732                                                              &used_space);
1733                         if (ret) {
1734                                 kfree(devices_info);
1735                                 mutex_unlock(&fs_devices->device_list_mutex);
1736                                 return ret;
1737                         }
1738
1739                         rcu_read_lock();
1740
1741                         /* calc the free space in [0, skip_space - 1] */
1742                         skip_space -= used_space;
1743                 }
1744
1745                 /*
1746                  * we can use the free space in [0, skip_space - 1], subtract
1747                  * it from the total.
1748                  */
1749                 if (avail_space && avail_space >= skip_space)
1750                         avail_space -= skip_space;
1751                 else
1752                         avail_space = 0;
1753
1754                 if (avail_space < min_stripe_size)
1755                         continue;
1756
1757                 devices_info[i].dev = device;
1758                 devices_info[i].max_avail = avail_space;
1759
1760                 i++;
1761         }
1762         rcu_read_unlock();
1763         if (fs_info->alloc_start)
1764                 mutex_unlock(&fs_devices->device_list_mutex);
1765
1766         nr_devices = i;
1767
1768         btrfs_descending_sort_devices(devices_info, nr_devices);
1769
1770         i = nr_devices - 1;
1771         avail_space = 0;
1772         while (nr_devices >= min_stripes) {
1773                 if (num_stripes > nr_devices)
1774                         num_stripes = nr_devices;
1775
1776                 if (devices_info[i].max_avail >= min_stripe_size) {
1777                         int j;
1778                         u64 alloc_size;
1779
1780                         avail_space += devices_info[i].max_avail * num_stripes;
1781                         alloc_size = devices_info[i].max_avail;
1782                         for (j = i + 1 - num_stripes; j <= i; j++)
1783                                 devices_info[j].max_avail -= alloc_size;
1784                 }
1785                 i--;
1786                 nr_devices--;
1787         }
1788
1789         kfree(devices_info);
1790         *free_bytes = avail_space;
1791         return 0;
1792 }
1793
1794 /*
1795  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1796  *
1797  * If there's a redundant raid level at DATA block groups, use the respective
1798  * multiplier to scale the sizes.
1799  *
1800  * Unused device space usage is based on simulating the chunk allocator
1801  * algorithm that respects the device sizes, order of allocations and the
1802  * 'alloc_start' value, this is a close approximation of the actual use but
1803  * there are other factors that may change the result (like a new metadata
1804  * chunk).
1805  *
1806  * FIXME: not accurate for mixed block groups, total and free/used are ok,
1807  * available appears slightly larger.
1808  */
1809 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1810 {
1811         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1812         struct btrfs_super_block *disk_super = fs_info->super_copy;
1813         struct list_head *head = &fs_info->space_info;
1814         struct btrfs_space_info *found;
1815         u64 total_used = 0;
1816         u64 total_free_data = 0;
1817         int bits = dentry->d_sb->s_blocksize_bits;
1818         __be32 *fsid = (__be32 *)fs_info->fsid;
1819         unsigned factor = 1;
1820         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1821         int ret;
1822
1823         /*
1824          * holding chunk_muext to avoid allocating new chunks, holding
1825          * device_list_mutex to avoid the device being removed
1826          */
1827         rcu_read_lock();
1828         list_for_each_entry_rcu(found, head, list) {
1829                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1830                         int i;
1831
1832                         total_free_data += found->disk_total - found->disk_used;
1833                         total_free_data -=
1834                                 btrfs_account_ro_block_groups_free_space(found);
1835
1836                         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1837                                 if (!list_empty(&found->block_groups[i])) {
1838                                         switch (i) {
1839                                         case BTRFS_RAID_DUP:
1840                                         case BTRFS_RAID_RAID1:
1841                                         case BTRFS_RAID_RAID10:
1842                                                 factor = 2;
1843                                         }
1844                                 }
1845                         }
1846                 }
1847
1848                 total_used += found->disk_used;
1849         }
1850
1851         rcu_read_unlock();
1852
1853         buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1854         buf->f_blocks >>= bits;
1855         buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1856
1857         /* Account global block reserve as used, it's in logical size already */
1858         spin_lock(&block_rsv->lock);
1859         buf->f_bfree -= block_rsv->size >> bits;
1860         spin_unlock(&block_rsv->lock);
1861
1862         buf->f_bavail = div_u64(total_free_data, factor);
1863         ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1864         if (ret)
1865                 return ret;
1866         buf->f_bavail += div_u64(total_free_data, factor);
1867         buf->f_bavail = buf->f_bavail >> bits;
1868
1869         buf->f_type = BTRFS_SUPER_MAGIC;
1870         buf->f_bsize = dentry->d_sb->s_blocksize;
1871         buf->f_namelen = BTRFS_NAME_LEN;
1872
1873         /* We treat it as constant endianness (it doesn't matter _which_)
1874            because we want the fsid to come out the same whether mounted
1875            on a big-endian or little-endian host */
1876         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1877         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1878         /* Mask in the root object ID too, to disambiguate subvols */
1879         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1880         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1881
1882         return 0;
1883 }
1884
1885 static void btrfs_kill_super(struct super_block *sb)
1886 {
1887         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1888         kill_anon_super(sb);
1889         free_fs_info(fs_info);
1890 }
1891
1892 static struct file_system_type btrfs_fs_type = {
1893         .owner          = THIS_MODULE,
1894         .name           = "btrfs",
1895         .mount          = btrfs_mount,
1896         .kill_sb        = btrfs_kill_super,
1897         .fs_flags       = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
1898 };
1899 MODULE_ALIAS_FS("btrfs");
1900
1901 /*
1902  * used by btrfsctl to scan devices when no FS is mounted
1903  */
1904 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1905                                 unsigned long arg)
1906 {
1907         struct btrfs_ioctl_vol_args *vol;
1908         struct btrfs_fs_devices *fs_devices;
1909         int ret = -ENOTTY;
1910
1911         if (!capable(CAP_SYS_ADMIN))
1912                 return -EPERM;
1913
1914         vol = memdup_user((void __user *)arg, sizeof(*vol));
1915         if (IS_ERR(vol))
1916                 return PTR_ERR(vol);
1917
1918         switch (cmd) {
1919         case BTRFS_IOC_SCAN_DEV:
1920                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1921                                             &btrfs_fs_type, &fs_devices);
1922                 break;
1923         case BTRFS_IOC_DEVICES_READY:
1924                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1925                                             &btrfs_fs_type, &fs_devices);
1926                 if (ret)
1927                         break;
1928                 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1929                 break;
1930         }
1931
1932         kfree(vol);
1933         return ret;
1934 }
1935
1936 static int btrfs_freeze(struct super_block *sb)
1937 {
1938         struct btrfs_trans_handle *trans;
1939         struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1940
1941         trans = btrfs_attach_transaction_barrier(root);
1942         if (IS_ERR(trans)) {
1943                 /* no transaction, don't bother */
1944                 if (PTR_ERR(trans) == -ENOENT)
1945                         return 0;
1946                 return PTR_ERR(trans);
1947         }
1948         return btrfs_commit_transaction(trans, root);
1949 }
1950
1951 static int btrfs_unfreeze(struct super_block *sb)
1952 {
1953         return 0;
1954 }
1955
1956 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1957 {
1958         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1959         struct btrfs_fs_devices *cur_devices;
1960         struct btrfs_device *dev, *first_dev = NULL;
1961         struct list_head *head;
1962         struct rcu_string *name;
1963
1964         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1965         cur_devices = fs_info->fs_devices;
1966         while (cur_devices) {
1967                 head = &cur_devices->devices;
1968                 list_for_each_entry(dev, head, dev_list) {
1969                         if (dev->missing)
1970                                 continue;
1971                         if (!dev->name)
1972                                 continue;
1973                         if (!first_dev || dev->devid < first_dev->devid)
1974                                 first_dev = dev;
1975                 }
1976                 cur_devices = cur_devices->seed;
1977         }
1978
1979         if (first_dev) {
1980                 rcu_read_lock();
1981                 name = rcu_dereference(first_dev->name);
1982                 seq_escape(m, name->str, " \t\n\\");
1983                 rcu_read_unlock();
1984         } else {
1985                 WARN_ON(1);
1986         }
1987         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1988         return 0;
1989 }
1990
1991 static const struct super_operations btrfs_super_ops = {
1992         .drop_inode     = btrfs_drop_inode,
1993         .evict_inode    = btrfs_evict_inode,
1994         .put_super      = btrfs_put_super,
1995         .sync_fs        = btrfs_sync_fs,
1996         .show_options   = btrfs_show_options,
1997         .show_devname   = btrfs_show_devname,
1998         .write_inode    = btrfs_write_inode,
1999         .alloc_inode    = btrfs_alloc_inode,
2000         .destroy_inode  = btrfs_destroy_inode,
2001         .statfs         = btrfs_statfs,
2002         .remount_fs     = btrfs_remount,
2003         .freeze_fs      = btrfs_freeze,
2004         .unfreeze_fs    = btrfs_unfreeze,
2005 };
2006
2007 static const struct file_operations btrfs_ctl_fops = {
2008         .unlocked_ioctl  = btrfs_control_ioctl,
2009         .compat_ioctl = btrfs_control_ioctl,
2010         .owner   = THIS_MODULE,
2011         .llseek = noop_llseek,
2012 };
2013
2014 static struct miscdevice btrfs_misc = {
2015         .minor          = BTRFS_MINOR,
2016         .name           = "btrfs-control",
2017         .fops           = &btrfs_ctl_fops
2018 };
2019
2020 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2021 MODULE_ALIAS("devname:btrfs-control");
2022
2023 static int btrfs_interface_init(void)
2024 {
2025         return misc_register(&btrfs_misc);
2026 }
2027
2028 static void btrfs_interface_exit(void)
2029 {
2030         if (misc_deregister(&btrfs_misc) < 0)
2031                 printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
2032 }
2033
2034 static void btrfs_print_info(void)
2035 {
2036         printk(KERN_INFO "Btrfs loaded"
2037 #ifdef CONFIG_BTRFS_DEBUG
2038                         ", debug=on"
2039 #endif
2040 #ifdef CONFIG_BTRFS_ASSERT
2041                         ", assert=on"
2042 #endif
2043 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2044                         ", integrity-checker=on"
2045 #endif
2046                         "\n");
2047 }
2048
2049 static int btrfs_run_sanity_tests(void)
2050 {
2051         int ret;
2052
2053         ret = btrfs_init_test_fs();
2054         if (ret)
2055                 return ret;
2056
2057         ret = btrfs_test_free_space_cache();
2058         if (ret)
2059                 goto out;
2060         ret = btrfs_test_extent_buffer_operations();
2061         if (ret)
2062                 goto out;
2063         ret = btrfs_test_extent_io();
2064         if (ret)
2065                 goto out;
2066         ret = btrfs_test_inodes();
2067         if (ret)
2068                 goto out;
2069         ret = btrfs_test_qgroups();
2070 out:
2071         btrfs_destroy_test_fs();
2072         return ret;
2073 }
2074
2075 static int __init init_btrfs_fs(void)
2076 {
2077         int err;
2078
2079         err = btrfs_hash_init();
2080         if (err)
2081                 return err;
2082
2083         btrfs_props_init();
2084
2085         err = btrfs_init_sysfs();
2086         if (err)
2087                 goto free_hash;
2088
2089         btrfs_init_compress();
2090
2091         err = btrfs_init_cachep();
2092         if (err)
2093                 goto free_compress;
2094
2095         err = extent_io_init();
2096         if (err)
2097                 goto free_cachep;
2098
2099         err = extent_map_init();
2100         if (err)
2101                 goto free_extent_io;
2102
2103         err = ordered_data_init();
2104         if (err)
2105                 goto free_extent_map;
2106
2107         err = btrfs_delayed_inode_init();
2108         if (err)
2109                 goto free_ordered_data;
2110
2111         err = btrfs_auto_defrag_init();
2112         if (err)
2113                 goto free_delayed_inode;
2114
2115         err = btrfs_delayed_ref_init();
2116         if (err)
2117                 goto free_auto_defrag;
2118
2119         err = btrfs_prelim_ref_init();
2120         if (err)
2121                 goto free_delayed_ref;
2122
2123         err = btrfs_end_io_wq_init();
2124         if (err)
2125                 goto free_prelim_ref;
2126
2127         err = btrfs_interface_init();
2128         if (err)
2129                 goto free_end_io_wq;
2130
2131         btrfs_init_lockdep();
2132
2133         btrfs_print_info();
2134
2135         err = btrfs_run_sanity_tests();
2136         if (err)
2137                 goto unregister_ioctl;
2138
2139         err = register_filesystem(&btrfs_fs_type);
2140         if (err)
2141                 goto unregister_ioctl;
2142
2143         return 0;
2144
2145 unregister_ioctl:
2146         btrfs_interface_exit();
2147 free_end_io_wq:
2148         btrfs_end_io_wq_exit();
2149 free_prelim_ref:
2150         btrfs_prelim_ref_exit();
2151 free_delayed_ref:
2152         btrfs_delayed_ref_exit();
2153 free_auto_defrag:
2154         btrfs_auto_defrag_exit();
2155 free_delayed_inode:
2156         btrfs_delayed_inode_exit();
2157 free_ordered_data:
2158         ordered_data_exit();
2159 free_extent_map:
2160         extent_map_exit();
2161 free_extent_io:
2162         extent_io_exit();
2163 free_cachep:
2164         btrfs_destroy_cachep();
2165 free_compress:
2166         btrfs_exit_compress();
2167         btrfs_exit_sysfs();
2168 free_hash:
2169         btrfs_hash_exit();
2170         return err;
2171 }
2172
2173 static void __exit exit_btrfs_fs(void)
2174 {
2175         btrfs_destroy_cachep();
2176         btrfs_delayed_ref_exit();
2177         btrfs_auto_defrag_exit();
2178         btrfs_delayed_inode_exit();
2179         btrfs_prelim_ref_exit();
2180         ordered_data_exit();
2181         extent_map_exit();
2182         extent_io_exit();
2183         btrfs_interface_exit();
2184         btrfs_end_io_wq_exit();
2185         unregister_filesystem(&btrfs_fs_type);
2186         btrfs_exit_sysfs();
2187         btrfs_cleanup_fs_uuids();
2188         btrfs_exit_compress();
2189         btrfs_hash_exit();
2190 }
2191
2192 late_initcall(init_btrfs_fs);
2193 module_exit(exit_btrfs_fs)
2194
2195 MODULE_LICENSE("GPL");