Merge from vendor branch NETGRAPH:
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.93 2008/06/25 13:00:09 sephe Exp $
35  *
36  */
37
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  * 
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  * 
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74
75 #include "opt_polling.h"
76 #include "opt_ethernet.h"
77
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/kernel.h>
82 #include <sys/ktr.h>
83 #include <sys/interrupt.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/queue.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92
93 #include <net/bpf.h>
94 #include <net/ethernet.h>
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_types.h>
100 #include <net/ifq_var.h>
101 #include <net/vlan/if_vlan_var.h>
102 #include <net/vlan/if_vlan_ether.h>
103
104 #include <dev/netif/mii_layer/mii.h>
105 #include <dev/netif/mii_layer/miivar.h>
106 #include <dev/netif/mii_layer/brgphyreg.h>
107
108 #include <bus/pci/pcidevs.h>
109 #include <bus/pci/pcireg.h>
110 #include <bus/pci/pcivar.h>
111
112 #include <dev/netif/bge/if_bgereg.h>
113
114 /* "device miibus" required.  See GENERIC if you get errors here. */
115 #include "miibus_if.h"
116
117 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
118 #define BGE_MIN_FRAME           60
119
120 /*
121  * Various supported device vendors/types and their names. Note: the
122  * spec seems to indicate that the hardware still has Alteon's vendor
123  * ID burned into it, though it will always be overriden by the vendor
124  * ID in the EEPROM. Just to be safe, we cover all possibilities.
125  */
126 #define BGE_DEVDESC_MAX         64      /* Maximum device description length */
127
128 static struct bge_type bge_devs[] = {
129         { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
130                 "3COM 3C996 Gigabit Ethernet" },
131
132         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
133                 "Alteon BCM5700 Gigabit Ethernet" },
134         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
135                 "Alteon BCM5701 Gigabit Ethernet" },
136
137         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
138                 "Altima AC1000 Gigabit Ethernet" },
139         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
140                 "Altima AC1002 Gigabit Ethernet" },
141         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
142                 "Altima AC9100 Gigabit Ethernet" },
143
144         { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
145                 "Apple BCM5701 Gigabit Ethernet" },
146
147         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
148                 "Broadcom BCM5700 Gigabit Ethernet" },
149         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
150                 "Broadcom BCM5701 Gigabit Ethernet" },
151         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
152                 "Broadcom BCM5702 Gigabit Ethernet" },
153         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
154                 "Broadcom BCM5702X Gigabit Ethernet" },
155         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
156                 "Broadcom BCM5702 Gigabit Ethernet" },
157         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
158                 "Broadcom BCM5703 Gigabit Ethernet" },
159         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
160                 "Broadcom BCM5703X Gigabit Ethernet" },
161         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
162                 "Broadcom BCM5703 Gigabit Ethernet" },
163         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
164                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
165         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
166                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
167         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
168                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
169         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
170                 "Broadcom BCM5705 Gigabit Ethernet" },
171         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
172                 "Broadcom BCM5705F Gigabit Ethernet" },
173         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
174                 "Broadcom BCM5705K Gigabit Ethernet" },
175         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
176                 "Broadcom BCM5705M Gigabit Ethernet" },
177         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
178                 "Broadcom BCM5705M Gigabit Ethernet" },
179         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
180                 "Broadcom BCM5714C Gigabit Ethernet" },
181         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
182                 "Broadcom BCM5714S Gigabit Ethernet" },
183         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
184                 "Broadcom BCM5715 Gigabit Ethernet" },
185         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
186                 "Broadcom BCM5715S Gigabit Ethernet" },
187         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
188                 "Broadcom BCM5720 Gigabit Ethernet" },
189         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
190                 "Broadcom BCM5721 Gigabit Ethernet" },
191         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
192                 "Broadcom BCM5722 Gigabit Ethernet" },
193         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
194                 "Broadcom BCM5750 Gigabit Ethernet" },
195         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
196                 "Broadcom BCM5750M Gigabit Ethernet" },
197         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
198                 "Broadcom BCM5751 Gigabit Ethernet" },
199         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
200                 "Broadcom BCM5751F Gigabit Ethernet" },
201         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
202                 "Broadcom BCM5751M Gigabit Ethernet" },
203         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
204                 "Broadcom BCM5752 Gigabit Ethernet" },
205         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
206                 "Broadcom BCM5752M Gigabit Ethernet" },
207         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
208                 "Broadcom BCM5753 Gigabit Ethernet" },
209         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
210                 "Broadcom BCM5753F Gigabit Ethernet" },
211         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
212                 "Broadcom BCM5753M Gigabit Ethernet" },
213         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
214                 "Broadcom BCM5754 Gigabit Ethernet" },
215         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
216                 "Broadcom BCM5754M Gigabit Ethernet" },
217         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
218                 "Broadcom BCM5755 Gigabit Ethernet" },
219         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
220                 "Broadcom BCM5755M Gigabit Ethernet" },
221         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
222                 "Broadcom BCM5756 Gigabit Ethernet" },
223         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
224                 "Broadcom BCM5780 Gigabit Ethernet" },
225         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
226                 "Broadcom BCM5780S Gigabit Ethernet" },
227         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
228                 "Broadcom BCM5781 Gigabit Ethernet" },
229         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
230                 "Broadcom BCM5782 Gigabit Ethernet" },
231         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
232                 "Broadcom BCM5786 Gigabit Ethernet" },
233         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
234                 "Broadcom BCM5787 Gigabit Ethernet" },
235         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
236                 "Broadcom BCM5787F Gigabit Ethernet" },
237         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
238                 "Broadcom BCM5787M Gigabit Ethernet" },
239         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
240                 "Broadcom BCM5788 Gigabit Ethernet" },
241         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
242                 "Broadcom BCM5789 Gigabit Ethernet" },
243         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
244                 "Broadcom BCM5901 Fast Ethernet" },
245         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
246                 "Broadcom BCM5901A2 Fast Ethernet" },
247         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
248                 "Broadcom BCM5903M Fast Ethernet" },
249
250         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
251                 "SysKonnect Gigabit Ethernet" },
252
253         { 0, 0, NULL }
254 };
255
256 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
257 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
258 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
259 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
260 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
261
262 static int      bge_probe(device_t);
263 static int      bge_attach(device_t);
264 static int      bge_detach(device_t);
265 static void     bge_txeof(struct bge_softc *);
266 static void     bge_rxeof(struct bge_softc *);
267
268 static void     bge_tick(void *);
269 static void     bge_stats_update(struct bge_softc *);
270 static void     bge_stats_update_regs(struct bge_softc *);
271 static int      bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
272
273 #ifdef DEVICE_POLLING
274 static void     bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
275 #endif
276 static void     bge_intr(void *);
277 static void     bge_enable_intr(struct bge_softc *);
278 static void     bge_disable_intr(struct bge_softc *);
279 static void     bge_start(struct ifnet *);
280 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
281 static void     bge_init(void *);
282 static void     bge_stop(struct bge_softc *);
283 static void     bge_watchdog(struct ifnet *);
284 static void     bge_shutdown(device_t);
285 static int      bge_suspend(device_t);
286 static int      bge_resume(device_t);
287 static int      bge_ifmedia_upd(struct ifnet *);
288 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
289
290 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
291 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
292
293 static void     bge_setmulti(struct bge_softc *);
294 static void     bge_setpromisc(struct bge_softc *);
295
296 static int      bge_alloc_jumbo_mem(struct bge_softc *);
297 static void     bge_free_jumbo_mem(struct bge_softc *);
298 static struct bge_jslot
299                 *bge_jalloc(struct bge_softc *);
300 static void     bge_jfree(void *);
301 static void     bge_jref(void *);
302 static int      bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
303 static int      bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
304 static int      bge_init_rx_ring_std(struct bge_softc *);
305 static void     bge_free_rx_ring_std(struct bge_softc *);
306 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
307 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
308 static void     bge_free_tx_ring(struct bge_softc *);
309 static int      bge_init_tx_ring(struct bge_softc *);
310
311 static int      bge_chipinit(struct bge_softc *);
312 static int      bge_blockinit(struct bge_softc *);
313
314 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
315 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
316 #ifdef notdef
317 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
318 #endif
319 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
320 static void     bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
321
322 static int      bge_miibus_readreg(device_t, int, int);
323 static int      bge_miibus_writereg(device_t, int, int, int);
324 static void     bge_miibus_statchg(device_t);
325 static void     bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
326 static void     bge_tbi_link_upd(struct bge_softc *, uint32_t);
327 static void     bge_copper_link_upd(struct bge_softc *, uint32_t);
328
329 static void     bge_reset(struct bge_softc *);
330
331 static void     bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
332 static void     bge_dma_map_mbuf(void *, bus_dma_segment_t *, int,
333                                  bus_size_t, int);
334 static int      bge_dma_alloc(struct bge_softc *);
335 static void     bge_dma_free(struct bge_softc *);
336 static int      bge_dma_block_alloc(struct bge_softc *, bus_size_t,
337                                     bus_dma_tag_t *, bus_dmamap_t *,
338                                     void **, bus_addr_t *);
339 static void     bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
340
341 static void     bge_coal_change(struct bge_softc *);
342 static int      bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
343 static int      bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
344 static int      bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS);
345 static int      bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS);
346 static int      bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *, uint32_t);
347
348 /*
349  * Set following tunable to 1 for some IBM blade servers with the DNLK
350  * switch module. Auto negotiation is broken for those configurations.
351  */
352 static int      bge_fake_autoneg = 0;
353 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
354
355 /* Interrupt moderation control variables. */
356 static int      bge_rx_coal_ticks = 150;        /* usec */
357 static int      bge_tx_coal_ticks = 1000000;    /* usec */
358 static int      bge_rx_max_coal_bds = 16;
359 static int      bge_tx_max_coal_bds = 32;
360
361 TUNABLE_INT("hw.bge.rx_coal_ticks", &bge_rx_coal_ticks);
362 TUNABLE_INT("hw.bge.tx_coal_ticks", &bge_tx_coal_ticks);
363 TUNABLE_INT("hw.bge.rx_max_coal_bds", &bge_rx_max_coal_bds);
364 TUNABLE_INT("hw.bge.tx_max_coal_bds", &bge_tx_max_coal_bds);
365
366 #if !defined(KTR_IF_BGE)
367 #define KTR_IF_BGE      KTR_ALL
368 #endif
369 KTR_INFO_MASTER(if_bge);
370 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr", 0);
371 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt", 0);
372 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt", 0);
373 #define logif(name)     KTR_LOG(if_bge_ ## name)
374
375 static device_method_t bge_methods[] = {
376         /* Device interface */
377         DEVMETHOD(device_probe,         bge_probe),
378         DEVMETHOD(device_attach,        bge_attach),
379         DEVMETHOD(device_detach,        bge_detach),
380         DEVMETHOD(device_shutdown,      bge_shutdown),
381         DEVMETHOD(device_suspend,       bge_suspend),
382         DEVMETHOD(device_resume,        bge_resume),
383
384         /* bus interface */
385         DEVMETHOD(bus_print_child,      bus_generic_print_child),
386         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
387
388         /* MII interface */
389         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
390         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
391         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
392
393         { 0, 0 }
394 };
395
396 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
397 static devclass_t bge_devclass;
398
399 DECLARE_DUMMY_MODULE(if_bge);
400 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
401 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
402
403 static uint32_t
404 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
405 {
406         device_t dev = sc->bge_dev;
407         uint32_t val;
408
409         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
410         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
411         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
412         return (val);
413 }
414
415 static void
416 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
417 {
418         device_t dev = sc->bge_dev;
419
420         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
421         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
422         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
423 }
424
425 #ifdef notdef
426 static uint32_t
427 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
428 {
429         device_t dev = sc->bge_dev;
430
431         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
432         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
433 }
434 #endif
435
436 static void
437 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
438 {
439         device_t dev = sc->bge_dev;
440
441         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
442         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
443 }
444
445 static void
446 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
447 {
448         CSR_WRITE_4(sc, off, val);
449 }
450
451 /*
452  * Read a byte of data stored in the EEPROM at address 'addr.' The
453  * BCM570x supports both the traditional bitbang interface and an
454  * auto access interface for reading the EEPROM. We use the auto
455  * access method.
456  */
457 static uint8_t
458 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
459 {
460         int i;
461         uint32_t byte = 0;
462
463         /*
464          * Enable use of auto EEPROM access so we can avoid
465          * having to use the bitbang method.
466          */
467         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
468
469         /* Reset the EEPROM, load the clock period. */
470         CSR_WRITE_4(sc, BGE_EE_ADDR,
471             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
472         DELAY(20);
473
474         /* Issue the read EEPROM command. */
475         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
476
477         /* Wait for completion */
478         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
479                 DELAY(10);
480                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
481                         break;
482         }
483
484         if (i == BGE_TIMEOUT) {
485                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
486                 return(1);
487         }
488
489         /* Get result. */
490         byte = CSR_READ_4(sc, BGE_EE_DATA);
491
492         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
493
494         return(0);
495 }
496
497 /*
498  * Read a sequence of bytes from the EEPROM.
499  */
500 static int
501 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
502 {
503         size_t i;
504         int err;
505         uint8_t byte;
506
507         for (byte = 0, err = 0, i = 0; i < len; i++) {
508                 err = bge_eeprom_getbyte(sc, off + i, &byte);
509                 if (err)
510                         break;
511                 *(dest + i) = byte;
512         }
513
514         return(err ? 1 : 0);
515 }
516
517 static int
518 bge_miibus_readreg(device_t dev, int phy, int reg)
519 {
520         struct bge_softc *sc;
521         struct ifnet *ifp;
522         uint32_t val, autopoll;
523         int i;
524
525         sc = device_get_softc(dev);
526         ifp = &sc->arpcom.ac_if;
527
528         /*
529          * Broadcom's own driver always assumes the internal
530          * PHY is at GMII address 1. On some chips, the PHY responds
531          * to accesses at all addresses, which could cause us to
532          * bogusly attach the PHY 32 times at probe type. Always
533          * restricting the lookup to address 1 is simpler than
534          * trying to figure out which chips revisions should be
535          * special-cased.
536          */
537         if (phy != 1)
538                 return(0);
539
540         /* Reading with autopolling on may trigger PCI errors */
541         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
542         if (autopoll & BGE_MIMODE_AUTOPOLL) {
543                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
544                 DELAY(40);
545         }
546
547         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
548             BGE_MIPHY(phy)|BGE_MIREG(reg));
549
550         for (i = 0; i < BGE_TIMEOUT; i++) {
551                 val = CSR_READ_4(sc, BGE_MI_COMM);
552                 if (!(val & BGE_MICOMM_BUSY))
553                         break;
554         }
555
556         if (i == BGE_TIMEOUT) {
557                 if_printf(ifp, "PHY read timed out\n");
558                 val = 0;
559                 goto done;
560         }
561
562         val = CSR_READ_4(sc, BGE_MI_COMM);
563
564 done:
565         if (autopoll & BGE_MIMODE_AUTOPOLL) {
566                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
567                 DELAY(40);
568         }
569
570         if (val & BGE_MICOMM_READFAIL)
571                 return(0);
572
573         return(val & 0xFFFF);
574 }
575
576 static int
577 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
578 {
579         struct bge_softc *sc;
580         uint32_t autopoll;
581         int i;
582
583         sc = device_get_softc(dev);
584
585         /* Reading with autopolling on may trigger PCI errors */
586         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
587         if (autopoll & BGE_MIMODE_AUTOPOLL) {
588                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
589                 DELAY(40);
590         }
591
592         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
593             BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
594
595         for (i = 0; i < BGE_TIMEOUT; i++) {
596                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
597                         break;
598         }
599
600         if (autopoll & BGE_MIMODE_AUTOPOLL) {
601                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
602                 DELAY(40);
603         }
604
605         if (i == BGE_TIMEOUT) {
606                 if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
607                 return(0);
608         }
609
610         return(0);
611 }
612
613 static void
614 bge_miibus_statchg(device_t dev)
615 {
616         struct bge_softc *sc;
617         struct mii_data *mii;
618
619         sc = device_get_softc(dev);
620         mii = device_get_softc(sc->bge_miibus);
621
622         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
623         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
624                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
625         } else {
626                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
627         }
628
629         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
630                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
631         } else {
632                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
633         }
634 }
635
636 /*
637  * Memory management for jumbo frames.
638  */
639 static int
640 bge_alloc_jumbo_mem(struct bge_softc *sc)
641 {
642         struct ifnet *ifp = &sc->arpcom.ac_if;
643         struct bge_jslot *entry;
644         uint8_t *ptr;
645         bus_addr_t paddr;
646         int i, error;
647
648         /*
649          * Create tag for jumbo mbufs.
650          * This is really a bit of a kludge. We allocate a special
651          * jumbo buffer pool which (thanks to the way our DMA
652          * memory allocation works) will consist of contiguous
653          * pages. This means that even though a jumbo buffer might
654          * be larger than a page size, we don't really need to
655          * map it into more than one DMA segment. However, the
656          * default mbuf tag will result in multi-segment mappings,
657          * so we have to create a special jumbo mbuf tag that
658          * lets us get away with mapping the jumbo buffers as
659          * a single segment. I think eventually the driver should
660          * be changed so that it uses ordinary mbufs and cluster
661          * buffers, i.e. jumbo frames can span multiple DMA
662          * descriptors. But that's a project for another day.
663          */
664
665         /*
666          * Create DMA stuffs for jumbo RX ring.
667          */
668         error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
669                                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
670                                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
671                                     (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
672                                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
673         if (error) {
674                 if_printf(ifp, "could not create jumbo RX ring\n");
675                 return error;
676         }
677
678         /*
679          * Create DMA stuffs for jumbo buffer block.
680          */
681         error = bge_dma_block_alloc(sc, BGE_JMEM,
682                                     &sc->bge_cdata.bge_jumbo_tag,
683                                     &sc->bge_cdata.bge_jumbo_map,
684                                     (void **)&sc->bge_ldata.bge_jumbo_buf,
685                                     &paddr);
686         if (error) {
687                 if_printf(ifp, "could not create jumbo buffer\n");
688                 return error;
689         }
690
691         SLIST_INIT(&sc->bge_jfree_listhead);
692
693         /*
694          * Now divide it up into 9K pieces and save the addresses
695          * in an array. Note that we play an evil trick here by using
696          * the first few bytes in the buffer to hold the the address
697          * of the softc structure for this interface. This is because
698          * bge_jfree() needs it, but it is called by the mbuf management
699          * code which will not pass it to us explicitly.
700          */
701         for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
702                 entry = &sc->bge_cdata.bge_jslots[i];
703                 entry->bge_sc = sc;
704                 entry->bge_buf = ptr;
705                 entry->bge_paddr = paddr;
706                 entry->bge_inuse = 0;
707                 entry->bge_slot = i;
708                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
709
710                 ptr += BGE_JLEN;
711                 paddr += BGE_JLEN;
712         }
713         return 0;
714 }
715
716 static void
717 bge_free_jumbo_mem(struct bge_softc *sc)
718 {
719         /* Destroy jumbo RX ring. */
720         bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
721                            sc->bge_cdata.bge_rx_jumbo_ring_map,
722                            sc->bge_ldata.bge_rx_jumbo_ring);
723
724         /* Destroy jumbo buffer block. */
725         bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
726                            sc->bge_cdata.bge_jumbo_map,
727                            sc->bge_ldata.bge_jumbo_buf);
728 }
729
730 /*
731  * Allocate a jumbo buffer.
732  */
733 static struct bge_jslot *
734 bge_jalloc(struct bge_softc *sc)
735 {
736         struct bge_jslot *entry;
737
738         lwkt_serialize_enter(&sc->bge_jslot_serializer);
739         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
740         if (entry) {
741                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
742                 entry->bge_inuse = 1;
743         } else {
744                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
745         }
746         lwkt_serialize_exit(&sc->bge_jslot_serializer);
747         return(entry);
748 }
749
750 /*
751  * Adjust usage count on a jumbo buffer.
752  */
753 static void
754 bge_jref(void *arg)
755 {
756         struct bge_jslot *entry = (struct bge_jslot *)arg;
757         struct bge_softc *sc = entry->bge_sc;
758
759         if (sc == NULL)
760                 panic("bge_jref: can't find softc pointer!");
761
762         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
763                 panic("bge_jref: asked to reference buffer "
764                     "that we don't manage!");
765         } else if (entry->bge_inuse == 0) {
766                 panic("bge_jref: buffer already free!");
767         } else {
768                 atomic_add_int(&entry->bge_inuse, 1);
769         }
770 }
771
772 /*
773  * Release a jumbo buffer.
774  */
775 static void
776 bge_jfree(void *arg)
777 {
778         struct bge_jslot *entry = (struct bge_jslot *)arg;
779         struct bge_softc *sc = entry->bge_sc;
780
781         if (sc == NULL)
782                 panic("bge_jfree: can't find softc pointer!");
783
784         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
785                 panic("bge_jfree: asked to free buffer that we don't manage!");
786         } else if (entry->bge_inuse == 0) {
787                 panic("bge_jfree: buffer already free!");
788         } else {
789                 /*
790                  * Possible MP race to 0, use the serializer.  The atomic insn
791                  * is still needed for races against bge_jref().
792                  */
793                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
794                 atomic_subtract_int(&entry->bge_inuse, 1);
795                 if (entry->bge_inuse == 0) {
796                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
797                                           entry, jslot_link);
798                 }
799                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
800         }
801 }
802
803
804 /*
805  * Intialize a standard receive ring descriptor.
806  */
807 static int
808 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
809 {
810         struct mbuf *m_new = NULL;
811         struct bge_dmamap_arg ctx;
812         bus_dma_segment_t seg;
813         struct bge_rx_bd *r;
814         int error;
815
816         if (m == NULL) {
817                 m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
818                 if (m_new == NULL)
819                         return ENOBUFS;
820         } else {
821                 m_new = m;
822                 m_new->m_data = m_new->m_ext.ext_buf;
823         }
824         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
825
826         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
827                 m_adj(m_new, ETHER_ALIGN);
828
829         ctx.bge_maxsegs = 1;
830         ctx.bge_segs = &seg;
831         error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag,
832                                      sc->bge_cdata.bge_rx_std_dmamap[i],
833                                      m_new, bge_dma_map_mbuf, &ctx,
834                                      BUS_DMA_NOWAIT);
835         if (error || ctx.bge_maxsegs == 0) {
836                 if (m == NULL)
837                         m_freem(m_new);
838                 return ENOMEM;
839         }
840
841         sc->bge_cdata.bge_rx_std_chain[i] = m_new;
842
843         r = &sc->bge_ldata.bge_rx_std_ring[i];
844         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_segs[0].ds_addr);
845         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_segs[0].ds_addr);
846         r->bge_flags = BGE_RXBDFLAG_END;
847         r->bge_len = m_new->m_len;
848         r->bge_idx = i;
849
850         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
851                         sc->bge_cdata.bge_rx_std_dmamap[i],
852                         BUS_DMASYNC_PREREAD);
853         return 0;
854 }
855
856 /*
857  * Initialize a jumbo receive ring descriptor. This allocates
858  * a jumbo buffer from the pool managed internally by the driver.
859  */
860 static int
861 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
862 {
863         struct mbuf *m_new = NULL;
864         struct bge_jslot *buf;
865         struct bge_rx_bd *r;
866         bus_addr_t paddr;
867
868         if (m == NULL) {
869                 /* Allocate the mbuf. */
870                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
871                 if (m_new == NULL)
872                         return(ENOBUFS);
873
874                 /* Allocate the jumbo buffer */
875                 buf = bge_jalloc(sc);
876                 if (buf == NULL) {
877                         m_freem(m_new);
878                         if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
879                             "-- packet dropped!\n");
880                         return ENOBUFS;
881                 }
882
883                 /* Attach the buffer to the mbuf. */
884                 m_new->m_ext.ext_arg = buf;
885                 m_new->m_ext.ext_buf = buf->bge_buf;
886                 m_new->m_ext.ext_free = bge_jfree;
887                 m_new->m_ext.ext_ref = bge_jref;
888                 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
889
890                 m_new->m_flags |= M_EXT;
891         } else {
892                 KKASSERT(m->m_flags & M_EXT);
893                 m_new = m;
894                 buf = m_new->m_ext.ext_arg;
895         }
896         m_new->m_data = m_new->m_ext.ext_buf;
897         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
898
899         paddr = buf->bge_paddr;
900         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
901                 m_adj(m_new, ETHER_ALIGN);
902                 paddr += ETHER_ALIGN;
903         }
904
905         /* Set up the descriptor. */
906         sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
907
908         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
909         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(paddr);
910         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(paddr);
911         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
912         r->bge_len = m_new->m_len;
913         r->bge_idx = i;
914
915         return 0;
916 }
917
918 /*
919  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
920  * that's 1MB or memory, which is a lot. For now, we fill only the first
921  * 256 ring entries and hope that our CPU is fast enough to keep up with
922  * the NIC.
923  */
924 static int
925 bge_init_rx_ring_std(struct bge_softc *sc)
926 {
927         int i;
928
929         for (i = 0; i < BGE_SSLOTS; i++) {
930                 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
931                         return(ENOBUFS);
932         };
933
934         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
935                         sc->bge_cdata.bge_rx_std_ring_map,
936                         BUS_DMASYNC_PREWRITE);
937
938         sc->bge_std = i - 1;
939         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
940
941         return(0);
942 }
943
944 static void
945 bge_free_rx_ring_std(struct bge_softc *sc)
946 {
947         int i;
948
949         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
950                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
951                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
952                                           sc->bge_cdata.bge_rx_std_dmamap[i]);
953                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
954                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
955                 }
956                 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
957                     sizeof(struct bge_rx_bd));
958         }
959 }
960
961 static int
962 bge_init_rx_ring_jumbo(struct bge_softc *sc)
963 {
964         int i;
965         struct bge_rcb *rcb;
966
967         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
968                 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
969                         return(ENOBUFS);
970         };
971
972         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
973                         sc->bge_cdata.bge_rx_jumbo_ring_map,
974                         BUS_DMASYNC_PREWRITE);
975
976         sc->bge_jumbo = i - 1;
977
978         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
979         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
980         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
981
982         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
983
984         return(0);
985 }
986
987 static void
988 bge_free_rx_ring_jumbo(struct bge_softc *sc)
989 {
990         int i;
991
992         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
993                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
994                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
995                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
996                 }
997                 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
998                     sizeof(struct bge_rx_bd));
999         }
1000 }
1001
1002 static void
1003 bge_free_tx_ring(struct bge_softc *sc)
1004 {
1005         int i;
1006
1007         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1008                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1009                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
1010                                           sc->bge_cdata.bge_tx_dmamap[i]);
1011                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1012                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1013                 }
1014                 bzero(&sc->bge_ldata.bge_tx_ring[i],
1015                     sizeof(struct bge_tx_bd));
1016         }
1017 }
1018
1019 static int
1020 bge_init_tx_ring(struct bge_softc *sc)
1021 {
1022         sc->bge_txcnt = 0;
1023         sc->bge_tx_saved_considx = 0;
1024         sc->bge_tx_prodidx = 0;
1025
1026         /* Initialize transmit producer index for host-memory send ring. */
1027         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1028
1029         /* 5700 b2 errata */
1030         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1031                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1032
1033         CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1034         /* 5700 b2 errata */
1035         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1036                 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1037
1038         return(0);
1039 }
1040
1041 static void
1042 bge_setmulti(struct bge_softc *sc)
1043 {
1044         struct ifnet *ifp;
1045         struct ifmultiaddr *ifma;
1046         uint32_t hashes[4] = { 0, 0, 0, 0 };
1047         int h, i;
1048
1049         ifp = &sc->arpcom.ac_if;
1050
1051         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1052                 for (i = 0; i < 4; i++)
1053                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1054                 return;
1055         }
1056
1057         /* First, zot all the existing filters. */
1058         for (i = 0; i < 4; i++)
1059                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1060
1061         /* Now program new ones. */
1062         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1063                 if (ifma->ifma_addr->sa_family != AF_LINK)
1064                         continue;
1065                 h = ether_crc32_le(
1066                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1067                     ETHER_ADDR_LEN) & 0x7f;
1068                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1069         }
1070
1071         for (i = 0; i < 4; i++)
1072                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1073 }
1074
1075 /*
1076  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1077  * self-test results.
1078  */
1079 static int
1080 bge_chipinit(struct bge_softc *sc)
1081 {
1082         int i;
1083         uint32_t dma_rw_ctl;
1084
1085         /* Set endian type before we access any non-PCI registers. */
1086         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1087
1088         /*
1089          * Check the 'ROM failed' bit on the RX CPU to see if
1090          * self-tests passed.
1091          */
1092         if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1093                 if_printf(&sc->arpcom.ac_if,
1094                           "RX CPU self-diagnostics failed!\n");
1095                 return(ENODEV);
1096         }
1097
1098         /* Clear the MAC control register */
1099         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1100
1101         /*
1102          * Clear the MAC statistics block in the NIC's
1103          * internal memory.
1104          */
1105         for (i = BGE_STATS_BLOCK;
1106             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1107                 BGE_MEMWIN_WRITE(sc, i, 0);
1108
1109         for (i = BGE_STATUS_BLOCK;
1110             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1111                 BGE_MEMWIN_WRITE(sc, i, 0);
1112
1113         /* Set up the PCI DMA control register. */
1114         if (sc->bge_flags & BGE_FLAG_PCIE) {
1115                 /* PCI Express */
1116                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1117                     (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1118                     (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1119         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1120                 /* PCI-X bus */
1121                 if (BGE_IS_5714_FAMILY(sc)) {
1122                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1123                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1124                         /* XXX magic values, Broadcom-supplied Linux driver */
1125                         if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1126                                 dma_rw_ctl |= (1 << 20) | (1 << 18) | 
1127                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1128                         } else {
1129                                 dma_rw_ctl |= (1 << 20) | (1 << 18) | (1 << 15);
1130                         }
1131                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1132                         /*
1133                          * The 5704 uses a different encoding of read/write
1134                          * watermarks.
1135                          */
1136                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1137                             (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1138                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1139                 } else {
1140                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1141                             (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1142                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1143                             (0x0F);
1144                 }
1145
1146                 /*
1147                  * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1148                  * for hardware bugs.
1149                  */
1150                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1151                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1152                         uint32_t tmp;
1153
1154                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1155                         if (tmp == 0x6 || tmp == 0x7)
1156                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1157                 }
1158         } else {
1159                 /* Conventional PCI bus */
1160                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1161                     (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1162                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1163                     (0x0F);
1164         }
1165
1166         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1167             sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1168             sc->bge_asicrev == BGE_ASICREV_BCM5705)
1169                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1170         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1171
1172         /*
1173          * Set up general mode register.
1174          */
1175         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1176             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1177             BGE_MODECTL_TX_NO_PHDR_CSUM);
1178
1179         /*
1180          * Disable memory write invalidate.  Apparently it is not supported
1181          * properly by these devices.
1182          */
1183         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1184
1185         /* Set the timer prescaler (always 66Mhz) */
1186         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1187
1188         return(0);
1189 }
1190
1191 static int
1192 bge_blockinit(struct bge_softc *sc)
1193 {
1194         struct bge_rcb *rcb;
1195         bus_size_t vrcb;
1196         bge_hostaddr taddr;
1197         uint32_t val;
1198         int i;
1199
1200         /*
1201          * Initialize the memory window pointer register so that
1202          * we can access the first 32K of internal NIC RAM. This will
1203          * allow us to set up the TX send ring RCBs and the RX return
1204          * ring RCBs, plus other things which live in NIC memory.
1205          */
1206         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1207
1208         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1209
1210         if (!BGE_IS_5705_PLUS(sc)) {
1211                 /* Configure mbuf memory pool */
1212                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1213                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1214                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1215                 else
1216                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1217
1218                 /* Configure DMA resource pool */
1219                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1220                     BGE_DMA_DESCRIPTORS);
1221                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1222         }
1223
1224         /* Configure mbuf pool watermarks */
1225         if (BGE_IS_5705_PLUS(sc)) {
1226                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1227                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1228         } else {
1229                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1230                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1231         }
1232         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1233
1234         /* Configure DMA resource watermarks */
1235         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1236         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1237
1238         /* Enable buffer manager */
1239         if (!BGE_IS_5705_PLUS(sc)) {
1240                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1241                     BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1242
1243                 /* Poll for buffer manager start indication */
1244                 for (i = 0; i < BGE_TIMEOUT; i++) {
1245                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1246                                 break;
1247                         DELAY(10);
1248                 }
1249
1250                 if (i == BGE_TIMEOUT) {
1251                         if_printf(&sc->arpcom.ac_if,
1252                                   "buffer manager failed to start\n");
1253                         return(ENXIO);
1254                 }
1255         }
1256
1257         /* Enable flow-through queues */
1258         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1259         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1260
1261         /* Wait until queue initialization is complete */
1262         for (i = 0; i < BGE_TIMEOUT; i++) {
1263                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1264                         break;
1265                 DELAY(10);
1266         }
1267
1268         if (i == BGE_TIMEOUT) {
1269                 if_printf(&sc->arpcom.ac_if,
1270                           "flow-through queue init failed\n");
1271                 return(ENXIO);
1272         }
1273
1274         /* Initialize the standard RX ring control block */
1275         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1276         rcb->bge_hostaddr.bge_addr_lo =
1277             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1278         rcb->bge_hostaddr.bge_addr_hi =
1279             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1280         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1281             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1282         if (BGE_IS_5705_PLUS(sc))
1283                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1284         else
1285                 rcb->bge_maxlen_flags =
1286                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1287         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1288         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1289         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1290         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1291         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1292
1293         /*
1294          * Initialize the jumbo RX ring control block
1295          * We set the 'ring disabled' bit in the flags
1296          * field until we're actually ready to start
1297          * using this ring (i.e. once we set the MTU
1298          * high enough to require it).
1299          */
1300         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1301                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1302
1303                 rcb->bge_hostaddr.bge_addr_lo =
1304                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1305                 rcb->bge_hostaddr.bge_addr_hi =
1306                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1307                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1308                     sc->bge_cdata.bge_rx_jumbo_ring_map,
1309                     BUS_DMASYNC_PREREAD);
1310                 rcb->bge_maxlen_flags =
1311                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1312                     BGE_RCB_FLAG_RING_DISABLED);
1313                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1314                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1315                     rcb->bge_hostaddr.bge_addr_hi);
1316                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1317                     rcb->bge_hostaddr.bge_addr_lo);
1318                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1319                     rcb->bge_maxlen_flags);
1320                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1321
1322                 /* Set up dummy disabled mini ring RCB */
1323                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1324                 rcb->bge_maxlen_flags =
1325                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1326                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1327                     rcb->bge_maxlen_flags);
1328         }
1329
1330         /*
1331          * Set the BD ring replentish thresholds. The recommended
1332          * values are 1/8th the number of descriptors allocated to
1333          * each ring.
1334          */
1335         if (BGE_IS_5705_PLUS(sc))
1336                 val = 8;
1337         else
1338                 val = BGE_STD_RX_RING_CNT / 8;
1339         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1340         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1341
1342         /*
1343          * Disable all unused send rings by setting the 'ring disabled'
1344          * bit in the flags field of all the TX send ring control blocks.
1345          * These are located in NIC memory.
1346          */
1347         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1348         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1349                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1350                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1351                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1352                 vrcb += sizeof(struct bge_rcb);
1353         }
1354
1355         /* Configure TX RCB 0 (we use only the first ring) */
1356         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1357         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1358         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1359         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1360         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1361             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1362         if (!BGE_IS_5705_PLUS(sc)) {
1363                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1364                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1365         }
1366
1367         /* Disable all unused RX return rings */
1368         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1369         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1370                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1371                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1372                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1373                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1374                     BGE_RCB_FLAG_RING_DISABLED));
1375                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1376                 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1377                     (i * (sizeof(uint64_t))), 0);
1378                 vrcb += sizeof(struct bge_rcb);
1379         }
1380
1381         /* Initialize RX ring indexes */
1382         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1383         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1384         CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1385
1386         /*
1387          * Set up RX return ring 0
1388          * Note that the NIC address for RX return rings is 0x00000000.
1389          * The return rings live entirely within the host, so the
1390          * nicaddr field in the RCB isn't used.
1391          */
1392         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1393         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1394         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1395         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1396         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1397         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1398             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1399
1400         /* Set random backoff seed for TX */
1401         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1402             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1403             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1404             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1405             BGE_TX_BACKOFF_SEED_MASK);
1406
1407         /* Set inter-packet gap */
1408         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1409
1410         /*
1411          * Specify which ring to use for packets that don't match
1412          * any RX rules.
1413          */
1414         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1415
1416         /*
1417          * Configure number of RX lists. One interrupt distribution
1418          * list, sixteen active lists, one bad frames class.
1419          */
1420         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1421
1422         /* Inialize RX list placement stats mask. */
1423         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1424         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1425
1426         /* Disable host coalescing until we get it set up */
1427         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1428
1429         /* Poll to make sure it's shut down. */
1430         for (i = 0; i < BGE_TIMEOUT; i++) {
1431                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1432                         break;
1433                 DELAY(10);
1434         }
1435
1436         if (i == BGE_TIMEOUT) {
1437                 if_printf(&sc->arpcom.ac_if,
1438                           "host coalescing engine failed to idle\n");
1439                 return(ENXIO);
1440         }
1441
1442         /* Set up host coalescing defaults */
1443         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1444         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1445         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1446         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1447         if (!BGE_IS_5705_PLUS(sc)) {
1448                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1449                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1450         }
1451         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1452         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1453
1454         /* Set up address of statistics block */
1455         if (!BGE_IS_5705_PLUS(sc)) {
1456                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1457                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1458                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1459                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1460
1461                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1462                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1463                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1464         }
1465
1466         /* Set up address of status block */
1467         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1468             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1469         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1470             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1471         sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1472         sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1473
1474         /* Turn on host coalescing state machine */
1475         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1476
1477         /* Turn on RX BD completion state machine and enable attentions */
1478         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1479             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1480
1481         /* Turn on RX list placement state machine */
1482         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1483
1484         /* Turn on RX list selector state machine. */
1485         if (!BGE_IS_5705_PLUS(sc))
1486                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1487
1488         /* Turn on DMA, clear stats */
1489         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1490             BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1491             BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1492             BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1493             ((sc->bge_flags & BGE_FLAG_TBI) ?
1494              BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1495
1496         /* Set misc. local control, enable interrupts on attentions */
1497         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1498
1499 #ifdef notdef
1500         /* Assert GPIO pins for PHY reset */
1501         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1502             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1503         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1504             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1505 #endif
1506
1507         /* Turn on DMA completion state machine */
1508         if (!BGE_IS_5705_PLUS(sc))
1509                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1510
1511         /* Turn on write DMA state machine */
1512         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1513         if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1514             sc->bge_asicrev == BGE_ASICREV_BCM5787)
1515                 val |= (1 << 29);       /* Enable host coalescing bug fix. */
1516         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1517         
1518         /* Turn on read DMA state machine */
1519         CSR_WRITE_4(sc, BGE_RDMA_MODE,
1520             BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1521
1522         /* Turn on RX data completion state machine */
1523         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1524
1525         /* Turn on RX BD initiator state machine */
1526         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1527
1528         /* Turn on RX data and RX BD initiator state machine */
1529         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1530
1531         /* Turn on Mbuf cluster free state machine */
1532         if (!BGE_IS_5705_PLUS(sc))
1533                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1534
1535         /* Turn on send BD completion state machine */
1536         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1537
1538         /* Turn on send data completion state machine */
1539         CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1540
1541         /* Turn on send data initiator state machine */
1542         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1543
1544         /* Turn on send BD initiator state machine */
1545         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1546
1547         /* Turn on send BD selector state machine */
1548         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1549
1550         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1551         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1552             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1553
1554         /* ack/clear link change events */
1555         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1556             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1557             BGE_MACSTAT_LINK_CHANGED);
1558         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1559
1560         /* Enable PHY auto polling (for MII/GMII only) */
1561         if (sc->bge_flags & BGE_FLAG_TBI) {
1562                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1563         } else {
1564                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1565                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1566                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1567                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1568                             BGE_EVTENB_MI_INTERRUPT);
1569                 }
1570         }
1571
1572         /*
1573          * Clear any pending link state attention.
1574          * Otherwise some link state change events may be lost until attention
1575          * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1576          * It's not necessary on newer BCM chips - perhaps enabling link
1577          * state change attentions implies clearing pending attention.
1578          */
1579         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1580             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1581             BGE_MACSTAT_LINK_CHANGED);
1582
1583         /* Enable link state change attentions. */
1584         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1585
1586         return(0);
1587 }
1588
1589 /*
1590  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1591  * against our list and return its name if we find a match. Note
1592  * that since the Broadcom controller contains VPD support, we
1593  * can get the device name string from the controller itself instead
1594  * of the compiled-in string. This is a little slow, but it guarantees
1595  * we'll always announce the right product name.
1596  */
1597 static int
1598 bge_probe(device_t dev)
1599 {
1600         struct bge_softc *sc;
1601         struct bge_type *t;
1602         char *descbuf;
1603         uint16_t product, vendor;
1604
1605         product = pci_get_device(dev);
1606         vendor = pci_get_vendor(dev);
1607
1608         for (t = bge_devs; t->bge_name != NULL; t++) {
1609                 if (vendor == t->bge_vid && product == t->bge_did)
1610                         break;
1611         }
1612
1613         if (t->bge_name == NULL)
1614                 return(ENXIO);
1615
1616         sc = device_get_softc(dev);
1617         descbuf = kmalloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1618         ksnprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1619             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1620         device_set_desc_copy(dev, descbuf);
1621         if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1622                 sc->bge_flags |= BGE_FLAG_NO_3LED;
1623         kfree(descbuf, M_TEMP);
1624         return(0);
1625 }
1626
1627 static int
1628 bge_attach(device_t dev)
1629 {
1630         struct ifnet *ifp;
1631         struct bge_softc *sc;
1632         uint32_t hwcfg = 0;
1633         uint32_t mac_addr = 0;
1634         int error = 0, rid;
1635         uint8_t ether_addr[ETHER_ADDR_LEN];
1636
1637         sc = device_get_softc(dev);
1638         sc->bge_dev = dev;
1639         callout_init(&sc->bge_stat_timer);
1640         lwkt_serialize_init(&sc->bge_jslot_serializer);
1641
1642         /*
1643          * Map control/status registers.
1644          */
1645         pci_enable_busmaster(dev);
1646
1647         rid = BGE_PCI_BAR0;
1648         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1649             RF_ACTIVE);
1650
1651         if (sc->bge_res == NULL) {
1652                 device_printf(dev, "couldn't map memory\n");
1653                 return ENXIO;
1654         }
1655
1656         sc->bge_btag = rman_get_bustag(sc->bge_res);
1657         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1658
1659         /* Save ASIC rev. */
1660         sc->bge_chipid =
1661             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1662             BGE_PCIMISCCTL_ASICREV;
1663         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1664         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1665
1666         /* Save chipset family. */
1667         switch (sc->bge_asicrev) {
1668         case BGE_ASICREV_BCM5700:
1669         case BGE_ASICREV_BCM5701:
1670         case BGE_ASICREV_BCM5703:
1671         case BGE_ASICREV_BCM5704:
1672                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
1673                 break;
1674
1675         case BGE_ASICREV_BCM5714_A0:
1676         case BGE_ASICREV_BCM5780:
1677         case BGE_ASICREV_BCM5714:
1678                 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
1679                 /* Fall through */
1680
1681         case BGE_ASICREV_BCM5750:
1682         case BGE_ASICREV_BCM5752:
1683         case BGE_ASICREV_BCM5755:
1684         case BGE_ASICREV_BCM5787:
1685                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
1686                 /* Fall through */
1687
1688         case BGE_ASICREV_BCM5705:
1689                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
1690                 break;
1691         }
1692
1693         /*
1694          * Set various quirk flags.
1695          */
1696
1697         sc->bge_flags |= BGE_FLAG_ETH_WIRESPEED;
1698         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1699             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
1700              (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
1701               sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
1702             sc->bge_asicrev == BGE_ASICREV_BCM5906)
1703                 sc->bge_flags &= ~BGE_FLAG_ETH_WIRESPEED;
1704
1705         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
1706             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
1707                 sc->bge_flags |= BGE_FLAG_CRC_BUG;
1708
1709         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
1710             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
1711                 sc->bge_flags |= BGE_FLAG_ADC_BUG;
1712
1713         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
1714                 sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
1715
1716         if (BGE_IS_5705_PLUS(sc)) {
1717                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1718                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
1719                         uint32_t product = pci_get_device(dev);
1720
1721                         if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
1722                             product != PCI_PRODUCT_BROADCOM_BCM5756)
1723                                 sc->bge_flags |= BGE_FLAG_JITTER_BUG;
1724                         if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
1725                                 sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
1726                 } else if (sc->bge_asicrev != BGE_ASICREV_BCM5906) {
1727                         sc->bge_flags |= BGE_FLAG_BER_BUG;
1728                 }
1729         }
1730
1731         /* Allocate interrupt */
1732         rid = 0;
1733
1734         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1735             RF_SHAREABLE | RF_ACTIVE);
1736
1737         if (sc->bge_irq == NULL) {
1738                 device_printf(dev, "couldn't map interrupt\n");
1739                 error = ENXIO;
1740                 goto fail;
1741         }
1742
1743         /*
1744          * Check if this is a PCI-X or PCI Express device.
1745          */
1746         if (BGE_IS_5705_PLUS(sc)) {
1747                 uint32_t reg;
1748
1749                 reg = pci_read_config(dev, BGE_PCIE_CAPID_REG, 4);
1750                 if ((reg & 0xff) == BGE_PCIE_CAPID)
1751                         sc->bge_flags |= BGE_FLAG_PCIE;
1752         } else {
1753                 /*
1754                  * Check if the device is in PCI-X Mode.
1755                  * (This bit is not valid on PCI Express controllers.)
1756                  */
1757                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1758                     BGE_PCISTATE_PCI_BUSMODE) == 0)
1759                         sc->bge_flags |= BGE_FLAG_PCIX;
1760         }
1761
1762         ifp = &sc->arpcom.ac_if;
1763         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1764
1765         /* Try to reset the chip. */
1766         bge_reset(sc);
1767
1768         if (bge_chipinit(sc)) {
1769                 device_printf(dev, "chip initialization failed\n");
1770                 error = ENXIO;
1771                 goto fail;
1772         }
1773
1774         /*
1775          * Get station address from the EEPROM.
1776          */
1777         mac_addr = bge_readmem_ind(sc, 0x0c14);
1778         if ((mac_addr >> 16) == 0x484b) {
1779                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
1780                 ether_addr[1] = (uint8_t)mac_addr;
1781                 mac_addr = bge_readmem_ind(sc, 0x0c18);
1782                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
1783                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
1784                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
1785                 ether_addr[5] = (uint8_t)mac_addr;
1786         } else if (bge_read_eeprom(sc, ether_addr,
1787             BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1788                 device_printf(dev, "failed to read station address\n");
1789                 error = ENXIO;
1790                 goto fail;
1791         }
1792
1793         /* 5705/5750 limits RX return ring to 512 entries. */
1794         if (BGE_IS_5705_PLUS(sc))
1795                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1796         else
1797                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1798
1799         error = bge_dma_alloc(sc);
1800         if (error)
1801                 goto fail;
1802
1803         /* Set default tuneable values. */
1804         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1805         sc->bge_rx_coal_ticks = bge_rx_coal_ticks;
1806         sc->bge_tx_coal_ticks = bge_tx_coal_ticks;
1807         sc->bge_rx_max_coal_bds = bge_rx_max_coal_bds;
1808         sc->bge_tx_max_coal_bds = bge_tx_max_coal_bds;
1809
1810         /* Set up ifnet structure */
1811         ifp->if_softc = sc;
1812         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1813         ifp->if_ioctl = bge_ioctl;
1814         ifp->if_start = bge_start;
1815 #ifdef DEVICE_POLLING
1816         ifp->if_poll = bge_poll;
1817 #endif
1818         ifp->if_watchdog = bge_watchdog;
1819         ifp->if_init = bge_init;
1820         ifp->if_mtu = ETHERMTU;
1821         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1822         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1823         ifq_set_ready(&ifp->if_snd);
1824
1825         /*
1826          * 5700 B0 chips do not support checksumming correctly due
1827          * to hardware bugs.
1828          */
1829         if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
1830                 ifp->if_capabilities |= IFCAP_HWCSUM;
1831                 ifp->if_hwassist = BGE_CSUM_FEATURES;
1832         }
1833         ifp->if_capenable = ifp->if_capabilities;
1834
1835         /*
1836          * Figure out what sort of media we have by checking the
1837          * hardware config word in the first 32k of NIC internal memory,
1838          * or fall back to examining the EEPROM if necessary.
1839          * Note: on some BCM5700 cards, this value appears to be unset.
1840          * If that's the case, we have to rely on identifying the NIC
1841          * by its PCI subsystem ID, as we do below for the SysKonnect
1842          * SK-9D41.
1843          */
1844         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1845                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1846         else {
1847                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
1848                                     sizeof(hwcfg))) {
1849                         device_printf(dev, "failed to read EEPROM\n");
1850                         error = ENXIO;
1851                         goto fail;
1852                 }
1853                 hwcfg = ntohl(hwcfg);
1854         }
1855
1856         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1857                 sc->bge_flags |= BGE_FLAG_TBI;
1858
1859         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1860         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1861                 sc->bge_flags |= BGE_FLAG_TBI;
1862
1863         if (sc->bge_flags & BGE_FLAG_TBI) {
1864                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1865                     bge_ifmedia_upd, bge_ifmedia_sts);
1866                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1867                 ifmedia_add(&sc->bge_ifmedia,
1868                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1869                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1870                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1871                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
1872         } else {
1873                 /*
1874                  * Do transceiver setup.
1875                  */
1876                 if (mii_phy_probe(dev, &sc->bge_miibus,
1877                     bge_ifmedia_upd, bge_ifmedia_sts)) {
1878                         device_printf(dev, "MII without any PHY!\n");
1879                         error = ENXIO;
1880                         goto fail;
1881                 }
1882         }
1883
1884         /*
1885          * When using the BCM5701 in PCI-X mode, data corruption has
1886          * been observed in the first few bytes of some received packets.
1887          * Aligning the packet buffer in memory eliminates the corruption.
1888          * Unfortunately, this misaligns the packet payloads.  On platforms
1889          * which do not support unaligned accesses, we will realign the
1890          * payloads by copying the received packets.
1891          */
1892         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1893             (sc->bge_flags & BGE_FLAG_PCIX))
1894                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
1895
1896         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1897             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1898                 sc->bge_link_upd = bge_bcm5700_link_upd;
1899                 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
1900         } else if (sc->bge_flags & BGE_FLAG_TBI) {
1901                 sc->bge_link_upd = bge_tbi_link_upd;
1902                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
1903         } else {
1904                 sc->bge_link_upd = bge_copper_link_upd;
1905                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
1906         }
1907
1908         /*
1909          * Create sysctl nodes.
1910          */
1911         sysctl_ctx_init(&sc->bge_sysctl_ctx);
1912         sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
1913                                               SYSCTL_STATIC_CHILDREN(_hw),
1914                                               OID_AUTO,
1915                                               device_get_nameunit(dev),
1916                                               CTLFLAG_RD, 0, "");
1917         if (sc->bge_sysctl_tree == NULL) {
1918                 device_printf(dev, "can't add sysctl node\n");
1919                 error = ENXIO;
1920                 goto fail;
1921         }
1922
1923         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1924                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1925                         OID_AUTO, "rx_coal_ticks",
1926                         CTLTYPE_INT | CTLFLAG_RW,
1927                         sc, 0, bge_sysctl_rx_coal_ticks, "I",
1928                         "Receive coalescing ticks (usec).");
1929         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1930                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1931                         OID_AUTO, "tx_coal_ticks",
1932                         CTLTYPE_INT | CTLFLAG_RW,
1933                         sc, 0, bge_sysctl_tx_coal_ticks, "I",
1934                         "Transmit coalescing ticks (usec).");
1935         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1936                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1937                         OID_AUTO, "rx_max_coal_bds",
1938                         CTLTYPE_INT | CTLFLAG_RW,
1939                         sc, 0, bge_sysctl_rx_max_coal_bds, "I",
1940                         "Receive max coalesced BD count.");
1941         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1942                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1943                         OID_AUTO, "tx_max_coal_bds",
1944                         CTLTYPE_INT | CTLFLAG_RW,
1945                         sc, 0, bge_sysctl_tx_max_coal_bds, "I",
1946                         "Transmit max coalesced BD count.");
1947
1948         /*
1949          * Call MI attach routine.
1950          */
1951         ether_ifattach(ifp, ether_addr, NULL);
1952
1953         error = bus_setup_intr(dev, sc->bge_irq, INTR_NETSAFE,
1954                                bge_intr, sc, &sc->bge_intrhand, 
1955                                ifp->if_serializer);
1956         if (error) {
1957                 ether_ifdetach(ifp);
1958                 device_printf(dev, "couldn't set up irq\n");
1959                 goto fail;
1960         }
1961
1962         ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->bge_irq));
1963         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1964
1965         return(0);
1966 fail:
1967         bge_detach(dev);
1968         return(error);
1969 }
1970
1971 static int
1972 bge_detach(device_t dev)
1973 {
1974         struct bge_softc *sc = device_get_softc(dev);
1975
1976         if (device_is_attached(dev)) {
1977                 struct ifnet *ifp = &sc->arpcom.ac_if;
1978
1979                 lwkt_serialize_enter(ifp->if_serializer);
1980                 bge_stop(sc);
1981                 bge_reset(sc);
1982                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1983                 lwkt_serialize_exit(ifp->if_serializer);
1984
1985                 ether_ifdetach(ifp);
1986         }
1987
1988         if (sc->bge_flags & BGE_FLAG_TBI)
1989                 ifmedia_removeall(&sc->bge_ifmedia);
1990         if (sc->bge_miibus)
1991                 device_delete_child(dev, sc->bge_miibus);
1992         bus_generic_detach(dev);
1993
1994         if (sc->bge_irq != NULL)
1995                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1996
1997         if (sc->bge_res != NULL)
1998                 bus_release_resource(dev, SYS_RES_MEMORY,
1999                     BGE_PCI_BAR0, sc->bge_res);
2000
2001         if (sc->bge_sysctl_tree != NULL)
2002                 sysctl_ctx_free(&sc->bge_sysctl_ctx);
2003
2004         bge_dma_free(sc);
2005
2006         return 0;
2007 }
2008
2009 static void
2010 bge_reset(struct bge_softc *sc)
2011 {
2012         device_t dev;
2013         uint32_t cachesize, command, pcistate, reset;
2014         void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2015         int i, val = 0;
2016
2017         dev = sc->bge_dev;
2018
2019         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc)) {
2020                 if (sc->bge_flags & BGE_FLAG_PCIE)
2021                         write_op = bge_writemem_direct;
2022                 else
2023                         write_op = bge_writemem_ind;
2024         } else {
2025                 write_op = bge_writereg_ind;
2026         }
2027
2028         /* Save some important PCI state. */
2029         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2030         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2031         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2032
2033         pci_write_config(dev, BGE_PCI_MISC_CTL,
2034             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2035             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2036
2037         /* Disable fastboot on controllers that support it. */
2038         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2039             sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2040             sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2041                 if (bootverbose)
2042                         if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2043                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2044         }
2045
2046         /*
2047          * Write the magic number to SRAM at offset 0xB50.
2048          * When firmware finishes its initialization it will
2049          * write ~BGE_MAGIC_NUMBER to the same location.
2050          */
2051         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2052
2053         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2054
2055         /* XXX: Broadcom Linux driver. */
2056         if (sc->bge_flags & BGE_FLAG_PCIE) {
2057                 if (CSR_READ_4(sc, 0x7e2c) == 0x60)     /* PCIE 1.0 */
2058                         CSR_WRITE_4(sc, 0x7e2c, 0x20);
2059                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2060                         /* Prevent PCIE link training during global reset */
2061                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2062                         reset |= (1<<29);
2063                 }
2064         }
2065
2066         /* 
2067          * Set GPHY Power Down Override to leave GPHY
2068          * powered up in D0 uninitialized.
2069          */
2070         if (BGE_IS_5705_PLUS(sc))
2071                 reset |= 0x04000000;
2072
2073         /* Issue global reset */
2074         write_op(sc, BGE_MISC_CFG, reset);
2075
2076         DELAY(1000);
2077
2078         /* XXX: Broadcom Linux driver. */
2079         if (sc->bge_flags & BGE_FLAG_PCIE) {
2080                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2081                         uint32_t v;
2082
2083                         DELAY(500000); /* wait for link training to complete */
2084                         v = pci_read_config(dev, 0xc4, 4);
2085                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
2086                 }
2087                 /*
2088                  * Set PCIE max payload size to 128 bytes and
2089                  * clear error status.
2090                  */
2091                 pci_write_config(dev, 0xd8, 0xf5000, 4);
2092         }
2093
2094         /* Reset some of the PCI state that got zapped by reset */
2095         pci_write_config(dev, BGE_PCI_MISC_CTL,
2096             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2097             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2098         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2099         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2100         write_op(sc, BGE_MISC_CFG, (65 << 1));
2101
2102         /* Enable memory arbiter. */
2103         if (BGE_IS_5714_FAMILY(sc)) {
2104                 uint32_t val;
2105
2106                 val = CSR_READ_4(sc, BGE_MARB_MODE);
2107                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2108         } else {
2109                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2110         }
2111
2112         /*
2113          * Poll until we see the 1's complement of the magic number.
2114          * This indicates that the firmware initialization
2115          * is complete.
2116          */
2117         for (i = 0; i < BGE_TIMEOUT; i++) {
2118                 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2119                 if (val == ~BGE_MAGIC_NUMBER)
2120                         break;
2121                 DELAY(10);
2122         }
2123         
2124         if (i == BGE_TIMEOUT) {
2125                 if_printf(&sc->arpcom.ac_if, "firmware handshake timed out,"
2126                           "found 0x%08x\n", val);
2127                 return;
2128         }
2129
2130         /*
2131          * XXX Wait for the value of the PCISTATE register to
2132          * return to its original pre-reset state. This is a
2133          * fairly good indicator of reset completion. If we don't
2134          * wait for the reset to fully complete, trying to read
2135          * from the device's non-PCI registers may yield garbage
2136          * results.
2137          */
2138         for (i = 0; i < BGE_TIMEOUT; i++) {
2139                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2140                         break;
2141                 DELAY(10);
2142         }
2143
2144         if (sc->bge_flags & BGE_FLAG_PCIE) {
2145                 reset = bge_readmem_ind(sc, 0x7c00);
2146                 bge_writemem_ind(sc, 0x7c00, reset | (1 << 25));
2147         }
2148
2149         /* Fix up byte swapping */
2150         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2151             BGE_MODECTL_BYTESWAP_DATA);
2152
2153         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2154
2155         /*
2156          * The 5704 in TBI mode apparently needs some special
2157          * adjustment to insure the SERDES drive level is set
2158          * to 1.2V.
2159          */
2160         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2161             (sc->bge_flags & BGE_FLAG_TBI)) {
2162                 uint32_t serdescfg;
2163
2164                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2165                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2166                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2167         }
2168
2169         /* XXX: Broadcom Linux driver. */
2170         if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2171             sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2172                 uint32_t v;
2173
2174                 v = CSR_READ_4(sc, 0x7c00);
2175                 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
2176         }
2177
2178         DELAY(10000);
2179 }
2180
2181 /*
2182  * Frame reception handling. This is called if there's a frame
2183  * on the receive return list.
2184  *
2185  * Note: we have to be able to handle two possibilities here:
2186  * 1) the frame is from the jumbo recieve ring
2187  * 2) the frame is from the standard receive ring
2188  */
2189
2190 static void
2191 bge_rxeof(struct bge_softc *sc)
2192 {
2193         struct ifnet *ifp;
2194         int stdcnt = 0, jumbocnt = 0;
2195 #ifdef ETHER_INPUT_CHAIN
2196         struct mbuf_chain chain[MAXCPU];
2197 #endif
2198
2199         if (sc->bge_rx_saved_considx ==
2200             sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx)
2201                 return;
2202
2203 #ifdef ETHER_INPUT_CHAIN
2204         ether_input_chain_init(chain);
2205 #endif
2206
2207         ifp = &sc->arpcom.ac_if;
2208
2209         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
2210                         sc->bge_cdata.bge_rx_return_ring_map,
2211                         BUS_DMASYNC_POSTREAD);
2212         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2213                         sc->bge_cdata.bge_rx_std_ring_map,
2214                         BUS_DMASYNC_POSTREAD);
2215         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2216                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2217                                 sc->bge_cdata.bge_rx_jumbo_ring_map,
2218                                 BUS_DMASYNC_POSTREAD);
2219         }
2220
2221         while (sc->bge_rx_saved_considx !=
2222                sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
2223                 struct bge_rx_bd        *cur_rx;
2224                 uint32_t                rxidx;
2225                 struct mbuf             *m = NULL;
2226                 uint16_t                vlan_tag = 0;
2227                 int                     have_tag = 0;
2228
2229                 cur_rx =
2230             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2231
2232                 rxidx = cur_rx->bge_idx;
2233                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2234                 logif(rx_pkt);
2235
2236                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2237                         have_tag = 1;
2238                         vlan_tag = cur_rx->bge_vlan_tag;
2239                 }
2240
2241                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2242                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2243                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2244                         sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2245                         jumbocnt++;
2246                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2247                                 ifp->if_ierrors++;
2248                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2249                                 continue;
2250                         }
2251                         if (bge_newbuf_jumbo(sc,
2252                             sc->bge_jumbo, NULL) == ENOBUFS) {
2253                                 ifp->if_ierrors++;
2254                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2255                                 continue;
2256                         }
2257                 } else {
2258                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2259                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
2260                                         sc->bge_cdata.bge_rx_std_dmamap[rxidx],
2261                                         BUS_DMASYNC_POSTREAD);
2262                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
2263                                 sc->bge_cdata.bge_rx_std_dmamap[rxidx]);
2264                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2265                         sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2266                         stdcnt++;
2267                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2268                                 ifp->if_ierrors++;
2269                                 bge_newbuf_std(sc, sc->bge_std, m);
2270                                 continue;
2271                         }
2272                         if (bge_newbuf_std(sc, sc->bge_std,
2273                             NULL) == ENOBUFS) {
2274                                 ifp->if_ierrors++;
2275                                 bge_newbuf_std(sc, sc->bge_std, m);
2276                                 continue;
2277                         }
2278                 }
2279
2280                 ifp->if_ipackets++;
2281 #ifndef __i386__
2282                 /*
2283                  * The i386 allows unaligned accesses, but for other
2284                  * platforms we must make sure the payload is aligned.
2285                  */
2286                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
2287                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2288                             cur_rx->bge_len);
2289                         m->m_data += ETHER_ALIGN;
2290                 }
2291 #endif
2292                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2293                 m->m_pkthdr.rcvif = ifp;
2294
2295                 if (ifp->if_capenable & IFCAP_RXCSUM) {
2296                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2297                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2298                                 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2299                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2300                         }
2301                         if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
2302                             m->m_pkthdr.len >= BGE_MIN_FRAME) {
2303                                 m->m_pkthdr.csum_data =
2304                                         cur_rx->bge_tcp_udp_csum;
2305                                 m->m_pkthdr.csum_flags |=
2306                                         CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2307                         }
2308                 }
2309
2310                 /*
2311                  * If we received a packet with a vlan tag, pass it
2312                  * to vlan_input() instead of ether_input().
2313                  */
2314                 if (have_tag) {
2315                         m->m_flags |= M_VLANTAG;
2316                         m->m_pkthdr.ether_vlantag = vlan_tag;
2317                         have_tag = vlan_tag = 0;
2318                 }
2319 #ifdef ETHER_INPUT_CHAIN
2320 #ifdef ETHER_INPUT2
2321                 ether_input_chain2(ifp, m, chain);
2322 #else
2323                 ether_input_chain(ifp, m, chain);
2324 #endif
2325 #else
2326                 ifp->if_input(ifp, m);
2327 #endif
2328         }
2329
2330 #ifdef ETHER_INPUT_CHAIN
2331         ether_input_dispatch(chain);
2332 #endif
2333
2334         if (stdcnt > 0) {
2335                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2336                                 sc->bge_cdata.bge_rx_std_ring_map,
2337                                 BUS_DMASYNC_PREWRITE);
2338         }
2339
2340         if (BGE_IS_JUMBO_CAPABLE(sc) && jumbocnt > 0) {
2341                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2342                                 sc->bge_cdata.bge_rx_jumbo_ring_map,
2343                                 BUS_DMASYNC_PREWRITE);
2344         }
2345
2346         CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2347         if (stdcnt)
2348                 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2349         if (jumbocnt)
2350                 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2351 }
2352
2353 static void
2354 bge_txeof(struct bge_softc *sc)
2355 {
2356         struct bge_tx_bd *cur_tx = NULL;
2357         struct ifnet *ifp;
2358
2359         if (sc->bge_tx_saved_considx ==
2360             sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx)
2361                 return;
2362
2363         ifp = &sc->arpcom.ac_if;
2364
2365         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
2366                         sc->bge_cdata.bge_tx_ring_map,
2367                         BUS_DMASYNC_POSTREAD);
2368
2369         /*
2370          * Go through our tx ring and free mbufs for those
2371          * frames that have been sent.
2372          */
2373         while (sc->bge_tx_saved_considx !=
2374                sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
2375                 uint32_t idx = 0;
2376
2377                 idx = sc->bge_tx_saved_considx;
2378                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
2379                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2380                         ifp->if_opackets++;
2381                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2382                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
2383                                         sc->bge_cdata.bge_tx_dmamap[idx],
2384                                         BUS_DMASYNC_POSTWRITE);
2385                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
2386                             sc->bge_cdata.bge_tx_dmamap[idx]);
2387                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2388                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
2389                 }
2390                 sc->bge_txcnt--;
2391                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2392                 logif(tx_pkt);
2393         }
2394
2395         if (cur_tx != NULL &&
2396             (BGE_TX_RING_CNT - sc->bge_txcnt) >=
2397             (BGE_NSEG_RSVD + BGE_NSEG_SPARE))
2398                 ifp->if_flags &= ~IFF_OACTIVE;
2399
2400         if (sc->bge_txcnt == 0)
2401                 ifp->if_timer = 0;
2402
2403         if (!ifq_is_empty(&ifp->if_snd))
2404                 if_devstart(ifp);
2405 }
2406
2407 #ifdef DEVICE_POLLING
2408
2409 static void
2410 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2411 {
2412         struct bge_softc *sc = ifp->if_softc;
2413         uint32_t status;
2414
2415         switch(cmd) {
2416         case POLL_REGISTER:
2417                 bge_disable_intr(sc);
2418                 break;
2419         case POLL_DEREGISTER:
2420                 bge_enable_intr(sc);
2421                 break;
2422         case POLL_AND_CHECK_STATUS:
2423                 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2424                                 sc->bge_cdata.bge_status_map,
2425                                 BUS_DMASYNC_POSTREAD);
2426
2427                 /*
2428                  * Process link state changes.
2429                  */
2430                 status = CSR_READ_4(sc, BGE_MAC_STS);
2431                 if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2432                         sc->bge_link_evt = 0;
2433                         sc->bge_link_upd(sc, status);
2434                 }
2435                 /* fall through */
2436         case POLL_ONLY:
2437                 if (ifp->if_flags & IFF_RUNNING) {
2438                         bge_rxeof(sc);
2439                         bge_txeof(sc);
2440                 }
2441                 break;
2442         }
2443 }
2444
2445 #endif
2446
2447 static void
2448 bge_intr(void *xsc)
2449 {
2450         struct bge_softc *sc = xsc;
2451         struct ifnet *ifp = &sc->arpcom.ac_if;
2452         uint32_t status;
2453
2454         logif(intr);
2455
2456         /*
2457          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
2458          * disable interrupts by writing nonzero like we used to, since with
2459          * our current organization this just gives complications and
2460          * pessimizations for re-enabling interrupts.  We used to have races
2461          * instead of the necessary complications.  Disabling interrupts
2462          * would just reduce the chance of a status update while we are
2463          * running (by switching to the interrupt-mode coalescence
2464          * parameters), but this chance is already very low so it is more
2465          * efficient to get another interrupt than prevent it.
2466          *
2467          * We do the ack first to ensure another interrupt if there is a
2468          * status update after the ack.  We don't check for the status
2469          * changing later because it is more efficient to get another
2470          * interrupt than prevent it, not quite as above (not checking is
2471          * a smaller optimization than not toggling the interrupt enable,
2472          * since checking doesn't involve PCI accesses and toggling require
2473          * the status check).  So toggling would probably be a pessimization
2474          * even with MSI.  It would only be needed for using a task queue.
2475          */
2476         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2477
2478         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2479                         sc->bge_cdata.bge_status_map,
2480                         BUS_DMASYNC_POSTREAD);
2481
2482         /*
2483          * Process link state changes.
2484          */
2485         status = CSR_READ_4(sc, BGE_MAC_STS);
2486         if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2487                 sc->bge_link_evt = 0;
2488                 sc->bge_link_upd(sc, status);
2489         }
2490
2491         if (ifp->if_flags & IFF_RUNNING) {
2492                 /* Check RX return ring producer/consumer */
2493                 bge_rxeof(sc);
2494
2495                 /* Check TX ring producer/consumer */
2496                 bge_txeof(sc);
2497         }
2498
2499         if (sc->bge_coal_chg)
2500                 bge_coal_change(sc);
2501 }
2502
2503 static void
2504 bge_tick(void *xsc)
2505 {
2506         struct bge_softc *sc = xsc;
2507         struct ifnet *ifp = &sc->arpcom.ac_if;
2508
2509         lwkt_serialize_enter(ifp->if_serializer);
2510
2511         if (BGE_IS_5705_PLUS(sc))
2512                 bge_stats_update_regs(sc);
2513         else
2514                 bge_stats_update(sc);
2515
2516         if (sc->bge_flags & BGE_FLAG_TBI) {
2517                 /*
2518                  * Since in TBI mode auto-polling can't be used we should poll
2519                  * link status manually. Here we register pending link event
2520                  * and trigger interrupt.
2521                  */
2522                 sc->bge_link_evt++;
2523                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
2524         } else if (!sc->bge_link) {
2525                 mii_tick(device_get_softc(sc->bge_miibus));
2526         }
2527
2528         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2529
2530         lwkt_serialize_exit(ifp->if_serializer);
2531 }
2532
2533 static void
2534 bge_stats_update_regs(struct bge_softc *sc)
2535 {
2536         struct ifnet *ifp = &sc->arpcom.ac_if;
2537         struct bge_mac_stats_regs stats;
2538         uint32_t *s;
2539         int i;
2540
2541         s = (uint32_t *)&stats;
2542         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2543                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2544                 s++;
2545         }
2546
2547         ifp->if_collisions +=
2548            (stats.dot3StatsSingleCollisionFrames +
2549            stats.dot3StatsMultipleCollisionFrames +
2550            stats.dot3StatsExcessiveCollisions +
2551            stats.dot3StatsLateCollisions) -
2552            ifp->if_collisions;
2553 }
2554
2555 static void
2556 bge_stats_update(struct bge_softc *sc)
2557 {
2558         struct ifnet *ifp = &sc->arpcom.ac_if;
2559         bus_size_t stats;
2560
2561         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2562
2563 #define READ_STAT(sc, stats, stat)      \
2564         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2565
2566         ifp->if_collisions +=
2567            (READ_STAT(sc, stats,
2568                 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
2569             READ_STAT(sc, stats,
2570                 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2571             READ_STAT(sc, stats,
2572                 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
2573             READ_STAT(sc, stats,
2574                 txstats.dot3StatsLateCollisions.bge_addr_lo)) -
2575            ifp->if_collisions;
2576
2577 #undef READ_STAT
2578
2579 #ifdef notdef
2580         ifp->if_collisions +=
2581            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2582            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2583            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2584            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2585            ifp->if_collisions;
2586 #endif
2587 }
2588
2589 /*
2590  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2591  * pointers to descriptors.
2592  */
2593 static int
2594 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx)
2595 {
2596         struct bge_tx_bd *d = NULL;
2597         uint16_t csum_flags = 0;
2598         struct bge_dmamap_arg ctx;
2599         bus_dma_segment_t segs[BGE_NSEG_NEW];
2600         bus_dmamap_t map;
2601         int error, maxsegs, idx, i;
2602         struct mbuf *m_head = *m_head0;
2603
2604         if (m_head->m_pkthdr.csum_flags) {
2605                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2606                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2607                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2608                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2609                 if (m_head->m_flags & M_LASTFRAG)
2610                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2611                 else if (m_head->m_flags & M_FRAG)
2612                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2613         }
2614
2615         idx = *txidx;
2616         map = sc->bge_cdata.bge_tx_dmamap[idx];
2617
2618         maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - BGE_NSEG_RSVD;
2619         KASSERT(maxsegs >= BGE_NSEG_SPARE,
2620                 ("not enough segments %d\n", maxsegs));
2621
2622         if (maxsegs > BGE_NSEG_NEW)
2623                 maxsegs = BGE_NSEG_NEW;
2624
2625         /*
2626          * Pad outbound frame to BGE_MIN_FRAME for an unusual reason.
2627          * The bge hardware will pad out Tx runts to BGE_MIN_FRAME,
2628          * but when such padded frames employ the bge IP/TCP checksum
2629          * offload, the hardware checksum assist gives incorrect results
2630          * (possibly from incorporating its own padding into the UDP/TCP
2631          * checksum; who knows).  If we pad such runts with zeros, the
2632          * onboard checksum comes out correct.  We do this by pretending
2633          * the mbuf chain has too many fragments so the coalescing code
2634          * below can assemble the packet into a single buffer that's
2635          * padded out to the mininum frame size.
2636          */
2637         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2638             m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2639                 error = EFBIG;
2640         } else {
2641                 ctx.bge_segs = segs;
2642                 ctx.bge_maxsegs = maxsegs;
2643                 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map,
2644                                              m_head, bge_dma_map_mbuf, &ctx,
2645                                              BUS_DMA_NOWAIT);
2646         }
2647         if (error == EFBIG || ctx.bge_maxsegs == 0) {
2648                 struct mbuf *m_new;
2649
2650                 m_new = m_defrag(m_head, MB_DONTWAIT);
2651                 if (m_new == NULL) {
2652                         if_printf(&sc->arpcom.ac_if,
2653                                   "could not defrag TX mbuf\n");
2654                         error = ENOBUFS;
2655                         goto back;
2656                 } else {
2657                         m_head = m_new;
2658                         *m_head0 = m_head;
2659                 }
2660
2661                 /*
2662                  * Manually pad short frames, and zero the pad space
2663                  * to avoid leaking data.
2664                  */
2665                 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2666                     m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2667                         int pad_len = BGE_MIN_FRAME - m_head->m_pkthdr.len;
2668
2669                         bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
2670                               pad_len);
2671                         m_head->m_pkthdr.len += pad_len;
2672                         m_head->m_len = m_head->m_pkthdr.len;
2673                 }
2674
2675                 ctx.bge_segs = segs;
2676                 ctx.bge_maxsegs = maxsegs;
2677                 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map,
2678                                              m_head, bge_dma_map_mbuf, &ctx,
2679                                              BUS_DMA_NOWAIT);
2680                 if (error || ctx.bge_maxsegs == 0) {
2681                         if_printf(&sc->arpcom.ac_if,
2682                                   "could not defrag TX mbuf\n");
2683                         if (error == 0)
2684                                 error = EFBIG;
2685                         goto back;
2686                 }
2687         } else if (error) {
2688                 if_printf(&sc->arpcom.ac_if, "could not map TX mbuf\n");
2689                 goto back;
2690         }
2691
2692         bus_dmamap_sync(sc->bge_cdata.bge_mtag, map, BUS_DMASYNC_PREWRITE);
2693
2694         for (i = 0; ; i++) {
2695                 d = &sc->bge_ldata.bge_tx_ring[idx];
2696
2697                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_segs[i].ds_addr);
2698                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_segs[i].ds_addr);
2699                 d->bge_len = segs[i].ds_len;
2700                 d->bge_flags = csum_flags;
2701
2702                 if (i == ctx.bge_maxsegs - 1)
2703                         break;
2704                 BGE_INC(idx, BGE_TX_RING_CNT);
2705         }
2706         /* Mark the last segment as end of packet... */
2707         d->bge_flags |= BGE_TXBDFLAG_END;
2708
2709         /* Set vlan tag to the first segment of the packet. */
2710         d = &sc->bge_ldata.bge_tx_ring[*txidx];
2711         if (m_head->m_flags & M_VLANTAG) {
2712                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2713                 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
2714         } else {
2715                 d->bge_vlan_tag = 0;
2716         }
2717
2718         /*
2719          * Insure that the map for this transmission is placed at
2720          * the array index of the last descriptor in this chain.
2721          */
2722         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
2723         sc->bge_cdata.bge_tx_dmamap[idx] = map;
2724         sc->bge_cdata.bge_tx_chain[idx] = m_head;
2725         sc->bge_txcnt += ctx.bge_maxsegs;
2726
2727         BGE_INC(idx, BGE_TX_RING_CNT);
2728         *txidx = idx;
2729 back:
2730         if (error) {
2731                 m_freem(m_head);
2732                 *m_head0 = NULL;
2733         }
2734         return error;
2735 }
2736
2737 /*
2738  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2739  * to the mbuf data regions directly in the transmit descriptors.
2740  */
2741 static void
2742 bge_start(struct ifnet *ifp)
2743 {
2744         struct bge_softc *sc = ifp->if_softc;
2745         struct mbuf *m_head = NULL;
2746         uint32_t prodidx;
2747         int need_trans;
2748
2749         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2750                 return;
2751
2752         prodidx = sc->bge_tx_prodidx;
2753
2754         need_trans = 0;
2755         while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2756                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
2757                 if (m_head == NULL)
2758                         break;
2759
2760                 /*
2761                  * XXX
2762                  * The code inside the if() block is never reached since we
2763                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
2764                  * requests to checksum TCP/UDP in a fragmented packet.
2765                  * 
2766                  * XXX
2767                  * safety overkill.  If this is a fragmented packet chain
2768                  * with delayed TCP/UDP checksums, then only encapsulate
2769                  * it if we have enough descriptors to handle the entire
2770                  * chain at once.
2771                  * (paranoia -- may not actually be needed)
2772                  */
2773                 if ((m_head->m_flags & M_FIRSTFRAG) &&
2774                     (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
2775                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2776                             m_head->m_pkthdr.csum_data + BGE_NSEG_RSVD) {
2777                                 ifp->if_flags |= IFF_OACTIVE;
2778                                 ifq_prepend(&ifp->if_snd, m_head);
2779                                 break;
2780                         }
2781                 }
2782
2783                 /*
2784                  * Sanity check: avoid coming within BGE_NSEG_RSVD
2785                  * descriptors of the end of the ring.  Also make
2786                  * sure there are BGE_NSEG_SPARE descriptors for
2787                  * jumbo buffers' defragmentation.
2788                  */
2789                 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2790                     (BGE_NSEG_RSVD + BGE_NSEG_SPARE)) {
2791                         ifp->if_flags |= IFF_OACTIVE;
2792                         ifq_prepend(&ifp->if_snd, m_head);
2793                         break;
2794                 }
2795
2796                 /*
2797                  * Pack the data into the transmit ring. If we
2798                  * don't have room, set the OACTIVE flag and wait
2799                  * for the NIC to drain the ring.
2800                  */
2801                 if (bge_encap(sc, &m_head, &prodidx)) {
2802                         ifp->if_flags |= IFF_OACTIVE;
2803                         break;
2804                 }
2805                 need_trans = 1;
2806
2807                 ETHER_BPF_MTAP(ifp, m_head);
2808         }
2809
2810         if (!need_trans)
2811                 return;
2812
2813         /* Transmit */
2814         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2815         /* 5700 b2 errata */
2816         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2817                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2818
2819         sc->bge_tx_prodidx = prodidx;
2820
2821         /*
2822          * Set a timeout in case the chip goes out to lunch.
2823          */
2824         ifp->if_timer = 5;
2825 }
2826
2827 static void
2828 bge_init(void *xsc)
2829 {
2830         struct bge_softc *sc = xsc;
2831         struct ifnet *ifp = &sc->arpcom.ac_if;
2832         uint16_t *m;
2833
2834         ASSERT_SERIALIZED(ifp->if_serializer);
2835
2836         if (ifp->if_flags & IFF_RUNNING)
2837                 return;
2838
2839         /* Cancel pending I/O and flush buffers. */
2840         bge_stop(sc);
2841         bge_reset(sc);
2842         bge_chipinit(sc);
2843
2844         /*
2845          * Init the various state machines, ring
2846          * control blocks and firmware.
2847          */
2848         if (bge_blockinit(sc)) {
2849                 if_printf(ifp, "initialization failure\n");
2850                 return;
2851         }
2852
2853         /* Specify MTU. */
2854         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2855             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
2856
2857         /* Load our MAC address. */
2858         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2859         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2860         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2861
2862         /* Enable or disable promiscuous mode as needed. */
2863         bge_setpromisc(sc);
2864
2865         /* Program multicast filter. */
2866         bge_setmulti(sc);
2867
2868         /* Init RX ring. */
2869         bge_init_rx_ring_std(sc);
2870
2871         /*
2872          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2873          * memory to insure that the chip has in fact read the first
2874          * entry of the ring.
2875          */
2876         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2877                 uint32_t                v, i;
2878                 for (i = 0; i < 10; i++) {
2879                         DELAY(20);
2880                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2881                         if (v == (MCLBYTES - ETHER_ALIGN))
2882                                 break;
2883                 }
2884                 if (i == 10)
2885                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2886         }
2887
2888         /* Init jumbo RX ring. */
2889         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2890                 bge_init_rx_ring_jumbo(sc);
2891
2892         /* Init our RX return ring index */
2893         sc->bge_rx_saved_considx = 0;
2894
2895         /* Init TX ring. */
2896         bge_init_tx_ring(sc);
2897
2898         /* Turn on transmitter */
2899         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2900
2901         /* Turn on receiver */
2902         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2903
2904         /* Tell firmware we're alive. */
2905         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2906
2907         /* Enable host interrupts if polling(4) is not enabled. */
2908         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2909 #ifdef DEVICE_POLLING
2910         if (ifp->if_flags & IFF_POLLING)
2911                 bge_disable_intr(sc);
2912         else
2913 #endif
2914         bge_enable_intr(sc);
2915
2916         bge_ifmedia_upd(ifp);
2917
2918         ifp->if_flags |= IFF_RUNNING;
2919         ifp->if_flags &= ~IFF_OACTIVE;
2920
2921         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2922 }
2923
2924 /*
2925  * Set media options.
2926  */
2927 static int
2928 bge_ifmedia_upd(struct ifnet *ifp)
2929 {
2930         struct bge_softc *sc = ifp->if_softc;
2931
2932         /* If this is a 1000baseX NIC, enable the TBI port. */
2933         if (sc->bge_flags & BGE_FLAG_TBI) {
2934                 struct ifmedia *ifm = &sc->bge_ifmedia;
2935
2936                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2937                         return(EINVAL);
2938
2939                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2940                 case IFM_AUTO:
2941                         /*
2942                          * The BCM5704 ASIC appears to have a special
2943                          * mechanism for programming the autoneg
2944                          * advertisement registers in TBI mode.
2945                          */
2946                         if (!bge_fake_autoneg &&
2947                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2948                                 uint32_t sgdig;
2949
2950                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
2951                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
2952                                 sgdig |= BGE_SGDIGCFG_AUTO |
2953                                          BGE_SGDIGCFG_PAUSE_CAP |
2954                                          BGE_SGDIGCFG_ASYM_PAUSE;
2955                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
2956                                             sgdig | BGE_SGDIGCFG_SEND);
2957                                 DELAY(5);
2958                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
2959                         }
2960                         break;
2961                 case IFM_1000_SX:
2962                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2963                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
2964                                     BGE_MACMODE_HALF_DUPLEX);
2965                         } else {
2966                                 BGE_SETBIT(sc, BGE_MAC_MODE,
2967                                     BGE_MACMODE_HALF_DUPLEX);
2968                         }
2969                         break;
2970                 default:
2971                         return(EINVAL);
2972                 }
2973         } else {
2974                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
2975
2976                 sc->bge_link_evt++;
2977                 sc->bge_link = 0;
2978                 if (mii->mii_instance) {
2979                         struct mii_softc *miisc;
2980
2981                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2982                                 mii_phy_reset(miisc);
2983                 }
2984                 mii_mediachg(mii);
2985         }
2986         return(0);
2987 }
2988
2989 /*
2990  * Report current media status.
2991  */
2992 static void
2993 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2994 {
2995         struct bge_softc *sc = ifp->if_softc;
2996
2997         if (sc->bge_flags & BGE_FLAG_TBI) {
2998                 ifmr->ifm_status = IFM_AVALID;
2999                 ifmr->ifm_active = IFM_ETHER;
3000                 if (CSR_READ_4(sc, BGE_MAC_STS) &
3001                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
3002                         ifmr->ifm_status |= IFM_ACTIVE;
3003                 } else {
3004                         ifmr->ifm_active |= IFM_NONE;
3005                         return;
3006                 }
3007
3008                 ifmr->ifm_active |= IFM_1000_SX;
3009                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3010                         ifmr->ifm_active |= IFM_HDX;    
3011                 else
3012                         ifmr->ifm_active |= IFM_FDX;
3013         } else {
3014                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3015
3016                 mii_pollstat(mii);
3017                 ifmr->ifm_active = mii->mii_media_active;
3018                 ifmr->ifm_status = mii->mii_media_status;
3019         }
3020 }
3021
3022 static int
3023 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3024 {
3025         struct bge_softc *sc = ifp->if_softc;
3026         struct ifreq *ifr = (struct ifreq *)data;
3027         int mask, error = 0;
3028
3029         ASSERT_SERIALIZED(ifp->if_serializer);
3030
3031         switch (command) {
3032         case SIOCSIFMTU:
3033                 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3034                     (BGE_IS_JUMBO_CAPABLE(sc) &&
3035                      ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3036                         error = EINVAL;
3037                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3038                         ifp->if_mtu = ifr->ifr_mtu;
3039                         ifp->if_flags &= ~IFF_RUNNING;
3040                         bge_init(sc);
3041                 }
3042                 break;
3043         case SIOCSIFFLAGS:
3044                 if (ifp->if_flags & IFF_UP) {
3045                         if (ifp->if_flags & IFF_RUNNING) {
3046                                 mask = ifp->if_flags ^ sc->bge_if_flags;
3047
3048                                 /*
3049                                  * If only the state of the PROMISC flag
3050                                  * changed, then just use the 'set promisc
3051                                  * mode' command instead of reinitializing
3052                                  * the entire NIC. Doing a full re-init
3053                                  * means reloading the firmware and waiting
3054                                  * for it to start up, which may take a
3055                                  * second or two.  Similarly for ALLMULTI.
3056                                  */
3057                                 if (mask & IFF_PROMISC)
3058                                         bge_setpromisc(sc);
3059                                 if (mask & IFF_ALLMULTI)
3060                                         bge_setmulti(sc);
3061                         } else {
3062                                 bge_init(sc);
3063                         }
3064                 } else {
3065                         if (ifp->if_flags & IFF_RUNNING)
3066                                 bge_stop(sc);
3067                 }
3068                 sc->bge_if_flags = ifp->if_flags;
3069                 break;
3070         case SIOCADDMULTI:
3071         case SIOCDELMULTI:
3072                 if (ifp->if_flags & IFF_RUNNING)
3073                         bge_setmulti(sc);
3074                 break;
3075         case SIOCSIFMEDIA:
3076         case SIOCGIFMEDIA:
3077                 if (sc->bge_flags & BGE_FLAG_TBI) {
3078                         error = ifmedia_ioctl(ifp, ifr,
3079                             &sc->bge_ifmedia, command);
3080                 } else {
3081                         struct mii_data *mii;
3082
3083                         mii = device_get_softc(sc->bge_miibus);
3084                         error = ifmedia_ioctl(ifp, ifr,
3085                                               &mii->mii_media, command);
3086                 }
3087                 break;
3088         case SIOCSIFCAP:
3089                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3090                 if (mask & IFCAP_HWCSUM) {
3091                         ifp->if_capenable ^= IFCAP_HWCSUM;
3092                         if (IFCAP_HWCSUM & ifp->if_capenable)
3093                                 ifp->if_hwassist = BGE_CSUM_FEATURES;
3094                         else
3095                                 ifp->if_hwassist = 0;
3096                 }
3097                 break;
3098         default:
3099                 error = ether_ioctl(ifp, command, data);
3100                 break;
3101         }
3102         return error;
3103 }
3104
3105 static void
3106 bge_watchdog(struct ifnet *ifp)
3107 {
3108         struct bge_softc *sc = ifp->if_softc;
3109
3110         if_printf(ifp, "watchdog timeout -- resetting\n");
3111
3112         ifp->if_flags &= ~IFF_RUNNING;
3113         bge_init(sc);
3114
3115         ifp->if_oerrors++;
3116
3117         if (!ifq_is_empty(&ifp->if_snd))
3118                 if_devstart(ifp);
3119 }
3120
3121 /*
3122  * Stop the adapter and free any mbufs allocated to the
3123  * RX and TX lists.
3124  */
3125 static void
3126 bge_stop(struct bge_softc *sc)
3127 {
3128         struct ifnet *ifp = &sc->arpcom.ac_if;
3129         struct ifmedia_entry *ifm;
3130         struct mii_data *mii = NULL;
3131         int mtmp, itmp;
3132
3133         ASSERT_SERIALIZED(ifp->if_serializer);
3134
3135         if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
3136                 mii = device_get_softc(sc->bge_miibus);
3137
3138         callout_stop(&sc->bge_stat_timer);
3139
3140         /*
3141          * Disable all of the receiver blocks
3142          */
3143         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3144         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3145         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3146         if (!BGE_IS_5705_PLUS(sc))
3147                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3148         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3149         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3150         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3151
3152         /*
3153          * Disable all of the transmit blocks
3154          */
3155         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3156         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3157         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3158         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3159         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3160         if (!BGE_IS_5705_PLUS(sc))
3161                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3162         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3163
3164         /*
3165          * Shut down all of the memory managers and related
3166          * state machines.
3167          */
3168         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3169         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3170         if (!BGE_IS_5705_PLUS(sc))
3171                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3172         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3173         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3174         if (!BGE_IS_5705_PLUS(sc)) {
3175                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3176                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3177         }
3178
3179         /* Disable host interrupts. */
3180         bge_disable_intr(sc);
3181
3182         /*
3183          * Tell firmware we're shutting down.
3184          */
3185         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3186
3187         /* Free the RX lists. */
3188         bge_free_rx_ring_std(sc);
3189
3190         /* Free jumbo RX list. */
3191         if (BGE_IS_JUMBO_CAPABLE(sc))
3192                 bge_free_rx_ring_jumbo(sc);
3193
3194         /* Free TX buffers. */
3195         bge_free_tx_ring(sc);
3196
3197         /*
3198          * Isolate/power down the PHY, but leave the media selection
3199          * unchanged so that things will be put back to normal when
3200          * we bring the interface back up.
3201          *
3202          * 'mii' may be NULL in the following cases:
3203          * - The device uses TBI.
3204          * - bge_stop() is called by bge_detach().
3205          */
3206         if (mii != NULL) {
3207                 itmp = ifp->if_flags;
3208                 ifp->if_flags |= IFF_UP;
3209                 ifm = mii->mii_media.ifm_cur;
3210                 mtmp = ifm->ifm_media;
3211                 ifm->ifm_media = IFM_ETHER|IFM_NONE;
3212                 mii_mediachg(mii);
3213                 ifm->ifm_media = mtmp;
3214                 ifp->if_flags = itmp;
3215         }
3216
3217         sc->bge_link = 0;
3218         sc->bge_coal_chg = 0;
3219
3220         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3221
3222         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3223         ifp->if_timer = 0;
3224 }
3225
3226 /*
3227  * Stop all chip I/O so that the kernel's probe routines don't
3228  * get confused by errant DMAs when rebooting.
3229  */
3230 static void
3231 bge_shutdown(device_t dev)
3232 {
3233         struct bge_softc *sc = device_get_softc(dev);
3234         struct ifnet *ifp = &sc->arpcom.ac_if;
3235
3236         lwkt_serialize_enter(ifp->if_serializer);
3237         bge_stop(sc);
3238         bge_reset(sc);
3239         lwkt_serialize_exit(ifp->if_serializer);
3240 }
3241
3242 static int
3243 bge_suspend(device_t dev)
3244 {
3245         struct bge_softc *sc = device_get_softc(dev);
3246         struct ifnet *ifp = &sc->arpcom.ac_if;
3247
3248         lwkt_serialize_enter(ifp->if_serializer);
3249         bge_stop(sc);
3250         lwkt_serialize_exit(ifp->if_serializer);
3251
3252         return 0;
3253 }
3254
3255 static int
3256 bge_resume(device_t dev)
3257 {
3258         struct bge_softc *sc = device_get_softc(dev);
3259         struct ifnet *ifp = &sc->arpcom.ac_if;
3260
3261         lwkt_serialize_enter(ifp->if_serializer);
3262
3263         if (ifp->if_flags & IFF_UP) {
3264                 bge_init(sc);
3265
3266                 if (!ifq_is_empty(&ifp->if_snd))
3267                         if_devstart(ifp);
3268         }
3269
3270         lwkt_serialize_exit(ifp->if_serializer);
3271
3272         return 0;
3273 }
3274
3275 static void
3276 bge_setpromisc(struct bge_softc *sc)
3277 {
3278         struct ifnet *ifp = &sc->arpcom.ac_if;
3279
3280         if (ifp->if_flags & IFF_PROMISC)
3281                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3282         else
3283                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3284 }
3285
3286 static void
3287 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3288 {
3289         struct bge_dmamap_arg *ctx = arg;
3290
3291         if (error)
3292                 return;
3293
3294         KASSERT(nsegs == 1 && ctx->bge_maxsegs == 1,
3295                 ("only one segment is allowed\n"));
3296
3297         ctx->bge_segs[0] = *segs;
3298 }
3299
3300 static void
3301 bge_dma_map_mbuf(void *arg, bus_dma_segment_t *segs, int nsegs,
3302                  bus_size_t mapsz __unused, int error)
3303 {
3304         struct bge_dmamap_arg *ctx = arg;
3305         int i;
3306
3307         if (error)
3308                 return;
3309
3310         if (nsegs > ctx->bge_maxsegs) {
3311                 ctx->bge_maxsegs = 0;
3312                 return;
3313         }
3314
3315         ctx->bge_maxsegs = nsegs;
3316         for (i = 0; i < nsegs; ++i)
3317                 ctx->bge_segs[i] = segs[i];
3318 }
3319
3320 static void
3321 bge_dma_free(struct bge_softc *sc)
3322 {
3323         int i;
3324
3325         /* Destroy RX/TX mbuf DMA stuffs. */
3326         if (sc->bge_cdata.bge_mtag != NULL) {
3327                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3328                         if (sc->bge_cdata.bge_rx_std_dmamap[i]) {
3329                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3330                                     sc->bge_cdata.bge_rx_std_dmamap[i]);
3331                         }
3332                 }
3333
3334                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
3335                         if (sc->bge_cdata.bge_tx_dmamap[i]) {
3336                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3337                                     sc->bge_cdata.bge_tx_dmamap[i]);
3338                         }
3339                 }
3340                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3341         }
3342
3343         /* Destroy standard RX ring */
3344         bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
3345                            sc->bge_cdata.bge_rx_std_ring_map,
3346                            sc->bge_ldata.bge_rx_std_ring);
3347
3348         if (BGE_IS_JUMBO_CAPABLE(sc))
3349                 bge_free_jumbo_mem(sc);
3350
3351         /* Destroy RX return ring */
3352         bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
3353                            sc->bge_cdata.bge_rx_return_ring_map,
3354                            sc->bge_ldata.bge_rx_return_ring);
3355
3356         /* Destroy TX ring */
3357         bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
3358                            sc->bge_cdata.bge_tx_ring_map,
3359                            sc->bge_ldata.bge_tx_ring);
3360
3361         /* Destroy status block */
3362         bge_dma_block_free(sc->bge_cdata.bge_status_tag,
3363                            sc->bge_cdata.bge_status_map,
3364                            sc->bge_ldata.bge_status_block);
3365
3366         /* Destroy statistics block */
3367         bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
3368                            sc->bge_cdata.bge_stats_map,
3369                            sc->bge_ldata.bge_stats);
3370
3371         /* Destroy the parent tag */
3372         if (sc->bge_cdata.bge_parent_tag != NULL)
3373                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
3374 }
3375
3376 static int
3377 bge_dma_alloc(struct bge_softc *sc)
3378 {
3379         struct ifnet *ifp = &sc->arpcom.ac_if;
3380         int nseg, i, error;
3381
3382         /*
3383          * Allocate the parent bus DMA tag appropriate for PCI.
3384          */
3385         error = bus_dma_tag_create(NULL, 1, 0,
3386                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3387                                    NULL, NULL,
3388                                    MAXBSIZE, BGE_NSEG_NEW,
3389                                    BUS_SPACE_MAXSIZE_32BIT,
3390                                    0, &sc->bge_cdata.bge_parent_tag);
3391         if (error) {
3392                 if_printf(ifp, "could not allocate parent dma tag\n");
3393                 return error;
3394         }
3395
3396         /*
3397          * Create DMA tag for mbufs.
3398          */
3399         nseg = BGE_NSEG_NEW;
3400         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
3401                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3402                                    NULL, NULL,
3403                                    MCLBYTES * nseg, nseg, MCLBYTES,
3404                                    BUS_DMA_ALLOCNOW, &sc->bge_cdata.bge_mtag);
3405         if (error) {
3406                 if_printf(ifp, "could not allocate mbuf dma tag\n");
3407                 return error;
3408         }
3409
3410         /*
3411          * Create DMA maps for TX/RX mbufs.
3412          */
3413         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3414                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
3415                                           &sc->bge_cdata.bge_rx_std_dmamap[i]);
3416                 if (error) {
3417                         int j;
3418
3419                         for (j = 0; j < i; ++j) {
3420                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3421                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
3422                         }
3423                         bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3424                         sc->bge_cdata.bge_mtag = NULL;
3425
3426                         if_printf(ifp, "could not create DMA map for RX\n");
3427                         return error;
3428                 }
3429         }
3430
3431         for (i = 0; i < BGE_TX_RING_CNT; i++) {
3432                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
3433                                           &sc->bge_cdata.bge_tx_dmamap[i]);
3434                 if (error) {
3435                         int j;
3436
3437                         for (j = 0; j < BGE_STD_RX_RING_CNT; ++j) {
3438                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3439                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
3440                         }
3441                         for (j = 0; j < i; ++j) {
3442                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3443                                         sc->bge_cdata.bge_tx_dmamap[j]);
3444                         }
3445                         bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3446                         sc->bge_cdata.bge_mtag = NULL;
3447
3448                         if_printf(ifp, "could not create DMA map for TX\n");
3449                         return error;
3450                 }
3451         }
3452
3453         /*
3454          * Create DMA stuffs for standard RX ring.
3455          */
3456         error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
3457                                     &sc->bge_cdata.bge_rx_std_ring_tag,
3458                                     &sc->bge_cdata.bge_rx_std_ring_map,
3459                                     (void **)&sc->bge_ldata.bge_rx_std_ring,
3460                                     &sc->bge_ldata.bge_rx_std_ring_paddr);
3461         if (error) {
3462                 if_printf(ifp, "could not create std RX ring\n");
3463                 return error;
3464         }
3465
3466         /*
3467          * Create jumbo buffer pool.
3468          */
3469         if (BGE_IS_JUMBO_CAPABLE(sc)) {
3470                 error = bge_alloc_jumbo_mem(sc);
3471                 if (error) {
3472                         if_printf(ifp, "could not create jumbo buffer pool\n");
3473                         return error;
3474                 }
3475         }
3476
3477         /*
3478          * Create DMA stuffs for RX return ring.
3479          */
3480         error = bge_dma_block_alloc(sc, BGE_RX_RTN_RING_SZ(sc),
3481                                     &sc->bge_cdata.bge_rx_return_ring_tag,
3482                                     &sc->bge_cdata.bge_rx_return_ring_map,
3483                                     (void **)&sc->bge_ldata.bge_rx_return_ring,
3484                                     &sc->bge_ldata.bge_rx_return_ring_paddr);
3485         if (error) {
3486                 if_printf(ifp, "could not create RX ret ring\n");
3487                 return error;
3488         }
3489
3490         /*
3491          * Create DMA stuffs for TX ring.
3492          */
3493         error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
3494                                     &sc->bge_cdata.bge_tx_ring_tag,
3495                                     &sc->bge_cdata.bge_tx_ring_map,
3496                                     (void **)&sc->bge_ldata.bge_tx_ring,
3497                                     &sc->bge_ldata.bge_tx_ring_paddr);
3498         if (error) {
3499                 if_printf(ifp, "could not create TX ring\n");
3500                 return error;
3501         }
3502
3503         /*
3504          * Create DMA stuffs for status block.
3505          */
3506         error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
3507                                     &sc->bge_cdata.bge_status_tag,
3508                                     &sc->bge_cdata.bge_status_map,
3509                                     (void **)&sc->bge_ldata.bge_status_block,
3510                                     &sc->bge_ldata.bge_status_block_paddr);
3511         if (error) {
3512                 if_printf(ifp, "could not create status block\n");
3513                 return error;
3514         }
3515
3516         /*
3517          * Create DMA stuffs for statistics block.
3518          */
3519         error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
3520                                     &sc->bge_cdata.bge_stats_tag,
3521                                     &sc->bge_cdata.bge_stats_map,
3522                                     (void **)&sc->bge_ldata.bge_stats,
3523                                     &sc->bge_ldata.bge_stats_paddr);
3524         if (error) {
3525                 if_printf(ifp, "could not create stats block\n");
3526                 return error;
3527         }
3528         return 0;
3529 }
3530
3531 static int
3532 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
3533                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
3534 {
3535         struct ifnet *ifp = &sc->arpcom.ac_if;
3536         struct bge_dmamap_arg ctx;
3537         bus_dma_segment_t seg;
3538         int error;
3539
3540         /*
3541          * Create DMA tag
3542          */
3543         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
3544                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3545                                    NULL, NULL, size, 1, size, 0, tag);
3546         if (error) {
3547                 if_printf(ifp, "could not allocate dma tag\n");
3548                 return error;
3549         }
3550
3551         /*
3552          * Allocate DMA'able memory
3553          */
3554         error = bus_dmamem_alloc(*tag, addr, BUS_DMA_WAITOK | BUS_DMA_ZERO,
3555                                  map);
3556         if (error) {
3557                 if_printf(ifp, "could not allocate dma memory\n");
3558                 bus_dma_tag_destroy(*tag);
3559                 *tag = NULL;
3560                 return error;
3561         }
3562
3563         /*
3564          * Load the DMA'able memory
3565          */
3566         ctx.bge_maxsegs = 1;
3567         ctx.bge_segs = &seg;
3568         error = bus_dmamap_load(*tag, *map, *addr, size, bge_dma_map_addr, &ctx,
3569                                 BUS_DMA_WAITOK);
3570         if (error) {
3571                 if_printf(ifp, "could not load dma memory\n");
3572                 bus_dmamem_free(*tag, *addr, *map);
3573                 bus_dma_tag_destroy(*tag);
3574                 *tag = NULL;
3575                 return error;
3576         }
3577         *paddr = ctx.bge_segs[0].ds_addr;
3578
3579         return 0;
3580 }
3581
3582 static void
3583 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
3584 {
3585         if (tag != NULL) {
3586                 bus_dmamap_unload(tag, map);
3587                 bus_dmamem_free(tag, addr, map);
3588                 bus_dma_tag_destroy(tag);
3589         }
3590 }
3591
3592 /*
3593  * Grrr. The link status word in the status block does
3594  * not work correctly on the BCM5700 rev AX and BX chips,
3595  * according to all available information. Hence, we have
3596  * to enable MII interrupts in order to properly obtain
3597  * async link changes. Unfortunately, this also means that
3598  * we have to read the MAC status register to detect link
3599  * changes, thereby adding an additional register access to
3600  * the interrupt handler.
3601  *
3602  * XXX: perhaps link state detection procedure used for
3603  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
3604  */
3605 static void
3606 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
3607 {
3608         struct ifnet *ifp = &sc->arpcom.ac_if;
3609         struct mii_data *mii = device_get_softc(sc->bge_miibus);
3610
3611         mii_pollstat(mii);
3612
3613         if (!sc->bge_link &&
3614             (mii->mii_media_status & IFM_ACTIVE) &&
3615             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3616                 sc->bge_link++;
3617                 if (bootverbose)
3618                         if_printf(ifp, "link UP\n");
3619         } else if (sc->bge_link &&
3620             (!(mii->mii_media_status & IFM_ACTIVE) ||
3621             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3622                 sc->bge_link = 0;
3623                 if (bootverbose)
3624                         if_printf(ifp, "link DOWN\n");
3625         }
3626
3627         /* Clear the interrupt. */
3628         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
3629         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3630         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
3631 }
3632
3633 static void
3634 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
3635 {
3636         struct ifnet *ifp = &sc->arpcom.ac_if;
3637
3638 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
3639
3640         /*
3641          * Sometimes PCS encoding errors are detected in
3642          * TBI mode (on fiber NICs), and for some reason
3643          * the chip will signal them as link changes.
3644          * If we get a link change event, but the 'PCS
3645          * encoding error' bit in the MAC status register
3646          * is set, don't bother doing a link check.
3647          * This avoids spurious "gigabit link up" messages
3648          * that sometimes appear on fiber NICs during
3649          * periods of heavy traffic.
3650          */
3651         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
3652                 if (!sc->bge_link) {
3653                         sc->bge_link++;
3654                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3655                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3656                                     BGE_MACMODE_TBI_SEND_CFGS);
3657                         }
3658                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3659
3660                         if (bootverbose)
3661                                 if_printf(ifp, "link UP\n");
3662
3663                         ifp->if_link_state = LINK_STATE_UP;
3664                         if_link_state_change(ifp);
3665                 }
3666         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
3667                 if (sc->bge_link) {
3668                         sc->bge_link = 0;
3669
3670                         if (bootverbose)
3671                                 if_printf(ifp, "link DOWN\n");
3672
3673                         ifp->if_link_state = LINK_STATE_DOWN;
3674                         if_link_state_change(ifp);
3675                 }
3676         }
3677
3678 #undef PCS_ENCODE_ERR
3679
3680         /* Clear the attention. */
3681         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3682             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3683             BGE_MACSTAT_LINK_CHANGED);
3684 }
3685
3686 static void
3687 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
3688 {
3689         /*
3690          * Check that the AUTOPOLL bit is set before
3691          * processing the event as a real link change.
3692          * Turning AUTOPOLL on and off in the MII read/write
3693          * functions will often trigger a link status
3694          * interrupt for no reason.
3695          */
3696         if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
3697                 struct ifnet *ifp = &sc->arpcom.ac_if;
3698                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3699
3700                 mii_pollstat(mii);
3701
3702                 if (!sc->bge_link &&
3703                     (mii->mii_media_status & IFM_ACTIVE) &&
3704                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3705                         sc->bge_link++;
3706                         if (bootverbose)
3707                                 if_printf(ifp, "link UP\n");
3708                 } else if (sc->bge_link &&
3709                     (!(mii->mii_media_status & IFM_ACTIVE) ||
3710                     IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3711                         sc->bge_link = 0;
3712                         if (bootverbose)
3713                                 if_printf(ifp, "link DOWN\n");
3714                 }
3715         }
3716
3717         /* Clear the attention. */
3718         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3719             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3720             BGE_MACSTAT_LINK_CHANGED);
3721 }
3722
3723 static int
3724 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
3725 {
3726         struct bge_softc *sc = arg1;
3727
3728         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3729                                    &sc->bge_rx_coal_ticks,
3730                                    BGE_RX_COAL_TICKS_CHG);
3731 }
3732
3733 static int
3734 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
3735 {
3736         struct bge_softc *sc = arg1;
3737
3738         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3739                                    &sc->bge_tx_coal_ticks,
3740                                    BGE_TX_COAL_TICKS_CHG);
3741 }
3742
3743 static int
3744 bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3745 {
3746         struct bge_softc *sc = arg1;
3747
3748         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3749                                    &sc->bge_rx_max_coal_bds,
3750                                    BGE_RX_MAX_COAL_BDS_CHG);
3751 }
3752
3753 static int
3754 bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3755 {
3756         struct bge_softc *sc = arg1;
3757
3758         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3759                                    &sc->bge_tx_max_coal_bds,
3760                                    BGE_TX_MAX_COAL_BDS_CHG);
3761 }
3762
3763 static int
3764 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
3765                     uint32_t coal_chg_mask)
3766 {
3767         struct bge_softc *sc = arg1;
3768         struct ifnet *ifp = &sc->arpcom.ac_if;
3769         int error = 0, v;
3770
3771         lwkt_serialize_enter(ifp->if_serializer);
3772
3773         v = *coal;
3774         error = sysctl_handle_int(oidp, &v, 0, req);
3775         if (!error && req->newptr != NULL) {
3776                 if (v < 0) {
3777                         error = EINVAL;
3778                 } else {
3779                         *coal = v;
3780                         sc->bge_coal_chg |= coal_chg_mask;
3781                 }
3782         }
3783
3784         lwkt_serialize_exit(ifp->if_serializer);
3785         return error;
3786 }
3787
3788 static void
3789 bge_coal_change(struct bge_softc *sc)
3790 {
3791         struct ifnet *ifp = &sc->arpcom.ac_if;
3792         uint32_t val;
3793
3794         ASSERT_SERIALIZED(ifp->if_serializer);
3795
3796         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
3797                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
3798                             sc->bge_rx_coal_ticks);
3799                 DELAY(10);
3800                 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3801
3802                 if (bootverbose) {
3803                         if_printf(ifp, "rx_coal_ticks -> %u\n",
3804                                   sc->bge_rx_coal_ticks);
3805                 }
3806         }
3807
3808         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
3809                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
3810                             sc->bge_tx_coal_ticks);
3811                 DELAY(10);
3812                 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
3813
3814                 if (bootverbose) {
3815                         if_printf(ifp, "tx_coal_ticks -> %u\n",
3816                                   sc->bge_tx_coal_ticks);
3817                 }
3818         }
3819
3820         if (sc->bge_coal_chg & BGE_RX_MAX_COAL_BDS_CHG) {
3821                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
3822                             sc->bge_rx_max_coal_bds);
3823                 DELAY(10);
3824                 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3825
3826                 if (bootverbose) {
3827                         if_printf(ifp, "rx_max_coal_bds -> %u\n",
3828                                   sc->bge_rx_max_coal_bds);
3829                 }
3830         }
3831
3832         if (sc->bge_coal_chg & BGE_TX_MAX_COAL_BDS_CHG) {
3833                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
3834                             sc->bge_tx_max_coal_bds);
3835                 DELAY(10);
3836                 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
3837
3838                 if (bootverbose) {
3839                         if_printf(ifp, "tx_max_coal_bds -> %u\n",
3840                                   sc->bge_tx_max_coal_bds);
3841                 }
3842         }
3843
3844         sc->bge_coal_chg = 0;
3845 }
3846
3847 static void
3848 bge_enable_intr(struct bge_softc *sc)
3849 {
3850         struct ifnet *ifp = &sc->arpcom.ac_if;
3851
3852         lwkt_serialize_handler_enable(ifp->if_serializer);
3853
3854         /*
3855          * Enable interrupt.
3856          */
3857         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3858
3859         /*
3860          * Unmask the interrupt when we stop polling.
3861          */
3862         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3863
3864         /*
3865          * Trigger another interrupt, since above writing
3866          * to interrupt mailbox0 may acknowledge pending
3867          * interrupt.
3868          */
3869         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3870 }
3871
3872 static void
3873 bge_disable_intr(struct bge_softc *sc)
3874 {
3875         struct ifnet *ifp = &sc->arpcom.ac_if;
3876
3877         /*
3878          * Mask the interrupt when we start polling.
3879          */
3880         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3881
3882         /*
3883          * Acknowledge possible asserted interrupt.
3884          */
3885         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3886
3887         lwkt_serialize_handler_disable(ifp->if_serializer);
3888 }