/* * Copyright (c) 2004 Jeffrey M. Hsu. All rights reserved. * Copyright (c) 2004 The DragonFly Project. All rights reserved. * * This code is derived from software contributed to The DragonFly Project * by Jeffrey M. Hsu. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of The DragonFly Project nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific, prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 * $FreeBSD: src/sys/netinet/udp_usrreq.c,v 1.64.2.18 2003/01/24 05:11:34 sam Exp $ */ #include "opt_ipsec.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif #include #include #include #ifdef INET6 #include #endif #include #include #include #include #ifdef FAST_IPSEC #include #endif #ifdef IPSEC #include #endif /* * UDP protocol implementation. * Per RFC 768, August, 1980. */ #ifndef COMPAT_42 static int udpcksum = 1; #else static int udpcksum = 0; /* XXX */ #endif SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW, &udpcksum, 0, "Enable checksumming of UDP packets"); int log_in_vain = 0; SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW, &log_in_vain, 0, "Log all incoming UDP packets"); static int blackhole = 0; SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW, &blackhole, 0, "Do not send port unreachables for refused connects"); static int strict_mcast_mship = 1; SYSCTL_INT(_net_inet_udp, OID_AUTO, strict_mcast_mship, CTLFLAG_RW, &strict_mcast_mship, 0, "Only send multicast to member sockets"); int udp_sosend_async = 1; SYSCTL_INT(_net_inet_udp, OID_AUTO, sosend_async, CTLFLAG_RW, &udp_sosend_async, 0, "UDP asynchronized pru_send"); int udp_sosend_prepend = 1; SYSCTL_INT(_net_inet_udp, OID_AUTO, sosend_prepend, CTLFLAG_RW, &udp_sosend_prepend, 0, "Prepend enough space for proto and link header in pru_send"); struct inpcbinfo udbinfo; static struct netisr_barrier *udbinfo_br; static struct lwkt_serialize udbinfo_slize = LWKT_SERIALIZE_INITIALIZER; #ifndef UDBHASHSIZE #define UDBHASHSIZE 16 #endif struct udpstat udpstat; /* from udp_var.h */ SYSCTL_STRUCT(_net_inet_udp, UDPCTL_STATS, stats, CTLFLAG_RW, &udpstat, udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); static struct sockaddr_in udp_in = { sizeof udp_in, AF_INET }; #ifdef INET6 struct udp_in6 { struct sockaddr_in6 uin6_sin; u_char uin6_init_done : 1; } udp_in6 = { { sizeof udp_in6.uin6_sin, AF_INET6 }, 0 }; struct udp_ip6 { struct ip6_hdr uip6_ip6; u_char uip6_init_done : 1; } udp_ip6; #endif /* INET6 */ static void udp_append (struct inpcb *last, struct ip *ip, struct mbuf *n, int off); #ifdef INET6 static void ip_2_ip6_hdr (struct ip6_hdr *ip6, struct ip *ip); #endif static int udp_connect_oncpu(struct socket *so, struct thread *td, struct sockaddr_in *sin, struct sockaddr_in *if_sin); static int udp_output (struct inpcb *, struct mbuf *, struct sockaddr *, struct thread *, int); void udp_init(void) { in_pcbinfo_init(&udbinfo); udbinfo.hashbase = hashinit(UDBHASHSIZE, M_PCB, &udbinfo.hashmask); udbinfo.porthashbase = hashinit(UDBHASHSIZE, M_PCB, &udbinfo.porthashmask); udbinfo.wildcardhashbase = hashinit(UDBHASHSIZE, M_PCB, &udbinfo.wildcardhashmask); udbinfo.ipi_size = sizeof(struct inpcb); udbinfo_br = netisr_barrier_create(); } /* * Check multicast packets to make sure they are only sent to sockets with * multicast memberships for the packet's destination address and arrival * interface. Multicast packets to multicast-unaware sockets are also * disallowed. * * Returns 0 if the packet is acceptable, -1 if it is not. */ static __inline int check_multicast_membership(struct ip *ip, struct inpcb *inp, struct mbuf *m) { int mshipno; struct ip_moptions *mopt; if (strict_mcast_mship == 0 || !IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { return (0); } mopt = inp->inp_moptions; if (mopt == NULL) return (-1); for (mshipno = 0; mshipno < mopt->imo_num_memberships; ++mshipno) { struct in_multi *maddr = mopt->imo_membership[mshipno]; if (ip->ip_dst.s_addr == maddr->inm_addr.s_addr && m->m_pkthdr.rcvif == maddr->inm_ifp) { return (0); } } return (-1); } int udp_input(struct mbuf **mp, int *offp, int proto) { int iphlen; struct ip *ip; struct udphdr *uh; struct inpcb *inp; struct mbuf *m; struct mbuf *opts = NULL; int len, off; struct ip save_ip; struct sockaddr *append_sa; off = *offp; m = *mp; *mp = NULL; iphlen = off; udpstat.udps_ipackets++; /* * Strip IP options, if any; should skip this, * make available to user, and use on returned packets, * but we don't yet have a way to check the checksum * with options still present. */ if (iphlen > sizeof(struct ip)) { ip_stripoptions(m); iphlen = sizeof(struct ip); } /* * IP and UDP headers are together in first mbuf. * Already checked and pulled up in ip_demux(). */ KASSERT(m->m_len >= iphlen + sizeof(struct udphdr), ("UDP header not in one mbuf")); ip = mtod(m, struct ip *); uh = (struct udphdr *)((caddr_t)ip + iphlen); /* destination port of 0 is illegal, based on RFC768. */ if (uh->uh_dport == 0) goto bad; /* * Make mbuf data length reflect UDP length. * If not enough data to reflect UDP length, drop. */ len = ntohs((u_short)uh->uh_ulen); if (ip->ip_len != len) { if (len > ip->ip_len || len < sizeof(struct udphdr)) { udpstat.udps_badlen++; goto bad; } m_adj(m, len - ip->ip_len); /* ip->ip_len = len; */ } /* * Save a copy of the IP header in case we want restore it * for sending an ICMP error message in response. */ save_ip = *ip; /* * Checksum extended UDP header and data. */ if (uh->uh_sum) { if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) uh->uh_sum = m->m_pkthdr.csum_data; else uh->uh_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htonl((u_short)len + m->m_pkthdr.csum_data + IPPROTO_UDP)); uh->uh_sum ^= 0xffff; } else { char b[9]; bcopy(((struct ipovly *)ip)->ih_x1, b, 9); bzero(((struct ipovly *)ip)->ih_x1, 9); ((struct ipovly *)ip)->ih_len = uh->uh_ulen; uh->uh_sum = in_cksum(m, len + sizeof(struct ip)); bcopy(b, ((struct ipovly *)ip)->ih_x1, 9); } if (uh->uh_sum) { udpstat.udps_badsum++; m_freem(m); return(IPPROTO_DONE); } } else udpstat.udps_nosum++; if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) { struct inpcb *last; /* * Deliver a multicast or broadcast datagram to *all* sockets * for which the local and remote addresses and ports match * those of the incoming datagram. This allows more than * one process to receive multi/broadcasts on the same port. * (This really ought to be done for unicast datagrams as * well, but that would cause problems with existing * applications that open both address-specific sockets and * a wildcard socket listening to the same port -- they would * end up receiving duplicates of every unicast datagram. * Those applications open the multiple sockets to overcome an * inadequacy of the UDP socket interface, but for backwards * compatibility we avoid the problem here rather than * fixing the interface. Maybe 4.5BSD will remedy this?) */ /* * Construct sockaddr format source address. */ udp_in.sin_port = uh->uh_sport; udp_in.sin_addr = ip->ip_src; /* * Locate pcb(s) for datagram. * (Algorithm copied from raw_intr().) */ last = NULL; #ifdef INET6 udp_in6.uin6_init_done = udp_ip6.uip6_init_done = 0; #endif LIST_FOREACH(inp, &udbinfo.pcblisthead, inp_list) { KKASSERT((inp->inp_flags & INP_PLACEMARKER) == 0); #ifdef INET6 if (!(inp->inp_vflag & INP_IPV4)) continue; #endif if (inp->inp_lport != uh->uh_dport) continue; if (inp->inp_laddr.s_addr != INADDR_ANY) { if (inp->inp_laddr.s_addr != ip->ip_dst.s_addr) continue; } if (inp->inp_faddr.s_addr != INADDR_ANY) { if (inp->inp_faddr.s_addr != ip->ip_src.s_addr || inp->inp_fport != uh->uh_sport) continue; } if (check_multicast_membership(ip, inp, m) < 0) continue; if (last != NULL) { struct mbuf *n; #ifdef IPSEC /* check AH/ESP integrity. */ if (ipsec4_in_reject_so(m, last->inp_socket)) ipsecstat.in_polvio++; /* do not inject data to pcb */ else #endif /*IPSEC*/ #ifdef FAST_IPSEC /* check AH/ESP integrity. */ if (ipsec4_in_reject(m, last)) ; else #endif /*FAST_IPSEC*/ if ((n = m_copypacket(m, MB_DONTWAIT)) != NULL) udp_append(last, ip, n, iphlen + sizeof(struct udphdr)); } last = inp; /* * Don't look for additional matches if this one does * not have either the SO_REUSEPORT or SO_REUSEADDR * socket options set. This heuristic avoids searching * through all pcbs in the common case of a non-shared * port. It * assumes that an application will never * clear these options after setting them. */ if (!(last->inp_socket->so_options & (SO_REUSEPORT | SO_REUSEADDR))) break; } if (last == NULL) { /* * No matching pcb found; discard datagram. * (No need to send an ICMP Port Unreachable * for a broadcast or multicast datgram.) */ udpstat.udps_noportbcast++; goto bad; } #ifdef IPSEC /* check AH/ESP integrity. */ if (ipsec4_in_reject_so(m, last->inp_socket)) { ipsecstat.in_polvio++; goto bad; } #endif /*IPSEC*/ #ifdef FAST_IPSEC /* check AH/ESP integrity. */ if (ipsec4_in_reject(m, last)) goto bad; #endif /*FAST_IPSEC*/ udp_append(last, ip, m, iphlen + sizeof(struct udphdr)); return(IPPROTO_DONE); } /* * Locate pcb for datagram. */ inp = in_pcblookup_hash(&udbinfo, ip->ip_src, uh->uh_sport, ip->ip_dst, uh->uh_dport, 1, m->m_pkthdr.rcvif); if (inp == NULL) { if (log_in_vain) { char buf[sizeof "aaa.bbb.ccc.ddd"]; strcpy(buf, inet_ntoa(ip->ip_dst)); log(LOG_INFO, "Connection attempt to UDP %s:%d from %s:%d\n", buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src), ntohs(uh->uh_sport)); } udpstat.udps_noport++; if (m->m_flags & (M_BCAST | M_MCAST)) { udpstat.udps_noportbcast++; goto bad; } if (blackhole) goto bad; #ifdef ICMP_BANDLIM if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) goto bad; #endif *ip = save_ip; ip->ip_len += iphlen; icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); return(IPPROTO_DONE); } #ifdef IPSEC if (ipsec4_in_reject_so(m, inp->inp_socket)) { ipsecstat.in_polvio++; goto bad; } #endif /*IPSEC*/ #ifdef FAST_IPSEC if (ipsec4_in_reject(m, inp)) goto bad; #endif /*FAST_IPSEC*/ /* * Check the minimum TTL for socket. */ if (ip->ip_ttl < inp->inp_ip_minttl) goto bad; /* * Construct sockaddr format source address. * Stuff source address and datagram in user buffer. */ udp_in.sin_port = uh->uh_sport; udp_in.sin_addr = ip->ip_src; if ((inp->inp_flags & INP_CONTROLOPTS) || (inp->inp_socket->so_options & SO_TIMESTAMP)) { #ifdef INET6 if (inp->inp_vflag & INP_IPV6) { int savedflags; ip_2_ip6_hdr(&udp_ip6.uip6_ip6, ip); savedflags = inp->inp_flags; inp->inp_flags &= ~INP_UNMAPPABLEOPTS; ip6_savecontrol(inp, &opts, &udp_ip6.uip6_ip6, m); inp->inp_flags = savedflags; } else #endif ip_savecontrol(inp, &opts, ip, m); } m_adj(m, iphlen + sizeof(struct udphdr)); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) { in6_sin_2_v4mapsin6(&udp_in, &udp_in6.uin6_sin); append_sa = (struct sockaddr *)&udp_in6; } else #endif append_sa = (struct sockaddr *)&udp_in; lwkt_gettoken(&inp->inp_socket->so_rcv.ssb_token); if (ssb_appendaddr(&inp->inp_socket->so_rcv, append_sa, m, opts) == 0) { udpstat.udps_fullsock++; lwkt_reltoken(&inp->inp_socket->so_rcv.ssb_token); goto bad; } lwkt_reltoken(&inp->inp_socket->so_rcv.ssb_token); sorwakeup(inp->inp_socket); return(IPPROTO_DONE); bad: m_freem(m); if (opts) m_freem(opts); return(IPPROTO_DONE); } #ifdef INET6 static void ip_2_ip6_hdr(struct ip6_hdr *ip6, struct ip *ip) { bzero(ip6, sizeof *ip6); ip6->ip6_vfc = IPV6_VERSION; ip6->ip6_plen = ip->ip_len; ip6->ip6_nxt = ip->ip_p; ip6->ip6_hlim = ip->ip_ttl; ip6->ip6_src.s6_addr32[2] = ip6->ip6_dst.s6_addr32[2] = IPV6_ADDR_INT32_SMP; ip6->ip6_src.s6_addr32[3] = ip->ip_src.s_addr; ip6->ip6_dst.s6_addr32[3] = ip->ip_dst.s_addr; } #endif /* * subroutine of udp_input(), mainly for source code readability. * caller must properly init udp_ip6 and udp_in6 beforehand. */ static void udp_append(struct inpcb *last, struct ip *ip, struct mbuf *n, int off) { struct sockaddr *append_sa; struct mbuf *opts = NULL; if (last->inp_flags & INP_CONTROLOPTS || last->inp_socket->so_options & SO_TIMESTAMP) { #ifdef INET6 if (last->inp_vflag & INP_IPV6) { int savedflags; if (udp_ip6.uip6_init_done == 0) { ip_2_ip6_hdr(&udp_ip6.uip6_ip6, ip); udp_ip6.uip6_init_done = 1; } savedflags = last->inp_flags; last->inp_flags &= ~INP_UNMAPPABLEOPTS; ip6_savecontrol(last, &opts, &udp_ip6.uip6_ip6, n); last->inp_flags = savedflags; } else #endif ip_savecontrol(last, &opts, ip, n); } #ifdef INET6 if (last->inp_vflag & INP_IPV6) { if (udp_in6.uin6_init_done == 0) { in6_sin_2_v4mapsin6(&udp_in, &udp_in6.uin6_sin); udp_in6.uin6_init_done = 1; } append_sa = (struct sockaddr *)&udp_in6.uin6_sin; } else #endif append_sa = (struct sockaddr *)&udp_in; m_adj(n, off); lwkt_gettoken(&last->inp_socket->so_rcv.ssb_token); if (ssb_appendaddr(&last->inp_socket->so_rcv, append_sa, n, opts) == 0) { m_freem(n); if (opts) m_freem(opts); udpstat.udps_fullsock++; } else { sorwakeup(last->inp_socket); } lwkt_reltoken(&last->inp_socket->so_rcv.ssb_token); } /* * Notify a udp user of an asynchronous error; * just wake up so that he can collect error status. */ void udp_notify(struct inpcb *inp, int error) { inp->inp_socket->so_error = error; sorwakeup(inp->inp_socket); sowwakeup(inp->inp_socket); } struct netmsg_udp_notify { struct netmsg_base base; void (*nm_notify)(struct inpcb *, int); struct in_addr nm_faddr; int nm_arg; }; static void udp_notifyall_oncpu(netmsg_t msg) { struct netmsg_udp_notify *nm = (struct netmsg_udp_notify *)msg; #if 0 int nextcpu; #endif in_pcbnotifyall(&udbinfo.pcblisthead, nm->nm_faddr, nm->nm_arg, nm->nm_notify); lwkt_replymsg(&nm->base.lmsg, 0); #if 0 /* XXX currently udp only runs on cpu 0 */ nextcpu = mycpuid + 1; if (nextcpu < ncpus2) lwkt_forwardmsg(netisr_portfn(nextcpu), &nm->base.lmsg); else lwkt_replymsg(&nmsg->base.lmsg, 0); #endif } static void udp_rtchange(struct inpcb *inp, int err) { /* XXX Nuke this, once UDP inpcbs are CPU localized */ if (inp->inp_route.ro_rt && inp->inp_route.ro_rt->rt_cpuid == mycpuid) { rtfree(inp->inp_route.ro_rt); inp->inp_route.ro_rt = NULL; /* * A new route can be allocated the next time * output is attempted. */ } } void udp_ctlinput(netmsg_t msg) { struct sockaddr *sa = msg->ctlinput.nm_arg; struct ip *ip = msg->ctlinput.nm_extra; int cmd = msg->ctlinput.nm_cmd; struct udphdr *uh; void (*notify) (struct inpcb *, int) = udp_notify; struct in_addr faddr; struct inpcb *inp; KKASSERT(&curthread->td_msgport == netisr_portfn(0)); faddr = ((struct sockaddr_in *)sa)->sin_addr; if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) goto done; if (PRC_IS_REDIRECT(cmd)) { ip = NULL; notify = udp_rtchange; } else if (cmd == PRC_HOSTDEAD) { ip = NULL; } else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) { goto done; } if (ip) { uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); inp = in_pcblookup_hash(&udbinfo, faddr, uh->uh_dport, ip->ip_src, uh->uh_sport, 0, NULL); if (inp != NULL && inp->inp_socket != NULL) (*notify)(inp, inetctlerrmap[cmd]); } else if (PRC_IS_REDIRECT(cmd)) { struct netmsg_udp_notify *nm; KKASSERT(&curthread->td_msgport == netisr_portfn(0)); nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT); netmsg_init(&nm->base, NULL, &netisr_afree_rport, 0, udp_notifyall_oncpu); nm->nm_faddr = faddr; nm->nm_arg = inetctlerrmap[cmd]; nm->nm_notify = notify; lwkt_sendmsg(netisr_portfn(0), &nm->base.lmsg); } else { /* * XXX We should forward msg upon PRC_HOSTHEAD and ip == NULL, * once UDP inpcbs are CPU localized */ KKASSERT(&curthread->td_msgport == netisr_portfn(0)); in_pcbnotifyall(&udbinfo.pcblisthead, faddr, inetctlerrmap[cmd], notify); } done: lwkt_replymsg(&msg->lmsg, 0); } static int udp_pcblist(SYSCTL_HANDLER_ARGS) { struct xinpcb *xi; int error, nxi, i; udbinfo_lock(); error = in_pcblist_global_nomarker(oidp, arg1, arg2, req, &xi, &nxi); udbinfo_unlock(); if (error) { KKASSERT(xi == NULL); return error; } if (nxi == 0) { KKASSERT(xi == NULL); return 0; } for (i = 0; i < nxi; ++i) { error = SYSCTL_OUT(req, &xi[i], sizeof(xi[i])); if (error) break; } kfree(xi, M_TEMP); return error; } SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, CTLFLAG_RD, &udbinfo, 0, udp_pcblist, "S,xinpcb", "List of active UDP sockets"); static int udp_getcred(SYSCTL_HANDLER_ARGS) { struct sockaddr_in addrs[2]; struct ucred cred0, *cred = NULL; struct inpcb *inp; int error; error = priv_check(req->td, PRIV_ROOT); if (error) return (error); error = SYSCTL_IN(req, addrs, sizeof addrs); if (error) return (error); udbinfo_lock(); inp = in_pcblookup_hash(&udbinfo, addrs[1].sin_addr, addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 1, NULL); if (inp == NULL || inp->inp_socket == NULL) { error = ENOENT; } else { if (inp->inp_socket->so_cred != NULL) { cred0 = *(inp->inp_socket->so_cred); cred = &cred0; } } udbinfo_unlock(); if (error) return error; return SYSCTL_OUT(req, cred, sizeof(struct ucred)); } SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW, 0, 0, udp_getcred, "S,ucred", "Get the ucred of a UDP connection"); static int udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *dstaddr, struct thread *td, int flags) { struct udpiphdr *ui; int len = m->m_pkthdr.len; struct sockaddr_in *sin; /* really is initialized before use */ int error = 0, lport_any = 0; if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { error = EMSGSIZE; goto release; } if (inp->inp_lport == 0) { /* unbound socket */ error = in_pcbbind(inp, NULL, td); if (error) goto release; udbinfo_barrier_set(); in_pcbinswildcardhash(inp); udbinfo_barrier_rem(); lport_any = 1; } if (dstaddr != NULL) { /* destination address specified */ if (inp->inp_faddr.s_addr != INADDR_ANY) { /* already connected */ error = EISCONN; goto release; } sin = (struct sockaddr_in *)dstaddr; if (!prison_remote_ip(td, (struct sockaddr *)&sin)) { error = EAFNOSUPPORT; /* IPv6 only jail */ goto release; } } else { if (inp->inp_faddr.s_addr == INADDR_ANY) { /* no destination specified and not already connected */ error = ENOTCONN; goto release; } sin = NULL; } /* * Calculate data length and get a mbuf * for UDP and IP headers. */ M_PREPEND(m, sizeof(struct udpiphdr), MB_DONTWAIT); if (m == NULL) { error = ENOBUFS; goto release; } /* * Fill in mbuf with extended UDP header * and addresses and length put into network format. */ ui = mtod(m, struct udpiphdr *); bzero(ui->ui_x1, sizeof ui->ui_x1); /* XXX still needed? */ ui->ui_pr = IPPROTO_UDP; /* * Set destination address. */ if (dstaddr != NULL) { /* use specified destination */ ui->ui_dst = sin->sin_addr; ui->ui_dport = sin->sin_port; } else { /* use connected destination */ ui->ui_dst = inp->inp_faddr; ui->ui_dport = inp->inp_fport; } /* * Set source address. */ if (inp->inp_laddr.s_addr == INADDR_ANY) { struct sockaddr_in *if_sin; if (dstaddr == NULL) { /* * connect() had (or should have) failed because * the interface had no IP address, but the * application proceeded to call send() anyways. */ error = ENOTCONN; goto release; } /* Look up outgoing interface. */ if ((error = in_pcbladdr(inp, dstaddr, &if_sin, td))) goto release; ui->ui_src = if_sin->sin_addr; /* use address of interface */ } else { ui->ui_src = inp->inp_laddr; /* use non-null bound address */ } ui->ui_sport = inp->inp_lport; KASSERT(inp->inp_lport != 0, ("inp lport should have been bound")); ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); /* * Set up checksum and output datagram. */ if (udpcksum) { ui->ui_sum = in_pseudo(ui->ui_src.s_addr, ui->ui_dst.s_addr, htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP)); m->m_pkthdr.csum_flags = CSUM_UDP; m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); m->m_pkthdr.csum_thlen = sizeof(struct udphdr); } else { ui->ui_sum = 0; } ((struct ip *)ui)->ip_len = sizeof(struct udpiphdr) + len; ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ ((struct ip *)ui)->ip_tos = inp->inp_ip_tos; /* XXX */ udpstat.udps_opackets++; error = ip_output(m, inp->inp_options, &inp->inp_route, (inp->inp_socket->so_options & (SO_DONTROUTE | SO_BROADCAST)) | flags | IP_DEBUGROUTE, inp->inp_moptions, inp); /* * If this is the first data gram sent on an unbound and unconnected * UDP socket, lport will be changed in this function. If target * CPU after this lport changing is no longer the current CPU, then * free the route entry allocated on the current CPU. */ if (lport_any) { if (udp_addrcpu(inp->inp_faddr.s_addr, inp->inp_fport, inp->inp_laddr.s_addr, inp->inp_lport) != mycpuid) { #ifdef notyet struct route *ro = &inp->inp_route; if (ro->ro_rt != NULL) RTFREE(ro->ro_rt); bzero(ro, sizeof(*ro)); #else panic("UDP activity should only be in netisr0"); #endif } } return (error); release: m_freem(m); return (error); } u_long udp_sendspace = 9216; /* really max datagram size */ /* 40 1K datagrams */ SYSCTL_INT(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); u_long udp_recvspace = 40 * (1024 + #ifdef INET6 sizeof(struct sockaddr_in6) #else sizeof(struct sockaddr_in) #endif ); SYSCTL_INT(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, &udp_recvspace, 0, "Maximum incoming UDP datagram size"); /* * NOTE: (so) is referenced from soabort*() and netmsg_pru_abort() * will sofree() it when we return. */ static void udp_abort(netmsg_t msg) { struct socket *so = msg->abort.base.nm_so; struct inpcb *inp; int error; KKASSERT(&curthread->td_msgport == netisr_portfn(0)); inp = so->so_pcb; if (inp) { soisdisconnected(so); udbinfo_barrier_set(); in_pcbdetach(inp); udbinfo_barrier_rem(); error = 0; } else { error = EINVAL; } lwkt_replymsg(&msg->abort.base.lmsg, error); } static void udp_attach(netmsg_t msg) { struct socket *so = msg->attach.base.nm_so; struct pru_attach_info *ai = msg->attach.nm_ai; struct inpcb *inp; int error; KKASSERT(&curthread->td_msgport == netisr_portfn(0)); inp = so->so_pcb; if (inp != NULL) { error = EINVAL; goto out; } error = soreserve(so, udp_sendspace, udp_recvspace, ai->sb_rlimit); if (error) goto out; udbinfo_barrier_set(); error = in_pcballoc(so, &udbinfo); udbinfo_barrier_rem(); if (error) goto out; /* * Set default port for protocol processing prior to bind/connect. */ sosetport(so, netisr_portfn(0)); inp = (struct inpcb *)so->so_pcb; inp->inp_vflag |= INP_IPV4; inp->inp_ip_ttl = ip_defttl; error = 0; out: lwkt_replymsg(&msg->attach.base.lmsg, error); } static void udp_bind(netmsg_t msg) { struct socket *so = msg->bind.base.nm_so; struct sockaddr *nam = msg->bind.nm_nam; struct thread *td = msg->bind.nm_td; struct sockaddr_in *sin = (struct sockaddr_in *)nam; struct inpcb *inp; int error; inp = so->so_pcb; if (inp) { error = in_pcbbind(inp, nam, td); if (error == 0) { if (sin->sin_addr.s_addr != INADDR_ANY) inp->inp_flags |= INP_WASBOUND_NOTANY; udbinfo_barrier_set(); in_pcbinswildcardhash(inp); udbinfo_barrier_rem(); } } else { error = EINVAL; } lwkt_replymsg(&msg->bind.base.lmsg, error); } static void udp_connect(netmsg_t msg) { struct socket *so = msg->connect.base.nm_so; struct sockaddr *nam = msg->connect.nm_nam; struct thread *td = msg->connect.nm_td; struct inpcb *inp; struct sockaddr_in *sin = (struct sockaddr_in *)nam; struct sockaddr_in *if_sin; lwkt_port_t port; int error; KKASSERT(&curthread->td_msgport == netisr_portfn(0)); inp = so->so_pcb; if (inp == NULL) { error = EINVAL; goto out; } if (msg->connect.nm_reconnect & NMSG_RECONNECT_RECONNECT) { panic("UDP does not support RECONNECT"); #ifdef notyet msg->connect.nm_reconnect &= ~NMSG_RECONNECT_RECONNECT; in_pcblink(inp, &udbinfo); #endif } if (inp->inp_faddr.s_addr != INADDR_ANY) { error = EISCONN; goto out; } error = 0; /* * Bind if we have to */ if (td->td_proc && td->td_proc->p_ucred->cr_prison != NULL && inp->inp_laddr.s_addr == INADDR_ANY) { error = in_pcbbind(inp, NULL, td); if (error) goto out; } /* * Calculate the correct protocol processing thread. The connect * operation must run there. */ error = in_pcbladdr(inp, nam, &if_sin, td); if (error) goto out; if (!prison_remote_ip(td, nam)) { error = EAFNOSUPPORT; /* IPv6 only jail */ goto out; } port = udp_addrport(sin->sin_addr.s_addr, sin->sin_port, inp->inp_laddr.s_addr, inp->inp_lport); if (port != &curthread->td_msgport) { #ifdef notyet struct route *ro = &inp->inp_route; /* * in_pcbladdr() may have allocated a route entry for us * on the current CPU, but we need a route entry on the * inpcb's owner CPU, so free it here. */ if (ro->ro_rt != NULL) RTFREE(ro->ro_rt); bzero(ro, sizeof(*ro)); /* * We are moving the protocol processing port the socket * is on, we have to unlink here and re-link on the * target cpu. */ in_pcbunlink(so->so_pcb, &udbinfo); /* in_pcbunlink(so->so_pcb, &udbinfo[mycpu->gd_cpuid]); */ sosetport(so, port); msg->connect.nm_reconnect |= NMSG_RECONNECT_RECONNECT; msg->connect.base.nm_dispatch = udp_connect; lwkt_forwardmsg(port, &msg->connect.base.lmsg); /* msg invalid now */ return; #else panic("UDP activity should only be in netisr0"); #endif } KKASSERT(port == &curthread->td_msgport); error = udp_connect_oncpu(so, td, sin, if_sin); out: KKASSERT(msg->connect.nm_m == NULL); lwkt_replymsg(&msg->connect.base.lmsg, error); } static int udp_connect_oncpu(struct socket *so, struct thread *td, struct sockaddr_in *sin, struct sockaddr_in *if_sin) { struct inpcb *inp; int error; udbinfo_barrier_set(); inp = so->so_pcb; if (inp->inp_flags & INP_WILDCARD) in_pcbremwildcardhash(inp); error = in_pcbconnect(inp, (struct sockaddr *)sin, td); if (error == 0) { /* * No more errors can occur, finish adjusting the socket * and change the processing port to reflect the connected * socket. Once set we can no longer safely mess with the * socket. */ soisconnected(so); } else if (error == EAFNOSUPPORT) { /* connection dissolved */ /* * Follow traditional BSD behavior and retain * the local port binding. But, fix the old misbehavior * of overwriting any previously bound local address. */ if (!(inp->inp_flags & INP_WASBOUND_NOTANY)) inp->inp_laddr.s_addr = INADDR_ANY; in_pcbinswildcardhash(inp); } udbinfo_barrier_rem(); return error; } static void udp_detach(netmsg_t msg) { struct socket *so = msg->detach.base.nm_so; struct inpcb *inp; int error; KKASSERT(&curthread->td_msgport == netisr_portfn(0)); inp = so->so_pcb; if (inp) { udbinfo_barrier_set(); in_pcbdetach(inp); udbinfo_barrier_rem(); error = 0; } else { error = EINVAL; } lwkt_replymsg(&msg->detach.base.lmsg, error); } static void udp_disconnect(netmsg_t msg) { struct socket *so = msg->disconnect.base.nm_so; struct route *ro; struct inpcb *inp; int error; KKASSERT(&curthread->td_msgport == netisr_portfn(0)); inp = so->so_pcb; if (inp == NULL) { error = EINVAL; goto out; } if (inp->inp_faddr.s_addr == INADDR_ANY) { error = ENOTCONN; goto out; } soreference(so); udbinfo_barrier_set(); in_pcbdisconnect(inp); udbinfo_barrier_rem(); soclrstate(so, SS_ISCONNECTED); /* XXX */ sofree(so); ro = &inp->inp_route; if (ro->ro_rt != NULL) RTFREE(ro->ro_rt); bzero(ro, sizeof(*ro)); error = 0; out: lwkt_replymsg(&msg->disconnect.base.lmsg, error); } static void udp_send(netmsg_t msg) { struct socket *so = msg->send.base.nm_so; struct mbuf *m = msg->send.nm_m; struct sockaddr *addr = msg->send.nm_addr; int pru_flags = msg->send.nm_flags; struct inpcb *inp; int error; KKASSERT(&curthread->td_msgport == netisr_portfn(0)); KKASSERT(msg->send.nm_control == NULL); inp = so->so_pcb; if (inp) { struct thread *td = msg->send.nm_td; int flags = 0; if (pru_flags & PRUS_DONTROUTE) flags |= SO_DONTROUTE; error = udp_output(inp, m, addr, td, flags); } else { m_freem(m); error = EINVAL; } if (pru_flags & PRUS_FREEADDR) kfree(addr, M_SONAME); if ((pru_flags & PRUS_NOREPLY) == 0) lwkt_replymsg(&msg->send.base.lmsg, error); } void udp_shutdown(netmsg_t msg) { struct socket *so = msg->shutdown.base.nm_so; struct inpcb *inp; int error; KKASSERT(&curthread->td_msgport == netisr_portfn(0)); inp = so->so_pcb; if (inp) { socantsendmore(so); error = 0; } else { error = EINVAL; } lwkt_replymsg(&msg->shutdown.base.lmsg, error); } void udbinfo_lock(void) { lwkt_serialize_enter(&udbinfo_slize); } void udbinfo_unlock(void) { lwkt_serialize_exit(&udbinfo_slize); } void udbinfo_barrier_set(void) { netisr_barrier_set(udbinfo_br); udbinfo_lock(); } void udbinfo_barrier_rem(void) { udbinfo_unlock(); netisr_barrier_rem(udbinfo_br); } struct pr_usrreqs udp_usrreqs = { .pru_abort = udp_abort, .pru_accept = pr_generic_notsupp, .pru_attach = udp_attach, .pru_bind = udp_bind, .pru_connect = udp_connect, .pru_connect2 = pr_generic_notsupp, .pru_control = in_control_dispatch, .pru_detach = udp_detach, .pru_disconnect = udp_disconnect, .pru_listen = pr_generic_notsupp, .pru_peeraddr = in_setpeeraddr_dispatch, .pru_rcvd = pr_generic_notsupp, .pru_rcvoob = pr_generic_notsupp, .pru_send = udp_send, .pru_sense = pru_sense_null, .pru_shutdown = udp_shutdown, .pru_sockaddr = in_setsockaddr_dispatch, .pru_sosend = sosendudp, .pru_soreceive = soreceive };