AMD64 work:
[dragonfly.git] / sys / bus / pci / pci.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * $FreeBSD: src/sys/pci/pci.c,v 1.141.2.15 2002/04/30 17:48:18 tmm Exp $
27 * $DragonFly: src/sys/bus/pci/pci.c,v 1.52 2008/06/05 18:06:31 swildner Exp $
28 *
29 */
30
31#include "opt_bus.h"
32#include "opt_pci.h"
33
34#include "opt_compat_oldpci.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/malloc.h>
39#include <sys/module.h>
40#include <sys/fcntl.h>
41#include <sys/conf.h>
42#include <sys/kernel.h>
43#include <sys/queue.h>
44#include <sys/types.h>
45#include <sys/buf.h>
46
47#include <vm/vm.h>
48#include <vm/pmap.h>
49#include <vm/vm_extern.h>
50
51#include <sys/bus.h>
52#include <sys/rman.h>
53#include <machine/smp.h>
54#ifdef __i386__
55#include <bus/pci/i386/pci_cfgreg.h>
56#endif
57
58#include <sys/pciio.h>
59#include "pcireg.h"
60#include "pcivar.h"
61#include "pci_private.h"
62
63#include "pcib_if.h"
64
65devclass_t pci_devclass;
66const char *pcib_owner;
67
68static void pci_read_capabilities(device_t dev, pcicfgregs *cfg);
69static int pcie_slotimpl(const pcicfgregs *);
70
71struct pci_quirk {
72 u_int32_t devid; /* Vendor/device of the card */
73 int type;
74#define PCI_QUIRK_MAP_REG 1 /* PCI map register in weird place */
75 int arg1;
76 int arg2;
77};
78
79struct pci_quirk pci_quirks[] = {
80 /*
81 * The Intel 82371AB and 82443MX has a map register at offset 0x90.
82 */
83 { 0x71138086, PCI_QUIRK_MAP_REG, 0x90, 0 },
84 { 0x719b8086, PCI_QUIRK_MAP_REG, 0x90, 0 },
85 /* As does the Serverworks OSB4 (the SMBus mapping register) */
86 { 0x02001166, PCI_QUIRK_MAP_REG, 0x90, 0 },
87
88 { 0 }
89};
90
91/* map register information */
92#define PCI_MAPMEM 0x01 /* memory map */
93#define PCI_MAPMEMP 0x02 /* prefetchable memory map */
94#define PCI_MAPPORT 0x04 /* port map */
95
96static STAILQ_HEAD(devlist, pci_devinfo) pci_devq;
97u_int32_t pci_numdevs = 0;
98static u_int32_t pci_generation = 0;
99
100device_t
101pci_find_bsf(u_int8_t bus, u_int8_t slot, u_int8_t func)
102{
103 struct pci_devinfo *dinfo;
104
105 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
106 if ((dinfo->cfg.bus == bus) &&
107 (dinfo->cfg.slot == slot) &&
108 (dinfo->cfg.func == func)) {
109 return (dinfo->cfg.dev);
110 }
111 }
112
113 return (NULL);
114}
115
116device_t
117pci_find_device(u_int16_t vendor, u_int16_t device)
118{
119 struct pci_devinfo *dinfo;
120
121 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
122 if ((dinfo->cfg.vendor == vendor) &&
123 (dinfo->cfg.device == device)) {
124 return (dinfo->cfg.dev);
125 }
126 }
127
128 return (NULL);
129}
130
131int
132pcie_slot_implemented(device_t dev)
133{
134 struct pci_devinfo *dinfo = device_get_ivars(dev);
135
136 return pcie_slotimpl(&dinfo->cfg);
137}
138
139/* return base address of memory or port map */
140
141static u_int32_t
142pci_mapbase(unsigned mapreg)
143{
144 int mask = 0x03;
145 if ((mapreg & 0x01) == 0)
146 mask = 0x0f;
147 return (mapreg & ~mask);
148}
149
150/* return map type of memory or port map */
151
152static int
153pci_maptype(unsigned mapreg)
154{
155 static u_int8_t maptype[0x10] = {
156 PCI_MAPMEM, PCI_MAPPORT,
157 PCI_MAPMEM, 0,
158 PCI_MAPMEM, PCI_MAPPORT,
159 0, 0,
160 PCI_MAPMEM|PCI_MAPMEMP, PCI_MAPPORT,
161 PCI_MAPMEM|PCI_MAPMEMP, 0,
162 PCI_MAPMEM|PCI_MAPMEMP, PCI_MAPPORT,
163 0, 0,
164 };
165
166 return maptype[mapreg & 0x0f];
167}
168
169/* return log2 of map size decoded for memory or port map */
170
171static int
172pci_mapsize(unsigned testval)
173{
174 int ln2size;
175
176 testval = pci_mapbase(testval);
177 ln2size = 0;
178 if (testval != 0) {
179 while ((testval & 1) == 0)
180 {
181 ln2size++;
182 testval >>= 1;
183 }
184 }
185 return (ln2size);
186}
187
188/* return log2 of address range supported by map register */
189
190static int
191pci_maprange(unsigned mapreg)
192{
193 int ln2range = 0;
194 switch (mapreg & 0x07) {
195 case 0x00:
196 case 0x01:
197 case 0x05:
198 ln2range = 32;
199 break;
200 case 0x02:
201 ln2range = 20;
202 break;
203 case 0x04:
204 ln2range = 64;
205 break;
206 }
207 return (ln2range);
208}
209
210/* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
211
212static void
213pci_fixancient(pcicfgregs *cfg)
214{
215 if (cfg->hdrtype != 0)
216 return;
217
218 /* PCI to PCI bridges use header type 1 */
219 if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
220 cfg->hdrtype = 1;
221}
222
223/* read config data specific to header type 1 device (PCI to PCI bridge) */
224
225static void *
226pci_readppb(device_t pcib, int b, int s, int f)
227{
228 pcih1cfgregs *p;
229
230 p = kmalloc(sizeof (pcih1cfgregs), M_DEVBUF, M_WAITOK | M_ZERO);
231
232 p->secstat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECSTAT_1, 2);
233 p->bridgectl = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_BRIDGECTL_1, 2);
234
235 p->seclat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECLAT_1, 1);
236
237 p->iobase = PCI_PPBIOBASE (PCIB_READ_CONFIG(pcib, b, s, f,
238 PCIR_IOBASEH_1, 2),
239 PCIB_READ_CONFIG(pcib, b, s, f,
240 PCIR_IOBASEL_1, 1));
241 p->iolimit = PCI_PPBIOLIMIT (PCIB_READ_CONFIG(pcib, b, s, f,
242 PCIR_IOLIMITH_1, 2),
243 PCIB_READ_CONFIG(pcib, b, s, f,
244 PCIR_IOLIMITL_1, 1));
245
246 p->membase = PCI_PPBMEMBASE (0,
247 PCIB_READ_CONFIG(pcib, b, s, f,
248 PCIR_MEMBASE_1, 2));
249 p->memlimit = PCI_PPBMEMLIMIT (0,
250 PCIB_READ_CONFIG(pcib, b, s, f,
251 PCIR_MEMLIMIT_1, 2));
252
253 p->pmembase = PCI_PPBMEMBASE (
254 (pci_addr_t)PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMBASEH_1, 4),
255 PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMBASEL_1, 2));
256
257 p->pmemlimit = PCI_PPBMEMLIMIT (
258 (pci_addr_t)PCIB_READ_CONFIG(pcib, b, s, f,
259 PCIR_PMLIMITH_1, 4),
260 PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMLIMITL_1, 2));
261
262 return (p);
263}
264
265/* read config data specific to header type 2 device (PCI to CardBus bridge) */
266
267static void *
268pci_readpcb(device_t pcib, int b, int s, int f)
269{
270 pcih2cfgregs *p;
271
272 p = kmalloc(sizeof (pcih2cfgregs), M_DEVBUF, M_WAITOK | M_ZERO);
273
274 p->secstat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECSTAT_2, 2);
275 p->bridgectl = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_BRIDGECTL_2, 2);
276
277 p->seclat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECLAT_2, 1);
278
279 p->membase0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMBASE0_2, 4);
280 p->memlimit0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMLIMIT0_2, 4);
281 p->membase1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMBASE1_2, 4);
282 p->memlimit1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMLIMIT1_2, 4);
283
284 p->iobase0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOBASE0_2, 4);
285 p->iolimit0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOLIMIT0_2, 4);
286 p->iobase1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOBASE1_2, 4);
287 p->iolimit1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOLIMIT1_2, 4);
288
289 p->pccardif = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PCCARDIF_2, 4);
290 return p;
291}
292
293/* extract header type specific config data */
294
295static void
296pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
297{
298#define REG(n,w) PCIB_READ_CONFIG(pcib, b, s, f, n, w)
299 switch (cfg->hdrtype) {
300 case 0:
301 cfg->subvendor = REG(PCIR_SUBVEND_0, 2);
302 cfg->subdevice = REG(PCIR_SUBDEV_0, 2);
303 cfg->nummaps = PCI_MAXMAPS_0;
304 break;
305 case 1:
306 cfg->subvendor = REG(PCIR_SUBVEND_1, 2);
307 cfg->subdevice = REG(PCIR_SUBDEV_1, 2);
308 cfg->secondarybus = REG(PCIR_SECBUS_1, 1);
309 cfg->subordinatebus = REG(PCIR_SUBBUS_1, 1);
310 cfg->nummaps = PCI_MAXMAPS_1;
311 cfg->hdrspec = pci_readppb(pcib, b, s, f);
312 break;
313 case 2:
314 cfg->subvendor = REG(PCIR_SUBVEND_2, 2);
315 cfg->subdevice = REG(PCIR_SUBDEV_2, 2);
316 cfg->secondarybus = REG(PCIR_SECBUS_2, 1);
317 cfg->subordinatebus = REG(PCIR_SUBBUS_2, 1);
318 cfg->nummaps = PCI_MAXMAPS_2;
319 cfg->hdrspec = pci_readpcb(pcib, b, s, f);
320 break;
321 }
322#undef REG
323}
324
325/* read configuration header into pcicfgrect structure */
326
327struct pci_devinfo *
328pci_read_device(device_t pcib, int b, int s, int f, size_t size)
329{
330#define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w)
331
332 pcicfgregs *cfg = NULL;
333 struct pci_devinfo *devlist_entry;
334 struct devlist *devlist_head;
335
336 devlist_head = &pci_devq;
337
338 devlist_entry = NULL;
339
340 if (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_DEVVENDOR, 4) != -1) {
341
342 devlist_entry = kmalloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
343
344 cfg = &devlist_entry->cfg;
345
346 cfg->bus = b;
347 cfg->slot = s;
348 cfg->func = f;
349 cfg->vendor = REG(PCIR_VENDOR, 2);
350 cfg->device = REG(PCIR_DEVICE, 2);
351 cfg->cmdreg = REG(PCIR_COMMAND, 2);
352 cfg->statreg = REG(PCIR_STATUS, 2);
353 cfg->baseclass = REG(PCIR_CLASS, 1);
354 cfg->subclass = REG(PCIR_SUBCLASS, 1);
355 cfg->progif = REG(PCIR_PROGIF, 1);
356 cfg->revid = REG(PCIR_REVID, 1);
357 cfg->hdrtype = REG(PCIR_HDRTYPE, 1);
358 cfg->cachelnsz = REG(PCIR_CACHELNSZ, 1);
359 cfg->lattimer = REG(PCIR_LATTIMER, 1);
360 cfg->intpin = REG(PCIR_INTPIN, 1);
361 cfg->intline = REG(PCIR_INTLINE, 1);
362
363#ifdef APIC_IO
364 /*
365 * If using the APIC the intpin is probably wrong, since it
366 * is often setup by the BIOS with the PIC in mind.
367 */
368 if (cfg->intpin != 0) {
369 int airq;
370
371 airq = pci_apic_irq(cfg->bus, cfg->slot, cfg->intpin);
372 if (airq >= 0) {
373 /* PCI specific entry found in MP table */
374 if (airq != cfg->intline) {
375 undirect_pci_irq(cfg->intline);
376 cfg->intline = airq;
377 }
378 } else {
379 /*
380 * PCI interrupts might be redirected to the
381 * ISA bus according to some MP tables. Use the
382 * same methods as used by the ISA devices
383 * devices to find the proper IOAPIC int pin.
384 */
385 airq = isa_apic_irq(cfg->intline);
386 if ((airq >= 0) && (airq != cfg->intline)) {
387 /* XXX: undirect_pci_irq() ? */
388 undirect_isa_irq(cfg->intline);
389 cfg->intline = airq;
390 }
391 }
392 }
393#endif /* APIC_IO */
394
395 cfg->mingnt = REG(PCIR_MINGNT, 1);
396 cfg->maxlat = REG(PCIR_MAXLAT, 1);
397
398 cfg->mfdev = (cfg->hdrtype & PCIM_MFDEV) != 0;
399 cfg->hdrtype &= ~PCIM_MFDEV;
400
401 pci_fixancient(cfg);
402 pci_hdrtypedata(pcib, b, s, f, cfg);
403 pci_read_capabilities(pcib, cfg);
404
405 STAILQ_INSERT_TAIL(devlist_head, devlist_entry, pci_links);
406
407 devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
408 devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
409 devlist_entry->conf.pc_sel.pc_func = cfg->func;
410 devlist_entry->conf.pc_hdr = cfg->hdrtype;
411
412 devlist_entry->conf.pc_subvendor = cfg->subvendor;
413 devlist_entry->conf.pc_subdevice = cfg->subdevice;
414 devlist_entry->conf.pc_vendor = cfg->vendor;
415 devlist_entry->conf.pc_device = cfg->device;
416
417 devlist_entry->conf.pc_class = cfg->baseclass;
418 devlist_entry->conf.pc_subclass = cfg->subclass;
419 devlist_entry->conf.pc_progif = cfg->progif;
420 devlist_entry->conf.pc_revid = cfg->revid;
421
422 pci_numdevs++;
423 pci_generation++;
424 }
425 return (devlist_entry);
426#undef REG
427}
428
429static int
430pci_fixup_nextptr(int *nextptr0)
431{
432 int nextptr = *nextptr0;
433
434 /* "Next pointer" is only one byte */
435 KASSERT(nextptr <= 0xff, ("Illegal next pointer %d\n", nextptr));
436
437 if (nextptr & 0x3) {
438 /*
439 * PCI local bus spec 3.0:
440 *
441 * "... The bottom two bits of all pointers are reserved
442 * and must be implemented as 00b although software must
443 * mask them to allow for future uses of these bits ..."
444 */
445 if (bootverbose) {
446 kprintf("Illegal PCI extended capability "
447 "offset, fixup 0x%02x -> 0x%02x\n",
448 nextptr, nextptr & ~0x3);
449 }
450 nextptr &= ~0x3;
451 }
452 *nextptr0 = nextptr;
453
454 if (nextptr < 0x40) {
455 if (nextptr != 0) {
456 kprintf("Illegal PCI extended capability "
457 "offset 0x%02x", nextptr);
458 }
459 return 0;
460 }
461 return 1;
462}
463
464static void
465pci_read_cap_pmgt(device_t pcib, int ptr, pcicfgregs *cfg)
466{
467#define REG(n, w) \
468 PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
469
470 struct pcicfg_pmgt *pmgt = &cfg->pmgt;
471
472 if (pmgt->pp_cap)
473 return;
474
475 pmgt->pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
476 pmgt->pp_status = ptr + PCIR_POWER_STATUS;
477 pmgt->pp_pmcsr = ptr + PCIR_POWER_PMCSR;
478 /*
479 * XXX
480 * Following way may be used to to test whether
481 * 'data' register exists:
482 * if 'data_select' register of
483 * PCIR_POWER_STATUS(bits[12,9]) is read-only
484 * then 'data' register is _not_ implemented.
485 */
486 pmgt->pp_data = 0;
487
488#undef REG
489}
490
491static int
492pcie_slotimpl(const pcicfgregs *cfg)
493{
494 const struct pcicfg_expr *expr = &cfg->expr;
495 uint16_t port_type;
496
497 /*
498 * Only version 1 can be parsed currently
499 */
500 if ((expr->expr_cap & PCIEM_CAP_VER_MASK) != PCIEM_CAP_VER_1)
501 return 0;
502
503 /*
504 * - Slot implemented bit is meaningful iff current port is
505 * root port or down stream port.
506 * - Testing for root port or down stream port is meanningful
507 * iff PCI configure has type 1 header.
508 */
509
510 if (cfg->hdrtype != 1)
511 return 0;
512
513 port_type = expr->expr_cap & PCIEM_CAP_PORT_TYPE;
514 if (port_type != PCIE_ROOT_PORT && port_type != PCIE_DOWN_STREAM_PORT)
515 return 0;
516
517 if (!(expr->expr_cap & PCIEM_CAP_SLOT_IMPL))
518 return 0;
519
520 return 1;
521}
522
523static void
524pci_read_cap_expr(device_t pcib, int ptr, pcicfgregs *cfg)
525{
526#define REG(n, w) \
527 PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
528
529 struct pcicfg_expr *expr = &cfg->expr;
530
531 expr->expr_ptr = ptr;
532 expr->expr_cap = REG(ptr + PCIER_CAPABILITY, 2);
533
534 /*
535 * Only version 1 can be parsed currently
536 */
537 if ((expr->expr_cap & PCIEM_CAP_VER_MASK) != PCIEM_CAP_VER_1)
538 return;
539
540 /*
541 * Read slot capabilities. Slot capabilities exists iff
542 * current port's slot is implemented
543 */
544 if (pcie_slotimpl(cfg))
545 expr->expr_slotcap = REG(ptr + PCIER_SLOTCAP, 4);
546
547#undef REG
548}
549
550static void
551pci_read_capabilities(device_t pcib, pcicfgregs *cfg)
552{
553#define REG(n, w) \
554 PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
555
556 int nextptr, ptrptr;
557
558 if ((REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT) == 0) {
559 /* No capabilities */
560 return;
561 }
562
563 switch (cfg->hdrtype) {
564 case 0:
565 case 1:
566 ptrptr = PCIR_CAP_PTR;
567 break;
568 case 2:
569 ptrptr = PCIR_CAP_PTR_2;
570 break;
571 default:
572 return; /* No capabilities support */
573 }
574 nextptr = REG(ptrptr, 1);
575
576 /*
577 * Read capability entries.
578 */
579 while (pci_fixup_nextptr(&nextptr)) {
580 int ptr = nextptr;
581
582 /* Process this entry */
583 switch (REG(ptr, 1)) {
584 case PCIY_PMG: /* PCI power management */
585 pci_read_cap_pmgt(pcib, ptr, cfg);
586 break;
587 case PCIY_PCIX: /* PCI-X */
588 cfg->pcixcap_ptr = ptr;
589 break;
590 case PCIY_EXPRESS: /* PCI Express */
591 pci_read_cap_expr(pcib, ptr, cfg);
592 break;
593 default:
594 break;
595 }
596
597 /* Find the next entry */
598 nextptr = REG(ptr + 1, 1);
599 }
600
601#undef REG
602}
603
604/* free pcicfgregs structure and all depending data structures */
605
606int
607pci_freecfg(struct pci_devinfo *dinfo)
608{
609 struct devlist *devlist_head;
610
611 devlist_head = &pci_devq;
612
613 if (dinfo->cfg.hdrspec != NULL)
614 kfree(dinfo->cfg.hdrspec, M_DEVBUF);
615 /* XXX this hasn't been tested */
616 STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
617 kfree(dinfo, M_DEVBUF);
618
619 /* increment the generation count */
620 pci_generation++;
621
622 /* we're losing one device */
623 pci_numdevs--;
624 return (0);
625}
626
627
628/*
629 * PCI power manangement
630 */
631int
632pci_set_powerstate_method(device_t dev, device_t child, int state)
633{
634 struct pci_devinfo *dinfo = device_get_ivars(child);
635 pcicfgregs *cfg = &dinfo->cfg;
636 struct pcicfg_pmgt *pmgt = &cfg->pmgt;
637 u_int16_t status;
638 int result;
639
640 if (pmgt->pp_cap != 0) {
641 status = PCI_READ_CONFIG(dev, child, pmgt->pp_status, 2) & ~PCIM_PSTAT_DMASK;
642 result = 0;
643 switch (state) {
644 case PCI_POWERSTATE_D0:
645 status |= PCIM_PSTAT_D0;
646 break;
647 case PCI_POWERSTATE_D1:
648 if (pmgt->pp_cap & PCIM_PCAP_D1SUPP) {
649 status |= PCIM_PSTAT_D1;
650 } else {
651 result = EOPNOTSUPP;
652 }
653 break;
654 case PCI_POWERSTATE_D2:
655 if (pmgt->pp_cap & PCIM_PCAP_D2SUPP) {
656 status |= PCIM_PSTAT_D2;
657 } else {
658 result = EOPNOTSUPP;
659 }
660 break;
661 case PCI_POWERSTATE_D3:
662 status |= PCIM_PSTAT_D3;
663 break;
664 default:
665 result = EINVAL;
666 }
667 if (result == 0)
668 PCI_WRITE_CONFIG(dev, child, pmgt->pp_status, status, 2);
669 } else {
670 result = ENXIO;
671 }
672 return(result);
673}
674
675int
676pci_get_powerstate_method(device_t dev, device_t child)
677{
678 struct pci_devinfo *dinfo = device_get_ivars(child);
679 pcicfgregs *cfg = &dinfo->cfg;
680 struct pcicfg_pmgt *pmgt = &cfg->pmgt;
681 u_int16_t status;
682 int result;
683
684 if (pmgt->pp_cap != 0) {
685 status = PCI_READ_CONFIG(dev, child, pmgt->pp_status, 2);
686 switch (status & PCIM_PSTAT_DMASK) {
687 case PCIM_PSTAT_D0:
688 result = PCI_POWERSTATE_D0;
689 break;
690 case PCIM_PSTAT_D1:
691 result = PCI_POWERSTATE_D1;
692 break;
693 case PCIM_PSTAT_D2:
694 result = PCI_POWERSTATE_D2;
695 break;
696 case PCIM_PSTAT_D3:
697 result = PCI_POWERSTATE_D3;
698 break;
699 default:
700 result = PCI_POWERSTATE_UNKNOWN;
701 break;
702 }
703 } else {
704 /* No support, device is always at D0 */
705 result = PCI_POWERSTATE_D0;
706 }
707 return(result);
708}
709
710/*
711 * Some convenience functions for PCI device drivers.
712 */
713
714static __inline void
715pci_set_command_bit(device_t dev, device_t child, u_int16_t bit)
716{
717 u_int16_t command;
718
719 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
720 command |= bit;
721 PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
722}
723
724static __inline void
725pci_clear_command_bit(device_t dev, device_t child, u_int16_t bit)
726{
727 u_int16_t command;
728
729 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
730 command &= ~bit;
731 PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
732}
733
734int
735pci_enable_busmaster_method(device_t dev, device_t child)
736{
737 pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
738 return(0);
739}
740
741int
742pci_disable_busmaster_method(device_t dev, device_t child)
743{
744 pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
745 return(0);
746}
747
748int
749pci_enable_io_method(device_t dev, device_t child, int space)
750{
751 uint16_t command;
752 uint16_t bit;
753 char *error;
754
755 bit = 0;
756 error = NULL;
757
758 switch(space) {
759 case SYS_RES_IOPORT:
760 bit = PCIM_CMD_PORTEN;
761 error = "port";
762 break;
763 case SYS_RES_MEMORY:
764 bit = PCIM_CMD_MEMEN;
765 error = "memory";
766 break;
767 default:
768 return(EINVAL);
769 }
770 pci_set_command_bit(dev, child, bit);
771 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
772 if (command & bit)
773 return(0);
774 device_printf(child, "failed to enable %s mapping!\n", error);
775 return(ENXIO);
776}
777
778int
779pci_disable_io_method(device_t dev, device_t child, int space)
780{
781 uint16_t command;
782 uint16_t bit;
783 char *error;
784
785 bit = 0;
786 error = NULL;
787
788 switch(space) {
789 case SYS_RES_IOPORT:
790 bit = PCIM_CMD_PORTEN;
791 error = "port";
792 break;
793 case SYS_RES_MEMORY:
794 bit = PCIM_CMD_MEMEN;
795 error = "memory";
796 break;
797 default:
798 return (EINVAL);
799 }
800 pci_clear_command_bit(dev, child, bit);
801 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
802 if (command & bit) {
803 device_printf(child, "failed to disable %s mapping!\n", error);
804 return (ENXIO);
805 }
806 return (0);
807}
808
809/*
810 * This is the user interface to PCI configuration space.
811 */
812
813static int
814pci_open(struct dev_open_args *ap)
815{
816 if ((ap->a_oflags & FWRITE) && securelevel > 0) {
817 return EPERM;
818 }
819 return 0;
820}
821
822static int
823pci_close(struct dev_close_args *ap)
824{
825 return 0;
826}
827
828/*
829 * Match a single pci_conf structure against an array of pci_match_conf
830 * structures. The first argument, 'matches', is an array of num_matches
831 * pci_match_conf structures. match_buf is a pointer to the pci_conf
832 * structure that will be compared to every entry in the matches array.
833 * This function returns 1 on failure, 0 on success.
834 */
835static int
836pci_conf_match(struct pci_match_conf *matches, int num_matches,
837 struct pci_conf *match_buf)
838{
839 int i;
840
841 if ((matches == NULL) || (match_buf == NULL) || (num_matches <= 0))
842 return(1);
843
844 for (i = 0; i < num_matches; i++) {
845 /*
846 * I'm not sure why someone would do this...but...
847 */
848 if (matches[i].flags == PCI_GETCONF_NO_MATCH)
849 continue;
850
851 /*
852 * Look at each of the match flags. If it's set, do the
853 * comparison. If the comparison fails, we don't have a
854 * match, go on to the next item if there is one.
855 */
856 if (((matches[i].flags & PCI_GETCONF_MATCH_BUS) != 0)
857 && (match_buf->pc_sel.pc_bus != matches[i].pc_sel.pc_bus))
858 continue;
859
860 if (((matches[i].flags & PCI_GETCONF_MATCH_DEV) != 0)
861 && (match_buf->pc_sel.pc_dev != matches[i].pc_sel.pc_dev))
862 continue;
863
864 if (((matches[i].flags & PCI_GETCONF_MATCH_FUNC) != 0)
865 && (match_buf->pc_sel.pc_func != matches[i].pc_sel.pc_func))
866 continue;
867
868 if (((matches[i].flags & PCI_GETCONF_MATCH_VENDOR) != 0)
869 && (match_buf->pc_vendor != matches[i].pc_vendor))
870 continue;
871
872 if (((matches[i].flags & PCI_GETCONF_MATCH_DEVICE) != 0)
873 && (match_buf->pc_device != matches[i].pc_device))
874 continue;
875
876 if (((matches[i].flags & PCI_GETCONF_MATCH_CLASS) != 0)
877 && (match_buf->pc_class != matches[i].pc_class))
878 continue;
879
880 if (((matches[i].flags & PCI_GETCONF_MATCH_UNIT) != 0)
881 && (match_buf->pd_unit != matches[i].pd_unit))
882 continue;
883
884 if (((matches[i].flags & PCI_GETCONF_MATCH_NAME) != 0)
885 && (strncmp(matches[i].pd_name, match_buf->pd_name,
886 sizeof(match_buf->pd_name)) != 0))
887 continue;
888
889 return(0);
890 }
891
892 return(1);
893}
894
895/*
896 * Locate the parent of a PCI device by scanning the PCI devlist
897 * and return the entry for the parent.
898 * For devices on PCI Bus 0 (the host bus), this is the PCI Host.
899 * For devices on secondary PCI busses, this is that bus' PCI-PCI Bridge.
900 */
901
902pcicfgregs *
903pci_devlist_get_parent(pcicfgregs *cfg)
904{
905 struct devlist *devlist_head;
906 struct pci_devinfo *dinfo;
907 pcicfgregs *bridge_cfg;
908 int i;
909
910 dinfo = STAILQ_FIRST(devlist_head = &pci_devq);
911
912 /* If the device is on PCI bus 0, look for the host */
913 if (cfg->bus == 0) {
914 for (i = 0; (dinfo != NULL) && (i < pci_numdevs);
915 dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
916 bridge_cfg = &dinfo->cfg;
917 if (bridge_cfg->baseclass == PCIC_BRIDGE
918 && bridge_cfg->subclass == PCIS_BRIDGE_HOST
919 && bridge_cfg->bus == cfg->bus) {
920 return bridge_cfg;
921 }
922 }
923 }
924
925 /* If the device is not on PCI bus 0, look for the PCI-PCI bridge */
926 if (cfg->bus > 0) {
927 for (i = 0; (dinfo != NULL) && (i < pci_numdevs);
928 dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
929 bridge_cfg = &dinfo->cfg;
930 if (bridge_cfg->baseclass == PCIC_BRIDGE
931 && bridge_cfg->subclass == PCIS_BRIDGE_PCI
932 && bridge_cfg->secondarybus == cfg->bus) {
933 return bridge_cfg;
934 }
935 }
936 }
937
938 return NULL;
939}
940
941static int
942pci_ioctl(struct dev_ioctl_args *ap)
943{
944 device_t pci, pcib;
945 struct pci_io *io;
946 const char *name;
947 int error;
948
949 if (!(ap->a_fflag & FWRITE))
950 return EPERM;
951
952 switch(ap->a_cmd) {
953 case PCIOCGETCONF:
954 {
955 struct pci_devinfo *dinfo;
956 struct pci_conf_io *cio;
957 struct devlist *devlist_head;
958 struct pci_match_conf *pattern_buf;
959 int num_patterns;
960 size_t iolen;
961 int ionum, i;
962
963 cio = (struct pci_conf_io *)ap->a_data;
964
965 num_patterns = 0;
966 dinfo = NULL;
967
968 /*
969 * Hopefully the user won't pass in a null pointer, but it
970 * can't hurt to check.
971 */
972 if (cio == NULL) {
973 error = EINVAL;
974 break;
975 }
976
977 /*
978 * If the user specified an offset into the device list,
979 * but the list has changed since they last called this
980 * ioctl, tell them that the list has changed. They will
981 * have to get the list from the beginning.
982 */
983 if ((cio->offset != 0)
984 && (cio->generation != pci_generation)){
985 cio->num_matches = 0;
986 cio->status = PCI_GETCONF_LIST_CHANGED;
987 error = 0;
988 break;
989 }
990
991 /*
992 * Check to see whether the user has asked for an offset
993 * past the end of our list.
994 */
995 if (cio->offset >= pci_numdevs) {
996 cio->num_matches = 0;
997 cio->status = PCI_GETCONF_LAST_DEVICE;
998 error = 0;
999 break;
1000 }
1001
1002 /* get the head of the device queue */
1003 devlist_head = &pci_devq;
1004
1005 /*
1006 * Determine how much room we have for pci_conf structures.
1007 * Round the user's buffer size down to the nearest
1008 * multiple of sizeof(struct pci_conf) in case the user
1009 * didn't specify a multiple of that size.
1010 */
1011 iolen = min(cio->match_buf_len -
1012 (cio->match_buf_len % sizeof(struct pci_conf)),
1013 pci_numdevs * sizeof(struct pci_conf));
1014
1015 /*
1016 * Since we know that iolen is a multiple of the size of
1017 * the pciconf union, it's okay to do this.
1018 */
1019 ionum = iolen / sizeof(struct pci_conf);
1020
1021 /*
1022 * If this test is true, the user wants the pci_conf
1023 * structures returned to match the supplied entries.
1024 */
1025 if ((cio->num_patterns > 0)
1026 && (cio->pat_buf_len > 0)) {
1027 /*
1028 * pat_buf_len needs to be:
1029 * num_patterns * sizeof(struct pci_match_conf)
1030 * While it is certainly possible the user just
1031 * allocated a large buffer, but set the number of
1032 * matches correctly, it is far more likely that
1033 * their kernel doesn't match the userland utility
1034 * they're using. It's also possible that the user
1035 * forgot to initialize some variables. Yes, this
1036 * may be overly picky, but I hazard to guess that
1037 * it's far more likely to just catch folks that
1038 * updated their kernel but not their userland.
1039 */
1040 if ((cio->num_patterns *
1041 sizeof(struct pci_match_conf)) != cio->pat_buf_len){
1042 /* The user made a mistake, return an error*/
1043 cio->status = PCI_GETCONF_ERROR;
1044 kprintf("pci_ioctl: pat_buf_len %d != "
1045 "num_patterns (%d) * sizeof(struct "
1046 "pci_match_conf) (%d)\npci_ioctl: "
1047 "pat_buf_len should be = %d\n",
1048 cio->pat_buf_len, cio->num_patterns,
1049 (int)sizeof(struct pci_match_conf),
1050 (int)sizeof(struct pci_match_conf) *
1051 cio->num_patterns);
1052 kprintf("pci_ioctl: do your headers match your "
1053 "kernel?\n");
1054 cio->num_matches = 0;
1055 error = EINVAL;
1056 break;
1057 }
1058
1059 /*
1060 * Check the user's buffer to make sure it's readable.
1061 */
1062 if (!useracc((caddr_t)cio->patterns,
1063 cio->pat_buf_len, VM_PROT_READ)) {
1064 kprintf("pci_ioctl: pattern buffer %p, "
1065 "length %u isn't user accessible for"
1066 " READ\n", cio->patterns,
1067 cio->pat_buf_len);
1068 error = EACCES;
1069 break;
1070 }
1071 /*
1072 * Allocate a buffer to hold the patterns.
1073 */
1074 pattern_buf = kmalloc(cio->pat_buf_len, M_TEMP,
1075 M_WAITOK);
1076 error = copyin(cio->patterns, pattern_buf,
1077 cio->pat_buf_len);
1078 if (error != 0)
1079 break;
1080 num_patterns = cio->num_patterns;
1081
1082 } else if ((cio->num_patterns > 0)
1083 || (cio->pat_buf_len > 0)) {
1084 /*
1085 * The user made a mistake, spit out an error.
1086 */
1087 cio->status = PCI_GETCONF_ERROR;
1088 cio->num_matches = 0;
1089 kprintf("pci_ioctl: invalid GETCONF arguments\n");
1090 error = EINVAL;
1091 break;
1092 } else
1093 pattern_buf = NULL;
1094
1095 /*
1096 * Make sure we can write to the match buffer.
1097 */
1098 if (!useracc((caddr_t)cio->matches,
1099 cio->match_buf_len, VM_PROT_WRITE)) {
1100 kprintf("pci_ioctl: match buffer %p, length %u "
1101 "isn't user accessible for WRITE\n",
1102 cio->matches, cio->match_buf_len);
1103 error = EACCES;
1104 break;
1105 }
1106
1107 /*
1108 * Go through the list of devices and copy out the devices
1109 * that match the user's criteria.
1110 */
1111 for (cio->num_matches = 0, error = 0, i = 0,
1112 dinfo = STAILQ_FIRST(devlist_head);
1113 (dinfo != NULL) && (cio->num_matches < ionum)
1114 && (error == 0) && (i < pci_numdevs);
1115 dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
1116
1117 if (i < cio->offset)
1118 continue;
1119
1120 /* Populate pd_name and pd_unit */
1121 name = NULL;
1122 if (dinfo->cfg.dev && dinfo->conf.pd_name[0] == '\0')
1123 name = device_get_name(dinfo->cfg.dev);
1124 if (name) {
1125 strncpy(dinfo->conf.pd_name, name,
1126 sizeof(dinfo->conf.pd_name));
1127 dinfo->conf.pd_name[PCI_MAXNAMELEN] = 0;
1128 dinfo->conf.pd_unit =
1129 device_get_unit(dinfo->cfg.dev);
1130 }
1131
1132 if ((pattern_buf == NULL) ||
1133 (pci_conf_match(pattern_buf, num_patterns,
1134 &dinfo->conf) == 0)) {
1135
1136 /*
1137 * If we've filled up the user's buffer,
1138 * break out at this point. Since we've
1139 * got a match here, we'll pick right back
1140 * up at the matching entry. We can also
1141 * tell the user that there are more matches
1142 * left.
1143 */
1144 if (cio->num_matches >= ionum)
1145 break;
1146
1147 error = copyout(&dinfo->conf,
1148 &cio->matches[cio->num_matches],
1149 sizeof(struct pci_conf));
1150 cio->num_matches++;
1151 }
1152 }
1153
1154 /*
1155 * Set the pointer into the list, so if the user is getting
1156 * n records at a time, where n < pci_numdevs,
1157 */
1158 cio->offset = i;
1159
1160 /*
1161 * Set the generation, the user will need this if they make
1162 * another ioctl call with offset != 0.
1163 */
1164 cio->generation = pci_generation;
1165
1166 /*
1167 * If this is the last device, inform the user so he won't
1168 * bother asking for more devices. If dinfo isn't NULL, we
1169 * know that there are more matches in the list because of
1170 * the way the traversal is done.
1171 */
1172 if (dinfo == NULL)
1173 cio->status = PCI_GETCONF_LAST_DEVICE;
1174 else
1175 cio->status = PCI_GETCONF_MORE_DEVS;
1176
1177 if (pattern_buf != NULL)
1178 kfree(pattern_buf, M_TEMP);
1179
1180 break;
1181 }
1182 case PCIOCREAD:
1183 io = (struct pci_io *)ap->a_data;
1184 switch(io->pi_width) {
1185 case 4:
1186 case 2:
1187 case 1:
1188 /*
1189 * Assume that the user-level bus number is
1190 * actually the pciN instance number. We map
1191 * from that to the real pcib+bus combination.
1192 */
1193 pci = devclass_get_device(pci_devclass,
1194 io->pi_sel.pc_bus);
1195 if (pci) {
1196 /*
1197 * pci is the pci device and may contain
1198 * several children (for each function code).
1199 * The governing pci bus is the parent to
1200 * the pci device.
1201 */
1202 int b;
1203
1204 pcib = device_get_parent(pci);
1205 b = pcib_get_bus(pcib);
1206 io->pi_data =
1207 PCIB_READ_CONFIG(pcib,
1208 b,
1209 io->pi_sel.pc_dev,
1210 io->pi_sel.pc_func,
1211 io->pi_reg,
1212 io->pi_width);
1213 error = 0;
1214 } else {
1215 error = ENODEV;
1216 }
1217 break;
1218 default:
1219 error = ENODEV;
1220 break;
1221 }
1222 break;
1223
1224 case PCIOCWRITE:
1225 io = (struct pci_io *)ap->a_data;
1226 switch(io->pi_width) {
1227 case 4:
1228 case 2:
1229 case 1:
1230 /*
1231 * Assume that the user-level bus number is
1232 * actually the pciN instance number. We map
1233 * from that to the real pcib+bus combination.
1234 */
1235 pci = devclass_get_device(pci_devclass,
1236 io->pi_sel.pc_bus);
1237 if (pci) {
1238 /*
1239 * pci is the pci device and may contain
1240 * several children (for each function code).
1241 * The governing pci bus is the parent to
1242 * the pci device.
1243 */
1244 int b;
1245
1246 pcib = device_get_parent(pci);
1247 b = pcib_get_bus(pcib);
1248 PCIB_WRITE_CONFIG(pcib,
1249 b,
1250 io->pi_sel.pc_dev,
1251 io->pi_sel.pc_func,
1252 io->pi_reg,
1253 io->pi_data,
1254 io->pi_width);
1255 error = 0;
1256 } else {
1257 error = ENODEV;
1258 }
1259 break;
1260 default:
1261 error = ENODEV;
1262 break;
1263 }
1264 break;
1265
1266 default:
1267 error = ENOTTY;
1268 break;
1269 }
1270
1271 return (error);
1272}
1273
1274#define PCI_CDEV 78
1275
1276static struct dev_ops pcic_ops = {
1277 { "pci", PCI_CDEV, 0 },
1278 .d_open = pci_open,
1279 .d_close = pci_close,
1280 .d_ioctl = pci_ioctl,
1281};
1282
1283#include "pci_if.h"
1284
1285/*
1286 * New style pci driver. Parent device is either a pci-host-bridge or a
1287 * pci-pci-bridge. Both kinds are represented by instances of pcib.
1288 */
1289const char *
1290pci_class_to_string(int baseclass)
1291{
1292 const char *name;
1293
1294 switch(baseclass) {
1295 case PCIC_OLD:
1296 name = "OLD";
1297 break;
1298 case PCIC_STORAGE:
1299 name = "STORAGE";
1300 break;
1301 case PCIC_NETWORK:
1302 name = "NETWORK";
1303 break;
1304 case PCIC_DISPLAY:
1305 name = "DISPLAY";
1306 break;
1307 case PCIC_MULTIMEDIA:
1308 name = "MULTIMEDIA";
1309 break;
1310 case PCIC_MEMORY:
1311 name = "MEMORY";
1312 break;
1313 case PCIC_BRIDGE:
1314 name = "BRIDGE";
1315 break;
1316 case PCIC_SIMPLECOMM:
1317 name = "SIMPLECOMM";
1318 break;
1319 case PCIC_BASEPERIPH:
1320 name = "BASEPERIPH";
1321 break;
1322 case PCIC_INPUTDEV:
1323 name = "INPUTDEV";
1324 break;
1325 case PCIC_DOCKING:
1326 name = "DOCKING";
1327 break;
1328 case PCIC_PROCESSOR:
1329 name = "PROCESSOR";
1330 break;
1331 case PCIC_SERIALBUS:
1332 name = "SERIALBUS";
1333 break;
1334 case PCIC_WIRELESS:
1335 name = "WIRELESS";
1336 break;
1337 case PCIC_I2O:
1338 name = "I20";
1339 break;
1340 case PCIC_SATELLITE:
1341 name = "SATELLITE";
1342 break;
1343 case PCIC_CRYPTO:
1344 name = "CRYPTO";
1345 break;
1346 case PCIC_SIGPROC:
1347 name = "SIGPROC";
1348 break;
1349 case PCIC_OTHER:
1350 name = "OTHER";
1351 break;
1352 default:
1353 name = "?";
1354 break;
1355 }
1356 return(name);
1357}
1358
1359static void
1360pci_print_verbose_expr(const pcicfgregs *cfg)
1361{
1362 const struct pcicfg_expr *expr = &cfg->expr;
1363 const char *port_name;
1364 uint16_t port_type;
1365
1366 if (!bootverbose)
1367 return;
1368
1369 if (expr->expr_ptr == 0) /* No PCI Express capability */
1370 return;
1371
1372 kprintf("\tPCI Express ver.%d cap=0x%04x",
1373 expr->expr_cap & PCIEM_CAP_VER_MASK, expr->expr_cap);
1374 if ((expr->expr_cap & PCIEM_CAP_VER_MASK) != PCIEM_CAP_VER_1)
1375 goto back;
1376
1377 port_type = expr->expr_cap & PCIEM_CAP_PORT_TYPE;
1378
1379 switch (port_type) {
1380 case PCIE_END_POINT:
1381 port_name = "DEVICE";
1382 break;
1383 case PCIE_LEG_END_POINT:
1384 port_name = "LEGDEV";
1385 break;
1386 case PCIE_ROOT_PORT:
1387 port_name = "ROOT";
1388 break;
1389 case PCIE_UP_STREAM_PORT:
1390 port_name = "UPSTREAM";
1391 break;
1392 case PCIE_DOWN_STREAM_PORT:
1393 port_name = "DOWNSTRM";
1394 break;
1395 case PCIE_PCIE2PCI_BRIDGE:
1396 port_name = "PCIE2PCI";
1397 break;
1398 case PCIE_PCI2PCIE_BRIDGE:
1399 port_name = "PCI2PCIE";
1400 break;
1401 default:
1402 port_name = NULL;
1403 break;
1404 }
1405 if ((port_type == PCIE_ROOT_PORT ||
1406 port_type == PCIE_DOWN_STREAM_PORT) &&
1407 !(expr->expr_cap & PCIEM_CAP_SLOT_IMPL))
1408 port_name = NULL;
1409 if (port_name != NULL)
1410 kprintf("[%s]", port_name);
1411
1412 if (pcie_slotimpl(cfg)) {
1413 kprintf(", slotcap=0x%08x", expr->expr_slotcap);
1414 if (expr->expr_slotcap & PCIEM_SLTCAP_HP_CAP)
1415 kprintf("[HOTPLUG]");
1416 }
1417back:
1418 kprintf("\n");
1419}
1420
1421void
1422pci_print_verbose(struct pci_devinfo *dinfo)
1423{
1424 if (bootverbose) {
1425 pcicfgregs *cfg = &dinfo->cfg;
1426
1427 kprintf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
1428 cfg->vendor, cfg->device, cfg->revid);
1429 kprintf("\tbus=%d, slot=%d, func=%d\n",
1430 cfg->bus, cfg->slot, cfg->func);
1431 kprintf("\tclass=[%s]%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
1432 pci_class_to_string(cfg->baseclass),
1433 cfg->baseclass, cfg->subclass, cfg->progif,
1434 cfg->hdrtype, cfg->mfdev);
1435 kprintf("\tsubordinatebus=%x \tsecondarybus=%x\n",
1436 cfg->subordinatebus, cfg->secondarybus);
1437#ifdef PCI_DEBUG
1438 kprintf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
1439 cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
1440 kprintf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
1441 cfg->lattimer, cfg->lattimer * 30,
1442 cfg->mingnt, cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
1443#endif /* PCI_DEBUG */
1444 if (cfg->intpin > 0)
1445 kprintf("\tintpin=%c, irq=%d\n", cfg->intpin +'a' -1, cfg->intline);
1446
1447 pci_print_verbose_expr(cfg);
1448 }
1449}
1450
1451static int
1452pci_porten(device_t pcib, int b, int s, int f)
1453{
1454 return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
1455 & PCIM_CMD_PORTEN) != 0;
1456}
1457
1458static int
1459pci_memen(device_t pcib, int b, int s, int f)
1460{
1461 return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
1462 & PCIM_CMD_MEMEN) != 0;
1463}
1464
1465/*
1466 * Add a resource based on a pci map register. Return 1 if the map
1467 * register is a 32bit map register or 2 if it is a 64bit register.
1468 */
1469static int
1470pci_add_map(device_t pcib, int b, int s, int f, int reg,
1471 struct resource_list *rl)
1472{
1473 u_int32_t map;
1474 u_int64_t base;
1475 u_int8_t ln2size;
1476 u_int8_t ln2range;
1477 u_int32_t testval;
1478
1479
1480#ifdef PCI_ENABLE_IO_MODES
1481 u_int16_t cmd;
1482#endif
1483 int type;
1484
1485 map = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
1486
1487 if (map == 0 || map == 0xffffffff)
1488 return 1; /* skip invalid entry */
1489
1490 PCIB_WRITE_CONFIG(pcib, b, s, f, reg, 0xffffffff, 4);
1491 testval = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
1492 PCIB_WRITE_CONFIG(pcib, b, s, f, reg, map, 4);
1493
1494 base = pci_mapbase(map);
1495 if (pci_maptype(map) & PCI_MAPMEM)
1496 type = SYS_RES_MEMORY;
1497 else
1498 type = SYS_RES_IOPORT;
1499 ln2size = pci_mapsize(testval);
1500 ln2range = pci_maprange(testval);
1501 if (ln2range == 64) {
1502 /* Read the other half of a 64bit map register */
1503 base |= (u_int64_t) PCIB_READ_CONFIG(pcib, b, s, f, reg+4, 4);
1504 }
1505
1506 /*
1507 * This code theoretically does the right thing, but has
1508 * undesirable side effects in some cases where
1509 * peripherals respond oddly to having these bits
1510 * enabled. Leave them alone by default.
1511 */
1512#ifdef PCI_ENABLE_IO_MODES
1513 if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f)) {
1514 cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
1515 cmd |= PCIM_CMD_PORTEN;
1516 PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
1517 }
1518 if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f)) {
1519 cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
1520 cmd |= PCIM_CMD_MEMEN;
1521 PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
1522 }
1523#else
1524 if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f))
1525 return 1;
1526 if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f))
1527 return 1;
1528#endif
1529
1530 resource_list_add(rl, type, reg,
1531 base, base + (1 << ln2size) - 1,
1532 (1 << ln2size));
1533
1534 if (bootverbose) {
1535 kprintf("\tmap[%02x]: type %x, range %2d, base %08x, size %2d\n",
1536 reg, pci_maptype(base), ln2range,
1537 (unsigned int) base, ln2size);
1538 }
1539
1540 return (ln2range == 64) ? 2 : 1;
1541}
1542
1543#ifdef PCI_MAP_FIXUP
1544/*
1545 * For ATA devices we need to decide early on what addressing mode to use.
1546 * Legacy demands that the primary and secondary ATA ports sits on the
1547 * same addresses that old ISA hardware did. This dictates that we use
1548 * those addresses and ignore the BARs if we cannot set PCI native
1549 * addressing mode.
1550 */
1551static void
1552pci_ata_maps(device_t pcib, device_t bus, device_t dev, int b, int s, int f,
1553 struct resource_list *rl)
1554{
1555 int rid, type, progif;
1556#if 0
1557 /* if this device supports PCI native addressing use it */
1558 progif = pci_read_config(dev, PCIR_PROGIF, 1);
1559 if ((progif &0x8a) == 0x8a) {
1560 if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
1561 pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
1562 kprintf("Trying ATA native PCI addressing mode\n");
1563 pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
1564 }
1565 }
1566#endif
1567 /*
1568 * Because we return any preallocated resources for lazy
1569 * allocation for PCI devices in pci_alloc_resource(), we can
1570 * allocate our legacy resources here.
1571 */
1572 progif = pci_read_config(dev, PCIR_PROGIF, 1);
1573 type = SYS_RES_IOPORT;
1574 if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
1575 pci_add_map(pcib, b, s, f, PCIR_BAR(0), rl);
1576 pci_add_map(pcib, b, s, f, PCIR_BAR(1), rl);
1577 } else {
1578 rid = PCIR_BAR(0);
1579 resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
1580 resource_list_alloc(rl, bus, dev, type, &rid, 0x1f0, 0x1f7, 8,
1581 0);
1582 rid = PCIR_BAR(1);
1583 resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
1584 resource_list_alloc(rl, bus, dev, type, &rid, 0x3f6, 0x3f6, 1,
1585 0);
1586 }
1587 if (progif & PCIP_STORAGE_IDE_MODESEC) {
1588 pci_add_map(pcib, b, s, f, PCIR_BAR(2), rl);
1589 pci_add_map(pcib, b, s, f, PCIR_BAR(3), rl);
1590 } else {
1591 rid = PCIR_BAR(2);
1592 resource_list_add(rl, type, rid, 0x170, 0x177, 8);
1593 resource_list_alloc(rl, bus, dev, type, &rid, 0x170, 0x177, 8,
1594 0);
1595 rid = PCIR_BAR(3);
1596 resource_list_add(rl, type, rid, 0x376, 0x376, 1);
1597 resource_list_alloc(rl, bus, dev, type, &rid, 0x376, 0x376, 1,
1598 0);
1599 }
1600 pci_add_map(pcib, b, s, f, PCIR_BAR(4), rl);
1601 pci_add_map(pcib, b, s, f, PCIR_BAR(5), rl);
1602}
1603#endif /* PCI_MAP_FIXUP */
1604
1605static void
1606pci_add_resources(device_t pcib, device_t bus, device_t dev)
1607{
1608 struct pci_devinfo *dinfo = device_get_ivars(dev);
1609 pcicfgregs *cfg = &dinfo->cfg;
1610 struct resource_list *rl = &dinfo->resources;
1611 struct pci_quirk *q;
1612 int b, i, f, s;
1613#if 0 /* WILL BE USED WITH ADDITIONAL IMPORT FROM FREEBSD-5 XXX */
1614 int irq;
1615#endif
1616
1617 b = cfg->bus;
1618 s = cfg->slot;
1619 f = cfg->func;
1620#ifdef PCI_MAP_FIXUP
1621 /* atapci devices in legacy mode need special map treatment */
1622 if ((pci_get_class(dev) == PCIC_STORAGE) &&
1623 (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
1624 ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
1625 (!pci_read_config(dev, PCIR_BAR(0), 4) &&
1626 !pci_read_config(dev, PCIR_BAR(2), 4))) )
1627 pci_ata_maps(pcib, bus, dev, b, s, f, rl);
1628 else
1629#endif /* PCI_MAP_FIXUP */
1630 for (i = 0; i < cfg->nummaps;) {
1631 i += pci_add_map(pcib, b, s, f, PCIR_BAR(i),rl);
1632 }
1633
1634 for (q = &pci_quirks[0]; q->devid; q++) {
1635 if (q->devid == ((cfg->device << 16) | cfg->vendor)
1636 && q->type == PCI_QUIRK_MAP_REG)
1637 pci_add_map(pcib, b, s, f, q->arg1, rl);
1638 }
1639
1640 if (cfg->intpin > 0 && cfg->intline != 255)
1641 resource_list_add(rl, SYS_RES_IRQ, 0,
1642 cfg->intline, cfg->intline, 1);
1643}
1644
1645void
1646pci_add_children(device_t dev, int busno, size_t dinfo_size)
1647{
1648#define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
1649 device_t pcib = device_get_parent(dev);
1650 struct pci_devinfo *dinfo;
1651 int maxslots;
1652 int s, f, pcifunchigh;
1653 uint8_t hdrtype;
1654
1655 KKASSERT(dinfo_size >= sizeof(struct pci_devinfo));
1656
1657 maxslots = PCIB_MAXSLOTS(pcib);
1658
1659 for (s = 0; s <= maxslots; s++) {
1660 pcifunchigh = 0;
1661 f = 0;
1662 hdrtype = REG(PCIR_HDRTYPE, 1);
1663 if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
1664 continue;
1665 if (hdrtype & PCIM_MFDEV)
1666 pcifunchigh = PCI_FUNCMAX;
1667 for (f = 0; f <= pcifunchigh; f++) {
1668 dinfo = pci_read_device(pcib, busno, s, f, dinfo_size);
1669 if (dinfo != NULL) {
1670 pci_add_child(dev, dinfo);
1671 }
1672 }
1673 }
1674#undef REG
1675}
1676
1677/*
1678 * The actual PCI child that we add has a NULL driver whos parent
1679 * device will be "pci". The child contains the ivars, not the parent.
1680 */
1681void
1682pci_add_child(device_t bus, struct pci_devinfo *dinfo)
1683{
1684 device_t pcib;
1685
1686 pcib = device_get_parent(bus);
1687 dinfo->cfg.dev = device_add_child(bus, NULL, -1);
1688 device_set_ivars(dinfo->cfg.dev, dinfo);
1689 pci_add_resources(pcib, bus, dinfo->cfg.dev);
1690 pci_print_verbose(dinfo);
1691}
1692
1693/*
1694 * Probe the PCI bus. Note: probe code is not supposed to add children
1695 * or call attach.
1696 */
1697static int
1698pci_probe(device_t dev)
1699{
1700 device_set_desc(dev, "PCI bus");
1701
1702 /* Allow other subclasses to override this driver */
1703 return(-1000);
1704}
1705
1706static int
1707pci_attach(device_t dev)
1708{
1709 int busno;
1710 int lunit = device_get_unit(dev);
1711
1712 dev_ops_add(&pcic_ops, -1, lunit);
1713 make_dev(&pcic_ops, lunit, UID_ROOT, GID_WHEEL, 0644, "pci%d", lunit);
1714
1715 /*
1716 * Since there can be multiple independantly numbered PCI
1717 * busses on some large alpha systems, we can't use the unit
1718 * number to decide what bus we are probing. We ask the parent
1719 * pcib what our bus number is.
1720 *
1721 * pcib_get_bus() must act on the pci bus device, not on the pci
1722 * device, because it uses badly hacked nexus-based ivars to
1723 * store and retrieve the physical bus number. XXX
1724 */
1725 busno = pcib_get_bus(device_get_parent(dev));
1726 if (bootverbose)
1727 device_printf(dev, "pci_attach() physical bus=%d\n", busno);
1728
1729 pci_add_children(dev, busno, sizeof(struct pci_devinfo));
1730
1731 return (bus_generic_attach(dev));
1732}
1733
1734static int
1735pci_print_resources(struct resource_list *rl, const char *name, int type,
1736 const char *format)
1737{
1738 struct resource_list_entry *rle;
1739 int printed, retval;
1740
1741 printed = 0;
1742 retval = 0;
1743 /* Yes, this is kinda cheating */
1744 SLIST_FOREACH(rle, rl, link) {
1745 if (rle->type == type) {
1746 if (printed == 0)
1747 retval += kprintf(" %s ", name);
1748 else if (printed > 0)
1749 retval += kprintf(",");
1750 printed++;
1751 retval += kprintf(format, rle->start);
1752 if (rle->count > 1) {
1753 retval += kprintf("-");
1754 retval += kprintf(format, rle->start +
1755 rle->count - 1);
1756 }
1757 }
1758 }
1759 return retval;
1760}
1761
1762int
1763pci_print_child(device_t dev, device_t child)
1764{
1765 struct pci_devinfo *dinfo;
1766 struct resource_list *rl;
1767 pcicfgregs *cfg;
1768 int retval = 0;
1769
1770 dinfo = device_get_ivars(child);
1771 cfg = &dinfo->cfg;
1772 rl = &dinfo->resources;
1773
1774 retval += bus_print_child_header(dev, child);
1775
1776 retval += pci_print_resources(rl, "port", SYS_RES_IOPORT, "%#lx");
1777 retval += pci_print_resources(rl, "mem", SYS_RES_MEMORY, "%#lx");
1778 retval += pci_print_resources(rl, "irq", SYS_RES_IRQ, "%ld");
1779 if (device_get_flags(dev))
1780 retval += kprintf(" flags %#x", device_get_flags(dev));
1781
1782 retval += kprintf(" at device %d.%d", pci_get_slot(child),
1783 pci_get_function(child));
1784
1785 retval += bus_print_child_footer(dev, child);
1786
1787 return (retval);
1788}
1789
1790void
1791pci_probe_nomatch(device_t dev, device_t child)
1792{
1793 struct pci_devinfo *dinfo;
1794 pcicfgregs *cfg;
1795 const char *desc;
1796 int unknown;
1797
1798 unknown = 0;
1799 dinfo = device_get_ivars(child);
1800 cfg = &dinfo->cfg;
1801 desc = pci_ata_match(child);
1802 if (!desc) desc = pci_usb_match(child);
1803 if (!desc) desc = pci_vga_match(child);
1804 if (!desc) desc = pci_chip_match(child);
1805 if (!desc) {
1806 desc = "unknown card";
1807 unknown++;
1808 }
1809 device_printf(dev, "<%s>", desc);
1810 if (bootverbose || unknown) {
1811 kprintf(" (vendor=0x%04x, dev=0x%04x)",
1812 cfg->vendor,
1813 cfg->device);
1814 }
1815 kprintf(" at %d.%d",
1816 pci_get_slot(child),
1817 pci_get_function(child));
1818 if (cfg->intpin > 0 && cfg->intline != 255) {
1819 kprintf(" irq %d", cfg->intline);
1820 }
1821 kprintf("\n");
1822
1823 return;
1824}
1825
1826int
1827pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1828{
1829 struct pci_devinfo *dinfo;
1830 pcicfgregs *cfg;
1831
1832 dinfo = device_get_ivars(child);
1833 cfg = &dinfo->cfg;
1834
1835 switch (which) {
1836 case PCI_IVAR_SUBVENDOR:
1837 *result = cfg->subvendor;
1838 break;
1839 case PCI_IVAR_SUBDEVICE:
1840 *result = cfg->subdevice;
1841 break;
1842 case PCI_IVAR_VENDOR:
1843 *result = cfg->vendor;
1844 break;
1845 case PCI_IVAR_DEVICE:
1846 *result = cfg->device;
1847 break;
1848 case PCI_IVAR_DEVID:
1849 *result = (cfg->device << 16) | cfg->vendor;
1850 break;
1851 case PCI_IVAR_CLASS:
1852 *result = cfg->baseclass;
1853 break;
1854 case PCI_IVAR_SUBCLASS:
1855 *result = cfg->subclass;
1856 break;
1857 case PCI_IVAR_PROGIF:
1858 *result = cfg->progif;
1859 break;
1860 case PCI_IVAR_REVID:
1861 *result = cfg->revid;
1862 break;
1863 case PCI_IVAR_INTPIN:
1864 *result = cfg->intpin;
1865 break;
1866 case PCI_IVAR_IRQ:
1867 *result = cfg->intline;
1868 break;
1869 case PCI_IVAR_BUS:
1870 *result = cfg->bus;
1871 break;
1872 case PCI_IVAR_SLOT:
1873 *result = cfg->slot;
1874 break;
1875 case PCI_IVAR_FUNCTION:
1876 *result = cfg->func;
1877 break;
1878 case PCI_IVAR_SECONDARYBUS:
1879 *result = cfg->secondarybus;
1880 break;
1881 case PCI_IVAR_SUBORDINATEBUS:
1882 *result = cfg->subordinatebus;
1883 break;
1884 case PCI_IVAR_ETHADDR:
1885 /*
1886 * The generic accessor doesn't deal with failure, so
1887 * we set the return value, then return an error.
1888 */
1889 *result = 0;
1890 return (EINVAL);
1891 case PCI_IVAR_PCIXCAP_PTR:
1892 *result = cfg->pcixcap_ptr;
1893 break;
1894 case PCI_IVAR_PCIECAP_PTR:
1895 *result = cfg->expr.expr_ptr;
1896 break;
1897 default:
1898 return ENOENT;
1899 }
1900 return 0;
1901}
1902
1903int
1904pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
1905{
1906 struct pci_devinfo *dinfo;
1907 pcicfgregs *cfg;
1908
1909 dinfo = device_get_ivars(child);
1910 cfg = &dinfo->cfg;
1911
1912 switch (which) {
1913 case PCI_IVAR_SUBVENDOR:
1914 case PCI_IVAR_SUBDEVICE:
1915 case PCI_IVAR_VENDOR:
1916 case PCI_IVAR_DEVICE:
1917 case PCI_IVAR_DEVID:
1918 case PCI_IVAR_CLASS:
1919 case PCI_IVAR_SUBCLASS:
1920 case PCI_IVAR_PROGIF:
1921 case PCI_IVAR_REVID:
1922 case PCI_IVAR_INTPIN:
1923 case PCI_IVAR_IRQ:
1924 case PCI_IVAR_BUS:
1925 case PCI_IVAR_SLOT:
1926 case PCI_IVAR_FUNCTION:
1927 case PCI_IVAR_ETHADDR:
1928 case PCI_IVAR_PCIXCAP_PTR:
1929 case PCI_IVAR_PCIECAP_PTR:
1930 return EINVAL; /* disallow for now */
1931
1932 case PCI_IVAR_SECONDARYBUS:
1933 cfg->secondarybus = value;
1934 break;
1935 case PCI_IVAR_SUBORDINATEBUS:
1936 cfg->subordinatebus = value;
1937 break;
1938 default:
1939 return ENOENT;
1940 }
1941 return 0;
1942}
1943
1944#ifdef PCI_MAP_FIXUP
1945static struct resource *
1946pci_alloc_map(device_t dev, device_t child, int type, int *rid, u_long start,
1947 u_long end, u_long count, u_int flags)
1948{
1949 struct pci_devinfo *dinfo = device_get_ivars(child);
1950 struct resource_list *rl = &dinfo->resources;
1951 struct resource_list_entry *rle;
1952 struct resource *res;
1953 uint32_t map, testval;
1954 int mapsize;
1955
1956 /*
1957 * Weed out the bogons, and figure out how large the BAR/map
1958 * is. BARs that read back 0 here are bogus and unimplemented.
1959 *
1960 * Note: atapci in legacy mode are special and handled elsewhere
1961 * in the code. If you have an atapci device in legacy mode and
1962 * it fails here, that other code is broken.
1963 */
1964 res = NULL;
1965 map = pci_read_config(child, *rid, 4);
1966 pci_write_config(child, *rid, 0xffffffff, 4);
1967 testval = pci_read_config(child, *rid, 4);
1968 if (pci_mapbase(testval) == 0)
1969 goto out;
1970 if (pci_maptype(testval) & PCI_MAPMEM) {
1971 if (type != SYS_RES_MEMORY) {
1972 if (bootverbose)
1973 device_printf(dev, "child %s requested type %d"
1974 " for rid %#x, but the BAR says "
1975 "it is a memio\n",
1976 device_get_nameunit(child), type,
1977 *rid);
1978 goto out;
1979 }
1980 } else {
1981 if (type != SYS_RES_IOPORT) {
1982 if (bootverbose)
1983 device_printf(dev, "child %s requested type %d"
1984 " for rid %#x, but the BAR says "
1985 "it is an ioport\n",
1986 device_get_nameunit(child), type,
1987 *rid);
1988 goto out;
1989 }
1990 }
1991 /*
1992 * For real BARs, we need to override the size that
1993 * the driver requests, because that's what the BAR
1994 * actually uses and we would otherwise have a
1995 * situation where we might allocate the excess to
1996 * another driver, which won't work.
1997 */
1998 mapsize = pci_mapsize(testval);
1999 count = 1 << mapsize;
2000 if (RF_ALIGNMENT(flags) < mapsize)
2001 flags = (flags & ~RF_ALIGNMENT_MASK) |
2002 RF_ALIGNMENT_LOG2(mapsize);
2003 /*
2004 * Allocate enough resource, and then write back the
2005 * appropriate BAR for that resource.
2006 */
2007 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), child, type, rid,
2008 start, end, count, flags);
2009 if (res == NULL) {
2010 device_printf(child, "%#lx bytes at rid %#x res %d failed "
2011 "(%#lx, %#lx)\n", count, *rid, type, start, end);
2012 goto out;
2013 }
2014 resource_list_add(rl, type, *rid, start, end, count);
2015 rle = resource_list_find(rl, type, *rid);
2016 if (rle == NULL)
2017 panic("pci_alloc_map: unexpectedly can't find resource.");
2018 rle->res = res;
2019 rle->start = rman_get_start(res);
2020 rle->end = rman_get_end(res);
2021 rle->count = count;
2022 if (bootverbose)
2023 device_printf(child, "lazy allocation of %#lx bytes rid %#x "
2024 "type %d at %#lx\n", count, *rid, type,
2025 rman_get_start(res));
2026 map = rman_get_start(res);
2027out:;
2028 pci_write_config(child, *rid, map, 4);
2029 return res;
2030}
2031#endif /* PCI_MAP_FIXUP */
2032
2033struct resource *
2034pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
2035 u_long start, u_long end, u_long count, u_int flags)
2036{
2037 struct pci_devinfo *dinfo = device_get_ivars(child);
2038 struct resource_list *rl = &dinfo->resources;
2039#ifdef PCI_MAP_FIXUP
2040 struct resource_list_entry *rle;
2041#endif /* PCI_MAP_FIXUP */
2042 pcicfgregs *cfg = &dinfo->cfg;
2043
2044 /*
2045 * Perform lazy resource allocation
2046 */
2047 if (device_get_parent(child) == dev) {
2048 switch (type) {
2049 case SYS_RES_IRQ:
2050#ifdef __i386__
2051 /*
2052 * If device doesn't have an interrupt routed, and is
2053 * deserving of an interrupt, try to assign it one.
2054 */
2055 if ((cfg->intline == 255 || cfg->intline == 0) &&
2056 (cfg->intpin != 0) &&
2057 (start == 0) && (end == ~0UL)) {
2058 cfg->intline = PCIB_ROUTE_INTERRUPT(
2059 device_get_parent(dev), child,
2060 cfg->intpin);
2061 if (cfg->intline != 255) {
2062 pci_write_config(child, PCIR_INTLINE,
2063 cfg->intline, 1);
2064 resource_list_add(rl, SYS_RES_IRQ, 0,
2065 cfg->intline, cfg->intline, 1);
2066 }
2067 }
2068 break;
2069#endif
2070 case SYS_RES_IOPORT:
2071 /* FALLTHROUGH */
2072 case SYS_RES_MEMORY:
2073 if (*rid < PCIR_BAR(cfg->nummaps)) {
2074 /*
2075 * Enable the I/O mode. We should
2076 * also be assigning resources too
2077 * when none are present. The
2078 * resource_list_alloc kind of sorta does
2079 * this...
2080 */
2081 if (PCI_ENABLE_IO(dev, child, type))
2082 return (NULL);
2083 }
2084#ifdef PCI_MAP_FIXUP
2085 rle = resource_list_find(rl, type, *rid);
2086 if (rle == NULL)
2087 return pci_alloc_map(dev, child, type, rid,
2088 start, end, count, flags);
2089#endif /* PCI_MAP_FIXUP */
2090 break;
2091 }
2092#ifdef PCI_MAP_FIXUP
2093 /*
2094 * If we've already allocated the resource, then
2095 * return it now. But first we may need to activate
2096 * it, since we don't allocate the resource as active
2097 * above. Normally this would be done down in the
2098 * nexus, but since we short-circuit that path we have
2099 * to do its job here. Not sure if we should free the
2100 * resource if it fails to activate.
2101 *
2102 * Note: this also finds and returns resources for
2103 * atapci devices in legacy mode as allocated in
2104 * pci_ata_maps().
2105 */
2106 rle = resource_list_find(rl, type, *rid);
2107 if (rle != NULL && rle->res != NULL) {
2108 if (bootverbose)
2109 device_printf(child, "reserved %#lx bytes for "
2110 "rid %#x type %d at %#lx\n",
2111 rman_get_size(rle->res), *rid,
2112 type, rman_get_start(rle->res));
2113 if ((flags & RF_ACTIVE) &&
2114 bus_generic_activate_resource(dev, child, type,
2115 *rid, rle->res) != 0)
2116 return NULL;
2117 return rle->res;
2118 }
2119#endif /* PCI_MAP_FIXUP */
2120 }
2121 return resource_list_alloc(rl, dev, child, type, rid,
2122 start, end, count, flags);
2123}
2124
2125static int
2126pci_release_resource(device_t dev, device_t child, int type, int rid,
2127 struct resource *r)
2128{
2129 struct pci_devinfo *dinfo = device_get_ivars(child);
2130 struct resource_list *rl = &dinfo->resources;
2131
2132 return resource_list_release(rl, dev, child, type, rid, r);
2133}
2134
2135static int
2136pci_set_resource(device_t dev, device_t child, int type, int rid,
2137 u_long start, u_long count)
2138{
2139 struct pci_devinfo *dinfo = device_get_ivars(child);
2140 struct resource_list *rl = &dinfo->resources;
2141
2142 resource_list_add(rl, type, rid, start, start + count - 1, count);
2143 return 0;
2144}
2145
2146static int
2147pci_get_resource(device_t dev, device_t child, int type, int rid,
2148 u_long *startp, u_long *countp)
2149{
2150 struct pci_devinfo *dinfo = device_get_ivars(child);
2151 struct resource_list *rl = &dinfo->resources;
2152 struct resource_list_entry *rle;
2153
2154 rle = resource_list_find(rl, type, rid);
2155 if (!rle)
2156 return ENOENT;
2157
2158 if (startp)
2159 *startp = rle->start;
2160 if (countp)
2161 *countp = rle->count;
2162
2163 return 0;
2164}
2165
2166void
2167pci_delete_resource(device_t dev, device_t child, int type, int rid)
2168{
2169 kprintf("pci_delete_resource: PCI resources can not be deleted\n");
2170}
2171
2172struct resource_list *
2173pci_get_resource_list (device_t dev, device_t child)
2174{
2175 struct pci_devinfo *dinfo = device_get_ivars(child);
2176
2177 if (dinfo == NULL)
2178 return (NULL);
2179 return (&dinfo->resources);
2180}
2181
2182u_int32_t
2183pci_read_config_method(device_t dev, device_t child, int reg, int width)
2184{
2185 struct pci_devinfo *dinfo = device_get_ivars(child);
2186 pcicfgregs *cfg = &dinfo->cfg;
2187
2188 return PCIB_READ_CONFIG(device_get_parent(dev),
2189 cfg->bus, cfg->slot, cfg->func,
2190 reg, width);
2191}
2192
2193void
2194pci_write_config_method(device_t dev, device_t child, int reg,
2195 u_int32_t val, int width)
2196{
2197 struct pci_devinfo *dinfo = device_get_ivars(child);
2198 pcicfgregs *cfg = &dinfo->cfg;
2199
2200 PCIB_WRITE_CONFIG(device_get_parent(dev),
2201 cfg->bus, cfg->slot, cfg->func,
2202 reg, val, width);
2203}
2204
2205int
2206pci_child_location_str_method(device_t cbdev, device_t child, char *buf,
2207 size_t buflen)
2208{
2209 struct pci_devinfo *dinfo;
2210
2211 dinfo = device_get_ivars(child);
2212 ksnprintf(buf, buflen, "slot=%d function=%d", pci_get_slot(child),
2213 pci_get_function(child));
2214 return (0);
2215}
2216
2217int
2218pci_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf,
2219 size_t buflen)
2220{
2221 struct pci_devinfo *dinfo;
2222 pcicfgregs *cfg;
2223
2224 dinfo = device_get_ivars(child);
2225 cfg = &dinfo->cfg;
2226 ksnprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
2227 "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
2228 cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
2229 cfg->progif);
2230 return (0);
2231}
2232
2233int
2234pci_assign_interrupt_method(device_t dev, device_t child)
2235{
2236 struct pci_devinfo *dinfo = device_get_ivars(child);
2237 pcicfgregs *cfg = &dinfo->cfg;
2238
2239 return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
2240 cfg->intpin));
2241}
2242
2243static int
2244pci_modevent(module_t mod, int what, void *arg)
2245{
2246 switch (what) {
2247 case MOD_LOAD:
2248 STAILQ_INIT(&pci_devq);
2249 break;
2250 case MOD_UNLOAD:
2251 break;
2252 }
2253
2254 return 0;
2255}
2256
2257int
2258pci_resume(device_t dev)
2259{
2260 int numdevs;
2261 int i;
2262 device_t *children;
2263 device_t child;
2264 struct pci_devinfo *dinfo;
2265 pcicfgregs *cfg;
2266
2267 device_get_children(dev, &children, &numdevs);
2268
2269 for (i = 0; i < numdevs; i++) {
2270 child = children[i];
2271
2272 dinfo = device_get_ivars(child);
2273 cfg = &dinfo->cfg;
2274 if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
2275 cfg->intline = PCI_ASSIGN_INTERRUPT(dev, child);
2276 if (PCI_INTERRUPT_VALID(cfg->intline)) {
2277 pci_write_config(child, PCIR_INTLINE,
2278 cfg->intline, 1);
2279 }
2280 }
2281 }
2282
2283 kfree(children, M_TEMP);
2284
2285 return (bus_generic_resume(dev));
2286}
2287
2288static device_method_t pci_methods[] = {
2289 /* Device interface */
2290 DEVMETHOD(device_probe, pci_probe),
2291 DEVMETHOD(device_attach, pci_attach),
2292 DEVMETHOD(device_shutdown, bus_generic_shutdown),
2293 DEVMETHOD(device_suspend, bus_generic_suspend),
2294 DEVMETHOD(device_resume, pci_resume),
2295
2296 /* Bus interface */
2297 DEVMETHOD(bus_print_child, pci_print_child),
2298 DEVMETHOD(bus_probe_nomatch, pci_probe_nomatch),
2299 DEVMETHOD(bus_read_ivar, pci_read_ivar),
2300 DEVMETHOD(bus_write_ivar, pci_write_ivar),
2301 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
2302 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
2303 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
2304
2305 DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
2306 DEVMETHOD(bus_set_resource, pci_set_resource),
2307 DEVMETHOD(bus_get_resource, pci_get_resource),
2308 DEVMETHOD(bus_delete_resource, pci_delete_resource),
2309 DEVMETHOD(bus_alloc_resource, pci_alloc_resource),
2310 DEVMETHOD(bus_release_resource, pci_release_resource),
2311 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
2312 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
2313 DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method),
2314 DEVMETHOD(bus_child_location_str, pci_child_location_str_method),
2315
2316 /* PCI interface */
2317 DEVMETHOD(pci_read_config, pci_read_config_method),
2318 DEVMETHOD(pci_write_config, pci_write_config_method),
2319 DEVMETHOD(pci_enable_busmaster, pci_enable_busmaster_method),
2320 DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
2321 DEVMETHOD(pci_enable_io, pci_enable_io_method),
2322 DEVMETHOD(pci_disable_io, pci_disable_io_method),
2323 DEVMETHOD(pci_get_powerstate, pci_get_powerstate_method),
2324 DEVMETHOD(pci_set_powerstate, pci_set_powerstate_method),
2325 DEVMETHOD(pci_assign_interrupt, pci_assign_interrupt_method),
2326
2327 { 0, 0 }
2328};
2329
2330driver_t pci_driver = {
2331 "pci",
2332 pci_methods,
2333 1, /* no softc */
2334};
2335
2336DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, 0);
2337MODULE_VERSION(pci, 1);