- In re_stop(), call re_reset(), which is supposed to stop TX/RX engines.
[dragonfly.git] / sys / dev / netif / re / if_re.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2004
3 * Joerg Sonnenberger <joerg@bec.de>. All rights reserved.
4 *
5 * Copyright (c) 1997, 1998-2003
6 * Bill Paul <wpaul@windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36 * $DragonFly: src/sys/dev/netif/re/if_re.c,v 1.94 2008/10/19 06:00:24 sephe Exp $
37 */
38
39/*
40 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul@windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47/*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
51 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7440, so the max MTU possible with this
111 * driver is 7422 bytes.
112 */
113
114#define _IP_VHL
115
116#include "opt_polling.h"
117
118#include <sys/param.h>
119#include <sys/bus.h>
120#include <sys/endian.h>
121#include <sys/kernel.h>
122#include <sys/in_cksum.h>
123#include <sys/interrupt.h>
124#include <sys/malloc.h>
125#include <sys/mbuf.h>
126#include <sys/rman.h>
127#include <sys/serialize.h>
128#include <sys/socket.h>
129#include <sys/sockio.h>
130#include <sys/sysctl.h>
131
132#include <net/bpf.h>
133#include <net/ethernet.h>
134#include <net/if.h>
135#include <net/ifq_var.h>
136#include <net/if_arp.h>
137#include <net/if_dl.h>
138#include <net/if_media.h>
139#include <net/if_types.h>
140#include <net/vlan/if_vlan_var.h>
141#include <net/vlan/if_vlan_ether.h>
142
143#include <netinet/ip.h>
144
145#include <dev/netif/mii_layer/mii.h>
146#include <dev/netif/mii_layer/miivar.h>
147
148#include <bus/pci/pcidevs.h>
149#include <bus/pci/pcireg.h>
150#include <bus/pci/pcivar.h>
151
152/* "device miibus" required. See GENERIC if you get errors here. */
153#include "miibus_if.h"
154
155#include <dev/netif/re/if_rereg.h>
156#include <dev/netif/re/if_revar.h>
157
158#define RE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
159
160/*
161 * Various supported device vendors/types and their names.
162 */
163static const struct re_type {
164 uint16_t re_vid;
165 uint16_t re_did;
166 const char *re_name;
167} re_devs[] = {
168 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
169 "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
170
171 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
172 "RealTek 8139C+ 10/100BaseTX" },
173
174 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
175 "RealTek 810x PCIe 10/100baseTX" },
176
177 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
178 "RealTek 8111/8168 PCIe Gigabit Ethernet" },
179
180 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
181 "RealTek 8110/8169 Gigabit Ethernet" },
182
183 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
184 "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
185
186 { PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
187 "Corega CG-LAPCIGT Gigabit Ethernet" },
188
189 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
190 "Linksys EG1032 Gigabit Ethernet" },
191
192 { PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
193 "US Robotics 997902 Gigabit Ethernet" },
194
195 { 0, 0, NULL }
196};
197
198static const struct re_hwrev re_hwrevs[] = {
199 { RE_HWREV_8139CPLUS, RE_MACVER_UNKN, ETHERMTU,
200 RE_C_HWCSUM | RE_C_8139CP },
201
202 { RE_HWREV_8169, RE_MACVER_UNKN, RE_MTU_6K,
203 RE_C_HWCSUM | RE_C_8169 },
204
205 { RE_HWREV_8110S, RE_MACVER_03, RE_MTU_6K,
206 RE_C_HWCSUM | RE_C_8169 },
207
208 { RE_HWREV_8169S, RE_MACVER_03, RE_MTU_6K,
209 RE_C_HWCSUM | RE_C_8169 },
210
211 { RE_HWREV_8169SB, RE_MACVER_04, RE_MTU_6K,
212 RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
213
214 { RE_HWREV_8169SC1, RE_MACVER_05, RE_MTU_6K,
215 RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
216
217 { RE_HWREV_8169SC2, RE_MACVER_06, RE_MTU_6K,
218 RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
219
220 { RE_HWREV_8168B1, RE_MACVER_21, RE_MTU_6K,
221 RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
222
223 { RE_HWREV_8168B2, RE_MACVER_23, RE_MTU_6K,
224 RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
225
226 { RE_HWREV_8168B3, RE_MACVER_23, RE_MTU_6K,
227 RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
228
229 { RE_HWREV_8168C, RE_MACVER_29, RE_MTU_6K,
230 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
231 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
232
233 { RE_HWREV_8168CP, RE_MACVER_2B, RE_MTU_6K,
234 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
235 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
236
237 { RE_HWREV_8168D, RE_MACVER_2A, RE_MTU_9K,
238 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
239 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
240
241 { RE_HWREV_8100E, RE_MACVER_UNKN, ETHERMTU,
242 RE_C_HWCSUM },
243
244 { RE_HWREV_8101E1, RE_MACVER_16, ETHERMTU,
245 RE_C_HWCSUM },
246
247 { RE_HWREV_8101E2, RE_MACVER_16, ETHERMTU,
248 RE_C_HWCSUM },
249
250 { RE_HWREV_8102E, RE_MACVER_15, ETHERMTU,
251 RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX },
252
253 { RE_HWREV_8102EL, RE_MACVER_15, ETHERMTU,
254 RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX },
255
256 { RE_HWREV_NULL, 0, 0, 0 }
257};
258
259static int re_probe(device_t);
260static int re_attach(device_t);
261static int re_detach(device_t);
262static int re_suspend(device_t);
263static int re_resume(device_t);
264static void re_shutdown(device_t);
265
266static void re_dma_map_addr(void *, bus_dma_segment_t *, int, int);
267static void re_dma_map_desc(void *, bus_dma_segment_t *, int,
268 bus_size_t, int);
269static int re_allocmem(device_t);
270static void re_freemem(device_t);
271static void re_freebufmem(struct re_softc *, int, int);
272static int re_encap(struct re_softc *, struct mbuf **, int *);
273static int re_newbuf_std(struct re_softc *, int, int);
274static int re_newbuf_jumbo(struct re_softc *, int, int);
275static void re_setup_rxdesc(struct re_softc *, int);
276static int re_rx_list_init(struct re_softc *);
277static int re_tx_list_init(struct re_softc *);
278static int re_rxeof(struct re_softc *);
279static int re_txeof(struct re_softc *);
280static int re_tx_collect(struct re_softc *);
281static void re_intr(void *);
282static void re_tick(void *);
283static void re_tick_serialized(void *);
284
285static void re_start(struct ifnet *);
286static int re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
287static void re_init(void *);
288static void re_stop(struct re_softc *);
289static void re_watchdog(struct ifnet *);
290static int re_ifmedia_upd(struct ifnet *);
291static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
292
293static void re_eeprom_putbyte(struct re_softc *, int);
294static void re_eeprom_getword(struct re_softc *, int, u_int16_t *);
295static void re_read_eeprom(struct re_softc *, caddr_t, int, int);
296static void re_get_eewidth(struct re_softc *);
297
298static int re_gmii_readreg(device_t, int, int);
299static int re_gmii_writereg(device_t, int, int, int);
300
301static int re_miibus_readreg(device_t, int, int);
302static int re_miibus_writereg(device_t, int, int, int);
303static void re_miibus_statchg(device_t);
304
305static void re_setmulti(struct re_softc *);
306static void re_reset(struct re_softc *, int);
307static void re_get_eaddr(struct re_softc *, uint8_t *);
308static int re_pad_frame(struct mbuf *);
309static void re_set_max_readrq(struct re_softc *, uint16_t);
310
311static void re_setup_hw_im(struct re_softc *);
312static void re_setup_sim_im(struct re_softc *);
313static void re_disable_hw_im(struct re_softc *);
314static void re_disable_sim_im(struct re_softc *);
315static void re_config_imtype(struct re_softc *, int);
316static void re_setup_intr(struct re_softc *, int, int);
317
318static int re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
319static int re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
320static int re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
321static int re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
322static int re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
323
324static int re_jpool_alloc(struct re_softc *);
325static void re_jpool_free(struct re_softc *);
326static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
327static void re_jbuf_free(void *);
328static void re_jbuf_ref(void *);
329
330#ifdef RE_DIAG
331static int re_diag(struct re_softc *);
332#endif
333
334#ifdef DEVICE_POLLING
335static void re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
336#endif
337
338static device_method_t re_methods[] = {
339 /* Device interface */
340 DEVMETHOD(device_probe, re_probe),
341 DEVMETHOD(device_attach, re_attach),
342 DEVMETHOD(device_detach, re_detach),
343 DEVMETHOD(device_suspend, re_suspend),
344 DEVMETHOD(device_resume, re_resume),
345 DEVMETHOD(device_shutdown, re_shutdown),
346
347 /* bus interface */
348 DEVMETHOD(bus_print_child, bus_generic_print_child),
349 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
350
351 /* MII interface */
352 DEVMETHOD(miibus_readreg, re_miibus_readreg),
353 DEVMETHOD(miibus_writereg, re_miibus_writereg),
354 DEVMETHOD(miibus_statchg, re_miibus_statchg),
355
356 { 0, 0 }
357};
358
359static driver_t re_driver = {
360 "re",
361 re_methods,
362 sizeof(struct re_softc)
363};
364
365static devclass_t re_devclass;
366
367DECLARE_DUMMY_MODULE(if_re);
368DRIVER_MODULE(if_re, pci, re_driver, re_devclass, 0, 0);
369DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, 0, 0);
370DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
371
372static int re_rx_desc_count = RE_RX_DESC_CNT_DEF;
373static int re_tx_desc_count = RE_TX_DESC_CNT_DEF;
374
375TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
376TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
377
378#define EE_SET(x) \
379 CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
380
381#define EE_CLR(x) \
382 CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
383
384static __inline void
385re_free_rxchain(struct re_softc *sc)
386{
387 if (sc->re_head != NULL) {
388 m_freem(sc->re_head);
389 sc->re_head = sc->re_tail = NULL;
390 }
391}
392
393/*
394 * Send a read command and address to the EEPROM, check for ACK.
395 */
396static void
397re_eeprom_putbyte(struct re_softc *sc, int addr)
398{
399 int d, i;
400
401 d = addr | (RE_9346_READ << sc->re_eewidth);
402
403 /*
404 * Feed in each bit and strobe the clock.
405 */
406 for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
407 if (d & i)
408 EE_SET(RE_EE_DATAIN);
409 else
410 EE_CLR(RE_EE_DATAIN);
411 DELAY(100);
412 EE_SET(RE_EE_CLK);
413 DELAY(150);
414 EE_CLR(RE_EE_CLK);
415 DELAY(100);
416 }
417}
418
419/*
420 * Read a word of data stored in the EEPROM at address 'addr.'
421 */
422static void
423re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
424{
425 int i;
426 uint16_t word = 0;
427
428 /*
429 * Send address of word we want to read.
430 */
431 re_eeprom_putbyte(sc, addr);
432
433 /*
434 * Start reading bits from EEPROM.
435 */
436 for (i = 0x8000; i != 0; i >>= 1) {
437 EE_SET(RE_EE_CLK);
438 DELAY(100);
439 if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
440 word |= i;
441 EE_CLR(RE_EE_CLK);
442 DELAY(100);
443 }
444
445 *dest = word;
446}
447
448/*
449 * Read a sequence of words from the EEPROM.
450 */
451static void
452re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
453{
454 int i;
455 uint16_t word = 0, *ptr;
456
457 CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
458 DELAY(100);
459
460 for (i = 0; i < cnt; i++) {
461 CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
462 re_eeprom_getword(sc, off + i, &word);
463 CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
464 ptr = (uint16_t *)(dest + (i * 2));
465 *ptr = word;
466 }
467
468 CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
469}
470
471static void
472re_get_eewidth(struct re_softc *sc)
473{
474 uint16_t re_did = 0;
475
476 sc->re_eewidth = 6;
477 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
478 if (re_did != 0x8129)
479 sc->re_eewidth = 8;
480}
481
482static int
483re_gmii_readreg(device_t dev, int phy, int reg)
484{
485 struct re_softc *sc = device_get_softc(dev);
486 u_int32_t rval;
487 int i;
488
489 if (phy != 1)
490 return(0);
491
492 /* Let the rgephy driver read the GMEDIASTAT register */
493
494 if (reg == RE_GMEDIASTAT)
495 return(CSR_READ_1(sc, RE_GMEDIASTAT));
496
497 CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
498 DELAY(1000);
499
500 for (i = 0; i < RE_TIMEOUT; i++) {
501 rval = CSR_READ_4(sc, RE_PHYAR);
502 if (rval & RE_PHYAR_BUSY)
503 break;
504 DELAY(100);
505 }
506
507 if (i == RE_TIMEOUT) {
508 device_printf(dev, "PHY read failed\n");
509 return(0);
510 }
511
512 return(rval & RE_PHYAR_PHYDATA);
513}
514
515static int
516re_gmii_writereg(device_t dev, int phy, int reg, int data)
517{
518 struct re_softc *sc = device_get_softc(dev);
519 uint32_t rval;
520 int i;
521
522 CSR_WRITE_4(sc, RE_PHYAR,
523 (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
524 DELAY(1000);
525
526 for (i = 0; i < RE_TIMEOUT; i++) {
527 rval = CSR_READ_4(sc, RE_PHYAR);
528 if ((rval & RE_PHYAR_BUSY) == 0)
529 break;
530 DELAY(100);
531 }
532
533 if (i == RE_TIMEOUT)
534 device_printf(dev, "PHY write failed\n");
535
536 return(0);
537}
538
539static int
540re_miibus_readreg(device_t dev, int phy, int reg)
541{
542 struct re_softc *sc = device_get_softc(dev);
543 uint16_t rval = 0;
544 uint16_t re8139_reg = 0;
545
546 if (!RE_IS_8139CP(sc)) {
547 rval = re_gmii_readreg(dev, phy, reg);
548 return(rval);
549 }
550
551 /* Pretend the internal PHY is only at address 0 */
552 if (phy)
553 return(0);
554
555 switch(reg) {
556 case MII_BMCR:
557 re8139_reg = RE_BMCR;
558 break;
559 case MII_BMSR:
560 re8139_reg = RE_BMSR;
561 break;
562 case MII_ANAR:
563 re8139_reg = RE_ANAR;
564 break;
565 case MII_ANER:
566 re8139_reg = RE_ANER;
567 break;
568 case MII_ANLPAR:
569 re8139_reg = RE_LPAR;
570 break;
571 case MII_PHYIDR1:
572 case MII_PHYIDR2:
573 return(0);
574 /*
575 * Allow the rlphy driver to read the media status
576 * register. If we have a link partner which does not
577 * support NWAY, this is the register which will tell
578 * us the results of parallel detection.
579 */
580 case RE_MEDIASTAT:
581 return(CSR_READ_1(sc, RE_MEDIASTAT));
582 default:
583 device_printf(dev, "bad phy register\n");
584 return(0);
585 }
586 rval = CSR_READ_2(sc, re8139_reg);
587 if (re8139_reg == RE_BMCR) {
588 /* 8139C+ has different bit layout. */
589 rval &= ~(BMCR_LOOP | BMCR_ISO);
590 }
591 return(rval);
592}
593
594static int
595re_miibus_writereg(device_t dev, int phy, int reg, int data)
596{
597 struct re_softc *sc= device_get_softc(dev);
598 u_int16_t re8139_reg = 0;
599
600 if (!RE_IS_8139CP(sc))
601 return(re_gmii_writereg(dev, phy, reg, data));
602
603 /* Pretend the internal PHY is only at address 0 */
604 if (phy)
605 return(0);
606
607 switch(reg) {
608 case MII_BMCR:
609 re8139_reg = RE_BMCR;
610 /* 8139C+ has different bit layout. */
611 data &= ~(BMCR_LOOP | BMCR_ISO);
612 break;
613 case MII_BMSR:
614 re8139_reg = RE_BMSR;
615 break;
616 case MII_ANAR:
617 re8139_reg = RE_ANAR;
618 break;
619 case MII_ANER:
620 re8139_reg = RE_ANER;
621 break;
622 case MII_ANLPAR:
623 re8139_reg = RE_LPAR;
624 break;
625 case MII_PHYIDR1:
626 case MII_PHYIDR2:
627 return(0);
628 default:
629 device_printf(dev, "bad phy register\n");
630 return(0);
631 }
632 CSR_WRITE_2(sc, re8139_reg, data);
633 return(0);
634}
635
636static void
637re_miibus_statchg(device_t dev)
638{
639}
640
641/*
642 * Program the 64-bit multicast hash filter.
643 */
644static void
645re_setmulti(struct re_softc *sc)
646{
647 struct ifnet *ifp = &sc->arpcom.ac_if;
648 int h = 0;
649 uint32_t hashes[2] = { 0, 0 };
650 struct ifmultiaddr *ifma;
651 uint32_t rxfilt;
652 int mcnt = 0;
653
654 rxfilt = CSR_READ_4(sc, RE_RXCFG);
655
656 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
657 rxfilt |= RE_RXCFG_RX_MULTI;
658 CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
659 CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
660 CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
661 return;
662 }
663
664 /* first, zot all the existing hash bits */
665 CSR_WRITE_4(sc, RE_MAR0, 0);
666 CSR_WRITE_4(sc, RE_MAR4, 0);
667
668 /* now program new ones */
669 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
670 if (ifma->ifma_addr->sa_family != AF_LINK)
671 continue;
672 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
673 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
674 if (h < 32)
675 hashes[0] |= (1 << h);
676 else
677 hashes[1] |= (1 << (h - 32));
678 mcnt++;
679 }
680
681 if (mcnt)
682 rxfilt |= RE_RXCFG_RX_MULTI;
683 else
684 rxfilt &= ~RE_RXCFG_RX_MULTI;
685
686 CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
687
688 /*
689 * For some unfathomable reason, RealTek decided to reverse
690 * the order of the multicast hash registers in the PCI Express
691 * parts. This means we have to write the hash pattern in reverse
692 * order for those devices.
693 */
694 if (sc->re_caps & RE_C_PCIE) {
695 CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[0]));
696 CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[1]));
697 } else {
698 CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
699 CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
700 }
701}
702
703static void
704re_reset(struct re_softc *sc, int running)
705{
706 int i;
707
708 if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
709 CSR_WRITE_1(sc, RE_COMMAND,
710 RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
711 DELAY(100);
712 }
713
714 CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
715
716 for (i = 0; i < RE_TIMEOUT; i++) {
717 DELAY(10);
718 if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
719 break;
720 }
721 if (i == RE_TIMEOUT)
722 if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
723}
724
725#ifdef RE_DIAG
726/*
727 * The following routine is designed to test for a defect on some
728 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
729 * lines connected to the bus, however for a 32-bit only card, they
730 * should be pulled high. The result of this defect is that the
731 * NIC will not work right if you plug it into a 64-bit slot: DMA
732 * operations will be done with 64-bit transfers, which will fail
733 * because the 64-bit data lines aren't connected.
734 *
735 * There's no way to work around this (short of talking a soldering
736 * iron to the board), however we can detect it. The method we use
737 * here is to put the NIC into digital loopback mode, set the receiver
738 * to promiscuous mode, and then try to send a frame. We then compare
739 * the frame data we sent to what was received. If the data matches,
740 * then the NIC is working correctly, otherwise we know the user has
741 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
742 * slot. In the latter case, there's no way the NIC can work correctly,
743 * so we print out a message on the console and abort the device attach.
744 */
745
746static int
747re_diag(struct re_softc *sc)
748{
749 struct ifnet *ifp = &sc->arpcom.ac_if;
750 struct mbuf *m0;
751 struct ether_header *eh;
752 struct re_desc *cur_rx;
753 uint16_t status;
754 uint32_t rxstat;
755 int total_len, i, error = 0, phyaddr;
756 uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
757 uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
758
759 /* Allocate a single mbuf */
760
761 MGETHDR(m0, MB_DONTWAIT, MT_DATA);
762 if (m0 == NULL)
763 return(ENOBUFS);
764
765 /*
766 * Initialize the NIC in test mode. This sets the chip up
767 * so that it can send and receive frames, but performs the
768 * following special functions:
769 * - Puts receiver in promiscuous mode
770 * - Enables digital loopback mode
771 * - Leaves interrupts turned off
772 */
773
774 ifp->if_flags |= IFF_PROMISC;
775 sc->re_flags |= RE_F_TESTMODE;
776 re_init(sc);
777 sc->re_flags |= RE_F_LINKED;
778 if (!RE_IS_8139CP(sc))
779 phyaddr = 1;
780 else
781 phyaddr = 0;
782
783 re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
784 for (i = 0; i < RE_TIMEOUT; i++) {
785 status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
786 if (!(status & BMCR_RESET))
787 break;
788 }
789
790 re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
791 CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
792
793 DELAY(100000);
794
795 /* Put some data in the mbuf */
796
797 eh = mtod(m0, struct ether_header *);
798 bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
799 bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
800 eh->ether_type = htons(ETHERTYPE_IP);
801 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
802
803 /*
804 * Queue the packet, start transmission.
805 * Note: ifq_handoff() ultimately calls re_start() for us.
806 */
807
808 CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
809 error = ifq_handoff(ifp, m0, NULL);
810 if (error) {
811 m0 = NULL;
812 goto done;
813 }
814 m0 = NULL;
815
816 /* Wait for it to propagate through the chip */
817
818 DELAY(100000);
819 for (i = 0; i < RE_TIMEOUT; i++) {
820 status = CSR_READ_2(sc, RE_ISR);
821 CSR_WRITE_2(sc, RE_ISR, status);
822 if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
823 (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
824 break;
825 DELAY(10);
826 }
827
828 if (i == RE_TIMEOUT) {
829 if_printf(ifp, "diagnostic failed to receive packet "
830 "in loopback mode\n");
831 error = EIO;
832 goto done;
833 }
834
835 /*
836 * The packet should have been dumped into the first
837 * entry in the RX DMA ring. Grab it from there.
838 */
839
840 bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
841 sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
842 bus_dmamap_sync(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0],
843 BUS_DMASYNC_POSTWRITE);
844 bus_dmamap_unload(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0]);
845
846 m0 = sc->re_ldata.re_rx_mbuf[0];
847 sc->re_ldata.re_rx_mbuf[0] = NULL;
848 eh = mtod(m0, struct ether_header *);
849
850 cur_rx = &sc->re_ldata.re_rx_list[0];
851 total_len = RE_RXBYTES(cur_rx);
852 rxstat = le32toh(cur_rx->re_cmdstat);
853
854 if (total_len != ETHER_MIN_LEN) {
855 if_printf(ifp, "diagnostic failed, received short packet\n");
856 error = EIO;
857 goto done;
858 }
859
860 /* Test that the received packet data matches what we sent. */
861
862 if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
863 bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
864 be16toh(eh->ether_type) != ETHERTYPE_IP) {
865 if_printf(ifp, "WARNING, DMA FAILURE!\n");
866 if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
867 dst, ":", src, ":", ETHERTYPE_IP);
868 if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
869 eh->ether_dhost, ":", eh->ether_shost, ":",
870 ntohs(eh->ether_type));
871 if_printf(ifp, "You may have a defective 32-bit NIC plugged "
872 "into a 64-bit PCI slot.\n");
873 if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
874 "for proper operation.\n");
875 if_printf(ifp, "Read the re(4) man page for more details.\n");
876 error = EIO;
877 }
878
879done:
880 /* Turn interface off, release resources */
881
882 sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
883 ifp->if_flags &= ~IFF_PROMISC;
884 re_stop(sc);
885 if (m0 != NULL)
886 m_freem(m0);
887
888 return (error);
889}
890#endif /* RE_DIAG */
891
892/*
893 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
894 * IDs against our list and return a device name if we find a match.
895 */
896static int
897re_probe(device_t dev)
898{
899 const struct re_type *t;
900 const struct re_hwrev *hw_rev;
901 struct re_softc *sc;
902 int rid;
903 uint32_t hwrev, macmode, txcfg;
904 uint16_t vendor, product;
905
906 vendor = pci_get_vendor(dev);
907 product = pci_get_device(dev);
908
909 /*
910 * Only attach to rev.3 of the Linksys EG1032 adapter.
911 * Rev.2 is supported by sk(4).
912 */
913 if (vendor == PCI_VENDOR_LINKSYS &&
914 product == PCI_PRODUCT_LINKSYS_EG1032 &&
915 pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
916 return ENXIO;
917
918 for (t = re_devs; t->re_name != NULL; t++) {
919 if (product == t->re_did && vendor == t->re_vid)
920 break;
921 }
922
923 /*
924 * Check if we found a RealTek device.
925 */
926 if (t->re_name == NULL)
927 return ENXIO;
928
929 /*
930 * Temporarily map the I/O space so we can read the chip ID register.
931 */
932 sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
933 rid = RE_PCI_LOIO;
934 sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
935 RF_ACTIVE);
936 if (sc->re_res == NULL) {
937 device_printf(dev, "couldn't map ports/memory\n");
938 kfree(sc, M_TEMP);
939 return ENXIO;
940 }
941
942 sc->re_btag = rman_get_bustag(sc->re_res);
943 sc->re_bhandle = rman_get_bushandle(sc->re_res);
944
945 txcfg = CSR_READ_4(sc, RE_TXCFG);
946 hwrev = txcfg & RE_TXCFG_HWREV;
947 macmode = txcfg & RE_TXCFG_MACMODE;
948 bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
949 kfree(sc, M_TEMP);
950
951 /*
952 * and continue matching for the specific chip...
953 */
954 for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
955 if (hw_rev->re_hwrev == hwrev) {
956 sc = device_get_softc(dev);
957
958 sc->re_hwrev = hw_rev->re_hwrev;
959 sc->re_macver = hw_rev->re_macver;
960 sc->re_caps = hw_rev->re_caps;
961 sc->re_maxmtu = hw_rev->re_maxmtu;
962 sc->re_swcsum_lim = RE_SWCSUM_UNLIMITED;
963
964 /*
965 * Apply chip property fixup
966 */
967 switch (sc->re_hwrev) {
968 case RE_HWREV_8169:
969 sc->re_swcsum_lim = RE_SWCSUM_LIM_8169;
970 break;
971 case RE_HWREV_8101E1:
972 case RE_HWREV_8101E2:
973 if (macmode == 0)
974 sc->re_macver = RE_MACVER_11;
975 else if (macmode == 0x200000)
976 sc->re_macver = RE_MACVER_12;
977 break;
978 case RE_HWREV_8102E:
979 case RE_HWREV_8102EL:
980 if (macmode == 0)
981 sc->re_macver = RE_MACVER_13;
982 else if (macmode == 0x100000)
983 sc->re_macver = RE_MACVER_14;
984 break;
985 case RE_HWREV_8168B2:
986 case RE_HWREV_8168B3:
987 if (macmode == 0)
988 sc->re_macver = RE_MACVER_22;
989 break;
990 case RE_HWREV_8168C:
991 if (macmode == 0)
992 sc->re_macver = RE_MACVER_24;
993 else if (macmode == 0x200000)
994 sc->re_macver = RE_MACVER_25;
995 else if (macmode == 0x300000)
996 sc->re_macver = RE_MACVER_27;
997 break;
998 case RE_HWREV_8168CP:
999 if (macmode == 0)
1000 sc->re_macver = RE_MACVER_26;
1001 else if (macmode == 0x100000)
1002 sc->re_macver = RE_MACVER_28;
1003 break;
1004 }
1005 if (pci_get_pciecap_ptr(dev) != 0)
1006 sc->re_caps |= RE_C_PCIE;
1007
1008 device_set_desc(dev, t->re_name);
1009 return 0;
1010 }
1011 }
1012 device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1013 hwrev, macmode);
1014 return ENXIO;
1015}
1016
1017static void
1018re_dma_map_desc(void *xarg, bus_dma_segment_t *segs, int nsegs,
1019 bus_size_t mapsize, int error)
1020{
1021 struct re_dmaload_arg *arg = xarg;
1022 int i;
1023
1024 if (error)
1025 return;
1026
1027 if (nsegs > arg->re_nsegs) {
1028 arg->re_nsegs = 0;
1029 return;
1030 }
1031
1032 arg->re_nsegs = nsegs;
1033 for (i = 0; i < nsegs; ++i)
1034 arg->re_segs[i] = segs[i];
1035}
1036
1037/*
1038 * Map a single buffer address.
1039 */
1040
1041static void
1042re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1043{
1044 uint32_t *addr;
1045
1046 if (error)
1047 return;
1048
1049 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
1050 addr = arg;
1051 *addr = segs->ds_addr;
1052}
1053
1054static int
1055re_allocmem(device_t dev)
1056{
1057 struct re_softc *sc = device_get_softc(dev);
1058 int error, i;
1059
1060 /*
1061 * Allocate list data
1062 */
1063 sc->re_ldata.re_tx_mbuf =
1064 kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1065 M_DEVBUF, M_ZERO | M_WAITOK);
1066
1067 sc->re_ldata.re_rx_mbuf =
1068 kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1069 M_DEVBUF, M_ZERO | M_WAITOK);
1070
1071 sc->re_ldata.re_rx_paddr =
1072 kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1073 M_DEVBUF, M_ZERO | M_WAITOK);
1074
1075 sc->re_ldata.re_tx_dmamap =
1076 kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1077 M_DEVBUF, M_ZERO | M_WAITOK);
1078
1079 sc->re_ldata.re_rx_dmamap =
1080 kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1081 M_DEVBUF, M_ZERO | M_WAITOK);
1082
1083 /*
1084 * Allocate the parent bus DMA tag appropriate for PCI.
1085 */
1086 error = bus_dma_tag_create(NULL, /* parent */
1087 1, 0, /* alignment, boundary */
1088 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1089 BUS_SPACE_MAXADDR, /* highaddr */
1090 NULL, NULL, /* filter, filterarg */
1091 MAXBSIZE, RE_MAXSEGS, /* maxsize, nsegments */
1092 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1093 BUS_DMA_ALLOCNOW, /* flags */
1094 &sc->re_parent_tag);
1095 if (error) {
1096 device_printf(dev, "could not allocate parent dma tag\n");
1097 return error;
1098 }
1099
1100 /* Allocate tag for TX descriptor list. */
1101 error = bus_dma_tag_create(sc->re_parent_tag,
1102 RE_RING_ALIGN, 0,
1103 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1104 NULL, NULL,
1105 RE_TX_LIST_SZ(sc), 1, RE_TX_LIST_SZ(sc),
1106 BUS_DMA_ALLOCNOW,
1107 &sc->re_ldata.re_tx_list_tag);
1108 if (error) {
1109 device_printf(dev, "could not allocate TX ring dma tag\n");
1110 return(error);
1111 }
1112
1113 /* Allocate DMA'able memory for the TX ring */
1114 error = bus_dmamem_alloc(sc->re_ldata.re_tx_list_tag,
1115 (void **)&sc->re_ldata.re_tx_list,
1116 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1117 &sc->re_ldata.re_tx_list_map);
1118 if (error) {
1119 device_printf(dev, "could not allocate TX ring\n");
1120 bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1121 sc->re_ldata.re_tx_list_tag = NULL;
1122 return(error);
1123 }
1124
1125 /* Load the map for the TX ring. */
1126 error = bus_dmamap_load(sc->re_ldata.re_tx_list_tag,
1127 sc->re_ldata.re_tx_list_map,
1128 sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc),
1129 re_dma_map_addr, &sc->re_ldata.re_tx_list_addr,
1130 BUS_DMA_NOWAIT);
1131 if (error) {
1132 device_printf(dev, "could not get address of TX ring\n");
1133 bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1134 sc->re_ldata.re_tx_list,
1135 sc->re_ldata.re_tx_list_map);
1136 bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1137 sc->re_ldata.re_tx_list_tag = NULL;
1138 return(error);
1139 }
1140
1141 /* Allocate tag for RX descriptor list. */
1142 error = bus_dma_tag_create(sc->re_parent_tag,
1143 RE_RING_ALIGN, 0,
1144 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1145 NULL, NULL,
1146 RE_RX_LIST_SZ(sc), 1, RE_RX_LIST_SZ(sc),
1147 BUS_DMA_ALLOCNOW,
1148 &sc->re_ldata.re_rx_list_tag);
1149 if (error) {
1150 device_printf(dev, "could not allocate RX ring dma tag\n");
1151 return(error);
1152 }
1153
1154 /* Allocate DMA'able memory for the RX ring */
1155 error = bus_dmamem_alloc(sc->re_ldata.re_rx_list_tag,
1156 (void **)&sc->re_ldata.re_rx_list,
1157 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1158 &sc->re_ldata.re_rx_list_map);
1159 if (error) {
1160 device_printf(dev, "could not allocate RX ring\n");
1161 bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1162 sc->re_ldata.re_rx_list_tag = NULL;
1163 return(error);
1164 }
1165
1166 /* Load the map for the RX ring. */
1167 error = bus_dmamap_load(sc->re_ldata.re_rx_list_tag,
1168 sc->re_ldata.re_rx_list_map,
1169 sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc),
1170 re_dma_map_addr, &sc->re_ldata.re_rx_list_addr,
1171 BUS_DMA_NOWAIT);
1172 if (error) {
1173 device_printf(dev, "could not get address of RX ring\n");
1174 bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1175 sc->re_ldata.re_rx_list,
1176 sc->re_ldata.re_rx_list_map);
1177 bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1178 sc->re_ldata.re_rx_list_tag = NULL;
1179 return(error);
1180 }
1181
1182 /* Allocate map for RX/TX mbufs. */
1183 error = bus_dma_tag_create(sc->re_parent_tag,
1184 ETHER_ALIGN, 0,
1185 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1186 NULL, NULL,
1187 RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1188 BUS_DMA_ALLOCNOW,
1189 &sc->re_ldata.re_mtag);
1190 if (error) {
1191 device_printf(dev, "could not allocate buf dma tag\n");
1192 return(error);
1193 }
1194
1195 /* Create spare DMA map for RX */
1196 error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
1197 &sc->re_ldata.re_rx_spare);
1198 if (error) {
1199 device_printf(dev, "can't create spare DMA map for RX\n");
1200 bus_dma_tag_destroy(sc->re_ldata.re_mtag);
1201 sc->re_ldata.re_mtag = NULL;
1202 return error;
1203 }
1204
1205 /* Create DMA maps for TX buffers */
1206 for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1207 error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
1208 &sc->re_ldata.re_tx_dmamap[i]);
1209 if (error) {
1210 device_printf(dev, "can't create DMA map for TX buf\n");
1211 re_freebufmem(sc, i, 0);
1212 return(error);
1213 }
1214 }
1215
1216 /* Create DMA maps for RX buffers */
1217 for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1218 error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
1219 &sc->re_ldata.re_rx_dmamap[i]);
1220 if (error) {
1221 device_printf(dev, "can't create DMA map for RX buf\n");
1222 re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1223 return(error);
1224 }
1225 }
1226
1227 /* Create jumbo buffer pool for RX if required */
1228 if (sc->re_caps & RE_C_CONTIGRX) {
1229 error = re_jpool_alloc(sc);
1230 if (error) {
1231 re_jpool_free(sc);
1232 /* Disable jumbo frame support */
1233 sc->re_maxmtu = ETHERMTU;
1234 }
1235 }
1236 return(0);
1237}
1238
1239static void
1240re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1241{
1242 int i;
1243
1244 /* Destroy all the RX and TX buffer maps */
1245 if (sc->re_ldata.re_mtag) {
1246 for (i = 0; i < tx_cnt; i++) {
1247 bus_dmamap_destroy(sc->re_ldata.re_mtag,
1248 sc->re_ldata.re_tx_dmamap[i]);
1249 }
1250 for (i = 0; i < rx_cnt; i++) {
1251 bus_dmamap_destroy(sc->re_ldata.re_mtag,
1252 sc->re_ldata.re_rx_dmamap[i]);
1253 }
1254 bus_dmamap_destroy(sc->re_ldata.re_mtag,
1255 sc->re_ldata.re_rx_spare);
1256 bus_dma_tag_destroy(sc->re_ldata.re_mtag);
1257 sc->re_ldata.re_mtag = NULL;
1258 }
1259}
1260
1261static void
1262re_freemem(device_t dev)
1263{
1264 struct re_softc *sc = device_get_softc(dev);
1265
1266 /* Unload and free the RX DMA ring memory and map */
1267 if (sc->re_ldata.re_rx_list_tag) {
1268 bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1269 sc->re_ldata.re_rx_list_map);
1270 bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1271 sc->re_ldata.re_rx_list,
1272 sc->re_ldata.re_rx_list_map);
1273 bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1274 }
1275
1276 /* Unload and free the TX DMA ring memory and map */
1277 if (sc->re_ldata.re_tx_list_tag) {
1278 bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1279 sc->re_ldata.re_tx_list_map);
1280 bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1281 sc->re_ldata.re_tx_list,
1282 sc->re_ldata.re_tx_list_map);
1283 bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1284 }
1285
1286 /* Free RX/TX buf DMA stuffs */
1287 re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1288
1289 /* Unload and free the stats buffer and map */
1290 if (sc->re_ldata.re_stag) {
1291 bus_dmamap_unload(sc->re_ldata.re_stag,
1292 sc->re_ldata.re_rx_list_map);
1293 bus_dmamem_free(sc->re_ldata.re_stag,
1294 sc->re_ldata.re_stats,
1295 sc->re_ldata.re_smap);
1296 bus_dma_tag_destroy(sc->re_ldata.re_stag);
1297 }
1298
1299 if (sc->re_caps & RE_C_CONTIGRX)
1300 re_jpool_free(sc);
1301
1302 if (sc->re_parent_tag)
1303 bus_dma_tag_destroy(sc->re_parent_tag);
1304
1305 if (sc->re_ldata.re_tx_mbuf != NULL)
1306 kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1307 if (sc->re_ldata.re_rx_mbuf != NULL)
1308 kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1309 if (sc->re_ldata.re_rx_paddr != NULL)
1310 kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1311 if (sc->re_ldata.re_tx_dmamap != NULL)
1312 kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1313 if (sc->re_ldata.re_rx_dmamap != NULL)
1314 kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1315}
1316
1317/*
1318 * Attach the interface. Allocate softc structures, do ifmedia
1319 * setup and ethernet/BPF attach.
1320 */
1321static int
1322re_attach(device_t dev)
1323{
1324 struct re_softc *sc = device_get_softc(dev);
1325 struct ifnet *ifp;
1326 uint8_t eaddr[ETHER_ADDR_LEN];
1327 int error = 0, rid, qlen;
1328
1329 callout_init(&sc->re_timer);
1330 sc->re_dev = dev;
1331
1332 if (RE_IS_8139CP(sc)) {
1333 sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1334 sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1335 } else {
1336 sc->re_rx_desc_cnt = re_rx_desc_count;
1337 if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1338 sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1339
1340 sc->re_tx_desc_cnt = re_tx_desc_count;
1341 if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1342 sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1343 }
1344
1345 qlen = RE_IFQ_MAXLEN;
1346 if (sc->re_tx_desc_cnt > qlen)
1347 qlen = sc->re_tx_desc_cnt;
1348
1349 sc->re_rxbuf_size = MCLBYTES;
1350 sc->re_newbuf = re_newbuf_std;
1351
1352 sc->re_tx_time = 5; /* 125us */
1353 sc->re_rx_time = 2; /* 50us */
1354 if (sc->re_caps & RE_C_PCIE)
1355 sc->re_sim_time = 75; /* 75us */
1356 else
1357 sc->re_sim_time = 125; /* 125us */
1358 sc->re_imtype = RE_IMTYPE_SIM; /* simulated interrupt moderation */
1359 re_config_imtype(sc, sc->re_imtype);
1360
1361 sysctl_ctx_init(&sc->re_sysctl_ctx);
1362 sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
1363 SYSCTL_STATIC_CHILDREN(_hw),
1364 OID_AUTO,
1365 device_get_nameunit(dev),
1366 CTLFLAG_RD, 0, "");
1367 if (sc->re_sysctl_tree == NULL) {
1368 device_printf(dev, "can't add sysctl node\n");
1369 error = ENXIO;
1370 goto fail;
1371 }
1372 SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1373 SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1374 "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1375 0, "RX desc count");
1376 SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1377 SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1378 "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1379 0, "TX desc count");
1380 SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1381 SYSCTL_CHILDREN(sc->re_sysctl_tree),
1382 OID_AUTO, "sim_time",
1383 CTLTYPE_INT | CTLFLAG_RW,
1384 sc, 0, re_sysctl_simtime, "I",
1385 "Simulated interrupt moderation time (usec).");
1386 SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1387 SYSCTL_CHILDREN(sc->re_sysctl_tree),
1388 OID_AUTO, "imtype",
1389 CTLTYPE_INT | CTLFLAG_RW,
1390 sc, 0, re_sysctl_imtype, "I",
1391 "Interrupt moderation type -- "
1392 "0:disable, 1:simulated, "
1393 "2:hardware(if supported)");
1394 if (sc->re_caps & RE_C_HWIM) {
1395 SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1396 SYSCTL_CHILDREN(sc->re_sysctl_tree),
1397 OID_AUTO, "hw_rxtime",
1398 CTLTYPE_INT | CTLFLAG_RW,
1399 sc, 0, re_sysctl_rxtime, "I",
1400 "Hardware interrupt moderation time "
1401 "(unit: 25usec).");
1402 SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1403 SYSCTL_CHILDREN(sc->re_sysctl_tree),
1404 OID_AUTO, "hw_txtime",
1405 CTLTYPE_INT | CTLFLAG_RW,
1406 sc, 0, re_sysctl_txtime, "I",
1407 "Hardware interrupt moderation time "
1408 "(unit: 25usec).");
1409 }
1410
1411#ifndef BURN_BRIDGES
1412 /*
1413 * Handle power management nonsense.
1414 */
1415
1416 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1417 uint32_t membase, irq;
1418
1419 /* Save important PCI config data. */
1420 membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1421 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1422
1423 /* Reset the power state. */
1424 device_printf(dev, "chip is in D%d power mode "
1425 "-- setting to D0\n", pci_get_powerstate(dev));
1426
1427 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1428
1429 /* Restore PCI config data. */
1430 pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1431 pci_write_config(dev, PCIR_INTLINE, irq, 4);
1432 }
1433#endif
1434 /*
1435 * Map control/status registers.
1436 */
1437 pci_enable_busmaster(dev);
1438
1439 rid = RE_PCI_LOIO;
1440 sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1441 RF_ACTIVE);
1442
1443 if (sc->re_res == NULL) {
1444 device_printf(dev, "couldn't map ports\n");
1445 error = ENXIO;
1446 goto fail;
1447 }
1448
1449 sc->re_btag = rman_get_bustag(sc->re_res);
1450 sc->re_bhandle = rman_get_bushandle(sc->re_res);
1451
1452 /* Allocate interrupt */
1453 rid = 0;
1454 sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1455 RF_SHAREABLE | RF_ACTIVE);
1456
1457 if (sc->re_irq == NULL) {
1458 device_printf(dev, "couldn't map interrupt\n");
1459 error = ENXIO;
1460 goto fail;
1461 }
1462
1463 /* Reset the adapter. */
1464 re_reset(sc, 0);
1465
1466 if (RE_IS_8139CP(sc)) {
1467 sc->re_bus_speed = 33; /* XXX */
1468 } else if (sc->re_caps & RE_C_PCIE) {
1469 sc->re_bus_speed = 125;
1470 } else {
1471 uint8_t cfg2;
1472
1473 cfg2 = CSR_READ_1(sc, RE_CFG2);
1474 switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1475 case RE_CFG2_PCICLK_33MHZ:
1476 sc->re_bus_speed = 33;
1477 break;
1478 case RE_CFG2_PCICLK_66MHZ:
1479 sc->re_bus_speed = 66;
1480 break;
1481 default:
1482 device_printf(dev, "unknown bus speed, assume 33MHz\n");
1483 sc->re_bus_speed = 33;
1484 break;
1485 }
1486 if (cfg2 & RE_CFG2_PCI64)
1487 sc->re_caps |= RE_C_PCI64;
1488 }
1489 device_printf(dev, "Hardware rev. 0x%08x; MAC ver. 0x%02x; "
1490 "PCI%s %dMHz\n",
1491 sc->re_hwrev, sc->re_macver,
1492 (sc->re_caps & RE_C_PCIE) ?
1493 "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1494 sc->re_bus_speed);
1495
1496 /*
1497 * NOTE:
1498 * DO NOT try to adjust config1 and config5 which was spotted in
1499 * Realtek's Linux drivers. It will _permanently_ damage certain
1500 * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
1501 */
1502
1503 re_get_eaddr(sc, eaddr);
1504
1505 if (!RE_IS_8139CP(sc)) {
1506 /* Set RX length mask */
1507 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1508 sc->re_txstart = RE_GTXSTART;
1509 } else {
1510 /* Set RX length mask */
1511 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1512 sc->re_txstart = RE_TXSTART;
1513 }
1514
1515 /* Allocate DMA stuffs */
1516 error = re_allocmem(dev);
1517 if (error)
1518 goto fail;
1519
1520 /*
1521 * Apply some magic PCI settings from Realtek ...
1522 */
1523 if (RE_IS_8169(sc)) {
1524 CSR_WRITE_1(sc, 0x82, 1);
1525 pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1526 }
1527 pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1528
1529 if (sc->re_caps & RE_C_MAC2) {
1530 /*
1531 * Following part is extracted from Realtek BSD driver v176.
1532 * However, this does _not_ make much/any sense:
1533 * 8168C's PCI Express device control is located at 0x78,
1534 * so the reading from 0x79 (higher part of 0x78) and setting
1535 * the 4~6bits intend to enlarge the "max read request size"
1536 * (we will do it). The content of the rest part of this
1537 * register is not meaningful to other PCI registers, so
1538 * writing the value to 0x54 could be completely wrong.
1539 * 0x80 is the lower part of PCI Express device status, non-
1540 * reserved bits are RW1C, writing 0 to them will not have
1541 * any effect at all.
1542 */
1543#ifdef foo
1544 uint8_t val;
1545
1546 val = pci_read_config(dev, 0x79, 1);
1547 val = (val & ~0x70) | 0x50;
1548 pci_write_config(dev, 0x54, val, 1);
1549 pci_write_config(dev, 0x80, 0, 1);
1550#endif
1551 }
1552
1553 /*
1554 * Apply some PHY fixup from Realtek ...
1555 */
1556 if (sc->re_hwrev == RE_HWREV_8110S) {
1557 CSR_WRITE_1(sc, 0x82, 1);
1558 re_miibus_writereg(dev, 1, 0xb, 0);
1559 }
1560 if (sc->re_caps & RE_C_PHYPMGT) {
1561 /* Power up PHY */
1562 re_miibus_writereg(dev, 1, 0x1f, 0);
1563 re_miibus_writereg(dev, 1, 0xe, 0);
1564 }
1565
1566 /* Do MII setup */
1567 if (mii_phy_probe(dev, &sc->re_miibus,
1568 re_ifmedia_upd, re_ifmedia_sts)) {
1569 device_printf(dev, "MII without any phy!\n");
1570 error = ENXIO;
1571 goto fail;
1572 }
1573
1574 ifp = &sc->arpcom.ac_if;
1575 ifp->if_softc = sc;
1576 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1577 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1578 ifp->if_ioctl = re_ioctl;
1579 ifp->if_start = re_start;
1580#ifdef DEVICE_POLLING
1581 ifp->if_poll = re_poll;
1582#endif
1583 ifp->if_watchdog = re_watchdog;
1584 ifp->if_init = re_init;
1585 if (!RE_IS_8139CP(sc)) /* XXX */
1586 ifp->if_baudrate = 1000000000;
1587 else
1588 ifp->if_baudrate = 100000000;
1589 ifq_set_maxlen(&ifp->if_snd, qlen);
1590 ifq_set_ready(&ifp->if_snd);
1591
1592 ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1593 if (sc->re_caps & RE_C_HWCSUM)
1594 ifp->if_capabilities |= IFCAP_HWCSUM;
1595
1596 ifp->if_capenable = ifp->if_capabilities;
1597 if (ifp->if_capabilities & IFCAP_HWCSUM)
1598 ifp->if_hwassist = RE_CSUM_FEATURES;
1599 else
1600 ifp->if_hwassist = 0;
1601
1602 /*
1603 * Call MI attach routine.
1604 */
1605 ether_ifattach(ifp, eaddr, NULL);
1606
1607#ifdef RE_DIAG
1608 /*
1609 * Perform hardware diagnostic on the original RTL8169.
1610 * Some 32-bit cards were incorrectly wired and would
1611 * malfunction if plugged into a 64-bit slot.
1612 */
1613 if (sc->re_hwrev == RE_HWREV_8169) {
1614 lwkt_serialize_enter(ifp->if_serializer);
1615 error = re_diag(sc);
1616 lwkt_serialize_exit(ifp->if_serializer);
1617
1618 if (error) {
1619 device_printf(dev, "hardware diagnostic failure\n");
1620 ether_ifdetach(ifp);
1621 goto fail;
1622 }
1623 }
1624#endif /* RE_DIAG */
1625
1626 /* Hook interrupt last to avoid having to lock softc */
1627 error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1628 &sc->re_intrhand, ifp->if_serializer);
1629
1630 if (error) {
1631 device_printf(dev, "couldn't set up irq\n");
1632 ether_ifdetach(ifp);
1633 goto fail;
1634 }
1635
1636 ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->re_irq));
1637 KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1638
1639fail:
1640 if (error)
1641 re_detach(dev);
1642
1643 return (error);
1644}
1645
1646/*
1647 * Shutdown hardware and free up resources. This can be called any
1648 * time after the mutex has been initialized. It is called in both
1649 * the error case in attach and the normal detach case so it needs
1650 * to be careful about only freeing resources that have actually been
1651 * allocated.
1652 */
1653static int
1654re_detach(device_t dev)
1655{
1656 struct re_softc *sc = device_get_softc(dev);
1657 struct ifnet *ifp = &sc->arpcom.ac_if;
1658
1659 /* These should only be active if attach succeeded */
1660 if (device_is_attached(dev)) {
1661 lwkt_serialize_enter(ifp->if_serializer);
1662 re_stop(sc);
1663 bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1664 lwkt_serialize_exit(ifp->if_serializer);
1665
1666 ether_ifdetach(ifp);
1667 }
1668 if (sc->re_miibus)
1669 device_delete_child(dev, sc->re_miibus);
1670 bus_generic_detach(dev);
1671
1672 if (sc->re_sysctl_tree != NULL)
1673 sysctl_ctx_free(&sc->re_sysctl_ctx);
1674
1675 if (sc->re_irq)
1676 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->re_irq);
1677 if (sc->re_res) {
1678 bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1679 sc->re_res);
1680 }
1681
1682 /* Free DMA stuffs */
1683 re_freemem(dev);
1684
1685 return(0);
1686}
1687
1688static void
1689re_setup_rxdesc(struct re_softc *sc, int idx)
1690{
1691 bus_addr_t paddr;
1692 uint32_t cmdstat;
1693 struct re_desc *d;
1694
1695 paddr = sc->re_ldata.re_rx_paddr[idx];
1696 d = &sc->re_ldata.re_rx_list[idx];
1697
1698 d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1699 d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1700
1701 cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1702 if (idx == (sc->re_rx_desc_cnt - 1))
1703 cmdstat |= RE_RDESC_CMD_EOR;
1704 d->re_cmdstat = htole32(cmdstat);
1705}
1706
1707static int
1708re_newbuf_std(struct re_softc *sc, int idx, int init)
1709{
1710 struct re_dmaload_arg arg;
1711 bus_dma_segment_t seg;
1712 bus_dmamap_t map;
1713 struct mbuf *m;
1714 int error;
1715
1716 m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1717 if (m == NULL) {
1718 error = ENOBUFS;
1719
1720 if (init) {
1721 if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1722 return error;
1723 } else {
1724 goto back;
1725 }
1726 }
1727 m->m_len = m->m_pkthdr.len = MCLBYTES;
1728
1729 /*
1730 * NOTE:
1731 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1732 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1733 */
1734
1735 arg.re_nsegs = 1;
1736 arg.re_segs = &seg;
1737 error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag,
1738 sc->re_ldata.re_rx_spare, m,
1739 re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1740 if (error || arg.re_nsegs == 0) {
1741 if (!error) {
1742 if_printf(&sc->arpcom.ac_if, "too many segments?!\n");
1743 bus_dmamap_unload(sc->re_ldata.re_mtag,
1744 sc->re_ldata.re_rx_spare);
1745 error = EFBIG;
1746 }
1747 m_freem(m);
1748
1749 if (init) {
1750 if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1751 return error;
1752 } else {
1753 goto back;
1754 }
1755 }
1756
1757 if (!init) {
1758 bus_dmamap_sync(sc->re_ldata.re_mtag,
1759 sc->re_ldata.re_rx_dmamap[idx],
1760 BUS_DMASYNC_POSTREAD);
1761 bus_dmamap_unload(sc->re_ldata.re_mtag,
1762 sc->re_ldata.re_rx_dmamap[idx]);
1763 }
1764 sc->re_ldata.re_rx_mbuf[idx] = m;
1765 sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1766
1767 map = sc->re_ldata.re_rx_dmamap[idx];
1768 sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1769 sc->re_ldata.re_rx_spare = map;
1770back:
1771 re_setup_rxdesc(sc, idx);
1772 return error;
1773}
1774
1775static int
1776re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1777{
1778 struct mbuf *m;
1779 struct re_jbuf *jbuf;
1780 int error = 0;
1781
1782 MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1783 if (m == NULL) {
1784 error = ENOBUFS;
1785 if (init) {
1786 if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1787 return error;
1788 } else {
1789 goto back;
1790 }
1791 }
1792
1793 jbuf = re_jbuf_alloc(sc);
1794 if (jbuf == NULL) {
1795 m_freem(m);
1796
1797 error = ENOBUFS;
1798 if (init) {
1799 if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1800 return error;
1801 } else {
1802 goto back;
1803 }
1804 }
1805
1806 m->m_ext.ext_arg = jbuf;
1807 m->m_ext.ext_buf = jbuf->re_buf;
1808 m->m_ext.ext_free = re_jbuf_free;
1809 m->m_ext.ext_ref = re_jbuf_ref;
1810 m->m_ext.ext_size = sc->re_rxbuf_size;
1811
1812 m->m_data = m->m_ext.ext_buf;
1813 m->m_flags |= M_EXT;
1814 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1815
1816 /*
1817 * NOTE:
1818 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1819 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1820 */
1821
1822 sc->re_ldata.re_rx_mbuf[idx] = m;
1823 sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1824back:
1825 re_setup_rxdesc(sc, idx);
1826 return error;
1827}
1828
1829static int
1830re_tx_list_init(struct re_softc *sc)
1831{
1832 bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1833
1834 /* Flush the TX descriptors */
1835 bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1836 sc->re_ldata.re_tx_list_map, BUS_DMASYNC_PREWRITE);
1837
1838 sc->re_ldata.re_tx_prodidx = 0;
1839 sc->re_ldata.re_tx_considx = 0;
1840 sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1841
1842 return(0);
1843}
1844
1845static int
1846re_rx_list_init(struct re_softc *sc)
1847{
1848 int i, error;
1849
1850 bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1851
1852 for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1853 error = sc->re_newbuf(sc, i, 1);
1854 if (error)
1855 return(error);
1856 }
1857
1858 /* Flush the RX descriptors */
1859 bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1860 sc->re_ldata.re_rx_list_map, BUS_DMASYNC_PREWRITE);
1861
1862 sc->re_ldata.re_rx_prodidx = 0;
1863 sc->re_head = sc->re_tail = NULL;
1864
1865 return(0);
1866}
1867
1868#define RE_IP4_PACKET 0x1
1869#define RE_TCP_PACKET 0x2
1870#define RE_UDP_PACKET 0x4
1871
1872static __inline uint8_t
1873re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1874{
1875 uint8_t packet_type = 0;
1876
1877 if (sc->re_caps & RE_C_MAC2) {
1878 if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1879 packet_type |= RE_IP4_PACKET;
1880 } else {
1881 if (rxstat & RE_RDESC_STAT_PROTOID)
1882 packet_type |= RE_IP4_PACKET;
1883 }
1884 if (RE_TCPPKT(rxstat))
1885 packet_type |= RE_TCP_PACKET;
1886 else if (RE_UDPPKT(rxstat))
1887 packet_type |= RE_UDP_PACKET;
1888 return packet_type;
1889}
1890
1891/*
1892 * RX handler for C+ and 8169. For the gigE chips, we support
1893 * the reception of jumbo frames that have been fragmented
1894 * across multiple 2K mbuf cluster buffers.
1895 */
1896static int
1897re_rxeof(struct re_softc *sc)
1898{
1899 struct ifnet *ifp = &sc->arpcom.ac_if;
1900 struct mbuf *m;
1901 struct re_desc *cur_rx;
1902 uint32_t rxstat, rxctrl;
1903 int i, total_len, rx = 0;
1904 struct mbuf_chain chain[MAXCPU];
1905
1906 /* Invalidate the descriptor memory */
1907
1908 bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1909 sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
1910
1911 ether_input_chain_init(chain);
1912
1913 for (i = sc->re_ldata.re_rx_prodidx;
1914 RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1915 cur_rx = &sc->re_ldata.re_rx_list[i];
1916 m = sc->re_ldata.re_rx_mbuf[i];
1917 total_len = RE_RXBYTES(cur_rx);
1918 rxstat = le32toh(cur_rx->re_cmdstat);
1919 rxctrl = le32toh(cur_rx->re_control);
1920
1921 rx = 1;
1922
1923#ifdef INVARIANTS
1924 if (sc->re_flags & RE_F_USE_JPOOL)
1925 KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1926#endif
1927
1928 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1929 if (sc->re_flags & RE_F_DROP_RXFRAG) {
1930 re_setup_rxdesc(sc, i);
1931 continue;
1932 }
1933
1934 if (sc->re_newbuf(sc, i, 0)) {
1935 /* Drop upcoming fragments */
1936 sc->re_flags |= RE_F_DROP_RXFRAG;
1937 continue;
1938 }
1939
1940 m->m_len = MCLBYTES;
1941 if (sc->re_head == NULL) {
1942 sc->re_head = sc->re_tail = m;
1943 } else {
1944 sc->re_tail->m_next = m;
1945 sc->re_tail = m;
1946 }
1947 continue;
1948 } else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1949 /*
1950 * Last fragment of a multi-fragment packet.
1951 *
1952 * Since error already happened, this fragment
1953 * must be dropped as well as the fragment chain.
1954 */
1955 re_setup_rxdesc(sc, i);
1956 re_free_rxchain(sc);
1957 sc->re_flags &= ~RE_F_DROP_RXFRAG;
1958 continue;
1959 }
1960
1961 /*
1962 * NOTE: for the 8139C+, the frame length field
1963 * is always 12 bits in size, but for the gigE chips,
1964 * it is 13 bits (since the max RX frame length is 16K).
1965 * Unfortunately, all 32 bits in the status word
1966 * were already used, so to make room for the extra
1967 * length bit, RealTek took out the 'frame alignment
1968 * error' bit and shifted the other status bits
1969 * over one slot. The OWN, EOR, FS and LS bits are
1970 * still in the same places. We have already extracted
1971 * the frame length and checked the OWN bit, so rather
1972 * than using an alternate bit mapping, we shift the
1973 * status bits one space to the right so we can evaluate
1974 * them using the 8169 status as though it was in the
1975 * same format as that of the 8139C+.
1976 */
1977 if (!RE_IS_8139CP(sc))
1978 rxstat >>= 1;
1979
1980 if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1981 ifp->if_ierrors++;
1982 /*
1983 * If this is part of a multi-fragment packet,
1984 * discard all the pieces.
1985 */
1986 re_free_rxchain(sc);
1987 re_setup_rxdesc(sc, i);
1988 continue;
1989 }
1990
1991 /*
1992 * If allocating a replacement mbuf fails,
1993 * reload the current one.
1994 */
1995
1996 if (sc->re_newbuf(sc, i, 0)) {
1997 ifp->if_ierrors++;
1998 continue;
1999 }
2000
2001 if (sc->re_head != NULL) {
2002 m->m_len = total_len % MCLBYTES;
2003 /*
2004 * Special case: if there's 4 bytes or less
2005 * in this buffer, the mbuf can be discarded:
2006 * the last 4 bytes is the CRC, which we don't
2007 * care about anyway.
2008 */
2009 if (m->m_len <= ETHER_CRC_LEN) {
2010 sc->re_tail->m_len -=
2011 (ETHER_CRC_LEN - m->m_len);
2012 m_freem(m);
2013 } else {
2014 m->m_len -= ETHER_CRC_LEN;
2015 sc->re_tail->m_next = m;
2016 }
2017 m = sc->re_head;
2018 sc->re_head = sc->re_tail = NULL;
2019 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2020 } else {
2021 m->m_pkthdr.len = m->m_len =
2022 (total_len - ETHER_CRC_LEN);
2023 }
2024
2025 ifp->if_ipackets++;
2026 m->m_pkthdr.rcvif = ifp;
2027
2028 /* Do RX checksumming if enabled */
2029
2030 if (ifp->if_capenable & IFCAP_RXCSUM) {
2031 uint8_t packet_type;
2032
2033 packet_type = re_packet_type(sc, rxstat, rxctrl);
2034
2035 /* Check IP header checksum */
2036 if (packet_type & RE_IP4_PACKET) {
2037 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2038 if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
2039 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2040 }
2041
2042 /* Check TCP/UDP checksum */
2043 if (((packet_type & RE_TCP_PACKET) &&
2044 (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
2045 ((packet_type & RE_UDP_PACKET) &&
2046 (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
2047 m->m_pkthdr.csum_flags |=
2048 CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
2049 CSUM_FRAG_NOT_CHECKED;
2050 m->m_pkthdr.csum_data = 0xffff;
2051 }
2052 }
2053
2054 if (rxctrl & RE_RDESC_CTL_HASTAG) {
2055 m->m_flags |= M_VLANTAG;
2056 m->m_pkthdr.ether_vlantag =
2057 be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
2058 }
2059 ether_input_chain(ifp, m, chain);
2060 }
2061
2062 ether_input_dispatch(chain);
2063
2064 /* Flush the RX DMA ring */
2065
2066 bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
2067 sc->re_ldata.re_rx_list_map, BUS_DMASYNC_PREWRITE);
2068
2069 sc->re_ldata.re_rx_prodidx = i;
2070
2071 return rx;
2072}
2073
2074#undef RE_IP4_PACKET
2075#undef RE_TCP_PACKET
2076#undef RE_UDP_PACKET
2077
2078static int
2079re_tx_collect(struct re_softc *sc)
2080{
2081 struct ifnet *ifp = &sc->arpcom.ac_if;
2082 uint32_t txstat;
2083 int idx, tx = 0;
2084
2085 /* Invalidate the TX descriptor list */
2086 bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
2087 sc->re_ldata.re_tx_list_map, BUS_DMASYNC_POSTREAD);
2088
2089 for (idx = sc->re_ldata.re_tx_considx;
2090 sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2091 RE_TXDESC_INC(sc, idx)) {
2092 txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2093 if (txstat & RE_TDESC_CMD_OWN)
2094 break;
2095
2096 tx = 1;
2097
2098 sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2099
2100 /*
2101 * We only stash mbufs in the last descriptor
2102 * in a fragment chain, which also happens to
2103 * be the only place where the TX status bits
2104 * are valid.
2105 */
2106 if (txstat & RE_TDESC_CMD_EOF) {
2107 m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2108 sc->re_ldata.re_tx_mbuf[idx] = NULL;
2109 bus_dmamap_unload(sc->re_ldata.re_mtag,
2110 sc->re_ldata.re_tx_dmamap[idx]);
2111 if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2112 RE_TDESC_STAT_COLCNT))
2113 ifp->if_collisions++;
2114 if (txstat & RE_TDESC_STAT_TXERRSUM)
2115 ifp->if_oerrors++;
2116 else
2117 ifp->if_opackets++;
2118 }
2119 sc->re_ldata.re_tx_free++;
2120 }
2121 sc->re_ldata.re_tx_considx = idx;
2122
2123 return tx;
2124}
2125
2126static int
2127re_txeof(struct re_softc *sc)
2128{
2129 struct ifnet *ifp = &sc->arpcom.ac_if;
2130 int tx;
2131
2132 tx = re_tx_collect(sc);
2133
2134 /* There is enough free TX descs */
2135 if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2136 ifp->if_flags &= ~IFF_OACTIVE;
2137
2138 /*
2139 * Some chips will ignore a second TX request issued while an
2140 * existing transmission is in progress. If the transmitter goes
2141 * idle but there are still packets waiting to be sent, we need
2142 * to restart the channel here to flush them out. This only seems
2143 * to be required with the PCIe devices.
2144 */
2145 if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2146 CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2147 else
2148 ifp->if_timer = 0;
2149
2150 return tx;
2151}
2152
2153static void
2154re_tick(void *xsc)
2155{
2156 struct re_softc *sc = xsc;
2157
2158 lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2159 re_tick_serialized(xsc);
2160 lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2161}
2162
2163static void
2164re_tick_serialized(void *xsc)
2165{
2166 struct re_softc *sc = xsc;
2167 struct ifnet *ifp = &sc->arpcom.ac_if;
2168 struct mii_data *mii;
2169
2170 ASSERT_SERIALIZED(ifp->if_serializer);
2171
2172 mii = device_get_softc(sc->re_miibus);
2173 mii_tick(mii);
2174 if (sc->re_flags & RE_F_LINKED) {
2175 if (!(mii->mii_media_status & IFM_ACTIVE))
2176 sc->re_flags &= ~RE_F_LINKED;
2177 } else {
2178 if (mii->mii_media_status & IFM_ACTIVE &&
2179 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2180 sc->re_flags |= RE_F_LINKED;
2181 if (!ifq_is_empty(&ifp->if_snd))
2182 if_devstart(ifp);
2183 }
2184 }
2185
2186 callout_reset(&sc->re_timer, hz, re_tick, sc);
2187}
2188
2189#ifdef DEVICE_POLLING
2190
2191static void
2192re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2193{
2194 struct re_softc *sc = ifp->if_softc;
2195
2196 ASSERT_SERIALIZED(ifp->if_serializer);
2197
2198 switch(cmd) {
2199 case POLL_REGISTER:
2200 /* disable interrupts */
2201 re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2202 break;
2203
2204 case POLL_DEREGISTER:
2205 /* enable interrupts */
2206 re_setup_intr(sc, 1, sc->re_imtype);
2207 break;
2208
2209 default:
2210 sc->rxcycles = count;
2211 re_rxeof(sc);
2212 re_txeof(sc);
2213
2214 if (!ifq_is_empty(&ifp->if_snd))
2215 if_devstart(ifp);
2216
2217 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2218 uint16_t status;
2219
2220 status = CSR_READ_2(sc, RE_ISR);
2221 if (status == 0xffff)
2222 return;
2223 if (status)
2224 CSR_WRITE_2(sc, RE_ISR, status);
2225
2226 /*
2227 * XXX check behaviour on receiver stalls.
2228 */
2229
2230 if (status & RE_ISR_SYSTEM_ERR)
2231 re_init(sc);
2232 }
2233 break;
2234 }
2235}
2236#endif /* DEVICE_POLLING */
2237
2238static void
2239re_intr(void *arg)
2240{
2241 struct re_softc *sc = arg;
2242 struct ifnet *ifp = &sc->arpcom.ac_if;
2243 uint16_t status;
2244 int rx, tx;
2245
2246 ASSERT_SERIALIZED(ifp->if_serializer);
2247
2248 if ((sc->re_flags & RE_F_SUSPENDED) ||
2249 (ifp->if_flags & IFF_RUNNING) == 0)
2250 return;
2251
2252 rx = tx = 0;
2253 for (;;) {
2254 status = CSR_READ_2(sc, RE_ISR);
2255 /* If the card has gone away the read returns 0xffff. */
2256 if (status == 0xffff)
2257 break;
2258 if (status)
2259 CSR_WRITE_2(sc, RE_ISR, status);
2260
2261 if ((status & sc->re_intrs) == 0)
2262 break;
2263
2264 if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2265 rx |= re_rxeof(sc);
2266
2267 if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2268 tx |= re_txeof(sc);
2269
2270 if (status & RE_ISR_SYSTEM_ERR)
2271 re_init(sc);
2272
2273 if (status & RE_ISR_LINKCHG) {
2274 callout_stop(&sc->re_timer);
2275 re_tick_serialized(sc);
2276 }
2277 }
2278
2279 if (sc->re_imtype == RE_IMTYPE_SIM) {
2280 if ((sc->re_flags & RE_F_TIMER_INTR)) {
2281 if ((tx | rx) == 0)
2282 re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2283 else
2284 CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2285 } else if (tx | rx) {
2286 re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2287 }
2288 }
2289
2290 if (tx && !ifq_is_empty(&ifp->if_snd))
2291 if_devstart(ifp);
2292}
2293
2294static int
2295re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2296{
2297 struct ifnet *ifp = &sc->arpcom.ac_if;
2298 struct mbuf *m;
2299 struct re_dmaload_arg arg;
2300 bus_dma_segment_t segs[RE_MAXSEGS];
2301 bus_dmamap_t map;
2302 int error, maxsegs, idx, i;
2303 struct re_desc *d, *tx_ring;
2304 uint32_t cmd_csum, ctl_csum, vlantag;
2305
2306 KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2307 ("not enough free TX desc\n"));
2308
2309 m = *m_head;
2310 map = sc->re_ldata.re_tx_dmamap[*idx0];
2311
2312 /*
2313 * Set up checksum offload. Note: checksum offload bits must
2314 * appear in all descriptors of a multi-descriptor transmit
2315 * attempt. (This is according to testing done with an 8169
2316 * chip. I'm not sure if this is a requirement or a bug.)
2317 */
2318 cmd_csum = ctl_csum = 0;
2319 if (m->m_pkthdr.csum_flags & CSUM_IP) {
2320 cmd_csum |= RE_TDESC_CMD_IPCSUM;
2321 ctl_csum |= RE_TDESC_CTL_IPCSUM;
2322 }
2323 if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2324 cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2325 ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2326 }
2327 if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2328 cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2329 ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2330 }
2331
2332 /* For MAC2 chips, csum flags are set on re_control */
2333 if (sc->re_caps & RE_C_MAC2)
2334 cmd_csum = 0;
2335 else
2336 ctl_csum = 0;
2337
2338 if (m->m_pkthdr.len > sc->re_swcsum_lim &&
2339 (m->m_pkthdr.csum_flags & (CSUM_DELAY_IP | CSUM_DELAY_DATA))) {
2340 struct ether_header *eh;
2341 struct ip *ip;
2342 u_short offset;
2343
2344 m = m_pullup(m, sizeof(struct ether_header *));
2345 if (m == NULL) {
2346 *m_head = NULL;
2347 return ENOBUFS;
2348 }
2349 eh = mtod(m, struct ether_header *);
2350
2351 /* XXX */
2352 if (eh->ether_type == ETHERTYPE_VLAN)
2353 offset = sizeof(struct ether_vlan_header);
2354 else
2355 offset = sizeof(struct ether_header);
2356
2357 m = m_pullup(m, offset + sizeof(struct ip *));
2358 if (m == NULL) {
2359 *m_head = NULL;
2360 return ENOBUFS;
2361 }
2362 ip = (struct ip *)(mtod(m, uint8_t *) + offset);
2363
2364 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2365 u_short csum;
2366
2367 offset += IP_VHL_HL(ip->ip_vhl) << 2;
2368 csum = in_cksum_skip(m, ntohs(ip->ip_len), offset);
2369 if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
2370 csum = 0xffff;
2371 offset += m->m_pkthdr.csum_data; /* checksum offset */
2372 *(u_short *)(m->m_data + offset) = csum;
2373
2374 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2375 }
2376 if (m->m_pkthdr.csum_flags & CSUM_DELAY_IP) {
2377 ip->ip_sum = 0;
2378 if (ip->ip_vhl == IP_VHL_BORING) {
2379 ip->ip_sum = in_cksum_hdr(ip);
2380 } else {
2381 ip->ip_sum =
2382 in_cksum(m, IP_VHL_HL(ip->ip_vhl) << 2);
2383 }
2384 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP;
2385 }
2386 *m_head = m; /* 'm' may be changed by above two m_pullup() */
2387
2388 /* Clear hardware CSUM flags */
2389 cmd_csum = ctl_csum = 0;
2390 }
2391
2392 if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2393 /*
2394 * With some of the RealTek chips, using the checksum offload
2395 * support in conjunction with the autopadding feature results
2396 * in the transmission of corrupt frames. For example, if we
2397 * need to send a really small IP fragment that's less than 60
2398 * bytes in size, and IP header checksumming is enabled, the
2399 * resulting ethernet frame that appears on the wire will
2400 * have garbled payload. To work around this, if TX checksum
2401 * offload is enabled, we always manually pad short frames out
2402 * to the minimum ethernet frame size.
2403 *
2404 * Note: this appears unnecessary for TCP, and doing it for TCP
2405 * with PCIe adapters seems to result in bad checksums.
2406 */
2407 if ((m->m_pkthdr.csum_flags &
2408 (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2409 (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2410 m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2411 error = re_pad_frame(m);
2412 if (error)
2413 goto back;
2414 }
2415 }
2416
2417 vlantag = 0;
2418 if (m->m_flags & M_VLANTAG) {
2419 vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2420 RE_TDESC_CTL_INSTAG;
2421 }
2422
2423 maxsegs = sc->re_ldata.re_tx_free;
2424 if (maxsegs > RE_MAXSEGS)
2425 maxsegs = RE_MAXSEGS;
2426
2427 arg.re_nsegs = maxsegs;
2428 arg.re_segs = segs;
2429 error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map, m,
2430 re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
2431 if (error && error != EFBIG) {
2432 if_printf(ifp, "can't map mbuf (error %d)\n", error);
2433 goto back;
2434 }
2435
2436 /*
2437 * Too many segments to map, coalesce into a single mbuf
2438 */
2439 if (!error && arg.re_nsegs == 0) {
2440 bus_dmamap_unload(sc->re_ldata.re_mtag, map);
2441 error = EFBIG;
2442 }
2443 if (error) {
2444 struct mbuf *m_new;
2445
2446 m_new = m_defrag(m, MB_DONTWAIT);
2447 if (m_new == NULL) {
2448 if_printf(ifp, "can't defrag TX mbuf\n");
2449 error = ENOBUFS;
2450 goto back;
2451 } else {
2452 *m_head = m = m_new;
2453 }
2454
2455 arg.re_nsegs = maxsegs;
2456 arg.re_segs = segs;
2457 error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map, m,
2458 re_dma_map_desc, &arg,
2459 BUS_DMA_NOWAIT);
2460 if (error || arg.re_nsegs == 0) {
2461 if (!error) {
2462 bus_dmamap_unload(sc->re_ldata.re_mtag, map);
2463 error = EFBIG;
2464 }
2465 if_printf(ifp, "can't map mbuf (error %d)\n", error);
2466 goto back;
2467 }
2468 }
2469 bus_dmamap_sync(sc->re_ldata.re_mtag, map, BUS_DMASYNC_PREWRITE);
2470
2471 /*
2472 * Map the segment array into descriptors. We also keep track
2473 * of the end of the ring and set the end-of-ring bits as needed,
2474 * and we set the ownership bits in all except the very first
2475 * descriptor, whose ownership bits will be turned on later.
2476 */
2477 tx_ring = sc->re_ldata.re_tx_list;
2478 idx = *idx0;
2479 i = 0;
2480 for (;;) {
2481 uint32_t cmdstat;
2482
2483 d = &tx_ring[idx];
2484
2485 cmdstat = segs[i].ds_len;
2486 d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2487 d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2488 if (i == 0)
2489 cmdstat |= RE_TDESC_CMD_SOF;
2490 else
2491 cmdstat |= RE_TDESC_CMD_OWN;
2492 if (idx == (sc->re_tx_desc_cnt - 1))
2493 cmdstat |= RE_TDESC_CMD_EOR;
2494 d->re_cmdstat = htole32(cmdstat | cmd_csum);
2495 d->re_control = htole32(ctl_csum | vlantag);
2496
2497 i++;
2498 if (i == arg.re_nsegs)
2499 break;
2500 RE_TXDESC_INC(sc, idx);
2501 }
2502 d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2503
2504 /* Transfer ownership of packet to the chip. */
2505 d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2506 if (*idx0 != idx)
2507 tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2508
2509 /*
2510 * Insure that the map for this transmission
2511 * is placed at the array index of the last descriptor
2512 * in this chain.
2513 */
2514 sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2515 sc->re_ldata.re_tx_dmamap[idx] = map;
2516
2517 sc->re_ldata.re_tx_mbuf[idx] = m;
2518 sc->re_ldata.re_tx_free -= arg.re_nsegs;
2519
2520 RE_TXDESC_INC(sc, idx);
2521 *idx0 = idx;
2522back:
2523 if (error) {
2524 m_freem(m);
2525 *m_head = NULL;
2526 }
2527 return error;
2528}
2529
2530/*
2531 * Main transmit routine for C+ and gigE NICs.
2532 */
2533
2534static void
2535re_start(struct ifnet *ifp)
2536{
2537 struct re_softc *sc = ifp->if_softc;
2538 struct mbuf *m_head;
2539 int idx, need_trans, oactive, error;
2540
2541 ASSERT_SERIALIZED(ifp->if_serializer);
2542
2543 if ((sc->re_flags & RE_F_LINKED) == 0) {
2544 ifq_purge(&ifp->if_snd);
2545 return;
2546 }
2547
2548 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
2549 return;
2550
2551 idx = sc->re_ldata.re_tx_prodidx;
2552
2553 need_trans = 0;
2554 oactive = 0;
2555 while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2556 if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2557 if (!oactive) {
2558 if (re_tx_collect(sc)) {
2559 oactive = 1;
2560 continue;
2561 }
2562 }
2563 ifp->if_flags |= IFF_OACTIVE;
2564 break;
2565 }
2566
2567 m_head = ifq_dequeue(&ifp->if_snd, NULL);
2568 if (m_head == NULL)
2569 break;
2570
2571 error = re_encap(sc, &m_head, &idx);
2572 if (error) {
2573 /* m_head is freed by re_encap(), if we reach here */
2574 ifp->if_oerrors++;
2575
2576 if (error == EFBIG && !oactive) {
2577 if (re_tx_collect(sc)) {
2578 oactive = 1;
2579 continue;
2580 }
2581 }
2582 ifp->if_flags |= IFF_OACTIVE;
2583 break;
2584 }
2585
2586 oactive = 0;
2587 need_trans = 1;
2588
2589 /*
2590 * If there's a BPF listener, bounce a copy of this frame
2591 * to him.
2592 */
2593 ETHER_BPF_MTAP(ifp, m_head);
2594 }
2595
2596 if (!need_trans)
2597 return;
2598
2599 /* Flush the TX descriptors */
2600 bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
2601 sc->re_ldata.re_tx_list_map, BUS_DMASYNC_PREWRITE);
2602
2603 sc->re_ldata.re_tx_prodidx = idx;
2604
2605 /*
2606 * RealTek put the TX poll request register in a different
2607 * location on the 8169 gigE chip. I don't know why.
2608 */
2609 CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2610
2611 /*
2612 * Set a timeout in case the chip goes out to lunch.
2613 */
2614 ifp->if_timer = 5;
2615}
2616
2617static void
2618re_init(void *xsc)
2619{
2620 struct re_softc *sc = xsc;
2621 struct ifnet *ifp = &sc->arpcom.ac_if;
2622 struct mii_data *mii;
2623 uint32_t rxcfg = 0;
2624 int error, framelen;
2625
2626 ASSERT_SERIALIZED(ifp->if_serializer);
2627
2628 mii = device_get_softc(sc->re_miibus);
2629
2630 /*
2631 * Cancel pending I/O and free all RX/TX buffers.
2632 */
2633 re_stop(sc);
2634
2635 if (sc->re_caps & RE_C_CONTIGRX) {
2636 if (ifp->if_mtu > ETHERMTU) {
2637 KKASSERT(sc->re_ldata.re_jbuf != NULL);
2638 sc->re_flags |= RE_F_USE_JPOOL;
2639 sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2640 sc->re_newbuf = re_newbuf_jumbo;
2641 } else {
2642 sc->re_flags &= ~RE_F_USE_JPOOL;
2643 sc->re_rxbuf_size = MCLBYTES;
2644 sc->re_newbuf = re_newbuf_std;
2645 }
2646 }
2647
2648 /*
2649 * Adjust max read request size according to MTU.
2650 * Mainly to improve TX performance for common case (ETHERMTU).
2651 */
2652 if (sc->re_caps & RE_C_PCIE) {
2653 if (ifp->if_mtu > ETHERMTU) {
2654 /*
2655 * 512 seems to be the only value that works
2656 * reliably with jumbo frame
2657 */
2658 re_set_max_readrq(sc, PCIEM_DEVCTL_MAX_READRQ_512);
2659 } else {
2660 re_set_max_readrq(sc, PCIEM_DEVCTL_MAX_READRQ_4096);
2661 }
2662 }
2663
2664 /*
2665 * Enable C+ RX and TX mode, as well as VLAN stripping and
2666 * RX checksum offload. We must configure the C+ register
2667 * before all others.
2668 */
2669 CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2670 RE_CPLUSCMD_PCI_MRW |
2671 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2672 RE_CPLUSCMD_VLANSTRIP : 0) |
2673 (ifp->if_capenable & IFCAP_RXCSUM ?
2674 RE_CPLUSCMD_RXCSUM_ENB : 0));
2675
2676 /*
2677 * Init our MAC address. Even though the chipset
2678 * documentation doesn't mention it, we need to enter "Config
2679 * register write enable" mode to modify the ID registers.
2680 */
2681 CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2682 CSR_WRITE_4(sc, RE_IDR0,
2683 htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2684 CSR_WRITE_2(sc, RE_IDR4,
2685 htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2686 CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2687
2688 /*
2689 * For C+ mode, initialize the RX descriptors and mbufs.
2690 */
2691 error = re_rx_list_init(sc);
2692 if (error) {
2693 re_stop(sc);
2694 return;
2695 }
2696 error = re_tx_list_init(sc);
2697 if (error) {
2698 re_stop(sc);
2699 return;
2700 }
2701
2702 /*
2703 * Load the addresses of the RX and TX lists into the chip.
2704 */
2705 CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2706 RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2707 CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2708 RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2709
2710 CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2711 RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2712 CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2713 RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2714
2715 /*
2716 * Enable transmit and receive.
2717 */
2718 CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2719
2720 /*
2721 * Set the initial TX and RX configuration.
2722 */
2723 if (sc->re_flags & RE_F_TESTMODE) {
2724 if (!RE_IS_8139CP(sc))
2725 CSR_WRITE_4(sc, RE_TXCFG,
2726 RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2727 else
2728 CSR_WRITE_4(sc, RE_TXCFG,
2729 RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2730 } else
2731 CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2732
2733 framelen = RE_FRAMELEN(ifp->if_mtu);
2734 if (framelen < MCLBYTES)
2735 CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2736 else
2737 CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2738
2739 CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2740
2741 /* Set the individual bit to receive frames for this host only. */
2742 rxcfg = CSR_READ_4(sc, RE_RXCFG);
2743 rxcfg |= RE_RXCFG_RX_INDIV;
2744
2745 /* If we want promiscuous mode, set the allframes bit. */
2746 if (ifp->if_flags & IFF_PROMISC) {
2747 rxcfg |= RE_RXCFG_RX_ALLPHYS;
2748 CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
2749 } else {
2750 rxcfg &= ~RE_RXCFG_RX_ALLPHYS;
2751 CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
2752 }
2753
2754 /*
2755 * Set capture broadcast bit to capture broadcast frames.
2756 */
2757 if (ifp->if_flags & IFF_BROADCAST) {
2758 rxcfg |= RE_RXCFG_RX_BROAD;
2759 CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
2760 } else {
2761 rxcfg &= ~RE_RXCFG_RX_BROAD;
2762 CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
2763 }
2764
2765 /*
2766 * Program the multicast filter, if necessary.
2767 */
2768 re_setmulti(sc);
2769
2770#ifdef DEVICE_POLLING
2771 /*
2772 * Disable interrupts if we are polling.
2773 */
2774 if (ifp->if_flags & IFF_POLLING)
2775 re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2776 else /* otherwise ... */
2777#endif /* DEVICE_POLLING */
2778 /*
2779 * Enable interrupts.
2780 */
2781 if (sc->re_flags & RE_F_TESTMODE)
2782 CSR_WRITE_2(sc, RE_IMR, 0);
2783 else
2784 re_setup_intr(sc, 1, sc->re_imtype);
2785 CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2786
2787 /* Start RX/TX process. */
2788 CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2789
2790#ifdef notdef
2791 /* Enable receiver and transmitter. */
2792 CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2793#endif
2794
2795 /*
2796 * For 8169 gigE NICs, set the max allowed RX packet
2797 * size so we can receive jumbo frames.
2798 */
2799 if (!RE_IS_8139CP(sc)) {
2800 if (sc->re_caps & RE_C_CONTIGRX)
2801 CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2802 else
2803 CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2804 }
2805
2806 if (sc->re_flags & RE_F_TESTMODE)
2807 return;
2808
2809 mii_mediachg(mii);
2810
2811 CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2812
2813 ifp->if_flags |= IFF_RUNNING;
2814 ifp->if_flags &= ~IFF_OACTIVE;
2815
2816 callout_reset(&sc->re_timer, hz, re_tick, sc);
2817}
2818
2819/*
2820 * Set media options.
2821 */
2822static int
2823re_ifmedia_upd(struct ifnet *ifp)
2824{
2825 struct re_softc *sc = ifp->if_softc;
2826 struct mii_data *mii;
2827
2828 ASSERT_SERIALIZED(ifp->if_serializer);
2829
2830 mii = device_get_softc(sc->re_miibus);
2831 mii_mediachg(mii);
2832
2833 return(0);
2834}
2835
2836/*
2837 * Report current media status.
2838 */
2839static void
2840re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2841{
2842 struct re_softc *sc = ifp->if_softc;
2843 struct mii_data *mii;
2844
2845 ASSERT_SERIALIZED(ifp->if_serializer);
2846
2847 mii = device_get_softc(sc->re_miibus);
2848
2849 mii_pollstat(mii);
2850 ifmr->ifm_active = mii->mii_media_active;
2851 ifmr->ifm_status = mii->mii_media_status;
2852}
2853
2854static int
2855re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2856{
2857 struct re_softc *sc = ifp->if_softc;
2858 struct ifreq *ifr = (struct ifreq *) data;
2859 struct mii_data *mii;
2860 int error = 0, mask;
2861
2862 ASSERT_SERIALIZED(ifp->if_serializer);
2863
2864 switch(command) {
2865 case SIOCSIFMTU:
2866 if (ifr->ifr_mtu > sc->re_maxmtu) {
2867 error = EINVAL;
2868 } else if (ifp->if_mtu != ifr->ifr_mtu) {
2869 ifp->if_mtu = ifr->ifr_mtu;
2870 if (ifp->if_flags & IFF_RUNNING)
2871 ifp->if_init(sc);
2872 }
2873 break;
2874
2875 case SIOCSIFFLAGS:
2876 if (ifp->if_flags & IFF_UP)
2877 re_init(sc);
2878 else if (ifp->if_flags & IFF_RUNNING)
2879 re_stop(sc);
2880 break;
2881 case SIOCADDMULTI:
2882 case SIOCDELMULTI:
2883 re_setmulti(sc);
2884 error = 0;
2885 break;
2886 case SIOCGIFMEDIA:
2887 case SIOCSIFMEDIA:
2888 mii = device_get_softc(sc->re_miibus);
2889 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2890 break;
2891 case SIOCSIFCAP:
2892 mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2893 ifp->if_capabilities;
2894 ifp->if_capenable ^= mask;
2895
2896 if (mask & IFCAP_HWCSUM) {
2897 if (ifp->if_capenable & IFCAP_TXCSUM)
2898 ifp->if_hwassist = RE_CSUM_FEATURES;
2899 else
2900 ifp->if_hwassist = 0;
2901 }
2902 if (mask && (ifp->if_flags & IFF_RUNNING))
2903 re_init(sc);
2904 break;
2905 default:
2906 error = ether_ioctl(ifp, command, data);
2907 break;
2908 }
2909 return(error);
2910}
2911
2912static void
2913re_watchdog(struct ifnet *ifp)
2914{
2915 struct re_softc *sc = ifp->if_softc;
2916
2917 ASSERT_SERIALIZED(ifp->if_serializer);
2918
2919 if_printf(ifp, "watchdog timeout\n");
2920
2921 ifp->if_oerrors++;
2922
2923 re_txeof(sc);
2924 re_rxeof(sc);
2925
2926 re_init(sc);
2927
2928 if (!ifq_is_empty(&ifp->if_snd))
2929 if_devstart(ifp);
2930}
2931
2932/*
2933 * Stop the adapter and free any mbufs allocated to the
2934 * RX and TX lists.
2935 */
2936static void
2937re_stop(struct re_softc *sc)
2938{
2939 struct ifnet *ifp = &sc->arpcom.ac_if;
2940 int i;
2941
2942 ASSERT_SERIALIZED(ifp->if_serializer);
2943
2944 /* Reset the adapter. */
2945 re_reset(sc, ifp->if_flags & IFF_RUNNING);
2946
2947 ifp->if_timer = 0;
2948 callout_stop(&sc->re_timer);
2949
2950 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2951 sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2952
2953 CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2954 CSR_WRITE_2(sc, RE_IMR, 0x0000);
2955 CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2956
2957 re_free_rxchain(sc);
2958
2959 /* Free the TX list buffers. */
2960 for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2961 if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2962 bus_dmamap_unload(sc->re_ldata.re_mtag,
2963 sc->re_ldata.re_tx_dmamap[i]);
2964 m_freem(sc->re_ldata.re_tx_mbuf[i]);
2965 sc->re_ldata.re_tx_mbuf[i] = NULL;
2966 }
2967 }
2968
2969 /* Free the RX list buffers. */
2970 for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2971 if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2972 if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2973 bus_dmamap_unload(sc->re_ldata.re_mtag,
2974 sc->re_ldata.re_rx_dmamap[i]);
2975 }
2976 m_freem(sc->re_ldata.re_rx_mbuf[i]);
2977 sc->re_ldata.re_rx_mbuf[i] = NULL;
2978 }
2979 }
2980}
2981
2982/*
2983 * Device suspend routine. Stop the interface and save some PCI
2984 * settings in case the BIOS doesn't restore them properly on
2985 * resume.
2986 */
2987static int
2988re_suspend(device_t dev)
2989{
2990#ifndef BURN_BRIDGES
2991 int i;
2992#endif
2993 struct re_softc *sc = device_get_softc(dev);
2994 struct ifnet *ifp = &sc->arpcom.ac_if;
2995
2996 lwkt_serialize_enter(ifp->if_serializer);
2997
2998 re_stop(sc);
2999
3000#ifndef BURN_BRIDGES
3001 for (i = 0; i < 5; i++)
3002 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3003 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3004 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3005 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3006 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3007#endif
3008
3009 sc->re_flags |= RE_F_SUSPENDED;
3010
3011 lwkt_serialize_exit(ifp->if_serializer);
3012
3013 return (0);
3014}
3015
3016/*
3017 * Device resume routine. Restore some PCI settings in case the BIOS
3018 * doesn't, re-enable busmastering, and restart the interface if
3019 * appropriate.
3020 */
3021static int
3022re_resume(device_t dev)
3023{
3024 struct re_softc *sc = device_get_softc(dev);
3025 struct ifnet *ifp = &sc->arpcom.ac_if;
3026#ifndef BURN_BRIDGES
3027 int i;
3028#endif
3029
3030 lwkt_serialize_enter(ifp->if_serializer);
3031
3032#ifndef BURN_BRIDGES
3033 /* better way to do this? */
3034 for (i = 0; i < 5; i++)
3035 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3036 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3037 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3038 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3039 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3040
3041 /* reenable busmastering */
3042 pci_enable_busmaster(dev);
3043 pci_enable_io(dev, SYS_RES_IOPORT);
3044#endif
3045
3046 /* reinitialize interface if necessary */
3047 if (ifp->if_flags & IFF_UP)
3048 re_init(sc);
3049
3050 sc->re_flags &= ~RE_F_SUSPENDED;
3051
3052 lwkt_serialize_exit(ifp->if_serializer);
3053
3054 return (0);
3055}
3056
3057/*
3058 * Stop all chip I/O so that the kernel's probe routines don't
3059 * get confused by errant DMAs when rebooting.
3060 */
3061static void
3062re_shutdown(device_t dev)
3063{
3064 struct re_softc *sc = device_get_softc(dev);
3065 struct ifnet *ifp = &sc->arpcom.ac_if;
3066
3067 lwkt_serialize_enter(ifp->if_serializer);
3068 re_stop(sc);
3069 lwkt_serialize_exit(ifp->if_serializer);
3070}
3071
3072static int
3073re_pad_frame(struct mbuf *pkt)
3074{
3075 struct mbuf *last = NULL;
3076 int padlen;
3077
3078 padlen = RE_MIN_FRAMELEN - pkt->m_pkthdr.len;
3079
3080 /* if there's only the packet-header and we can pad there, use it. */
3081 if (pkt->m_pkthdr.len == pkt->m_len &&
3082 M_TRAILINGSPACE(pkt) >= padlen) {
3083 last = pkt;
3084 } else {
3085 /*
3086 * Walk packet chain to find last mbuf. We will either
3087 * pad there, or append a new mbuf and pad it
3088 */
3089 for (last = pkt; last->m_next != NULL; last = last->m_next)
3090 ; /* EMPTY */
3091
3092 /* `last' now points to last in chain. */
3093 if (M_TRAILINGSPACE(last) < padlen) {
3094 struct mbuf *n;
3095
3096 /* Allocate new empty mbuf, pad it. Compact later. */
3097 MGET(n, MB_DONTWAIT, MT_DATA);
3098 if (n == NULL)
3099 return ENOBUFS;
3100 n->m_len = 0;
3101 last->m_next = n;
3102 last = n;
3103 }
3104 }
3105 KKASSERT(M_TRAILINGSPACE(last) >= padlen);
3106 KKASSERT(M_WRITABLE(last));
3107
3108 /* Now zero the pad area, to avoid the re cksum-assist bug */
3109 bzero(mtod(last, char *) + last->m_len, padlen);
3110 last->m_len += padlen;
3111 pkt->m_pkthdr.len += padlen;
3112 return 0;
3113}
3114
3115static int
3116re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
3117{
3118 struct re_softc *sc = arg1;
3119
3120 return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
3121}
3122
3123static int
3124re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
3125{
3126 struct re_softc *sc = arg1;
3127
3128 return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
3129}
3130
3131static int
3132re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
3133{
3134 struct re_softc *sc = arg1;
3135 struct ifnet *ifp = &sc->arpcom.ac_if;
3136 int error, v;
3137
3138 lwkt_serialize_enter(ifp->if_serializer);
3139
3140 v = *hwtime;
3141 error = sysctl_handle_int(oidp, &v, 0, req);
3142 if (error || req->newptr == NULL)
3143 goto back;
3144
3145 if (v <= 0) {
3146 error = EINVAL;
3147 goto back;
3148 }
3149
3150 if (v != *hwtime) {
3151 *hwtime = v;
3152
3153 if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3154 IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
3155 re_setup_hw_im(sc);
3156 }
3157back:
3158 lwkt_serialize_exit(ifp->if_serializer);
3159 return error;
3160}
3161
3162static int
3163re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
3164{
3165 struct re_softc *sc = arg1;
3166 struct ifnet *ifp = &sc->arpcom.ac_if;
3167 int error, v;
3168
3169 lwkt_serialize_enter(ifp->if_serializer);
3170
3171 v = sc->re_sim_time;
3172 error = sysctl_handle_int(oidp, &v, 0, req);
3173 if (error || req->newptr == NULL)
3174 goto back;
3175
3176 if (v <= 0) {
3177 error = EINVAL;
3178 goto back;
3179 }
3180
3181 if (v != sc->re_sim_time) {
3182 sc->re_sim_time = v;
3183
3184 if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3185 IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
3186#ifdef foo
3187 int reg;
3188
3189 /*
3190 * Following code causes various strange
3191 * performance problems. Hmm ...
3192 */
3193 CSR_WRITE_2(sc, RE_IMR, 0);
3194 if (!RE_IS_8139CP(sc))
3195 reg = RE_TIMERINT_8169;
3196 else
3197 reg = RE_TIMERINT;
3198 CSR_WRITE_4(sc, reg, 0);
3199 CSR_READ_4(sc, reg); /* flush */
3200
3201 CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3202 re_setup_sim_im(sc);
3203#else
3204 re_setup_intr(sc, 0, RE_IMTYPE_NONE);
3205 DELAY(10);
3206 re_setup_intr(sc, 1, RE_IMTYPE_SIM);
3207#endif
3208 }
3209 }
3210back:
3211 lwkt_serialize_exit(ifp->if_serializer);
3212 return error;
3213}
3214
3215static int
3216re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3217{
3218 struct re_softc *sc = arg1;
3219 struct ifnet *ifp = &sc->arpcom.ac_if;
3220 int error, v;
3221
3222 lwkt_serialize_enter(ifp->if_serializer);
3223
3224 v = sc->re_imtype;
3225 error = sysctl_handle_int(oidp, &v, 0, req);
3226 if (error || req->newptr == NULL)
3227 goto back;
3228
3229 if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3230 error = EINVAL;
3231 goto back;
3232 }
3233 if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3234 /* Can't do hardware interrupt moderation */
3235 error = EOPNOTSUPP;
3236 goto back;
3237 }
3238
3239 if (v != sc->re_imtype) {
3240 sc->re_imtype = v;
3241 if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3242 IFF_RUNNING)
3243 re_setup_intr(sc, 1, sc->re_imtype);
3244 }
3245back:
3246 lwkt_serialize_exit(ifp->if_serializer);
3247 return error;
3248}
3249
3250static void
3251re_setup_hw_im(struct re_softc *sc)
3252{
3253 KKASSERT(sc->re_caps & RE_C_HWIM);
3254
3255 /*
3256 * Interrupt moderation
3257 *
3258 * 0xABCD
3259 * A - unknown (maybe TX related)
3260 * B - TX timer (unit: 25us)
3261 * C - unknown (maybe RX related)
3262 * D - RX timer (unit: 25us)
3263 *
3264 *
3265 * re(4)'s interrupt moderation is actually controlled by
3266 * two variables, like most other NICs (bge, bce etc.)
3267 * o timer
3268 * o number of packets [P]
3269 *
3270 * The logic relationship between these two variables is
3271 * similar to other NICs too:
3272 * if (timer expire || packets > [P])
3273 * Interrupt is delivered
3274 *
3275 * Currently we only know how to set 'timer', but not
3276 * 'number of packets', which should be ~30, as far as I
3277 * tested (sink ~900Kpps, interrupt rate is 30KHz)
3278 */
3279 CSR_WRITE_2(sc, RE_IM,
3280 RE_IM_RXTIME(sc->re_rx_time) |
3281 RE_IM_TXTIME(sc->re_tx_time) |
3282 RE_IM_MAGIC);
3283}
3284
3285static void
3286re_disable_hw_im(struct re_softc *sc)
3287{
3288 if (sc->re_caps & RE_C_HWIM)
3289 CSR_WRITE_2(sc, RE_IM, 0);
3290}
3291
3292static void
3293re_setup_sim_im(struct re_softc *sc)
3294{
3295 if (!RE_IS_8139CP(sc)) {
3296 uint32_t ticks;
3297
3298 /*
3299 * Datasheet says tick decreases at bus speed,
3300 * but it seems the clock runs a little bit
3301 * faster, so we do some compensation here.
3302 */
3303 ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3304 CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3305 } else {
3306 CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3307 }
3308 CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3309 sc->re_flags |= RE_F_TIMER_INTR;
3310}
3311
3312static void
3313re_disable_sim_im(struct re_softc *sc)
3314{
3315 if (!RE_IS_8139CP(sc))
3316 CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3317 else
3318 CSR_WRITE_4(sc, RE_TIMERINT, 0);
3319 sc->re_flags &= ~RE_F_TIMER_INTR;
3320}
3321
3322static void
3323re_config_imtype(struct re_softc *sc, int imtype)
3324{
3325 switch (imtype) {
3326 case RE_IMTYPE_HW:
3327 KKASSERT(sc->re_caps & RE_C_HWIM);
3328 /* FALL THROUGH */
3329 case RE_IMTYPE_NONE:
3330 sc->re_intrs = RE_INTRS;
3331 sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3332 RE_ISR_RX_OVERRUN;
3333 sc->re_tx_ack = RE_ISR_TX_OK;
3334 break;
3335
3336 case RE_IMTYPE_SIM:
3337 sc->re_intrs = RE_INTRS_TIMER;
3338 sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3339 sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3340 break;
3341
3342 default:
3343 panic("%s: unknown imtype %d\n",
3344 sc->arpcom.ac_if.if_xname, imtype);
3345 }
3346}
3347
3348static void
3349re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3350{
3351 re_config_imtype(sc, imtype);
3352
3353 if (enable_intrs)
3354 CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3355 else
3356 CSR_WRITE_2(sc, RE_IMR, 0);
3357
3358 switch (imtype) {
3359 case RE_IMTYPE_NONE:
3360 re_disable_sim_im(sc);
3361 re_disable_hw_im(sc);
3362 break;
3363
3364 case RE_IMTYPE_HW:
3365 KKASSERT(sc->re_caps & RE_C_HWIM);
3366 re_disable_sim_im(sc);
3367 re_setup_hw_im(sc);
3368 break;
3369
3370 case RE_IMTYPE_SIM:
3371 re_disable_hw_im(sc);
3372 re_setup_sim_im(sc);
3373 break;
3374
3375 default:
3376 panic("%s: unknown imtype %d\n",
3377 sc->arpcom.ac_if.if_xname, imtype);
3378 }
3379}
3380
3381static void
3382re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3383{
3384 int i;
3385
3386 if (sc->re_macver == RE_MACVER_11 || sc->re_macver == RE_MACVER_12) {
3387 uint16_t re_did;
3388
3389 re_get_eewidth(sc);
3390 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3391 if (re_did == 0x8128) {
3392 uint16_t as[ETHER_ADDR_LEN / 2];
3393
3394 /*
3395 * Get station address from the EEPROM.
3396 */
3397 re_read_eeprom(sc, (caddr_t)as, RE_EE_EADDR, 3);
3398 for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3399 as[i] = le16toh(as[i]);
3400 bcopy(as, eaddr, sizeof(eaddr));
3401 return;
3402 }
3403 }
3404
3405 /*
3406 * Get station address from IDRx.
3407 */
3408 for (i = 0; i < ETHER_ADDR_LEN; ++i)
3409 eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3410}
3411
3412static void
3413re_set_max_readrq(struct re_softc *sc, uint16_t size)
3414{
3415 device_t dev = sc->re_dev;
3416 uint8_t expr_ptr;
3417 uint16_t val, rqsize;
3418
3419 rqsize = size & PCIEM_DEVCTL_MAX_READRQ_MASK;
3420 if (rqsize > PCIEM_DEVCTL_MAX_READRQ_4096)
3421 panic("invalid read request size %02x\n", rqsize);
3422
3423 expr_ptr = pci_get_pciecap_ptr(dev);
3424 KKASSERT(expr_ptr != 0);
3425
3426 val = pci_read_config(dev, expr_ptr + PCIER_DEVCTRL, 2);
3427 if ((val & PCIEM_DEVCTL_MAX_READRQ_MASK) != rqsize) {
3428 device_printf(dev, "adjust device control "
3429 "0x%04x ", val);
3430
3431 val &= ~PCIEM_DEVCTL_MAX_READRQ_MASK;
3432 val |= rqsize;
3433 pci_write_config(dev, expr_ptr + PCIER_DEVCTRL, val, 2);
3434
3435 kprintf("-> 0x%04x\n", val);
3436 }
3437}
3438
3439static int
3440re_jpool_alloc(struct re_softc *sc)
3441{
3442 struct re_list_data *ldata = &sc->re_ldata;
3443 struct re_jbuf *jbuf;
3444 bus_addr_t paddr;
3445 bus_size_t jpool_size;
3446 caddr_t buf;
3447 int i, error;
3448
3449 lwkt_serialize_init(&ldata->re_jbuf_serializer);
3450
3451 ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3452 M_DEVBUF, M_WAITOK | M_ZERO);
3453
3454 jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3455
3456 error = bus_dma_tag_create(sc->re_parent_tag,
3457 RE_BUF_ALIGN, 0, /* alignment, boundary */
3458 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
3459 BUS_SPACE_MAXADDR, /* highaddr */
3460 NULL, NULL, /* filter, filterarg */
3461 jpool_size, 1, /* nsegments, maxsize */
3462 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
3463 BUS_DMA_ALLOCNOW, /* flags */
3464 &ldata->re_jpool_tag);
3465 if (error) {
3466 device_printf(sc->re_dev, "could not allocate jumbo dma tag\n");
3467 return error;
3468 }
3469
3470 error = bus_dmamem_alloc(ldata->re_jpool_tag, (void **)&ldata->re_jpool,
3471 BUS_DMA_WAITOK, &ldata->re_jpool_map);
3472 if (error) {
3473 device_printf(sc->re_dev,
3474 "could not allocate jumbo dma memory\n");
3475 bus_dma_tag_destroy(ldata->re_jpool_tag);
3476 ldata->re_jpool_tag = NULL;
3477 return error;
3478 }
3479
3480 error = bus_dmamap_load(ldata->re_jpool_tag, ldata->re_jpool_map,
3481 ldata->re_jpool, jpool_size,
3482 re_dma_map_addr, &paddr, BUS_DMA_WAITOK);
3483 if (error) {
3484 device_printf(sc->re_dev, "could not load jumbo dma map\n");
3485 bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3486 ldata->re_jpool_map);
3487 bus_dma_tag_destroy(ldata->re_jpool_tag);
3488 ldata->re_jpool_tag = NULL;
3489 return error;
3490 }
3491
3492 /* ..and split it into 9KB chunks */
3493 SLIST_INIT(&ldata->re_jbuf_free);
3494
3495 buf = ldata->re_jpool;
3496 for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3497 jbuf = &ldata->re_jbuf[i];
3498
3499 jbuf->re_sc = sc;
3500 jbuf->re_inuse = 0;
3501 jbuf->re_slot = i;
3502 jbuf->re_buf = buf;
3503 jbuf->re_paddr = paddr;
3504
3505 SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3506
3507 buf += RE_JBUF_SIZE;
3508 paddr += RE_JBUF_SIZE;
3509 }
3510 return 0;
3511}
3512
3513static void
3514re_jpool_free(struct re_softc *sc)
3515{
3516 struct re_list_data *ldata = &sc->re_ldata;
3517
3518 if (ldata->re_jpool_tag != NULL) {
3519 bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3520 bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3521 ldata->re_jpool_map);
3522 bus_dma_tag_destroy(ldata->re_jpool_tag);
3523 ldata->re_jpool_tag = NULL;
3524 }
3525
3526 if (ldata->re_jbuf != NULL) {
3527 kfree(ldata->re_jbuf, M_DEVBUF);
3528 ldata->re_jbuf = NULL;
3529 }
3530}
3531
3532static struct re_jbuf *
3533re_jbuf_alloc(struct re_softc *sc)
3534{
3535 struct re_list_data *ldata = &sc->re_ldata;
3536 struct re_jbuf *jbuf;
3537
3538 lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3539
3540 jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3541 if (jbuf != NULL) {
3542 SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3543 jbuf->re_inuse = 1;
3544 }
3545
3546 lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3547
3548 return jbuf;
3549}
3550
3551static void
3552re_jbuf_free(void *arg)
3553{
3554 struct re_jbuf *jbuf = arg;
3555 struct re_softc *sc = jbuf->re_sc;
3556 struct re_list_data *ldata = &sc->re_ldata;
3557
3558 if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3559 panic("%s: free wrong jumbo buffer\n",
3560 sc->arpcom.ac_if.if_xname);
3561 } else if (jbuf->re_inuse == 0) {
3562 panic("%s: jumbo buffer already freed\n",
3563 sc->arpcom.ac_if.if_xname);
3564 }
3565
3566 lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3567 atomic_subtract_int(&jbuf->re_inuse, 1);
3568 if (jbuf->re_inuse == 0)
3569 SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3570 lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3571}
3572
3573static void
3574re_jbuf_ref(void *arg)
3575{
3576 struct re_jbuf *jbuf = arg;
3577 struct re_softc *sc = jbuf->re_sc;
3578 struct re_list_data *ldata = &sc->re_ldata;
3579
3580 if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3581 panic("%s: ref wrong jumbo buffer\n",
3582 sc->arpcom.ac_if.if_xname);
3583 } else if (jbuf->re_inuse == 0) {
3584 panic("%s: jumbo buffer already freed\n",
3585 sc->arpcom.ac_if.if_xname);
3586 }
3587 atomic_add_int(&jbuf->re_inuse, 1);
3588}