kernel - Fix rare IPIQ freezes
[dragonfly.git] / sys / kern / lwkt_thread.c
1 /*
2  * Copyright (c) 2003-2010 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread 
39  * scheduling is queued via (async) IPIs.
40  */
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/caps.h>
54 #include <sys/spinlock.h>
55 #include <sys/ktr.h>
56
57 #include <sys/thread2.h>
58 #include <sys/spinlock2.h>
59 #include <sys/mplock2.h>
60
61 #include <sys/dsched.h>
62
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_pager.h>
70 #include <vm/vm_extern.h>
71
72 #include <machine/stdarg.h>
73 #include <machine/smp.h>
74
75 #if !defined(KTR_CTXSW)
76 #define KTR_CTXSW KTR_ALL
77 #endif
78 KTR_INFO_MASTER(ctxsw);
79 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p",
80          sizeof(int) + sizeof(struct thread *));
81 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p",
82          sizeof(int) + sizeof(struct thread *));
83 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s",
84          sizeof (struct thread *) + sizeof(char *));
85 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", sizeof (struct thread *));
86
87 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
88
89 #ifdef  INVARIANTS
90 static int panic_on_cscount = 0;
91 #endif
92 static __int64_t switch_count = 0;
93 static __int64_t preempt_hit = 0;
94 static __int64_t preempt_miss = 0;
95 static __int64_t preempt_weird = 0;
96 static __int64_t token_contention_count __debugvar = 0;
97 static int lwkt_use_spin_port;
98 static struct objcache *thread_cache;
99
100 #ifdef SMP
101 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
102 static void lwkt_setcpu_remote(void *arg);
103 #endif
104 static void lwkt_fairq_accumulate(globaldata_t gd, thread_t td);
105
106 extern void cpu_heavy_restore(void);
107 extern void cpu_lwkt_restore(void);
108 extern void cpu_kthread_restore(void);
109 extern void cpu_idle_restore(void);
110
111 /*
112  * We can make all thread ports use the spin backend instead of the thread
113  * backend.  This should only be set to debug the spin backend.
114  */
115 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
116
117 #ifdef  INVARIANTS
118 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
119     "Panic if attempting to switch lwkt's while mastering cpusync");
120 #endif
121 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
122     "Number of switched threads");
123 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, 
124     "Successful preemption events");
125 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, 
126     "Failed preemption events");
127 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
128     "Number of preempted threads.");
129 #ifdef  INVARIANTS
130 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
131         &token_contention_count, 0, "spinning due to token contention");
132 #endif
133 static int fairq_enable = 1;
134 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
135         &fairq_enable, 0, "Turn on fairq priority accumulators");
136 static int lwkt_spin_loops = 10;
137 SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
138         &lwkt_spin_loops, 0, "");
139 static int lwkt_spin_delay = 1;
140 SYSCTL_INT(_lwkt, OID_AUTO, spin_delay, CTLFLAG_RW,
141         &lwkt_spin_delay, 0, "Scheduler spin delay in microseconds 0=auto");
142 static int lwkt_spin_method = 1;
143 SYSCTL_INT(_lwkt, OID_AUTO, spin_method, CTLFLAG_RW,
144         &lwkt_spin_method, 0, "LWKT scheduler behavior when contended");
145 static int lwkt_spin_fatal = 0; /* disabled */
146 SYSCTL_INT(_lwkt, OID_AUTO, spin_fatal, CTLFLAG_RW,
147         &lwkt_spin_fatal, 0, "LWKT scheduler spin loops till fatal panic");
148 static int preempt_enable = 1;
149 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
150         &preempt_enable, 0, "Enable preemption");
151 static int lwkt_cache_threads = 32;
152 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
153         &lwkt_cache_threads, 0, "thread+kstack cache");
154
155 static __cachealign int lwkt_cseq_rindex;
156 static __cachealign int lwkt_cseq_windex;
157
158 /*
159  * These helper procedures handle the runq, they can only be called from
160  * within a critical section.
161  *
162  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
163  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
164  * instead of 'mycpu' when referencing the globaldata structure.   Once
165  * SMP live enqueuing and dequeueing only occurs on the current cpu.
166  */
167 static __inline
168 void
169 _lwkt_dequeue(thread_t td)
170 {
171     if (td->td_flags & TDF_RUNQ) {
172         struct globaldata *gd = td->td_gd;
173
174         td->td_flags &= ~TDF_RUNQ;
175         TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
176         gd->gd_fairq_total_pri -= td->td_pri;
177         if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
178                 atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
179     }
180 }
181
182 /*
183  * Priority enqueue.
184  *
185  * NOTE: There are a limited number of lwkt threads runnable since user
186  *       processes only schedule one at a time per cpu.
187  */
188 static __inline
189 void
190 _lwkt_enqueue(thread_t td)
191 {
192     thread_t xtd;
193
194     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
195         struct globaldata *gd = td->td_gd;
196
197         td->td_flags |= TDF_RUNQ;
198         xtd = TAILQ_FIRST(&gd->gd_tdrunq);
199         if (xtd == NULL) {
200                 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
201                 atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
202         } else {
203                 while (xtd && xtd->td_pri > td->td_pri)
204                         xtd = TAILQ_NEXT(xtd, td_threadq);
205                 if (xtd)
206                         TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
207                 else
208                         TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
209         }
210         gd->gd_fairq_total_pri += td->td_pri;
211     }
212 }
213
214 static __boolean_t
215 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
216 {
217         struct thread *td = (struct thread *)obj;
218
219         td->td_kstack = NULL;
220         td->td_kstack_size = 0;
221         td->td_flags = TDF_ALLOCATED_THREAD;
222         return (1);
223 }
224
225 static void
226 _lwkt_thread_dtor(void *obj, void *privdata)
227 {
228         struct thread *td = (struct thread *)obj;
229
230         KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
231             ("_lwkt_thread_dtor: not allocated from objcache"));
232         KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
233                 td->td_kstack_size > 0,
234             ("_lwkt_thread_dtor: corrupted stack"));
235         kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
236 }
237
238 /*
239  * Initialize the lwkt s/system.
240  *
241  * Nominally cache up to 32 thread + kstack structures.
242  */
243 void
244 lwkt_init(void)
245 {
246     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
247     thread_cache = objcache_create_mbacked(
248                                 M_THREAD, sizeof(struct thread),
249                                 NULL, lwkt_cache_threads,
250                                 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
251 }
252
253 /*
254  * Schedule a thread to run.  As the current thread we can always safely
255  * schedule ourselves, and a shortcut procedure is provided for that
256  * function.
257  *
258  * (non-blocking, self contained on a per cpu basis)
259  */
260 void
261 lwkt_schedule_self(thread_t td)
262 {
263     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
264     crit_enter_quick(td);
265     KASSERT(td != &td->td_gd->gd_idlethread,
266             ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
267     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
268     _lwkt_enqueue(td);
269     crit_exit_quick(td);
270 }
271
272 /*
273  * Deschedule a thread.
274  *
275  * (non-blocking, self contained on a per cpu basis)
276  */
277 void
278 lwkt_deschedule_self(thread_t td)
279 {
280     crit_enter_quick(td);
281     _lwkt_dequeue(td);
282     crit_exit_quick(td);
283 }
284
285 /*
286  * LWKTs operate on a per-cpu basis
287  *
288  * WARNING!  Called from early boot, 'mycpu' may not work yet.
289  */
290 void
291 lwkt_gdinit(struct globaldata *gd)
292 {
293     TAILQ_INIT(&gd->gd_tdrunq);
294     TAILQ_INIT(&gd->gd_tdallq);
295 }
296
297 /*
298  * Create a new thread.  The thread must be associated with a process context
299  * or LWKT start address before it can be scheduled.  If the target cpu is
300  * -1 the thread will be created on the current cpu.
301  *
302  * If you intend to create a thread without a process context this function
303  * does everything except load the startup and switcher function.
304  */
305 thread_t
306 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
307 {
308     globaldata_t gd = mycpu;
309     void *stack;
310
311     /*
312      * If static thread storage is not supplied allocate a thread.  Reuse
313      * a cached free thread if possible.  gd_freetd is used to keep an exiting
314      * thread intact through the exit.
315      */
316     if (td == NULL) {
317         crit_enter_gd(gd);
318         if ((td = gd->gd_freetd) != NULL) {
319             KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
320                                       TDF_RUNQ)) == 0);
321             gd->gd_freetd = NULL;
322         } else {
323             td = objcache_get(thread_cache, M_WAITOK);
324             KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
325                                       TDF_RUNQ)) == 0);
326         }
327         crit_exit_gd(gd);
328         KASSERT((td->td_flags &
329                  (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
330                 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
331         flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
332     }
333
334     /*
335      * Try to reuse cached stack.
336      */
337     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
338         if (flags & TDF_ALLOCATED_STACK) {
339             kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
340             stack = NULL;
341         }
342     }
343     if (stack == NULL) {
344         stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
345         flags |= TDF_ALLOCATED_STACK;
346     }
347     if (cpu < 0)
348         lwkt_init_thread(td, stack, stksize, flags, gd);
349     else
350         lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
351     return(td);
352 }
353
354 /*
355  * Initialize a preexisting thread structure.  This function is used by
356  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
357  *
358  * All threads start out in a critical section at a priority of
359  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
360  * appropriate.  This function may send an IPI message when the 
361  * requested cpu is not the current cpu and consequently gd_tdallq may
362  * not be initialized synchronously from the point of view of the originating
363  * cpu.
364  *
365  * NOTE! we have to be careful in regards to creating threads for other cpus
366  * if SMP has not yet been activated.
367  */
368 #ifdef SMP
369
370 static void
371 lwkt_init_thread_remote(void *arg)
372 {
373     thread_t td = arg;
374
375     /*
376      * Protected by critical section held by IPI dispatch
377      */
378     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
379 }
380
381 #endif
382
383 /*
384  * lwkt core thread structural initialization.
385  *
386  * NOTE: All threads are initialized as mpsafe threads.
387  */
388 void
389 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
390                 struct globaldata *gd)
391 {
392     globaldata_t mygd = mycpu;
393
394     bzero(td, sizeof(struct thread));
395     td->td_kstack = stack;
396     td->td_kstack_size = stksize;
397     td->td_flags = flags;
398     td->td_gd = gd;
399     td->td_pri = TDPRI_KERN_DAEMON;
400     td->td_critcount = 1;
401     td->td_toks_stop = &td->td_toks_base;
402     if (lwkt_use_spin_port)
403         lwkt_initport_spin(&td->td_msgport);
404     else
405         lwkt_initport_thread(&td->td_msgport, td);
406     pmap_init_thread(td);
407 #ifdef SMP
408     /*
409      * Normally initializing a thread for a remote cpu requires sending an
410      * IPI.  However, the idlethread is setup before the other cpus are
411      * activated so we have to treat it as a special case.  XXX manipulation
412      * of gd_tdallq requires the BGL.
413      */
414     if (gd == mygd || td == &gd->gd_idlethread) {
415         crit_enter_gd(mygd);
416         TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
417         crit_exit_gd(mygd);
418     } else {
419         lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
420     }
421 #else
422     crit_enter_gd(mygd);
423     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
424     crit_exit_gd(mygd);
425 #endif
426
427     dsched_new_thread(td);
428 }
429
430 void
431 lwkt_set_comm(thread_t td, const char *ctl, ...)
432 {
433     __va_list va;
434
435     __va_start(va, ctl);
436     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
437     __va_end(va);
438     KTR_LOG(ctxsw_newtd, td, &td->td_comm[0]);
439 }
440
441 void
442 lwkt_hold(thread_t td)
443 {
444     atomic_add_int(&td->td_refs, 1);
445 }
446
447 void
448 lwkt_rele(thread_t td)
449 {
450     KKASSERT(td->td_refs > 0);
451     atomic_add_int(&td->td_refs, -1);
452 }
453
454 void
455 lwkt_wait_free(thread_t td)
456 {
457     while (td->td_refs)
458         tsleep(td, 0, "tdreap", hz);
459 }
460
461 void
462 lwkt_free_thread(thread_t td)
463 {
464     KKASSERT(td->td_refs == 0);
465     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|TDF_RUNQ)) == 0);
466     if (td->td_flags & TDF_ALLOCATED_THREAD) {
467         objcache_put(thread_cache, td);
468     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
469         /* client-allocated struct with internally allocated stack */
470         KASSERT(td->td_kstack && td->td_kstack_size > 0,
471             ("lwkt_free_thread: corrupted stack"));
472         kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
473         td->td_kstack = NULL;
474         td->td_kstack_size = 0;
475     }
476     KTR_LOG(ctxsw_deadtd, td);
477 }
478
479
480 /*
481  * Switch to the next runnable lwkt.  If no LWKTs are runnable then 
482  * switch to the idlethread.  Switching must occur within a critical
483  * section to avoid races with the scheduling queue.
484  *
485  * We always have full control over our cpu's run queue.  Other cpus
486  * that wish to manipulate our queue must use the cpu_*msg() calls to
487  * talk to our cpu, so a critical section is all that is needed and
488  * the result is very, very fast thread switching.
489  *
490  * The LWKT scheduler uses a fixed priority model and round-robins at
491  * each priority level.  User process scheduling is a totally
492  * different beast and LWKT priorities should not be confused with
493  * user process priorities.
494  *
495  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
496  * is not called by the current thread in the preemption case, only when
497  * the preempting thread blocks (in order to return to the original thread).
498  *
499  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
500  * migration and tsleep deschedule the current lwkt thread and call
501  * lwkt_switch().  In particular, the target cpu of the migration fully
502  * expects the thread to become non-runnable and can deadlock against
503  * cpusync operations if we run any IPIs prior to switching the thread out.
504  *
505  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
506  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
507  */
508 void
509 lwkt_switch(void)
510 {
511     globaldata_t gd = mycpu;
512     thread_t td = gd->gd_curthread;
513     thread_t ntd;
514     thread_t xtd;
515     int spinning = lwkt_spin_loops;     /* loops before HLTing */
516     int reqflags;
517     int cseq;
518     int oseq;
519     int fatal_count;
520
521     KKASSERT(gd->gd_processing_ipiq == 0);
522
523     /*
524      * Switching from within a 'fast' (non thread switched) interrupt or IPI
525      * is illegal.  However, we may have to do it anyway if we hit a fatal
526      * kernel trap or we have paniced.
527      *
528      * If this case occurs save and restore the interrupt nesting level.
529      */
530     if (gd->gd_intr_nesting_level) {
531         int savegdnest;
532         int savegdtrap;
533
534         if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
535             panic("lwkt_switch: Attempt to switch from a "
536                   "a fast interrupt, ipi, or hard code section, "
537                   "td %p\n",
538                   td);
539         } else {
540             savegdnest = gd->gd_intr_nesting_level;
541             savegdtrap = gd->gd_trap_nesting_level;
542             gd->gd_intr_nesting_level = 0;
543             gd->gd_trap_nesting_level = 0;
544             if ((td->td_flags & TDF_PANICWARN) == 0) {
545                 td->td_flags |= TDF_PANICWARN;
546                 kprintf("Warning: thread switch from interrupt, IPI, "
547                         "or hard code section.\n"
548                         "thread %p (%s)\n", td, td->td_comm);
549                 print_backtrace(-1);
550             }
551             lwkt_switch();
552             gd->gd_intr_nesting_level = savegdnest;
553             gd->gd_trap_nesting_level = savegdtrap;
554             return;
555         }
556     }
557
558     /*
559      * Passive release (used to transition from user to kernel mode
560      * when we block or switch rather then when we enter the kernel).
561      * This function is NOT called if we are switching into a preemption
562      * or returning from a preemption.  Typically this causes us to lose
563      * our current process designation (if we have one) and become a true
564      * LWKT thread, and may also hand the current process designation to
565      * another process and schedule thread.
566      */
567     if (td->td_release)
568             td->td_release(td);
569
570     crit_enter_gd(gd);
571     if (TD_TOKS_HELD(td))
572             lwkt_relalltokens(td);
573
574     /*
575      * We had better not be holding any spin locks, but don't get into an
576      * endless panic loop.
577      */
578     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL, 
579             ("lwkt_switch: still holding %d exclusive spinlocks!",
580              gd->gd_spinlocks_wr));
581
582
583 #ifdef SMP
584 #ifdef  INVARIANTS
585     if (td->td_cscount) {
586         kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
587                 td);
588         if (panic_on_cscount)
589             panic("switching while mastering cpusync");
590     }
591 #endif
592 #endif
593
594     /*
595      * If we had preempted another thread on this cpu, resume the preempted
596      * thread.  This occurs transparently, whether the preempted thread
597      * was scheduled or not (it may have been preempted after descheduling
598      * itself).
599      *
600      * We have to setup the MP lock for the original thread after backing
601      * out the adjustment that was made to curthread when the original
602      * was preempted.
603      */
604     if ((ntd = td->td_preempted) != NULL) {
605         KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
606         ntd->td_flags |= TDF_PREEMPT_DONE;
607
608         /*
609          * The interrupt may have woken a thread up, we need to properly
610          * set the reschedule flag if the originally interrupted thread is
611          * at a lower priority.
612          */
613         if (TAILQ_FIRST(&gd->gd_tdrunq) &&
614             TAILQ_FIRST(&gd->gd_tdrunq)->td_pri > ntd->td_pri) {
615             need_lwkt_resched();
616         }
617         /* YYY release mp lock on switchback if original doesn't need it */
618         goto havethread_preempted;
619     }
620
621     /*
622      * Implement round-robin fairq with priority insertion.  The priority
623      * insertion is handled by _lwkt_enqueue()
624      *
625      * If we cannot obtain ownership of the tokens we cannot immediately
626      * schedule the target thread.
627      *
628      * Reminder: Again, we cannot afford to run any IPIs in this path if
629      * the current thread has been descheduled.
630      */
631     for (;;) {
632         /*
633          * Clear RQF_AST_LWKT_RESCHED (we handle the reschedule request)
634          * and set RQF_WAKEUP (prevent unnecessary IPIs from being
635          * received).
636          */
637         for (;;) {
638             reqflags = gd->gd_reqflags;
639             if (atomic_cmpset_int(&gd->gd_reqflags, reqflags,
640                                   (reqflags & ~RQF_AST_LWKT_RESCHED) |
641                                   RQF_WAKEUP)) {
642                 break;
643             }
644         }
645
646         /*
647          * Hotpath - pull the head of the run queue and attempt to schedule
648          * it.  Fairq exhaustion moves the task to the end of the list.  If
649          * no threads are runnable we switch to the idle thread.
650          */
651         for (;;) {
652             ntd = TAILQ_FIRST(&gd->gd_tdrunq);
653
654             if (ntd == NULL) {
655                 /*
656                  * Runq is empty, switch to idle and clear RQF_WAKEUP
657                  * to allow it to halt.
658                  */
659                 ntd = &gd->gd_idlethread;
660 #ifdef SMP
661                 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
662                     ASSERT_NO_TOKENS_HELD(ntd);
663 #endif
664                 cpu_time.cp_msg[0] = 0;
665                 cpu_time.cp_stallpc = 0;
666                 atomic_clear_int(&gd->gd_reqflags, RQF_WAKEUP);
667                 goto haveidle;
668             }
669
670             if (ntd->td_fairq_accum >= 0)
671                     break;
672
673             /*splz_check(); cannot do this here, see above */
674             lwkt_fairq_accumulate(gd, ntd);
675             TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq);
676             TAILQ_INSERT_TAIL(&gd->gd_tdrunq, ntd, td_threadq);
677         }
678
679         /*
680          * Hotpath - schedule ntd.  Leaves RQF_WAKEUP set to prevent
681          *           unwanted decontention IPIs.
682          *
683          * NOTE: For UP there is no mplock and lwkt_getalltokens()
684          *           always succeeds.
685          */
686         if (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd))
687             goto havethread;
688
689         /*
690          * Coldpath (SMP only since tokens always succeed on UP)
691          *
692          * We had some contention on the thread we wanted to schedule.
693          * What we do now is try to find a thread that we can schedule
694          * in its stead until decontention reschedules on our cpu.
695          *
696          * The coldpath scan does NOT rearrange threads in the run list
697          * and it also ignores the accumulator.
698          *
699          * We do not immediately schedule a user priority thread, instead
700          * we record it in xtd and continue looking for kernel threads.
701          * A cpu can only have one user priority thread (normally) so just
702          * record the first one.
703          *
704          * NOTE: This scan will also include threads whos fairq's were
705          *       accumulated in the first loop.
706          */
707         ++token_contention_count;
708         xtd = NULL;
709         while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
710             /*
711              * Try to switch to this thread.  If the thread is running at
712              * user priority we clear WAKEUP to allow decontention IPIs
713              * (since this thread is simply running until the one we wanted
714              * decontends), and we make sure that LWKT_RESCHED is not set.
715              *
716              * Otherwise for kernel threads we leave WAKEUP set to avoid
717              * unnecessary decontention IPIs.
718              */
719             if (ntd->td_pri < TDPRI_KERN_LPSCHED) {
720                 if (xtd == NULL)
721                     xtd = ntd;
722                 continue;
723             }
724
725             /*
726              * Do not let the fairq get too negative.  Even though we are
727              * ignoring it atm once the scheduler decontends a very negative
728              * thread will get moved to the end of the queue.
729              */
730             if (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd)) {
731                 if (ntd->td_fairq_accum < -TDFAIRQ_MAX(gd))
732                     ntd->td_fairq_accum = -TDFAIRQ_MAX(gd);
733                 goto havethread;
734             }
735
736             /*
737              * Well fubar, this thread is contended as well, loop
738              */
739             /* */
740         }
741
742         /*
743          * We exhausted the run list but we may have recorded a user
744          * thread to try.  We have three choices based on
745          * lwkt.decontention_method.
746          *
747          * (0) Atomically clear RQF_WAKEUP in order to receive decontention
748          *     IPIs (to interrupt the user process) and test
749          *     RQF_AST_LWKT_RESCHED at the same time.
750          *
751          *     This results in significant decontention IPI traffic but may
752          *     be more responsive.
753          *
754          * (1) Leave RQF_WAKEUP set so we do not receive a decontention IPI.
755          *     An automatic LWKT reschedule will occur on the next hardclock
756          *     (typically 100hz).
757          *
758          *     This results in no decontention IPI traffic but may be less
759          *     responsive.  This is the default.
760          *
761          * (2) Refuse to schedule the user process at this time.
762          *
763          *     This is highly experimental and should not be used under
764          *     normal circumstances.  This can cause a user process to
765          *     get starved out in situations where kernel threads are
766          *     fighting each other for tokens.
767          */
768         if (xtd) {
769             ntd = xtd;
770
771             switch(lwkt_spin_method) {
772             case 0:
773                 for (;;) {
774                     reqflags = gd->gd_reqflags;
775                     if (atomic_cmpset_int(&gd->gd_reqflags,
776                                           reqflags,
777                                           reqflags & ~RQF_WAKEUP)) {
778                         break;
779                     }
780                 }
781                 break;
782             case 1:
783                 reqflags = gd->gd_reqflags;
784                 break;
785             default:
786                 goto skip;
787                 break;
788             }
789             if ((reqflags & RQF_AST_LWKT_RESCHED) == 0 &&
790                 (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd))
791             ) {
792                 if (ntd->td_fairq_accum < -TDFAIRQ_MAX(gd))
793                     ntd->td_fairq_accum = -TDFAIRQ_MAX(gd);
794                 goto havethread;
795             }
796
797 skip:
798             /*
799              * Make sure RQF_WAKEUP is set if we failed to schedule the
800              * user thread to prevent the idle thread from halting.
801              */
802             atomic_set_int(&gd->gd_reqflags, RQF_WAKEUP);
803         }
804
805         /*
806          * We exhausted the run list, meaning that all runnable threads
807          * are contended.
808          */
809         cpu_pause();
810         ntd = &gd->gd_idlethread;
811 #ifdef SMP
812         if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
813             ASSERT_NO_TOKENS_HELD(ntd);
814         /* contention case, do not clear contention mask */
815 #endif
816
817         /*
818          * Ok, we might want to spin a few times as some tokens are held for
819          * very short periods of time and IPI overhead is 1uS or worse
820          * (meaning it is usually better to spin).  Regardless we have to
821          * call splz_check() to be sure to service any interrupts blocked
822          * by our critical section, otherwise we could livelock e.g. IPIs.
823          *
824          * The IPI mechanic is really a last resort.  In nearly all other
825          * cases RQF_WAKEUP is left set to prevent decontention IPIs.
826          *
827          * When we decide not to spin we clear RQF_WAKEUP and switch to
828          * the idle thread.  Clearing RQF_WEAKEUP allows the idle thread
829          * to halt and decontended tokens will issue an IPI to us.  The
830          * idle thread will check for pending reschedules already set
831          * (RQF_AST_LWKT_RESCHED) before actually halting so we don't have
832          * to here.
833          *
834          * Also, if TDF_RUNQ is not set the current thread is trying to
835          * deschedule, possibly in an atomic fashion.  We cannot afford to
836          * stay here.
837          */
838         if (spinning <= 0 || (td->td_flags & TDF_RUNQ) == 0) {
839             atomic_clear_int(&gd->gd_reqflags, RQF_WAKEUP);
840             goto haveidle;
841         }
842         --spinning;
843
844         /*
845          * When spinning a delay is required both to avoid livelocks from
846          * token order reversals (a thread may be trying to acquire multiple
847          * tokens), and also to reduce cpu cache management traffic.
848          *
849          * In order to scale to a large number of CPUs we use a time slot
850          * resequencer to force contending cpus into non-contending
851          * time-slots.  The scheduler may still contend with the lock holder
852          * but will not (generally) contend with all the other cpus trying
853          * trying to get the same token.
854          *
855          * The resequencer uses a FIFO counter mechanic.  The owner of the
856          * rindex at the head of the FIFO is allowed to pull itself off
857          * the FIFO and fetchadd is used to enter into the FIFO.  This bit
858          * of code is VERY cache friendly and forces all spinning schedulers
859          * into their own time slots.
860          *
861          * This code has been tested to 48-cpus and caps the cache
862          * contention load at ~1uS intervals regardless of the number of
863          * cpus.  Scaling beyond 64 cpus might require additional smarts
864          * (such as separate FIFOs for specific token cases).
865          *
866          * WARNING!  We can't call splz_check() or anything else here as
867          *           it could cause a deadlock.
868          */
869 #if defined(INVARIANTS) && defined(__amd64__)
870         if ((read_rflags() & PSL_I) == 0) {
871                 cpu_enable_intr();
872                 panic("lwkt_switch() called with interrupts disabled");
873         }
874 #endif
875         cseq = atomic_fetchadd_int(&lwkt_cseq_windex, 1);
876         fatal_count = lwkt_spin_fatal;
877         while ((oseq = lwkt_cseq_rindex) != cseq) {
878             cpu_ccfence();
879 #if !defined(_KERNEL_VIRTUAL)
880             if (cpu_mi_feature & CPU_MI_MONITOR) {
881                 cpu_mmw_pause_int(&lwkt_cseq_rindex, oseq);
882             } else
883 #endif
884             {
885                 DELAY(1);
886                 cpu_lfence();
887             }
888             if (fatal_count && --fatal_count == 0)
889                 panic("lwkt_switch: fatal spin wait");
890         }
891         cseq = lwkt_spin_delay; /* don't trust the system operator */
892         cpu_ccfence();
893         if (cseq < 1)
894             cseq = 1;
895         if (cseq > 1000)
896             cseq = 1000;
897         DELAY(cseq);
898         atomic_add_int(&lwkt_cseq_rindex, 1);
899         splz_check();   /* ok, we already checked that td is still scheduled */
900         /* highest level for(;;) loop */
901     }
902
903 havethread:
904     /*
905      * We must always decrement td_fairq_accum on non-idle threads just
906      * in case a thread never gets a tick due to being in a continuous
907      * critical section.  The page-zeroing code does this, for example.
908      *
909      * If the thread we came up with is a higher or equal priority verses
910      * the thread at the head of the queue we move our thread to the
911      * front.  This way we can always check the front of the queue.
912      *
913      * Clear gd_idle_repeat when doing a normal switch to a non-idle
914      * thread.
915      */
916     ++gd->gd_cnt.v_swtch;
917     --ntd->td_fairq_accum;
918     ntd->td_wmesg = NULL;
919     xtd = TAILQ_FIRST(&gd->gd_tdrunq);
920     if (ntd != xtd && ntd->td_pri >= xtd->td_pri) {
921         TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq);
922         TAILQ_INSERT_HEAD(&gd->gd_tdrunq, ntd, td_threadq);
923     }
924     gd->gd_idle_repeat = 0;
925
926 havethread_preempted:
927     /*
928      * If the new target does not need the MP lock and we are holding it,
929      * release the MP lock.  If the new target requires the MP lock we have
930      * already acquired it for the target.
931      */
932     ;
933 haveidle:
934     KASSERT(ntd->td_critcount,
935             ("priority problem in lwkt_switch %d %d",
936             td->td_critcount, ntd->td_critcount));
937
938     if (td != ntd) {
939         /*
940          * Execute the actual thread switch operation.  This function
941          * returns to the current thread and returns the previous thread
942          * (which may be different from the thread we switched to).
943          *
944          * We are responsible for marking ntd as TDF_RUNNING.
945          */
946         ++switch_count;
947         KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
948         ntd->td_flags |= TDF_RUNNING;
949         lwkt_switch_return(td->td_switch(ntd));
950         /* ntd invalid, td_switch() can return a different thread_t */
951     }
952     /* NOTE: current cpu may have changed after switch */
953     crit_exit_quick(td);
954 }
955
956 /*
957  * Called by assembly in the td_switch (thread restore path) for thread
958  * bootstrap cases which do not 'return' to lwkt_switch().
959  */
960 void
961 lwkt_switch_return(thread_t otd)
962 {
963 #ifdef SMP
964         globaldata_t rgd;
965
966         /*
967          * Check if otd was migrating.  Now that we are on ntd we can finish
968          * up the migration.  This is a bit messy but it is the only place
969          * where td is known to be fully descheduled.
970          *
971          * We can only activate the migration if otd was migrating but not
972          * held on the cpu due to a preemption chain.  We still have to
973          * clear TDF_RUNNING on the old thread either way.
974          *
975          * We are responsible for clearing the previously running thread's
976          * TDF_RUNNING.
977          */
978         if ((rgd = otd->td_migrate_gd) != NULL &&
979             (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
980                 KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
981                          (TDF_MIGRATING | TDF_RUNNING));
982                 otd->td_migrate_gd = NULL;
983                 otd->td_flags &= ~TDF_RUNNING;
984                 lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
985         } else {
986                 otd->td_flags &= ~TDF_RUNNING;
987         }
988 #else
989         otd->td_flags &= ~TDF_RUNNING;
990 #endif
991 }
992
993 /*
994  * Request that the target thread preempt the current thread.  Preemption
995  * only works under a specific set of conditions:
996  *
997  *      - We are not preempting ourselves
998  *      - The target thread is owned by the current cpu
999  *      - We are not currently being preempted
1000  *      - The target is not currently being preempted
1001  *      - We are not holding any spin locks
1002  *      - The target thread is not holding any tokens
1003  *      - We are able to satisfy the target's MP lock requirements (if any).
1004  *
1005  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
1006  * this is called via lwkt_schedule() through the td_preemptable callback.
1007  * critcount is the managed critical priority that we should ignore in order
1008  * to determine whether preemption is possible (aka usually just the crit
1009  * priority of lwkt_schedule() itself).
1010  *
1011  * XXX at the moment we run the target thread in a critical section during
1012  * the preemption in order to prevent the target from taking interrupts
1013  * that *WE* can't.  Preemption is strictly limited to interrupt threads
1014  * and interrupt-like threads, outside of a critical section, and the
1015  * preempted source thread will be resumed the instant the target blocks
1016  * whether or not the source is scheduled (i.e. preemption is supposed to
1017  * be as transparent as possible).
1018  */
1019 void
1020 lwkt_preempt(thread_t ntd, int critcount)
1021 {
1022     struct globaldata *gd = mycpu;
1023     thread_t xtd;
1024     thread_t td;
1025     int save_gd_intr_nesting_level;
1026
1027     /*
1028      * The caller has put us in a critical section.  We can only preempt
1029      * if the caller of the caller was not in a critical section (basically
1030      * a local interrupt), as determined by the 'critcount' parameter.  We
1031      * also can't preempt if the caller is holding any spinlocks (even if
1032      * he isn't in a critical section).  This also handles the tokens test.
1033      *
1034      * YYY The target thread must be in a critical section (else it must
1035      * inherit our critical section?  I dunno yet).
1036      *
1037      * Set need_lwkt_resched() unconditionally for now YYY.
1038      */
1039     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
1040
1041     if (preempt_enable == 0) {
1042         ++preempt_miss;
1043         return;
1044     }
1045
1046     td = gd->gd_curthread;
1047     if (ntd->td_pri <= td->td_pri) {
1048         ++preempt_miss;
1049         return;
1050     }
1051     if (td->td_critcount > critcount) {
1052         ++preempt_miss;
1053         need_lwkt_resched();
1054         return;
1055     }
1056 #ifdef SMP
1057     if (ntd->td_gd != gd) {
1058         ++preempt_miss;
1059         need_lwkt_resched();
1060         return;
1061     }
1062 #endif
1063     /*
1064      * We don't have to check spinlocks here as they will also bump
1065      * td_critcount.
1066      *
1067      * Do not try to preempt if the target thread is holding any tokens.
1068      * We could try to acquire the tokens but this case is so rare there
1069      * is no need to support it.
1070      */
1071     KKASSERT(gd->gd_spinlocks_wr == 0);
1072
1073     if (TD_TOKS_HELD(ntd)) {
1074         ++preempt_miss;
1075         need_lwkt_resched();
1076         return;
1077     }
1078     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1079         ++preempt_weird;
1080         need_lwkt_resched();
1081         return;
1082     }
1083     if (ntd->td_preempted) {
1084         ++preempt_hit;
1085         need_lwkt_resched();
1086         return;
1087     }
1088     KKASSERT(gd->gd_processing_ipiq == 0);
1089
1090     /*
1091      * Since we are able to preempt the current thread, there is no need to
1092      * call need_lwkt_resched().
1093      *
1094      * We must temporarily clear gd_intr_nesting_level around the switch
1095      * since switchouts from the target thread are allowed (they will just
1096      * return to our thread), and since the target thread has its own stack.
1097      *
1098      * A preemption must switch back to the original thread, assert the
1099      * case.
1100      */
1101     ++preempt_hit;
1102     ntd->td_preempted = td;
1103     td->td_flags |= TDF_PREEMPT_LOCK;
1104     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1105     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1106     gd->gd_intr_nesting_level = 0;
1107     ntd->td_flags |= TDF_RUNNING;
1108     xtd = td->td_switch(ntd);
1109     KKASSERT(xtd == ntd);
1110     lwkt_switch_return(xtd);
1111     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1112
1113     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1114     ntd->td_preempted = NULL;
1115     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1116 }
1117
1118 /*
1119  * Conditionally call splz() if gd_reqflags indicates work is pending.
1120  * This will work inside a critical section but not inside a hard code
1121  * section.
1122  *
1123  * (self contained on a per cpu basis)
1124  */
1125 void
1126 splz_check(void)
1127 {
1128     globaldata_t gd = mycpu;
1129     thread_t td = gd->gd_curthread;
1130
1131     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1132         gd->gd_intr_nesting_level == 0 &&
1133         td->td_nest_count < 2)
1134     {
1135         splz();
1136     }
1137 }
1138
1139 /*
1140  * This version is integrated into crit_exit, reqflags has already
1141  * been tested but td_critcount has not.
1142  *
1143  * We only want to execute the splz() on the 1->0 transition of
1144  * critcount and not in a hard code section or if too deeply nested.
1145  */
1146 void
1147 lwkt_maybe_splz(thread_t td)
1148 {
1149     globaldata_t gd = td->td_gd;
1150
1151     if (td->td_critcount == 0 &&
1152         gd->gd_intr_nesting_level == 0 &&
1153         td->td_nest_count < 2)
1154     {
1155         splz();
1156     }
1157 }
1158
1159 /*
1160  * This function is used to negotiate a passive release of the current
1161  * process/lwp designation with the user scheduler, allowing the user
1162  * scheduler to schedule another user thread.  The related kernel thread
1163  * (curthread) continues running in the released state.
1164  */
1165 void
1166 lwkt_passive_release(struct thread *td)
1167 {
1168     struct lwp *lp = td->td_lwp;
1169
1170     td->td_release = NULL;
1171     lwkt_setpri_self(TDPRI_KERN_USER);
1172     lp->lwp_proc->p_usched->release_curproc(lp);
1173 }
1174
1175
1176 /*
1177  * This implements a normal yield.  This routine is virtually a nop if
1178  * there is nothing to yield to but it will always run any pending interrupts
1179  * if called from a critical section.
1180  *
1181  * This yield is designed for kernel threads without a user context.
1182  *
1183  * (self contained on a per cpu basis)
1184  */
1185 void
1186 lwkt_yield(void)
1187 {
1188     globaldata_t gd = mycpu;
1189     thread_t td = gd->gd_curthread;
1190     thread_t xtd;
1191
1192     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1193         splz();
1194     if (td->td_fairq_accum < 0) {
1195         lwkt_schedule_self(curthread);
1196         lwkt_switch();
1197     } else {
1198         xtd = TAILQ_FIRST(&gd->gd_tdrunq);
1199         if (xtd && xtd->td_pri > td->td_pri) {
1200             lwkt_schedule_self(curthread);
1201             lwkt_switch();
1202         }
1203     }
1204 }
1205
1206 /*
1207  * This yield is designed for kernel threads with a user context.
1208  *
1209  * The kernel acting on behalf of the user is potentially cpu-bound,
1210  * this function will efficiently allow other threads to run and also
1211  * switch to other processes by releasing.
1212  *
1213  * The lwkt_user_yield() function is designed to have very low overhead
1214  * if no yield is determined to be needed.
1215  */
1216 void
1217 lwkt_user_yield(void)
1218 {
1219     globaldata_t gd = mycpu;
1220     thread_t td = gd->gd_curthread;
1221
1222     /*
1223      * Always run any pending interrupts in case we are in a critical
1224      * section.
1225      */
1226     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1227         splz();
1228
1229     /*
1230      * Switch (which forces a release) if another kernel thread needs
1231      * the cpu, if userland wants us to resched, or if our kernel
1232      * quantum has run out.
1233      */
1234     if (lwkt_resched_wanted() ||
1235         user_resched_wanted() ||
1236         td->td_fairq_accum < 0)
1237     {
1238         lwkt_switch();
1239     }
1240
1241 #if 0
1242     /*
1243      * Reacquire the current process if we are released.
1244      *
1245      * XXX not implemented atm.  The kernel may be holding locks and such,
1246      *     so we want the thread to continue to receive cpu.
1247      */
1248     if (td->td_release == NULL && lp) {
1249         lp->lwp_proc->p_usched->acquire_curproc(lp);
1250         td->td_release = lwkt_passive_release;
1251         lwkt_setpri_self(TDPRI_USER_NORM);
1252     }
1253 #endif
1254 }
1255
1256 /*
1257  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1258  * deal with threads that might be blocked on a wait queue.
1259  *
1260  * We have a little helper inline function which does additional work after
1261  * the thread has been enqueued, including dealing with preemption and
1262  * setting need_lwkt_resched() (which prevents the kernel from returning
1263  * to userland until it has processed higher priority threads).
1264  *
1265  * It is possible for this routine to be called after a failed _enqueue
1266  * (due to the target thread migrating, sleeping, or otherwise blocked).
1267  * We have to check that the thread is actually on the run queue!
1268  *
1269  * reschedok is an optimized constant propagated from lwkt_schedule() or
1270  * lwkt_schedule_noresched().  By default it is non-zero, causing a
1271  * reschedule to be requested if the target thread has a higher priority.
1272  * The port messaging code will set MSG_NORESCHED and cause reschedok to
1273  * be 0, prevented undesired reschedules.
1274  */
1275 static __inline
1276 void
1277 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount, int reschedok)
1278 {
1279     thread_t otd;
1280
1281     if (ntd->td_flags & TDF_RUNQ) {
1282         if (ntd->td_preemptable && reschedok) {
1283             ntd->td_preemptable(ntd, ccount);   /* YYY +token */
1284         } else if (reschedok) {
1285             otd = curthread;
1286             if (ntd->td_pri > otd->td_pri)
1287                 need_lwkt_resched();
1288         }
1289
1290         /*
1291          * Give the thread a little fair share scheduler bump if it
1292          * has been asleep for a while.  This is primarily to avoid
1293          * a degenerate case for interrupt threads where accumulator
1294          * crosses into negative territory unnecessarily.
1295          */
1296         if (ntd->td_fairq_lticks != ticks) {
1297             ntd->td_fairq_lticks = ticks;
1298             ntd->td_fairq_accum += gd->gd_fairq_total_pri;
1299             if (ntd->td_fairq_accum > TDFAIRQ_MAX(gd))
1300                     ntd->td_fairq_accum = TDFAIRQ_MAX(gd);
1301         }
1302     }
1303 }
1304
1305 static __inline
1306 void
1307 _lwkt_schedule(thread_t td, int reschedok)
1308 {
1309     globaldata_t mygd = mycpu;
1310
1311     KASSERT(td != &td->td_gd->gd_idlethread,
1312             ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1313     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1314     crit_enter_gd(mygd);
1315     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1316     if (td == mygd->gd_curthread) {
1317         _lwkt_enqueue(td);
1318     } else {
1319         /*
1320          * If we own the thread, there is no race (since we are in a
1321          * critical section).  If we do not own the thread there might
1322          * be a race but the target cpu will deal with it.
1323          */
1324 #ifdef SMP
1325         if (td->td_gd == mygd) {
1326             _lwkt_enqueue(td);
1327             _lwkt_schedule_post(mygd, td, 1, reschedok);
1328         } else {
1329             lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1330         }
1331 #else
1332         _lwkt_enqueue(td);
1333         _lwkt_schedule_post(mygd, td, 1, reschedok);
1334 #endif
1335     }
1336     crit_exit_gd(mygd);
1337 }
1338
1339 void
1340 lwkt_schedule(thread_t td)
1341 {
1342     _lwkt_schedule(td, 1);
1343 }
1344
1345 void
1346 lwkt_schedule_noresched(thread_t td)
1347 {
1348     _lwkt_schedule(td, 0);
1349 }
1350
1351 #ifdef SMP
1352
1353 /*
1354  * When scheduled remotely if frame != NULL the IPIQ is being
1355  * run via doreti or an interrupt then preemption can be allowed.
1356  *
1357  * To allow preemption we have to drop the critical section so only
1358  * one is present in _lwkt_schedule_post.
1359  */
1360 static void
1361 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1362 {
1363     thread_t td = curthread;
1364     thread_t ntd = arg;
1365
1366     if (frame && ntd->td_preemptable) {
1367         crit_exit_noyield(td);
1368         _lwkt_schedule(ntd, 1);
1369         crit_enter_quick(td);
1370     } else {
1371         _lwkt_schedule(ntd, 1);
1372     }
1373 }
1374
1375 /*
1376  * Thread migration using a 'Pull' method.  The thread may or may not be
1377  * the current thread.  It MUST be descheduled and in a stable state.
1378  * lwkt_giveaway() must be called on the cpu owning the thread.
1379  *
1380  * At any point after lwkt_giveaway() is called, the target cpu may
1381  * 'pull' the thread by calling lwkt_acquire().
1382  *
1383  * We have to make sure the thread is not sitting on a per-cpu tsleep
1384  * queue or it will blow up when it moves to another cpu.
1385  *
1386  * MPSAFE - must be called under very specific conditions.
1387  */
1388 void
1389 lwkt_giveaway(thread_t td)
1390 {
1391     globaldata_t gd = mycpu;
1392
1393     crit_enter_gd(gd);
1394     if (td->td_flags & TDF_TSLEEPQ)
1395         tsleep_remove(td);
1396     KKASSERT(td->td_gd == gd);
1397     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1398     td->td_flags |= TDF_MIGRATING;
1399     crit_exit_gd(gd);
1400 }
1401
1402 void
1403 lwkt_acquire(thread_t td)
1404 {
1405     globaldata_t gd;
1406     globaldata_t mygd;
1407     int retry = 10000000;
1408
1409     KKASSERT(td->td_flags & TDF_MIGRATING);
1410     gd = td->td_gd;
1411     mygd = mycpu;
1412     if (gd != mycpu) {
1413         cpu_lfence();
1414         KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1415         crit_enter_gd(mygd);
1416         DEBUG_PUSH_INFO("lwkt_acquire");
1417         while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1418 #ifdef SMP
1419             lwkt_process_ipiq();
1420 #endif
1421             cpu_lfence();
1422             if (--retry == 0) {
1423                 kprintf("lwkt_acquire: stuck: td %p td->td_flags %08x\n",
1424                         td, td->td_flags);
1425                 retry = 10000000;
1426             }
1427         }
1428         DEBUG_POP_INFO();
1429         cpu_mfence();
1430         td->td_gd = mygd;
1431         TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1432         td->td_flags &= ~TDF_MIGRATING;
1433         crit_exit_gd(mygd);
1434     } else {
1435         crit_enter_gd(mygd);
1436         TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1437         td->td_flags &= ~TDF_MIGRATING;
1438         crit_exit_gd(mygd);
1439     }
1440 }
1441
1442 #endif
1443
1444 /*
1445  * Generic deschedule.  Descheduling threads other then your own should be
1446  * done only in carefully controlled circumstances.  Descheduling is 
1447  * asynchronous.  
1448  *
1449  * This function may block if the cpu has run out of messages.
1450  */
1451 void
1452 lwkt_deschedule(thread_t td)
1453 {
1454     crit_enter();
1455 #ifdef SMP
1456     if (td == curthread) {
1457         _lwkt_dequeue(td);
1458     } else {
1459         if (td->td_gd == mycpu) {
1460             _lwkt_dequeue(td);
1461         } else {
1462             lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1463         }
1464     }
1465 #else
1466     _lwkt_dequeue(td);
1467 #endif
1468     crit_exit();
1469 }
1470
1471 /*
1472  * Set the target thread's priority.  This routine does not automatically
1473  * switch to a higher priority thread, LWKT threads are not designed for
1474  * continuous priority changes.  Yield if you want to switch.
1475  */
1476 void
1477 lwkt_setpri(thread_t td, int pri)
1478 {
1479     KKASSERT(td->td_gd == mycpu);
1480     if (td->td_pri != pri) {
1481         KKASSERT(pri >= 0);
1482         crit_enter();
1483         if (td->td_flags & TDF_RUNQ) {
1484             _lwkt_dequeue(td);
1485             td->td_pri = pri;
1486             _lwkt_enqueue(td);
1487         } else {
1488             td->td_pri = pri;
1489         }
1490         crit_exit();
1491     }
1492 }
1493
1494 /*
1495  * Set the initial priority for a thread prior to it being scheduled for
1496  * the first time.  The thread MUST NOT be scheduled before or during
1497  * this call.  The thread may be assigned to a cpu other then the current
1498  * cpu.
1499  *
1500  * Typically used after a thread has been created with TDF_STOPPREQ,
1501  * and before the thread is initially scheduled.
1502  */
1503 void
1504 lwkt_setpri_initial(thread_t td, int pri)
1505 {
1506     KKASSERT(pri >= 0);
1507     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1508     td->td_pri = pri;
1509 }
1510
1511 void
1512 lwkt_setpri_self(int pri)
1513 {
1514     thread_t td = curthread;
1515
1516     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1517     crit_enter();
1518     if (td->td_flags & TDF_RUNQ) {
1519         _lwkt_dequeue(td);
1520         td->td_pri = pri;
1521         _lwkt_enqueue(td);
1522     } else {
1523         td->td_pri = pri;
1524     }
1525     crit_exit();
1526 }
1527
1528 /*
1529  * 1/hz tick (typically 10ms) x TDFAIRQ_SCALE (typ 8) = 80ms full cycle.
1530  *
1531  * Example: two competing threads, same priority N.  decrement by (2*N)
1532  * increment by N*8, each thread will get 4 ticks.
1533  */
1534 void
1535 lwkt_fairq_schedulerclock(thread_t td)
1536 {
1537     globaldata_t gd;
1538
1539     if (fairq_enable) {
1540         while (td) {
1541             gd = td->td_gd;
1542             if (td != &gd->gd_idlethread) {
1543                 td->td_fairq_accum -= gd->gd_fairq_total_pri;
1544                 if (td->td_fairq_accum < -TDFAIRQ_MAX(gd))
1545                         td->td_fairq_accum = -TDFAIRQ_MAX(gd);
1546                 if (td->td_fairq_accum < 0)
1547                         need_lwkt_resched();
1548                 td->td_fairq_lticks = ticks;
1549             }
1550             td = td->td_preempted;
1551         }
1552     }
1553 }
1554
1555 static void
1556 lwkt_fairq_accumulate(globaldata_t gd, thread_t td)
1557 {
1558         td->td_fairq_accum += td->td_pri * TDFAIRQ_SCALE;
1559         if (td->td_fairq_accum > TDFAIRQ_MAX(td->td_gd))
1560                 td->td_fairq_accum = TDFAIRQ_MAX(td->td_gd);
1561 }
1562
1563 /*
1564  * Migrate the current thread to the specified cpu. 
1565  *
1566  * This is accomplished by descheduling ourselves from the current cpu
1567  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1568  * 'old' thread wants to migrate after it has been completely switched out
1569  * and will complete the migration.
1570  *
1571  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1572  *
1573  * We must be sure to release our current process designation (if a user
1574  * process) before clearing out any tsleepq we are on because the release
1575  * code may re-add us.
1576  *
1577  * We must be sure to remove ourselves from the current cpu's tsleepq
1578  * before potentially moving to another queue.  The thread can be on
1579  * a tsleepq due to a left-over tsleep_interlock().
1580  */
1581
1582 void
1583 lwkt_setcpu_self(globaldata_t rgd)
1584 {
1585 #ifdef SMP
1586     thread_t td = curthread;
1587
1588     if (td->td_gd != rgd) {
1589         crit_enter_quick(td);
1590
1591         if (td->td_release)
1592             td->td_release(td);
1593         if (td->td_flags & TDF_TSLEEPQ)
1594             tsleep_remove(td);
1595
1596         /*
1597          * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1598          * trying to deschedule ourselves and switch away, then deschedule
1599          * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1600          * call lwkt_switch() to complete the operation.
1601          */
1602         td->td_flags |= TDF_MIGRATING;
1603         lwkt_deschedule_self(td);
1604         TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1605         td->td_migrate_gd = rgd;
1606         lwkt_switch();
1607
1608         /*
1609          * We are now on the target cpu
1610          */
1611         KKASSERT(rgd == mycpu);
1612         TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1613         crit_exit_quick(td);
1614     }
1615 #endif
1616 }
1617
1618 void
1619 lwkt_migratecpu(int cpuid)
1620 {
1621 #ifdef SMP
1622         globaldata_t rgd;
1623
1624         rgd = globaldata_find(cpuid);
1625         lwkt_setcpu_self(rgd);
1626 #endif
1627 }
1628
1629 #ifdef SMP
1630 /*
1631  * Remote IPI for cpu migration (called while in a critical section so we
1632  * do not have to enter another one).
1633  *
1634  * The thread (td) has already been completely descheduled from the
1635  * originating cpu and we can simply assert the case.  The thread is
1636  * assigned to the new cpu and enqueued.
1637  *
1638  * The thread will re-add itself to tdallq when it resumes execution.
1639  */
1640 static void
1641 lwkt_setcpu_remote(void *arg)
1642 {
1643     thread_t td = arg;
1644     globaldata_t gd = mycpu;
1645
1646     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1647     td->td_gd = gd;
1648     cpu_mfence();
1649     td->td_flags &= ~TDF_MIGRATING;
1650     KKASSERT(td->td_migrate_gd == NULL);
1651     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1652     _lwkt_enqueue(td);
1653 }
1654 #endif
1655
1656 struct lwp *
1657 lwkt_preempted_proc(void)
1658 {
1659     thread_t td = curthread;
1660     while (td->td_preempted)
1661         td = td->td_preempted;
1662     return(td->td_lwp);
1663 }
1664
1665 /*
1666  * Create a kernel process/thread/whatever.  It shares it's address space
1667  * with proc0 - ie: kernel only.
1668  *
1669  * NOTE!  By default new threads are created with the MP lock held.  A 
1670  * thread which does not require the MP lock should release it by calling
1671  * rel_mplock() at the start of the new thread.
1672  */
1673 int
1674 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1675             thread_t template, int tdflags, int cpu, const char *fmt, ...)
1676 {
1677     thread_t td;
1678     __va_list ap;
1679
1680     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1681                            tdflags);
1682     if (tdp)
1683         *tdp = td;
1684     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1685
1686     /*
1687      * Set up arg0 for 'ps' etc
1688      */
1689     __va_start(ap, fmt);
1690     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1691     __va_end(ap);
1692
1693     /*
1694      * Schedule the thread to run
1695      */
1696     if ((td->td_flags & TDF_STOPREQ) == 0)
1697         lwkt_schedule(td);
1698     else
1699         td->td_flags &= ~TDF_STOPREQ;
1700     return 0;
1701 }
1702
1703 /*
1704  * Destroy an LWKT thread.   Warning!  This function is not called when
1705  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1706  * uses a different reaping mechanism.
1707  */
1708 void
1709 lwkt_exit(void)
1710 {
1711     thread_t td = curthread;
1712     thread_t std;
1713     globaldata_t gd;
1714
1715     /*
1716      * Do any cleanup that might block here
1717      */
1718     if (td->td_flags & TDF_VERBOSE)
1719         kprintf("kthread %p %s has exited\n", td, td->td_comm);
1720     caps_exit(td);
1721     biosched_done(td);
1722     dsched_exit_thread(td);
1723
1724     /*
1725      * Get us into a critical section to interlock gd_freetd and loop
1726      * until we can get it freed.
1727      *
1728      * We have to cache the current td in gd_freetd because objcache_put()ing
1729      * it would rip it out from under us while our thread is still active.
1730      */
1731     gd = mycpu;
1732     crit_enter_quick(td);
1733     while ((std = gd->gd_freetd) != NULL) {
1734         KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1735         gd->gd_freetd = NULL;
1736         objcache_put(thread_cache, std);
1737     }
1738
1739     /*
1740      * Remove thread resources from kernel lists and deschedule us for
1741      * the last time.  We cannot block after this point or we may end
1742      * up with a stale td on the tsleepq.
1743      */
1744     if (td->td_flags & TDF_TSLEEPQ)
1745         tsleep_remove(td);
1746     lwkt_deschedule_self(td);
1747     lwkt_remove_tdallq(td);
1748     KKASSERT(td->td_refs == 0);
1749
1750     /*
1751      * Final cleanup
1752      */
1753     KKASSERT(gd->gd_freetd == NULL);
1754     if (td->td_flags & TDF_ALLOCATED_THREAD)
1755         gd->gd_freetd = td;
1756     cpu_thread_exit();
1757 }
1758
1759 void
1760 lwkt_remove_tdallq(thread_t td)
1761 {
1762     KKASSERT(td->td_gd == mycpu);
1763     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1764 }
1765
1766 /*
1767  * Code reduction and branch prediction improvements.  Call/return
1768  * overhead on modern cpus often degenerates into 0 cycles due to
1769  * the cpu's branch prediction hardware and return pc cache.  We
1770  * can take advantage of this by not inlining medium-complexity
1771  * functions and we can also reduce the branch prediction impact
1772  * by collapsing perfectly predictable branches into a single
1773  * procedure instead of duplicating it.
1774  *
1775  * Is any of this noticeable?  Probably not, so I'll take the
1776  * smaller code size.
1777  */
1778 void
1779 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1780 {
1781     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1782 }
1783
1784 void
1785 crit_panic(void)
1786 {
1787     thread_t td = curthread;
1788     int lcrit = td->td_critcount;
1789
1790     td->td_critcount = 0;
1791     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1792     /* NOT REACHED */
1793 }
1794
1795 #ifdef SMP
1796
1797 /*
1798  * Called from debugger/panic on cpus which have been stopped.  We must still
1799  * process the IPIQ while stopped, even if we were stopped while in a critical
1800  * section (XXX).
1801  *
1802  * If we are dumping also try to process any pending interrupts.  This may
1803  * or may not work depending on the state of the cpu at the point it was
1804  * stopped.
1805  */
1806 void
1807 lwkt_smp_stopped(void)
1808 {
1809     globaldata_t gd = mycpu;
1810
1811     crit_enter_gd(gd);
1812     if (dumping) {
1813         lwkt_process_ipiq();
1814         splz();
1815     } else {
1816         lwkt_process_ipiq();
1817     }
1818     crit_exit_gd(gd);
1819 }
1820
1821 #endif