6dd853709750c5282b389bb3a2d404e68e26a665
[dragonfly.git] / sys / kern / lwkt_thread.c
1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread 
39  * scheduling is queued via (async) IPIs.
40  */
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/caps.h>
54 #include <sys/spinlock.h>
55 #include <sys/ktr.h>
56
57 #include <sys/thread2.h>
58 #include <sys/spinlock2.h>
59 #include <sys/mplock2.h>
60
61 #include <sys/dsched.h>
62
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_pager.h>
70 #include <vm/vm_extern.h>
71
72 #include <machine/stdarg.h>
73 #include <machine/smp.h>
74
75 #if !defined(KTR_CTXSW)
76 #define KTR_CTXSW KTR_ALL
77 #endif
78 KTR_INFO_MASTER(ctxsw);
79 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
80 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
81 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
82 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
83
84 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
85
86 #ifdef  INVARIANTS
87 static int panic_on_cscount = 0;
88 #endif
89 static __int64_t switch_count = 0;
90 static __int64_t preempt_hit = 0;
91 static __int64_t preempt_miss = 0;
92 static __int64_t preempt_weird = 0;
93 static int lwkt_use_spin_port;
94 static struct objcache *thread_cache;
95
96 #ifdef SMP
97 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
98 static void lwkt_setcpu_remote(void *arg);
99 #endif
100
101 extern void cpu_heavy_restore(void);
102 extern void cpu_lwkt_restore(void);
103 extern void cpu_kthread_restore(void);
104 extern void cpu_idle_restore(void);
105
106 /*
107  * We can make all thread ports use the spin backend instead of the thread
108  * backend.  This should only be set to debug the spin backend.
109  */
110 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
111
112 #ifdef  INVARIANTS
113 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
114     "Panic if attempting to switch lwkt's while mastering cpusync");
115 #endif
116 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
117     "Number of switched threads");
118 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, 
119     "Successful preemption events");
120 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, 
121     "Failed preemption events");
122 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
123     "Number of preempted threads.");
124 static int fairq_enable = 0;
125 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
126         &fairq_enable, 0, "Turn on fairq priority accumulators");
127 static int fairq_bypass = -1;
128 SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
129         &fairq_bypass, 0, "Allow fairq to bypass td on token failure");
130 extern int lwkt_sched_debug;
131 int lwkt_sched_debug = 0;
132 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
133         &lwkt_sched_debug, 0, "Scheduler debug");
134 static int lwkt_spin_loops = 10;
135 SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
136         &lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
137 static int lwkt_spin_reseq = 0;
138 SYSCTL_INT(_lwkt, OID_AUTO, spin_reseq, CTLFLAG_RW,
139         &lwkt_spin_reseq, 0, "Scheduler resequencer enable");
140 static int lwkt_spin_monitor = 0;
141 SYSCTL_INT(_lwkt, OID_AUTO, spin_monitor, CTLFLAG_RW,
142         &lwkt_spin_monitor, 0, "Scheduler uses monitor/mwait");
143 static int lwkt_spin_fatal = 0; /* disabled */
144 SYSCTL_INT(_lwkt, OID_AUTO, spin_fatal, CTLFLAG_RW,
145         &lwkt_spin_fatal, 0, "LWKT scheduler spin loops till fatal panic");
146 static int preempt_enable = 1;
147 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
148         &preempt_enable, 0, "Enable preemption");
149 static int lwkt_cache_threads = 0;
150 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
151         &lwkt_cache_threads, 0, "thread+kstack cache");
152
153 static __cachealign int lwkt_cseq_rindex;
154 static __cachealign int lwkt_cseq_windex;
155
156 /*
157  * These helper procedures handle the runq, they can only be called from
158  * within a critical section.
159  *
160  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
161  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
162  * instead of 'mycpu' when referencing the globaldata structure.   Once
163  * SMP live enqueuing and dequeueing only occurs on the current cpu.
164  */
165 static __inline
166 void
167 _lwkt_dequeue(thread_t td)
168 {
169     if (td->td_flags & TDF_RUNQ) {
170         struct globaldata *gd = td->td_gd;
171
172         td->td_flags &= ~TDF_RUNQ;
173         TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
174         --gd->gd_tdrunqcount;
175         if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
176                 atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
177     }
178 }
179
180 /*
181  * Priority enqueue.
182  *
183  * There are a limited number of lwkt threads runnable since user
184  * processes only schedule one at a time per cpu.  However, there can
185  * be many user processes in kernel mode exiting from a tsleep() which
186  * become runnable.
187  *
188  * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
189  *       will ignore user priority.  This is to ensure that user threads in
190  *       kernel mode get cpu at some point regardless of what the user
191  *       scheduler thinks.
192  */
193 static __inline
194 void
195 _lwkt_enqueue(thread_t td)
196 {
197     thread_t xtd;
198
199     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
200         struct globaldata *gd = td->td_gd;
201
202         td->td_flags |= TDF_RUNQ;
203         xtd = TAILQ_FIRST(&gd->gd_tdrunq);
204         if (xtd == NULL) {
205             TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
206             atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
207         } else {
208             /*
209              * NOTE: td_upri - higher numbers more desireable, same sense
210              *       as td_pri (typically reversed from lwp_upri).
211              *
212              *       In the equal priority case we want the best selection
213              *       at the beginning so the less desireable selections know
214              *       that they have to setrunqueue/go-to-another-cpu, even
215              *       though it means switching back to the 'best' selection.
216              *       This also avoids degenerate situations when many threads
217              *       are runnable or waking up at the same time.
218              *
219              *       If upri matches exactly place at end/round-robin.
220              */
221             while (xtd &&
222                    (xtd->td_pri >= td->td_pri ||
223                     (xtd->td_pri == td->td_pri &&
224                      xtd->td_upri >= td->td_upri))) {
225                 xtd = TAILQ_NEXT(xtd, td_threadq);
226             }
227             if (xtd)
228                 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
229             else
230                 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
231         }
232         ++gd->gd_tdrunqcount;
233
234         /*
235          * Request a LWKT reschedule if we are now at the head of the queue.
236          */
237         if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
238             need_lwkt_resched();
239     }
240 }
241
242 static __boolean_t
243 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
244 {
245         struct thread *td = (struct thread *)obj;
246
247         td->td_kstack = NULL;
248         td->td_kstack_size = 0;
249         td->td_flags = TDF_ALLOCATED_THREAD;
250         td->td_mpflags = 0;
251         return (1);
252 }
253
254 static void
255 _lwkt_thread_dtor(void *obj, void *privdata)
256 {
257         struct thread *td = (struct thread *)obj;
258
259         KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
260             ("_lwkt_thread_dtor: not allocated from objcache"));
261         KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
262                 td->td_kstack_size > 0,
263             ("_lwkt_thread_dtor: corrupted stack"));
264         kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
265         td->td_kstack = NULL;
266         td->td_flags = 0;
267 }
268
269 /*
270  * Initialize the lwkt s/system.
271  *
272  * Nominally cache up to 32 thread + kstack structures.  Cache more on
273  * systems with a lot of cpu cores.
274  */
275 void
276 lwkt_init(void)
277 {
278     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
279     if (lwkt_cache_threads == 0) {
280         lwkt_cache_threads = ncpus * 4;
281         if (lwkt_cache_threads < 32)
282             lwkt_cache_threads = 32;
283     }
284     thread_cache = objcache_create_mbacked(
285                                 M_THREAD, sizeof(struct thread),
286                                 NULL, lwkt_cache_threads,
287                                 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
288 }
289
290 /*
291  * Schedule a thread to run.  As the current thread we can always safely
292  * schedule ourselves, and a shortcut procedure is provided for that
293  * function.
294  *
295  * (non-blocking, self contained on a per cpu basis)
296  */
297 void
298 lwkt_schedule_self(thread_t td)
299 {
300     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
301     crit_enter_quick(td);
302     KASSERT(td != &td->td_gd->gd_idlethread,
303             ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
304     KKASSERT(td->td_lwp == NULL ||
305              (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
306     _lwkt_enqueue(td);
307     crit_exit_quick(td);
308 }
309
310 /*
311  * Deschedule a thread.
312  *
313  * (non-blocking, self contained on a per cpu basis)
314  */
315 void
316 lwkt_deschedule_self(thread_t td)
317 {
318     crit_enter_quick(td);
319     _lwkt_dequeue(td);
320     crit_exit_quick(td);
321 }
322
323 /*
324  * LWKTs operate on a per-cpu basis
325  *
326  * WARNING!  Called from early boot, 'mycpu' may not work yet.
327  */
328 void
329 lwkt_gdinit(struct globaldata *gd)
330 {
331     TAILQ_INIT(&gd->gd_tdrunq);
332     TAILQ_INIT(&gd->gd_tdallq);
333 }
334
335 /*
336  * Create a new thread.  The thread must be associated with a process context
337  * or LWKT start address before it can be scheduled.  If the target cpu is
338  * -1 the thread will be created on the current cpu.
339  *
340  * If you intend to create a thread without a process context this function
341  * does everything except load the startup and switcher function.
342  */
343 thread_t
344 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
345 {
346     static int cpu_rotator;
347     globaldata_t gd = mycpu;
348     void *stack;
349
350     /*
351      * If static thread storage is not supplied allocate a thread.  Reuse
352      * a cached free thread if possible.  gd_freetd is used to keep an exiting
353      * thread intact through the exit.
354      */
355     if (td == NULL) {
356         crit_enter_gd(gd);
357         if ((td = gd->gd_freetd) != NULL) {
358             KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
359                                       TDF_RUNQ)) == 0);
360             gd->gd_freetd = NULL;
361         } else {
362             td = objcache_get(thread_cache, M_WAITOK);
363             KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
364                                       TDF_RUNQ)) == 0);
365         }
366         crit_exit_gd(gd);
367         KASSERT((td->td_flags &
368                  (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
369                  TDF_ALLOCATED_THREAD,
370                 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
371         flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
372     }
373
374     /*
375      * Try to reuse cached stack.
376      */
377     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
378         if (flags & TDF_ALLOCATED_STACK) {
379             kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
380             stack = NULL;
381         }
382     }
383     if (stack == NULL) {
384         stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
385         flags |= TDF_ALLOCATED_STACK;
386     }
387     if (cpu < 0) {
388         cpu = ++cpu_rotator;
389         cpu_ccfence();
390         cpu %= ncpus;
391     }
392     lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
393     return(td);
394 }
395
396 /*
397  * Initialize a preexisting thread structure.  This function is used by
398  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
399  *
400  * All threads start out in a critical section at a priority of
401  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
402  * appropriate.  This function may send an IPI message when the 
403  * requested cpu is not the current cpu and consequently gd_tdallq may
404  * not be initialized synchronously from the point of view of the originating
405  * cpu.
406  *
407  * NOTE! we have to be careful in regards to creating threads for other cpus
408  * if SMP has not yet been activated.
409  */
410 #ifdef SMP
411
412 static void
413 lwkt_init_thread_remote(void *arg)
414 {
415     thread_t td = arg;
416
417     /*
418      * Protected by critical section held by IPI dispatch
419      */
420     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
421 }
422
423 #endif
424
425 /*
426  * lwkt core thread structural initialization.
427  *
428  * NOTE: All threads are initialized as mpsafe threads.
429  */
430 void
431 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
432                 struct globaldata *gd)
433 {
434     globaldata_t mygd = mycpu;
435
436     bzero(td, sizeof(struct thread));
437     td->td_kstack = stack;
438     td->td_kstack_size = stksize;
439     td->td_flags = flags;
440     td->td_mpflags = 0;
441     td->td_gd = gd;
442     td->td_pri = TDPRI_KERN_DAEMON;
443     td->td_critcount = 1;
444     td->td_toks_have = NULL;
445     td->td_toks_stop = &td->td_toks_base;
446     if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT))
447         lwkt_initport_spin(&td->td_msgport, td);
448     else
449         lwkt_initport_thread(&td->td_msgport, td);
450     pmap_init_thread(td);
451 #ifdef SMP
452     /*
453      * Normally initializing a thread for a remote cpu requires sending an
454      * IPI.  However, the idlethread is setup before the other cpus are
455      * activated so we have to treat it as a special case.  XXX manipulation
456      * of gd_tdallq requires the BGL.
457      */
458     if (gd == mygd || td == &gd->gd_idlethread) {
459         crit_enter_gd(mygd);
460         TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
461         crit_exit_gd(mygd);
462     } else {
463         lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
464     }
465 #else
466     crit_enter_gd(mygd);
467     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
468     crit_exit_gd(mygd);
469 #endif
470
471     dsched_new_thread(td);
472 }
473
474 void
475 lwkt_set_comm(thread_t td, const char *ctl, ...)
476 {
477     __va_list va;
478
479     __va_start(va, ctl);
480     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
481     __va_end(va);
482     KTR_LOG(ctxsw_newtd, td, td->td_comm);
483 }
484
485 /*
486  * Prevent the thread from getting destroyed.  Note that unlike PHOLD/PRELE
487  * this does not prevent the thread from migrating to another cpu so the
488  * gd_tdallq state is not protected by this.
489  */
490 void
491 lwkt_hold(thread_t td)
492 {
493     atomic_add_int(&td->td_refs, 1);
494 }
495
496 void
497 lwkt_rele(thread_t td)
498 {
499     KKASSERT(td->td_refs > 0);
500     atomic_add_int(&td->td_refs, -1);
501 }
502
503 void
504 lwkt_free_thread(thread_t td)
505 {
506     KKASSERT(td->td_refs == 0);
507     KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
508                               TDF_RUNQ | TDF_TSLEEPQ)) == 0);
509     if (td->td_flags & TDF_ALLOCATED_THREAD) {
510         objcache_put(thread_cache, td);
511     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
512         /* client-allocated struct with internally allocated stack */
513         KASSERT(td->td_kstack && td->td_kstack_size > 0,
514             ("lwkt_free_thread: corrupted stack"));
515         kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
516         td->td_kstack = NULL;
517         td->td_kstack_size = 0;
518     }
519     KTR_LOG(ctxsw_deadtd, td);
520 }
521
522
523 /*
524  * Switch to the next runnable lwkt.  If no LWKTs are runnable then 
525  * switch to the idlethread.  Switching must occur within a critical
526  * section to avoid races with the scheduling queue.
527  *
528  * We always have full control over our cpu's run queue.  Other cpus
529  * that wish to manipulate our queue must use the cpu_*msg() calls to
530  * talk to our cpu, so a critical section is all that is needed and
531  * the result is very, very fast thread switching.
532  *
533  * The LWKT scheduler uses a fixed priority model and round-robins at
534  * each priority level.  User process scheduling is a totally
535  * different beast and LWKT priorities should not be confused with
536  * user process priorities.
537  *
538  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
539  * is not called by the current thread in the preemption case, only when
540  * the preempting thread blocks (in order to return to the original thread).
541  *
542  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
543  * migration and tsleep deschedule the current lwkt thread and call
544  * lwkt_switch().  In particular, the target cpu of the migration fully
545  * expects the thread to become non-runnable and can deadlock against
546  * cpusync operations if we run any IPIs prior to switching the thread out.
547  *
548  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
549  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
550  */
551 void
552 lwkt_switch(void)
553 {
554     globaldata_t gd = mycpu;
555     thread_t td = gd->gd_curthread;
556     thread_t ntd;
557     int spinning = 0;
558
559     KKASSERT(gd->gd_processing_ipiq == 0);
560     KKASSERT(td->td_flags & TDF_RUNNING);
561
562     /*
563      * Switching from within a 'fast' (non thread switched) interrupt or IPI
564      * is illegal.  However, we may have to do it anyway if we hit a fatal
565      * kernel trap or we have paniced.
566      *
567      * If this case occurs save and restore the interrupt nesting level.
568      */
569     if (gd->gd_intr_nesting_level) {
570         int savegdnest;
571         int savegdtrap;
572
573         if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
574             panic("lwkt_switch: Attempt to switch from a "
575                   "fast interrupt, ipi, or hard code section, "
576                   "td %p\n",
577                   td);
578         } else {
579             savegdnest = gd->gd_intr_nesting_level;
580             savegdtrap = gd->gd_trap_nesting_level;
581             gd->gd_intr_nesting_level = 0;
582             gd->gd_trap_nesting_level = 0;
583             if ((td->td_flags & TDF_PANICWARN) == 0) {
584                 td->td_flags |= TDF_PANICWARN;
585                 kprintf("Warning: thread switch from interrupt, IPI, "
586                         "or hard code section.\n"
587                         "thread %p (%s)\n", td, td->td_comm);
588                 print_backtrace(-1);
589             }
590             lwkt_switch();
591             gd->gd_intr_nesting_level = savegdnest;
592             gd->gd_trap_nesting_level = savegdtrap;
593             return;
594         }
595     }
596
597     /*
598      * Release our current user process designation if we are blocking
599      * or if a user reschedule was requested.
600      *
601      * NOTE: This function is NOT called if we are switching into or
602      *       returning from a preemption.
603      *
604      * NOTE: Releasing our current user process designation may cause
605      *       it to be assigned to another thread, which in turn will
606      *       cause us to block in the usched acquire code when we attempt
607      *       to return to userland.
608      *
609      * NOTE: On SMP systems this can be very nasty when heavy token
610      *       contention is present so we want to be careful not to
611      *       release the designation gratuitously.
612      */
613     if (td->td_release &&
614         (user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
615             td->td_release(td);
616     }
617
618     /*
619      * Release all tokens
620      */
621     crit_enter_gd(gd);
622     if (TD_TOKS_HELD(td))
623             lwkt_relalltokens(td);
624
625     /*
626      * We had better not be holding any spin locks, but don't get into an
627      * endless panic loop.
628      */
629     KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
630             ("lwkt_switch: still holding %d exclusive spinlocks!",
631              gd->gd_spinlocks));
632
633
634 #ifdef SMP
635 #ifdef  INVARIANTS
636     if (td->td_cscount) {
637         kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
638                 td);
639         if (panic_on_cscount)
640             panic("switching while mastering cpusync");
641     }
642 #endif
643 #endif
644
645     /*
646      * If we had preempted another thread on this cpu, resume the preempted
647      * thread.  This occurs transparently, whether the preempted thread
648      * was scheduled or not (it may have been preempted after descheduling
649      * itself).
650      *
651      * We have to setup the MP lock for the original thread after backing
652      * out the adjustment that was made to curthread when the original
653      * was preempted.
654      */
655     if ((ntd = td->td_preempted) != NULL) {
656         KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
657         ntd->td_flags |= TDF_PREEMPT_DONE;
658
659         /*
660          * The interrupt may have woken a thread up, we need to properly
661          * set the reschedule flag if the originally interrupted thread is
662          * at a lower priority.
663          *
664          * The interrupt may not have descheduled.
665          */
666         if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd)
667             need_lwkt_resched();
668         goto havethread_preempted;
669     }
670
671     /*
672      * If we cannot obtain ownership of the tokens we cannot immediately
673      * schedule the target thread.
674      *
675      * Reminder: Again, we cannot afford to run any IPIs in this path if
676      * the current thread has been descheduled.
677      */
678     for (;;) {
679         clear_lwkt_resched();
680
681         /*
682          * Hotpath - pull the head of the run queue and attempt to schedule
683          * it.
684          */
685         ntd = TAILQ_FIRST(&gd->gd_tdrunq);
686
687         if (ntd == NULL) {
688             /*
689              * Runq is empty, switch to idle to allow it to halt.
690              */
691             ntd = &gd->gd_idlethread;
692 #ifdef SMP
693             if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
694                 ASSERT_NO_TOKENS_HELD(ntd);
695 #endif
696             cpu_time.cp_msg[0] = 0;
697             cpu_time.cp_stallpc = 0;
698             goto haveidle;
699         }
700
701         /*
702          * Hotpath - schedule ntd.
703          *
704          * NOTE: For UP there is no mplock and lwkt_getalltokens()
705          *           always succeeds.
706          */
707         if (TD_TOKS_NOT_HELD(ntd) ||
708             lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops)))
709         {
710             goto havethread;
711         }
712
713         /*
714          * Coldpath (SMP only since tokens always succeed on UP)
715          *
716          * We had some contention on the thread we wanted to schedule.
717          * What we do now is try to find a thread that we can schedule
718          * in its stead.
719          *
720          * The coldpath scan does NOT rearrange threads in the run list.
721          * The lwkt_schedulerclock() will assert need_lwkt_resched() on
722          * the next tick whenever the current head is not the current thread.
723          */
724 #ifdef  INVARIANTS
725         ++ntd->td_contended;
726 #endif
727         ++gd->gd_cnt.v_token_colls;
728
729         if (fairq_bypass > 0)
730                 goto skip;
731
732         while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
733 #ifndef NO_LWKT_SPLIT_USERPRI
734                 /*
735                  * Never schedule threads returning to userland or the
736                  * user thread scheduler helper thread when higher priority
737                  * threads are present.  The runq is sorted by priority
738                  * so we can give up traversing it when we find the first
739                  * low priority thread.
740                  */
741                 if (ntd->td_pri < TDPRI_KERN_LPSCHED) {
742                         ntd = NULL;
743                         break;
744                 }
745 #endif
746
747                 /*
748                  * Try this one.
749                  */
750                 if (TD_TOKS_NOT_HELD(ntd) ||
751                     lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops))) {
752                         goto havethread;
753                 }
754 #ifdef  INVARIANTS
755                 ++ntd->td_contended;
756 #endif
757                 ++gd->gd_cnt.v_token_colls;
758         }
759
760 skip:
761         /*
762          * We exhausted the run list, meaning that all runnable threads
763          * are contested.
764          */
765         cpu_pause();
766         ntd = &gd->gd_idlethread;
767 #ifdef SMP
768         if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
769             ASSERT_NO_TOKENS_HELD(ntd);
770         /* contention case, do not clear contention mask */
771 #endif
772
773         /*
774          * We are going to have to retry but if the current thread is not
775          * on the runq we instead switch through the idle thread to get away
776          * from the current thread.  We have to flag for lwkt reschedule
777          * to prevent the idle thread from halting.
778          *
779          * NOTE: A non-zero spinning is passed to lwkt_getalltokens() to
780          *       instruct it to deal with the potential for deadlocks by
781          *       ordering the tokens by address.
782          */
783         if ((td->td_flags & TDF_RUNQ) == 0) {
784             need_lwkt_resched();        /* prevent hlt */
785             goto haveidle;
786         }
787 #if defined(INVARIANTS) && defined(__amd64__)
788         if ((read_rflags() & PSL_I) == 0) {
789                 cpu_enable_intr();
790                 panic("lwkt_switch() called with interrupts disabled");
791         }
792 #endif
793
794         /*
795          * Number iterations so far.  After a certain point we switch to
796          * a sorted-address/monitor/mwait version of lwkt_getalltokens()
797          */
798         if (spinning < 0x7FFFFFFF)
799             ++spinning;
800
801 #ifdef SMP
802         /*
803          * lwkt_getalltokens() failed in sorted token mode, we can use
804          * monitor/mwait in this case.
805          */
806         if (spinning >= lwkt_spin_loops &&
807             (cpu_mi_feature & CPU_MI_MONITOR) &&
808             lwkt_spin_monitor)
809         {
810             cpu_mmw_pause_int(&gd->gd_reqflags,
811                               (gd->gd_reqflags | RQF_SPINNING) &
812                               ~RQF_IDLECHECK_WK_MASK);
813         }
814 #endif
815
816         /*
817          * We already checked that td is still scheduled so this should be
818          * safe.
819          */
820         splz_check();
821
822         /*
823          * This experimental resequencer is used as a fall-back to reduce
824          * hw cache line contention by placing each core's scheduler into a
825          * time-domain-multplexed slot.
826          *
827          * The resequencer is disabled by default.  It's functionality has
828          * largely been superceeded by the token algorithm which limits races
829          * to a subset of cores.
830          *
831          * The resequencer algorithm tends to break down when more than
832          * 20 cores are contending.  What appears to happen is that new
833          * tokens can be obtained out of address-sorted order by new cores
834          * while existing cores languish in long delays between retries and
835          * wind up being starved-out of the token acquisition.
836          */
837         if (lwkt_spin_reseq && spinning >= lwkt_spin_reseq) {
838             int cseq = atomic_fetchadd_int(&lwkt_cseq_windex, 1);
839             int oseq;
840
841             while ((oseq = lwkt_cseq_rindex) != cseq) {
842                 cpu_ccfence();
843 #if 1
844                 if (cpu_mi_feature & CPU_MI_MONITOR) {
845                     cpu_mmw_pause_int(&lwkt_cseq_rindex, oseq);
846                 } else {
847 #endif
848                     cpu_pause();
849                     cpu_lfence();
850 #if 1
851                 }
852 #endif
853             }
854             DELAY(1);
855             atomic_add_int(&lwkt_cseq_rindex, 1);
856         }
857         /* highest level for(;;) loop */
858     }
859
860 havethread:
861     /*
862      * Clear gd_idle_repeat when doing a normal switch to a non-idle
863      * thread.
864      */
865     ntd->td_wmesg = NULL;
866     ++gd->gd_cnt.v_swtch;
867     gd->gd_idle_repeat = 0;
868
869 havethread_preempted:
870     /*
871      * If the new target does not need the MP lock and we are holding it,
872      * release the MP lock.  If the new target requires the MP lock we have
873      * already acquired it for the target.
874      */
875     ;
876 haveidle:
877     KASSERT(ntd->td_critcount,
878             ("priority problem in lwkt_switch %d %d",
879             td->td_critcount, ntd->td_critcount));
880
881     if (td != ntd) {
882         /*
883          * Execute the actual thread switch operation.  This function
884          * returns to the current thread and returns the previous thread
885          * (which may be different from the thread we switched to).
886          *
887          * We are responsible for marking ntd as TDF_RUNNING.
888          */
889         KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
890         ++switch_count;
891         KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
892         ntd->td_flags |= TDF_RUNNING;
893         lwkt_switch_return(td->td_switch(ntd));
894         /* ntd invalid, td_switch() can return a different thread_t */
895     }
896
897     /*
898      * catch-all.  XXX is this strictly needed?
899      */
900     splz_check();
901
902     /* NOTE: current cpu may have changed after switch */
903     crit_exit_quick(td);
904 }
905
906 /*
907  * Called by assembly in the td_switch (thread restore path) for thread
908  * bootstrap cases which do not 'return' to lwkt_switch().
909  */
910 void
911 lwkt_switch_return(thread_t otd)
912 {
913 #ifdef SMP
914         globaldata_t rgd;
915
916         /*
917          * Check if otd was migrating.  Now that we are on ntd we can finish
918          * up the migration.  This is a bit messy but it is the only place
919          * where td is known to be fully descheduled.
920          *
921          * We can only activate the migration if otd was migrating but not
922          * held on the cpu due to a preemption chain.  We still have to
923          * clear TDF_RUNNING on the old thread either way.
924          *
925          * We are responsible for clearing the previously running thread's
926          * TDF_RUNNING.
927          */
928         if ((rgd = otd->td_migrate_gd) != NULL &&
929             (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
930                 KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
931                          (TDF_MIGRATING | TDF_RUNNING));
932                 otd->td_migrate_gd = NULL;
933                 otd->td_flags &= ~TDF_RUNNING;
934                 lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
935         } else {
936                 otd->td_flags &= ~TDF_RUNNING;
937         }
938 #else
939         otd->td_flags &= ~TDF_RUNNING;
940 #endif
941
942         /*
943          * Final exit validations (see lwp_wait()).  Note that otd becomes
944          * invalid the *instant* we set TDF_MP_EXITSIG.
945          */
946         while (otd->td_flags & TDF_EXITING) {
947                 u_int mpflags;
948
949                 mpflags = otd->td_mpflags;
950                 cpu_ccfence();
951
952                 if (mpflags & TDF_MP_EXITWAIT) {
953                         if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
954                                               mpflags | TDF_MP_EXITSIG)) {
955                                 wakeup(otd);
956                                 break;
957                         }
958                 } else {
959                         if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
960                                               mpflags | TDF_MP_EXITSIG)) {
961                                 wakeup(otd);
962                                 break;
963                         }
964                 }
965         }
966 }
967
968 /*
969  * Request that the target thread preempt the current thread.  Preemption
970  * can only occur if our only critical section is the one that we were called
971  * with, the relative priority of the target thread is higher, and the target
972  * thread holds no tokens.  This also only works if we are not holding any
973  * spinlocks (obviously).
974  *
975  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
976  * this is called via lwkt_schedule() through the td_preemptable callback.
977  * critcount is the managed critical priority that we should ignore in order
978  * to determine whether preemption is possible (aka usually just the crit
979  * priority of lwkt_schedule() itself).
980  *
981  * Preemption is typically limited to interrupt threads.
982  *
983  * Operation works in a fairly straight-forward manner.  The normal
984  * scheduling code is bypassed and we switch directly to the target
985  * thread.  When the target thread attempts to block or switch away
986  * code at the base of lwkt_switch() will switch directly back to our
987  * thread.  Our thread is able to retain whatever tokens it holds and
988  * if the target needs one of them the target will switch back to us
989  * and reschedule itself normally.
990  */
991 void
992 lwkt_preempt(thread_t ntd, int critcount)
993 {
994     struct globaldata *gd = mycpu;
995     thread_t xtd;
996     thread_t td;
997     int save_gd_intr_nesting_level;
998
999     /*
1000      * The caller has put us in a critical section.  We can only preempt
1001      * if the caller of the caller was not in a critical section (basically
1002      * a local interrupt), as determined by the 'critcount' parameter.  We
1003      * also can't preempt if the caller is holding any spinlocks (even if
1004      * he isn't in a critical section).  This also handles the tokens test.
1005      *
1006      * YYY The target thread must be in a critical section (else it must
1007      * inherit our critical section?  I dunno yet).
1008      */
1009     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
1010
1011     td = gd->gd_curthread;
1012     if (preempt_enable == 0) {
1013         ++preempt_miss;
1014         return;
1015     }
1016     if (ntd->td_pri <= td->td_pri) {
1017         ++preempt_miss;
1018         return;
1019     }
1020     if (td->td_critcount > critcount) {
1021         ++preempt_miss;
1022         return;
1023     }
1024 #ifdef SMP
1025     if (td->td_cscount) {
1026         ++preempt_miss;
1027         return;
1028     }
1029     if (ntd->td_gd != gd) {
1030         ++preempt_miss;
1031         return;
1032     }
1033 #endif
1034     /*
1035      * We don't have to check spinlocks here as they will also bump
1036      * td_critcount.
1037      *
1038      * Do not try to preempt if the target thread is holding any tokens.
1039      * We could try to acquire the tokens but this case is so rare there
1040      * is no need to support it.
1041      */
1042     KKASSERT(gd->gd_spinlocks == 0);
1043
1044     if (TD_TOKS_HELD(ntd)) {
1045         ++preempt_miss;
1046         return;
1047     }
1048     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1049         ++preempt_weird;
1050         return;
1051     }
1052     if (ntd->td_preempted) {
1053         ++preempt_hit;
1054         return;
1055     }
1056     KKASSERT(gd->gd_processing_ipiq == 0);
1057
1058     /*
1059      * Since we are able to preempt the current thread, there is no need to
1060      * call need_lwkt_resched().
1061      *
1062      * We must temporarily clear gd_intr_nesting_level around the switch
1063      * since switchouts from the target thread are allowed (they will just
1064      * return to our thread), and since the target thread has its own stack.
1065      *
1066      * A preemption must switch back to the original thread, assert the
1067      * case.
1068      */
1069     ++preempt_hit;
1070     ntd->td_preempted = td;
1071     td->td_flags |= TDF_PREEMPT_LOCK;
1072     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1073     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1074     gd->gd_intr_nesting_level = 0;
1075
1076     KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
1077     ntd->td_flags |= TDF_RUNNING;
1078     xtd = td->td_switch(ntd);
1079     KKASSERT(xtd == ntd);
1080     lwkt_switch_return(xtd);
1081     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1082
1083     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1084     ntd->td_preempted = NULL;
1085     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1086 }
1087
1088 /*
1089  * Conditionally call splz() if gd_reqflags indicates work is pending.
1090  * This will work inside a critical section but not inside a hard code
1091  * section.
1092  *
1093  * (self contained on a per cpu basis)
1094  */
1095 void
1096 splz_check(void)
1097 {
1098     globaldata_t gd = mycpu;
1099     thread_t td = gd->gd_curthread;
1100
1101     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1102         gd->gd_intr_nesting_level == 0 &&
1103         td->td_nest_count < 2)
1104     {
1105         splz();
1106     }
1107 }
1108
1109 /*
1110  * This version is integrated into crit_exit, reqflags has already
1111  * been tested but td_critcount has not.
1112  *
1113  * We only want to execute the splz() on the 1->0 transition of
1114  * critcount and not in a hard code section or if too deeply nested.
1115  *
1116  * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1117  */
1118 void
1119 lwkt_maybe_splz(thread_t td)
1120 {
1121     globaldata_t gd = td->td_gd;
1122
1123     if (td->td_critcount == 0 &&
1124         gd->gd_intr_nesting_level == 0 &&
1125         td->td_nest_count < 2)
1126     {
1127         splz();
1128     }
1129 }
1130
1131 /*
1132  * Drivers which set up processing co-threads can call this function to
1133  * run the co-thread at a higher priority and to allow it to preempt
1134  * normal threads.
1135  */
1136 void
1137 lwkt_set_interrupt_support_thread(void)
1138 {
1139         thread_t td = curthread;
1140
1141         lwkt_setpri_self(TDPRI_INT_SUPPORT);
1142         td->td_flags |= TDF_INTTHREAD;
1143         td->td_preemptable = lwkt_preempt;
1144 }
1145
1146
1147 /*
1148  * This function is used to negotiate a passive release of the current
1149  * process/lwp designation with the user scheduler, allowing the user
1150  * scheduler to schedule another user thread.  The related kernel thread
1151  * (curthread) continues running in the released state.
1152  */
1153 void
1154 lwkt_passive_release(struct thread *td)
1155 {
1156     struct lwp *lp = td->td_lwp;
1157
1158 #ifndef NO_LWKT_SPLIT_USERPRI
1159     td->td_release = NULL;
1160     lwkt_setpri_self(TDPRI_KERN_USER);
1161 #endif
1162
1163     lp->lwp_proc->p_usched->release_curproc(lp);
1164 }
1165
1166
1167 /*
1168  * This implements a LWKT yield, allowing a kernel thread to yield to other
1169  * kernel threads at the same or higher priority.  This function can be
1170  * called in a tight loop and will typically only yield once per tick.
1171  *
1172  * Most kernel threads run at the same priority in order to allow equal
1173  * sharing.
1174  *
1175  * (self contained on a per cpu basis)
1176  */
1177 void
1178 lwkt_yield(void)
1179 {
1180     globaldata_t gd = mycpu;
1181     thread_t td = gd->gd_curthread;
1182
1183     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1184         splz();
1185     if (lwkt_resched_wanted()) {
1186         lwkt_schedule_self(curthread);
1187         lwkt_switch();
1188     }
1189 }
1190
1191 /*
1192  * The quick version processes pending interrupts and higher-priority
1193  * LWKT threads but will not round-robin same-priority LWKT threads.
1194  *
1195  * When called while attempting to return to userland the only same-pri
1196  * threads are the ones which have already tried to become the current
1197  * user process.
1198  */
1199 void
1200 lwkt_yield_quick(void)
1201 {
1202     globaldata_t gd = mycpu;
1203     thread_t td = gd->gd_curthread;
1204
1205     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1206         splz();
1207     if (lwkt_resched_wanted()) {
1208         if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1209             clear_lwkt_resched();
1210         } else {
1211             lwkt_schedule_self(curthread);
1212             lwkt_switch();
1213         }
1214     }
1215 }
1216
1217 /*
1218  * This yield is designed for kernel threads with a user context.
1219  *
1220  * The kernel acting on behalf of the user is potentially cpu-bound,
1221  * this function will efficiently allow other threads to run and also
1222  * switch to other processes by releasing.
1223  *
1224  * The lwkt_user_yield() function is designed to have very low overhead
1225  * if no yield is determined to be needed.
1226  */
1227 void
1228 lwkt_user_yield(void)
1229 {
1230     globaldata_t gd = mycpu;
1231     thread_t td = gd->gd_curthread;
1232
1233     /*
1234      * Always run any pending interrupts in case we are in a critical
1235      * section.
1236      */
1237     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1238         splz();
1239
1240     /*
1241      * Switch (which forces a release) if another kernel thread needs
1242      * the cpu, if userland wants us to resched, or if our kernel
1243      * quantum has run out.
1244      */
1245     if (lwkt_resched_wanted() ||
1246         user_resched_wanted())
1247     {
1248         lwkt_switch();
1249     }
1250
1251 #if 0
1252     /*
1253      * Reacquire the current process if we are released.
1254      *
1255      * XXX not implemented atm.  The kernel may be holding locks and such,
1256      *     so we want the thread to continue to receive cpu.
1257      */
1258     if (td->td_release == NULL && lp) {
1259         lp->lwp_proc->p_usched->acquire_curproc(lp);
1260         td->td_release = lwkt_passive_release;
1261         lwkt_setpri_self(TDPRI_USER_NORM);
1262     }
1263 #endif
1264 }
1265
1266 /*
1267  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1268  * deal with threads that might be blocked on a wait queue.
1269  *
1270  * We have a little helper inline function which does additional work after
1271  * the thread has been enqueued, including dealing with preemption and
1272  * setting need_lwkt_resched() (which prevents the kernel from returning
1273  * to userland until it has processed higher priority threads).
1274  *
1275  * It is possible for this routine to be called after a failed _enqueue
1276  * (due to the target thread migrating, sleeping, or otherwise blocked).
1277  * We have to check that the thread is actually on the run queue!
1278  */
1279 static __inline
1280 void
1281 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1282 {
1283     if (ntd->td_flags & TDF_RUNQ) {
1284         if (ntd->td_preemptable) {
1285             ntd->td_preemptable(ntd, ccount);   /* YYY +token */
1286         }
1287     }
1288 }
1289
1290 static __inline
1291 void
1292 _lwkt_schedule(thread_t td)
1293 {
1294     globaldata_t mygd = mycpu;
1295
1296     KASSERT(td != &td->td_gd->gd_idlethread,
1297             ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1298     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1299     crit_enter_gd(mygd);
1300     KKASSERT(td->td_lwp == NULL ||
1301              (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1302
1303     if (td == mygd->gd_curthread) {
1304         _lwkt_enqueue(td);
1305     } else {
1306         /*
1307          * If we own the thread, there is no race (since we are in a
1308          * critical section).  If we do not own the thread there might
1309          * be a race but the target cpu will deal with it.
1310          */
1311 #ifdef SMP
1312         if (td->td_gd == mygd) {
1313             _lwkt_enqueue(td);
1314             _lwkt_schedule_post(mygd, td, 1);
1315         } else {
1316             lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1317         }
1318 #else
1319         _lwkt_enqueue(td);
1320         _lwkt_schedule_post(mygd, td, 1);
1321 #endif
1322     }
1323     crit_exit_gd(mygd);
1324 }
1325
1326 void
1327 lwkt_schedule(thread_t td)
1328 {
1329     _lwkt_schedule(td);
1330 }
1331
1332 void
1333 lwkt_schedule_noresched(thread_t td)    /* XXX not impl */
1334 {
1335     _lwkt_schedule(td);
1336 }
1337
1338 #ifdef SMP
1339
1340 /*
1341  * When scheduled remotely if frame != NULL the IPIQ is being
1342  * run via doreti or an interrupt then preemption can be allowed.
1343  *
1344  * To allow preemption we have to drop the critical section so only
1345  * one is present in _lwkt_schedule_post.
1346  */
1347 static void
1348 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1349 {
1350     thread_t td = curthread;
1351     thread_t ntd = arg;
1352
1353     if (frame && ntd->td_preemptable) {
1354         crit_exit_noyield(td);
1355         _lwkt_schedule(ntd);
1356         crit_enter_quick(td);
1357     } else {
1358         _lwkt_schedule(ntd);
1359     }
1360 }
1361
1362 /*
1363  * Thread migration using a 'Pull' method.  The thread may or may not be
1364  * the current thread.  It MUST be descheduled and in a stable state.
1365  * lwkt_giveaway() must be called on the cpu owning the thread.
1366  *
1367  * At any point after lwkt_giveaway() is called, the target cpu may
1368  * 'pull' the thread by calling lwkt_acquire().
1369  *
1370  * We have to make sure the thread is not sitting on a per-cpu tsleep
1371  * queue or it will blow up when it moves to another cpu.
1372  *
1373  * MPSAFE - must be called under very specific conditions.
1374  */
1375 void
1376 lwkt_giveaway(thread_t td)
1377 {
1378     globaldata_t gd = mycpu;
1379
1380     crit_enter_gd(gd);
1381     if (td->td_flags & TDF_TSLEEPQ)
1382         tsleep_remove(td);
1383     KKASSERT(td->td_gd == gd);
1384     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1385     td->td_flags |= TDF_MIGRATING;
1386     crit_exit_gd(gd);
1387 }
1388
1389 void
1390 lwkt_acquire(thread_t td)
1391 {
1392     globaldata_t gd;
1393     globaldata_t mygd;
1394     int retry = 10000000;
1395
1396     KKASSERT(td->td_flags & TDF_MIGRATING);
1397     gd = td->td_gd;
1398     mygd = mycpu;
1399     if (gd != mycpu) {
1400         cpu_lfence();
1401         KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1402         crit_enter_gd(mygd);
1403         DEBUG_PUSH_INFO("lwkt_acquire");
1404         while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1405 #ifdef SMP
1406             lwkt_process_ipiq();
1407 #endif
1408             cpu_lfence();
1409             if (--retry == 0) {
1410                 kprintf("lwkt_acquire: stuck: td %p td->td_flags %08x\n",
1411                         td, td->td_flags);
1412                 retry = 10000000;
1413             }
1414         }
1415         DEBUG_POP_INFO();
1416         cpu_mfence();
1417         td->td_gd = mygd;
1418         TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1419         td->td_flags &= ~TDF_MIGRATING;
1420         crit_exit_gd(mygd);
1421     } else {
1422         crit_enter_gd(mygd);
1423         TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1424         td->td_flags &= ~TDF_MIGRATING;
1425         crit_exit_gd(mygd);
1426     }
1427 }
1428
1429 #endif
1430
1431 /*
1432  * Generic deschedule.  Descheduling threads other then your own should be
1433  * done only in carefully controlled circumstances.  Descheduling is 
1434  * asynchronous.  
1435  *
1436  * This function may block if the cpu has run out of messages.
1437  */
1438 void
1439 lwkt_deschedule(thread_t td)
1440 {
1441     crit_enter();
1442 #ifdef SMP
1443     if (td == curthread) {
1444         _lwkt_dequeue(td);
1445     } else {
1446         if (td->td_gd == mycpu) {
1447             _lwkt_dequeue(td);
1448         } else {
1449             lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1450         }
1451     }
1452 #else
1453     _lwkt_dequeue(td);
1454 #endif
1455     crit_exit();
1456 }
1457
1458 /*
1459  * Set the target thread's priority.  This routine does not automatically
1460  * switch to a higher priority thread, LWKT threads are not designed for
1461  * continuous priority changes.  Yield if you want to switch.
1462  */
1463 void
1464 lwkt_setpri(thread_t td, int pri)
1465 {
1466     if (td->td_pri != pri) {
1467         KKASSERT(pri >= 0);
1468         crit_enter();
1469         if (td->td_flags & TDF_RUNQ) {
1470             KKASSERT(td->td_gd == mycpu);
1471             _lwkt_dequeue(td);
1472             td->td_pri = pri;
1473             _lwkt_enqueue(td);
1474         } else {
1475             td->td_pri = pri;
1476         }
1477         crit_exit();
1478     }
1479 }
1480
1481 /*
1482  * Set the initial priority for a thread prior to it being scheduled for
1483  * the first time.  The thread MUST NOT be scheduled before or during
1484  * this call.  The thread may be assigned to a cpu other then the current
1485  * cpu.
1486  *
1487  * Typically used after a thread has been created with TDF_STOPPREQ,
1488  * and before the thread is initially scheduled.
1489  */
1490 void
1491 lwkt_setpri_initial(thread_t td, int pri)
1492 {
1493     KKASSERT(pri >= 0);
1494     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1495     td->td_pri = pri;
1496 }
1497
1498 void
1499 lwkt_setpri_self(int pri)
1500 {
1501     thread_t td = curthread;
1502
1503     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1504     crit_enter();
1505     if (td->td_flags & TDF_RUNQ) {
1506         _lwkt_dequeue(td);
1507         td->td_pri = pri;
1508         _lwkt_enqueue(td);
1509     } else {
1510         td->td_pri = pri;
1511     }
1512     crit_exit();
1513 }
1514
1515 /*
1516  * hz tick scheduler clock for LWKT threads
1517  */
1518 void
1519 lwkt_schedulerclock(thread_t td)
1520 {
1521     globaldata_t gd = td->td_gd;
1522     thread_t xtd;
1523
1524     if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1525         /*
1526          * If the current thread is at the head of the runq shift it to the
1527          * end of any equal-priority threads and request a LWKT reschedule
1528          * if it moved.
1529          *
1530          * Ignore upri in this situation.  There will only be one user thread
1531          * in user mode, all others will be user threads running in kernel
1532          * mode and we have to make sure they get some cpu.
1533          */
1534         xtd = TAILQ_NEXT(td, td_threadq);
1535         if (xtd && xtd->td_pri == td->td_pri) {
1536             TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1537             while (xtd && xtd->td_pri == td->td_pri)
1538                 xtd = TAILQ_NEXT(xtd, td_threadq);
1539             if (xtd)
1540                 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1541             else
1542                 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1543             need_lwkt_resched();
1544         }
1545     } else {
1546         /*
1547          * If we scheduled a thread other than the one at the head of the
1548          * queue always request a reschedule every tick.
1549          */
1550         need_lwkt_resched();
1551     }
1552 }
1553
1554 /*
1555  * Migrate the current thread to the specified cpu. 
1556  *
1557  * This is accomplished by descheduling ourselves from the current cpu
1558  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1559  * 'old' thread wants to migrate after it has been completely switched out
1560  * and will complete the migration.
1561  *
1562  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1563  *
1564  * We must be sure to release our current process designation (if a user
1565  * process) before clearing out any tsleepq we are on because the release
1566  * code may re-add us.
1567  *
1568  * We must be sure to remove ourselves from the current cpu's tsleepq
1569  * before potentially moving to another queue.  The thread can be on
1570  * a tsleepq due to a left-over tsleep_interlock().
1571  */
1572
1573 void
1574 lwkt_setcpu_self(globaldata_t rgd)
1575 {
1576 #ifdef SMP
1577     thread_t td = curthread;
1578
1579     if (td->td_gd != rgd) {
1580         crit_enter_quick(td);
1581
1582         if (td->td_release)
1583             td->td_release(td);
1584         if (td->td_flags & TDF_TSLEEPQ)
1585             tsleep_remove(td);
1586
1587         /*
1588          * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1589          * trying to deschedule ourselves and switch away, then deschedule
1590          * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1591          * call lwkt_switch() to complete the operation.
1592          */
1593         td->td_flags |= TDF_MIGRATING;
1594         lwkt_deschedule_self(td);
1595         TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1596         td->td_migrate_gd = rgd;
1597         lwkt_switch();
1598
1599         /*
1600          * We are now on the target cpu
1601          */
1602         KKASSERT(rgd == mycpu);
1603         TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1604         crit_exit_quick(td);
1605     }
1606 #endif
1607 }
1608
1609 void
1610 lwkt_migratecpu(int cpuid)
1611 {
1612 #ifdef SMP
1613         globaldata_t rgd;
1614
1615         rgd = globaldata_find(cpuid);
1616         lwkt_setcpu_self(rgd);
1617 #endif
1618 }
1619
1620 #ifdef SMP
1621 /*
1622  * Remote IPI for cpu migration (called while in a critical section so we
1623  * do not have to enter another one).
1624  *
1625  * The thread (td) has already been completely descheduled from the
1626  * originating cpu and we can simply assert the case.  The thread is
1627  * assigned to the new cpu and enqueued.
1628  *
1629  * The thread will re-add itself to tdallq when it resumes execution.
1630  */
1631 static void
1632 lwkt_setcpu_remote(void *arg)
1633 {
1634     thread_t td = arg;
1635     globaldata_t gd = mycpu;
1636
1637     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1638     td->td_gd = gd;
1639     cpu_mfence();
1640     td->td_flags &= ~TDF_MIGRATING;
1641     KKASSERT(td->td_migrate_gd == NULL);
1642     KKASSERT(td->td_lwp == NULL ||
1643             (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1644     _lwkt_enqueue(td);
1645 }
1646 #endif
1647
1648 struct lwp *
1649 lwkt_preempted_proc(void)
1650 {
1651     thread_t td = curthread;
1652     while (td->td_preempted)
1653         td = td->td_preempted;
1654     return(td->td_lwp);
1655 }
1656
1657 /*
1658  * Create a kernel process/thread/whatever.  It shares it's address space
1659  * with proc0 - ie: kernel only.
1660  *
1661  * If the cpu is not specified one will be selected.  In the future
1662  * specifying a cpu of -1 will enable kernel thread migration between
1663  * cpus.
1664  */
1665 int
1666 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1667             thread_t template, int tdflags, int cpu, const char *fmt, ...)
1668 {
1669     thread_t td;
1670     __va_list ap;
1671
1672     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1673                            tdflags);
1674     if (tdp)
1675         *tdp = td;
1676     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1677
1678     /*
1679      * Set up arg0 for 'ps' etc
1680      */
1681     __va_start(ap, fmt);
1682     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1683     __va_end(ap);
1684
1685     /*
1686      * Schedule the thread to run
1687      */
1688     if (td->td_flags & TDF_NOSTART)
1689         td->td_flags &= ~TDF_NOSTART;
1690     else
1691         lwkt_schedule(td);
1692     return 0;
1693 }
1694
1695 /*
1696  * Destroy an LWKT thread.   Warning!  This function is not called when
1697  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1698  * uses a different reaping mechanism.
1699  */
1700 void
1701 lwkt_exit(void)
1702 {
1703     thread_t td = curthread;
1704     thread_t std;
1705     globaldata_t gd;
1706
1707     /*
1708      * Do any cleanup that might block here
1709      */
1710     if (td->td_flags & TDF_VERBOSE)
1711         kprintf("kthread %p %s has exited\n", td, td->td_comm);
1712     caps_exit(td);
1713     biosched_done(td);
1714     dsched_exit_thread(td);
1715
1716     /*
1717      * Get us into a critical section to interlock gd_freetd and loop
1718      * until we can get it freed.
1719      *
1720      * We have to cache the current td in gd_freetd because objcache_put()ing
1721      * it would rip it out from under us while our thread is still active.
1722      *
1723      * We are the current thread so of course our own TDF_RUNNING bit will
1724      * be set, so unlike the lwp reap code we don't wait for it to clear.
1725      */
1726     gd = mycpu;
1727     crit_enter_quick(td);
1728     for (;;) {
1729         if (td->td_refs) {
1730             tsleep(td, 0, "tdreap", 1);
1731             continue;
1732         }
1733         if ((std = gd->gd_freetd) != NULL) {
1734             KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1735             gd->gd_freetd = NULL;
1736             objcache_put(thread_cache, std);
1737             continue;
1738         }
1739         break;
1740     }
1741
1742     /*
1743      * Remove thread resources from kernel lists and deschedule us for
1744      * the last time.  We cannot block after this point or we may end
1745      * up with a stale td on the tsleepq.
1746      *
1747      * None of this may block, the critical section is the only thing
1748      * protecting tdallq and the only thing preventing new lwkt_hold()
1749      * thread refs now.
1750      */
1751     if (td->td_flags & TDF_TSLEEPQ)
1752         tsleep_remove(td);
1753     lwkt_deschedule_self(td);
1754     lwkt_remove_tdallq(td);
1755     KKASSERT(td->td_refs == 0);
1756
1757     /*
1758      * Final cleanup
1759      */
1760     KKASSERT(gd->gd_freetd == NULL);
1761     if (td->td_flags & TDF_ALLOCATED_THREAD)
1762         gd->gd_freetd = td;
1763     cpu_thread_exit();
1764 }
1765
1766 void
1767 lwkt_remove_tdallq(thread_t td)
1768 {
1769     KKASSERT(td->td_gd == mycpu);
1770     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1771 }
1772
1773 /*
1774  * Code reduction and branch prediction improvements.  Call/return
1775  * overhead on modern cpus often degenerates into 0 cycles due to
1776  * the cpu's branch prediction hardware and return pc cache.  We
1777  * can take advantage of this by not inlining medium-complexity
1778  * functions and we can also reduce the branch prediction impact
1779  * by collapsing perfectly predictable branches into a single
1780  * procedure instead of duplicating it.
1781  *
1782  * Is any of this noticeable?  Probably not, so I'll take the
1783  * smaller code size.
1784  */
1785 void
1786 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1787 {
1788     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1789 }
1790
1791 void
1792 crit_panic(void)
1793 {
1794     thread_t td = curthread;
1795     int lcrit = td->td_critcount;
1796
1797     td->td_critcount = 0;
1798     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1799     /* NOT REACHED */
1800 }
1801
1802 #ifdef SMP
1803
1804 /*
1805  * Called from debugger/panic on cpus which have been stopped.  We must still
1806  * process the IPIQ while stopped, even if we were stopped while in a critical
1807  * section (XXX).
1808  *
1809  * If we are dumping also try to process any pending interrupts.  This may
1810  * or may not work depending on the state of the cpu at the point it was
1811  * stopped.
1812  */
1813 void
1814 lwkt_smp_stopped(void)
1815 {
1816     globaldata_t gd = mycpu;
1817
1818     crit_enter_gd(gd);
1819     if (dumping) {
1820         lwkt_process_ipiq();
1821         splz();
1822     } else {
1823         lwkt_process_ipiq();
1824     }
1825     crit_exit_gd(gd);
1826 }
1827
1828 #endif