kernel tree reorganization stage 1: Major cvs repository work (not logged as
[dragonfly.git] / sys / dev / netif / wi / if_wi.c
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/dev/wi/if_wi.c,v 1.103.2.2 2002/08/02 07:11:34 imp Exp $
33  * $DragonFly: src/sys/dev/netif/wi/if_wi.c,v 1.5 2003/08/07 21:17:06 dillon Exp $
34  */
35
36 /*
37  * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for FreeBSD.
38  *
39  * Written by Bill Paul <wpaul@ctr.columbia.edu>
40  * Electrical Engineering Department
41  * Columbia University, New York City
42  */
43
44 /*
45  * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
46  * from Lucent. Unlike the older cards, the new ones are programmed
47  * entirely via a firmware-driven controller called the Hermes.
48  * Unfortunately, Lucent will not release the Hermes programming manual
49  * without an NDA (if at all). What they do release is an API library
50  * called the HCF (Hardware Control Functions) which is supposed to
51  * do the device-specific operations of a device driver for you. The
52  * publically available version of the HCF library (the 'HCF Light') is 
53  * a) extremely gross, b) lacks certain features, particularly support
54  * for 802.11 frames, and c) is contaminated by the GNU Public License.
55  *
56  * This driver does not use the HCF or HCF Light at all. Instead, it
57  * programs the Hermes controller directly, using information gleaned
58  * from the HCF Light code and corresponding documentation.
59  *
60  * This driver supports the ISA, PCMCIA and PCI versions of the Lucent
61  * WaveLan cards (based on the Hermes chipset), as well as the newer
62  * Prism 2 chipsets with firmware from Intersil and Symbol.
63  */
64
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #if __FreeBSD_version >= 500033
68 #include <sys/endian.h>
69 #endif
70 #include <sys/sockio.h>
71 #include <sys/mbuf.h>
72 #include <sys/proc.h>
73 #include <sys/kernel.h>
74 #include <sys/socket.h>
75 #include <sys/module.h>
76 #include <sys/bus.h>
77 #include <sys/random.h>
78 #include <sys/syslog.h>
79 #include <sys/sysctl.h>
80
81 #include <machine/bus.h>
82 #include <machine/resource.h>
83 #include <machine/clock.h>
84 #include <sys/rman.h>
85
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 #include <net/if_ieee80211.h>
93
94 #include <netinet/in.h>
95 #include <netinet/in_systm.h>
96 #include <netinet/in_var.h>
97 #include <netinet/ip.h>
98 #include <netinet/if_ether.h>
99
100 #include <net/bpf.h>
101
102 #include "if_wavelan_ieee.h"
103 #include "wi_hostap.h"
104 #include "if_wivar.h"
105 #include "if_wireg.h"
106
107 static void wi_intr(void *);
108 static void wi_reset(struct wi_softc *);
109 static int wi_ioctl(struct ifnet *, u_long, caddr_t);
110 static void wi_init(void *);
111 static void wi_start(struct ifnet *);
112 static void wi_stop(struct wi_softc *);
113 static void wi_watchdog(struct ifnet *);
114 static void wi_rxeof(struct wi_softc *);
115 static void wi_txeof(struct wi_softc *, int);
116 static void wi_update_stats(struct wi_softc *);
117 static void wi_setmulti(struct wi_softc *);
118
119 static int wi_cmd(struct wi_softc *, int, int, int, int);
120 static int wi_read_record(struct wi_softc *, struct wi_ltv_gen *);
121 static int wi_write_record(struct wi_softc *, struct wi_ltv_gen *);
122 static int wi_read_data(struct wi_softc *, int, int, caddr_t, int);
123 static int wi_write_data(struct wi_softc *, int, int, caddr_t, int);
124 static int wi_seek(struct wi_softc *, int, int, int);
125 static int wi_alloc_nicmem(struct wi_softc *, int, int *);
126 static void wi_inquire(void *);
127 static void wi_setdef(struct wi_softc *, struct wi_req *);
128
129 #ifdef WICACHE
130 static
131 void wi_cache_store(struct wi_softc *, struct ether_header *,
132         struct mbuf *, unsigned short);
133 #endif
134
135 static int wi_get_cur_ssid(struct wi_softc *, char *, int *);
136 static void wi_get_id(struct wi_softc *);
137 static int wi_media_change(struct ifnet *);
138 static void wi_media_status(struct ifnet *, struct ifmediareq *);
139
140 static int wi_get_debug(struct wi_softc *, struct wi_req *);
141 static int wi_set_debug(struct wi_softc *, struct wi_req *);
142
143 devclass_t wi_devclass;
144
145 struct wi_card_ident wi_card_ident[] = {
146         /* CARD_ID                      CARD_NAME               FIRM_TYPE */
147         { WI_NIC_LUCENT_ID,             WI_NIC_LUCENT_STR,      WI_LUCENT },
148         { WI_NIC_SONY_ID,               WI_NIC_SONY_STR,        WI_LUCENT },
149         { WI_NIC_LUCENT_EMB_ID,         WI_NIC_LUCENT_EMB_STR,  WI_LUCENT },
150         { WI_NIC_EVB2_ID,               WI_NIC_EVB2_STR,        WI_INTERSIL },
151         { WI_NIC_HWB3763_ID,            WI_NIC_HWB3763_STR,     WI_INTERSIL },
152         { WI_NIC_HWB3163_ID,            WI_NIC_HWB3163_STR,     WI_INTERSIL },
153         { WI_NIC_HWB3163B_ID,           WI_NIC_HWB3163B_STR,    WI_INTERSIL },
154         { WI_NIC_EVB3_ID,               WI_NIC_EVB3_STR,        WI_INTERSIL },
155         { WI_NIC_HWB1153_ID,            WI_NIC_HWB1153_STR,     WI_INTERSIL },
156         { WI_NIC_P2_SST_ID,             WI_NIC_P2_SST_STR,      WI_INTERSIL },
157         { WI_NIC_EVB2_SST_ID,           WI_NIC_EVB2_SST_STR,    WI_INTERSIL },
158         { WI_NIC_3842_EVA_ID,           WI_NIC_3842_EVA_STR,    WI_INTERSIL },
159         { WI_NIC_3842_PCMCIA_AMD_ID,    WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
160         { WI_NIC_3842_PCMCIA_SST_ID,    WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
161         { WI_NIC_3842_PCMCIA_ATM_ID,    WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
162         { WI_NIC_3842_MINI_AMD_ID,      WI_NIC_3842_MINI_STR,   WI_INTERSIL },
163         { WI_NIC_3842_MINI_SST_ID,      WI_NIC_3842_MINI_STR,   WI_INTERSIL },
164         { WI_NIC_3842_MINI_ATM_ID,      WI_NIC_3842_MINI_STR,   WI_INTERSIL },
165         { WI_NIC_3842_PCI_AMD_ID,       WI_NIC_3842_PCI_STR,    WI_INTERSIL },
166         { WI_NIC_3842_PCI_SST_ID,       WI_NIC_3842_PCI_STR,    WI_INTERSIL },
167         { WI_NIC_3842_PCI_ATM_ID,       WI_NIC_3842_PCI_STR,    WI_INTERSIL },
168         { WI_NIC_P3_PCMCIA_AMD_ID,      WI_NIC_P3_PCMCIA_STR,   WI_INTERSIL },
169         { WI_NIC_P3_PCMCIA_SST_ID,      WI_NIC_P3_PCMCIA_STR,   WI_INTERSIL },
170         { WI_NIC_P3_MINI_AMD_ID,        WI_NIC_P3_MINI_STR,     WI_INTERSIL },
171         { WI_NIC_P3_MINI_SST_ID,        WI_NIC_P3_MINI_STR,     WI_INTERSIL },
172         { 0,    NULL,   0 },
173 };
174
175 int
176 wi_generic_detach(dev)
177         device_t                dev;
178 {
179         struct wi_softc         *sc;
180         struct ifnet            *ifp;
181         int                     s;
182
183         sc = device_get_softc(dev);
184         WI_LOCK(sc, s);
185         ifp = &sc->arpcom.ac_if;
186
187         if (sc->wi_gone) {
188                 device_printf(dev, "already unloaded\n");
189                 WI_UNLOCK(sc, s);
190                 return(ENODEV);
191         }
192
193         wi_stop(sc);
194
195         /* Delete all remaining media. */
196         ifmedia_removeall(&sc->ifmedia);
197
198         ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
199         bus_teardown_intr(dev, sc->irq, sc->wi_intrhand);
200         wi_free(dev);
201         sc->wi_gone = 1;
202
203         WI_UNLOCK(sc, s);
204 #if __FreeBSD_version >= 500000
205         mtx_destroy(&sc->wi_mtx);
206 #endif
207
208         return(0);
209 }
210
211 int
212 wi_generic_attach(device_t dev)
213 {
214         struct wi_softc         *sc;
215         struct wi_ltv_macaddr   mac;
216         struct wi_ltv_gen       gen;
217         struct ifnet            *ifp;
218         int                     error;
219         int                     s;
220
221         /* XXX maybe we need the splimp stuff here XXX */
222         sc = device_get_softc(dev);
223         ifp = &sc->arpcom.ac_if;
224
225         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
226             wi_intr, sc, &sc->wi_intrhand);
227
228         if (error) {
229                 device_printf(dev, "bus_setup_intr() failed! (%d)\n", error);
230                 wi_free(dev);
231                 return (error);
232         }
233
234 #if __FreeBSD_version >= 500000
235         mtx_init(&sc->wi_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
236             MTX_DEF | MTX_RECURSE);
237 #endif
238         WI_LOCK(sc, s);
239
240         /* Reset the NIC. */
241         wi_reset(sc);
242
243         /*
244          * Read the station address.
245          * And do it twice. I've seen PRISM-based cards that return
246          * an error when trying to read it the first time, which causes
247          * the probe to fail.
248          */
249         mac.wi_type = WI_RID_MAC_NODE;
250         mac.wi_len = 4;
251         wi_read_record(sc, (struct wi_ltv_gen *)&mac);
252         if ((error = wi_read_record(sc, (struct wi_ltv_gen *)&mac)) != 0) {
253                 device_printf(dev, "mac read failed %d\n", error);
254                 wi_free(dev);
255                 return (error);
256         }
257         bcopy((char *)&mac.wi_mac_addr,
258            (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
259
260         device_printf(dev, "802.11 address: %6D\n", sc->arpcom.ac_enaddr, ":");
261
262         wi_get_id(sc);
263
264         ifp->if_softc = sc;
265         ifp->if_unit = sc->wi_unit;
266         ifp->if_name = "wi";
267         ifp->if_mtu = ETHERMTU;
268         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
269         ifp->if_ioctl = wi_ioctl;
270         ifp->if_output = ether_output;
271         ifp->if_start = wi_start;
272         ifp->if_watchdog = wi_watchdog;
273         ifp->if_init = wi_init;
274         ifp->if_baudrate = 10000000;
275         ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
276
277         bzero(sc->wi_node_name, sizeof(sc->wi_node_name));
278         bcopy(WI_DEFAULT_NODENAME, sc->wi_node_name,
279             sizeof(WI_DEFAULT_NODENAME) - 1);
280
281         bzero(sc->wi_net_name, sizeof(sc->wi_net_name));
282         bcopy(WI_DEFAULT_NETNAME, sc->wi_net_name,
283             sizeof(WI_DEFAULT_NETNAME) - 1);
284
285         bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name));
286         bcopy(WI_DEFAULT_IBSS, sc->wi_ibss_name,
287             sizeof(WI_DEFAULT_IBSS) - 1);
288
289         sc->wi_portnum = WI_DEFAULT_PORT;
290         sc->wi_ptype = WI_PORTTYPE_BSS;
291         sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
292         sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
293         sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
294         sc->wi_max_data_len = WI_DEFAULT_DATALEN;
295         sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
296         sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
297         sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
298         sc->wi_roaming = WI_DEFAULT_ROAMING;
299         sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
300         sc->wi_authmode = IEEE80211_AUTH_OPEN;
301
302         /*
303          * Read the default channel from the NIC. This may vary
304          * depending on the country where the NIC was purchased, so
305          * we can't hard-code a default and expect it to work for
306          * everyone.
307          */
308         gen.wi_type = WI_RID_OWN_CHNL;
309         gen.wi_len = 2;
310         wi_read_record(sc, &gen);
311         sc->wi_channel = gen.wi_val;
312
313         /*
314          * Set flags based on firmware version.
315          */
316         switch (sc->sc_firmware_type) {
317         case WI_LUCENT:
318                 sc->wi_flags |= WI_FLAGS_HAS_ROAMING;
319                 if (sc->sc_sta_firmware_ver >= 60000)
320                         sc->wi_flags |= WI_FLAGS_HAS_MOR;
321                 if (sc->sc_sta_firmware_ver >= 60006) {
322                         sc->wi_flags |= WI_FLAGS_HAS_IBSS;
323                         sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS;
324                 }
325                 sc->wi_ibss_port = htole16(1);
326                 break;
327         case WI_INTERSIL:
328                 sc->wi_flags |= WI_FLAGS_HAS_ROAMING;
329                 if (sc->sc_sta_firmware_ver >= 800) {
330                         sc->wi_flags |= WI_FLAGS_HAS_IBSS;
331                         sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS;
332                 }
333                 /*
334                  * version 0.8.3 and newer are the only ones that are known
335                  * to currently work.  Earlier versions can be made to work,
336                  * at least according to the Linux driver.
337                  */
338                 if (sc->sc_sta_firmware_ver >= 803)
339                         sc->wi_flags |= WI_FLAGS_HAS_HOSTAP;
340                 sc->wi_ibss_port = htole16(0);
341                 break;
342         case WI_SYMBOL:
343                 sc->wi_flags |= WI_FLAGS_HAS_DIVERSITY;
344                 if (sc->sc_sta_firmware_ver >= 20000)
345                         sc->wi_flags |= WI_FLAGS_HAS_IBSS;
346                 /* Older Symbol firmware does not support IBSS creation. */
347                 if (sc->sc_sta_firmware_ver >= 25000)
348                         sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS;
349                 sc->wi_ibss_port = htole16(4);
350                 break;
351         }
352
353         /*
354          * Find out if we support WEP on this card.
355          */
356         gen.wi_type = WI_RID_WEP_AVAIL;
357         gen.wi_len = 2;
358         wi_read_record(sc, &gen);
359         sc->wi_has_wep = gen.wi_val;
360
361         if (bootverbose)
362                 device_printf(sc->dev, "wi_has_wep = %d\n", sc->wi_has_wep);
363
364         /* 
365          * Find supported rates.
366          */
367         gen.wi_type = WI_RID_DATA_RATES;
368         gen.wi_len = 2;
369         if (wi_read_record(sc, &gen))
370                 sc->wi_supprates = WI_SUPPRATES_1M | WI_SUPPRATES_2M |
371                     WI_SUPPRATES_5M | WI_SUPPRATES_11M;
372         else
373                 sc->wi_supprates = gen.wi_val;
374
375         bzero((char *)&sc->wi_stats, sizeof(sc->wi_stats));
376
377         wi_init(sc);
378         wi_stop(sc);
379
380         ifmedia_init(&sc->ifmedia, 0, wi_media_change, wi_media_status);
381 #define ADD(m, c)       ifmedia_add(&sc->ifmedia, (m), (c), NULL)
382         if (sc->wi_supprates & WI_SUPPRATES_1M) {
383                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
384                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
385                     IFM_IEEE80211_ADHOC, 0), 0);
386                 if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
387                         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
388                             IFM_IEEE80211_IBSS, 0), 0);
389                 if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
390                         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
391                             IFM_IEEE80211_IBSSMASTER, 0), 0);
392                 if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
393                         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
394                             IFM_IEEE80211_HOSTAP, 0), 0);
395         }
396         if (sc->wi_supprates & WI_SUPPRATES_2M) {
397                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
398                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
399                     IFM_IEEE80211_ADHOC, 0), 0);
400                 if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
401                         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
402                             IFM_IEEE80211_IBSS, 0), 0);
403                 if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
404                         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
405                             IFM_IEEE80211_IBSSMASTER, 0), 0);
406                 if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
407                         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
408                             IFM_IEEE80211_HOSTAP, 0), 0);
409         }
410         if (sc->wi_supprates & WI_SUPPRATES_5M) {
411                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
412                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
413                     IFM_IEEE80211_ADHOC, 0), 0);
414                 if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
415                         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
416                             IFM_IEEE80211_IBSS, 0), 0);
417                 if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
418                         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
419                             IFM_IEEE80211_IBSSMASTER, 0), 0);
420                 if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
421                         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
422                             IFM_IEEE80211_HOSTAP, 0), 0);
423         }
424         if (sc->wi_supprates & WI_SUPPRATES_11M) {
425                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
426                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
427                     IFM_IEEE80211_ADHOC, 0), 0);
428                 if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
429                         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
430                             IFM_IEEE80211_IBSS, 0), 0);
431                 if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
432                         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
433                             IFM_IEEE80211_IBSSMASTER, 0), 0);
434                 if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
435                         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
436                             IFM_IEEE80211_HOSTAP, 0), 0);
437                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
438         }
439         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0), 0);
440         if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
441                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_IBSS,
442                     0), 0);
443         if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
444                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
445                     IFM_IEEE80211_IBSSMASTER, 0), 0);
446         if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
447                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
448                     IFM_IEEE80211_HOSTAP, 0), 0);
449         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
450 #undef ADD
451         ifmedia_set(&sc->ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
452
453         /*
454          * Call MI attach routine.
455          */
456         ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
457         callout_handle_init(&sc->wi_stat_ch);
458         WI_UNLOCK(sc, s);
459
460         return(0);
461 }
462
463 static void
464 wi_get_id(sc)
465         struct wi_softc *sc;
466 {
467         struct wi_ltv_ver       ver;
468         struct wi_card_ident    *id;
469
470         /* getting chip identity */
471         memset(&ver, 0, sizeof(ver));
472         ver.wi_type = WI_RID_CARD_ID;
473         ver.wi_len = 5;
474         wi_read_record(sc, (struct wi_ltv_gen *)&ver);
475         device_printf(sc->dev, "using ");
476         sc->sc_firmware_type = WI_NOTYPE;
477         for (id = wi_card_ident; id->card_name != NULL; id++) {
478                 if (le16toh(ver.wi_ver[0]) == id->card_id) {
479                         printf("%s", id->card_name);
480                         sc->sc_firmware_type = id->firm_type;
481                         break;
482                 }
483         }
484         if (sc->sc_firmware_type == WI_NOTYPE) {
485                 if (le16toh(ver.wi_ver[0]) & 0x8000) {
486                         printf("Unknown PRISM2 chip");
487                         sc->sc_firmware_type = WI_INTERSIL;
488                 } else {
489                         printf("Unknown Lucent chip");
490                         sc->sc_firmware_type = WI_LUCENT;
491                 }
492         }
493
494         if (sc->sc_firmware_type != WI_LUCENT) {
495                 /* get primary firmware version */
496                 memset(&ver, 0, sizeof(ver));
497                 ver.wi_type = WI_RID_PRI_IDENTITY;
498                 ver.wi_len = 5;
499                 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
500                 ver.wi_ver[1] = le16toh(ver.wi_ver[1]);
501                 ver.wi_ver[2] = le16toh(ver.wi_ver[2]);
502                 ver.wi_ver[3] = le16toh(ver.wi_ver[3]);
503                 sc->sc_pri_firmware_ver = ver.wi_ver[2] * 10000 +
504                     ver.wi_ver[3] * 100 + ver.wi_ver[1];
505         }
506
507         /* get station firmware version */
508         memset(&ver, 0, sizeof(ver));
509         ver.wi_type = WI_RID_STA_IDENTITY;
510         ver.wi_len = 5;
511         wi_read_record(sc, (struct wi_ltv_gen *)&ver);
512         ver.wi_ver[1] = le16toh(ver.wi_ver[1]);
513         ver.wi_ver[2] = le16toh(ver.wi_ver[2]);
514         ver.wi_ver[3] = le16toh(ver.wi_ver[3]);
515         sc->sc_sta_firmware_ver = ver.wi_ver[2] * 10000 +
516             ver.wi_ver[3] * 100 + ver.wi_ver[1];
517         if (sc->sc_firmware_type == WI_INTERSIL &&
518             (sc->sc_sta_firmware_ver == 10102 || 
519              sc->sc_sta_firmware_ver == 20102)) {
520                 struct wi_ltv_str sver;
521                 char *p;
522
523                 memset(&sver, 0, sizeof(sver));
524                 sver.wi_type = WI_RID_SYMBOL_IDENTITY;
525                 sver.wi_len = 7;
526                 /* value should be the format like "V2.00-11" */
527                 if (wi_read_record(sc, (struct wi_ltv_gen *)&sver) == 0 &&
528                     *(p = (char *)sver.wi_str) >= 'A' &&
529                     p[2] == '.' && p[5] == '-' && p[8] == '\0') {
530                         sc->sc_firmware_type = WI_SYMBOL;
531                         sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
532                             (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
533                             (p[6] - '0') * 10 + (p[7] - '0');
534                 }
535         }
536         printf("\n");
537         device_printf(sc->dev, "%s Firmware: ",
538              sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
539             (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
540
541         /*
542          * The primary firmware is only valid on Prism based chipsets
543          * (INTERSIL or SYMBOL).
544          */
545         if (sc->sc_firmware_type != WI_LUCENT)
546             printf("Primary %u.%02u.%02u, ", sc->sc_pri_firmware_ver / 10000,
547                     (sc->sc_pri_firmware_ver % 10000) / 100,
548                     sc->sc_pri_firmware_ver % 100);
549         printf("Station %u.%02u.%02u\n",
550             sc->sc_sta_firmware_ver / 10000, (sc->sc_sta_firmware_ver % 10000) / 100,
551             sc->sc_sta_firmware_ver % 100);
552         return;
553 }
554
555 static void
556 wi_rxeof(sc)
557         struct wi_softc         *sc;
558 {
559         struct ifnet            *ifp;
560         struct ether_header     *eh;
561         struct mbuf             *m;
562         int                     id;
563
564         ifp = &sc->arpcom.ac_if;
565
566         id = CSR_READ_2(sc, WI_RX_FID);
567
568         /*
569          * if we have the procframe flag set, disregard all this and just
570          * read the data from the device.
571          */
572         if (sc->wi_procframe || sc->wi_debug.wi_monitor) {
573                 struct wi_frame         *rx_frame;
574                 int                     datlen, hdrlen;
575
576                 /* first allocate mbuf for packet storage */
577                 MGETHDR(m, M_DONTWAIT, MT_DATA);
578                 if (m == NULL) {
579                         ifp->if_ierrors++;
580                         return;
581                 }
582                 MCLGET(m, M_DONTWAIT);
583                 if (!(m->m_flags & M_EXT)) {
584                         m_freem(m);
585                         ifp->if_ierrors++;
586                         return;
587                 }
588
589                 m->m_pkthdr.rcvif = ifp;
590
591                 /* now read wi_frame first so we know how much data to read */
592                 if (wi_read_data(sc, id, 0, mtod(m, caddr_t),
593                     sizeof(struct wi_frame))) {
594                         m_freem(m);
595                         ifp->if_ierrors++;
596                         return;
597                 }
598
599                 rx_frame = mtod(m, struct wi_frame *);
600
601                 switch ((rx_frame->wi_status & WI_STAT_MAC_PORT) >> 8) {
602                 case 7:
603                         switch (rx_frame->wi_frame_ctl & WI_FCTL_FTYPE) {
604                         case WI_FTYPE_DATA:
605                                 hdrlen = WI_DATA_HDRLEN;
606                                 datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
607                                 break;
608                         case WI_FTYPE_MGMT:
609                                 hdrlen = WI_MGMT_HDRLEN;
610                                 datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
611                                 break;
612                         case WI_FTYPE_CTL:
613                                 /*
614                                  * prism2 cards don't pass control packets
615                                  * down properly or consistently, so we'll only
616                                  * pass down the header.
617                                  */
618                                 hdrlen = WI_CTL_HDRLEN;
619                                 datlen = 0;
620                                 break;
621                         default:
622                                 device_printf(sc->dev, "received packet of "
623                                     "unknown type on port 7\n");
624                                 m_freem(m);
625                                 ifp->if_ierrors++;
626                                 return;
627                         }
628                         break;
629                 case 0:
630                         hdrlen = WI_DATA_HDRLEN;
631                         datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
632                         break;
633                 default:
634                         device_printf(sc->dev, "received packet on invalid "
635                             "port (wi_status=0x%x)\n", rx_frame->wi_status);
636                         m_freem(m);
637                         ifp->if_ierrors++;
638                         return;
639                 }
640
641                 if ((hdrlen + datlen + 2) > MCLBYTES) {
642                         device_printf(sc->dev, "oversized packet received "
643                             "(wi_dat_len=%d, wi_status=0x%x)\n",
644                             datlen, rx_frame->wi_status);
645                         m_freem(m);
646                         ifp->if_ierrors++;
647                         return;
648                 }
649
650                 if (wi_read_data(sc, id, hdrlen, mtod(m, caddr_t) + hdrlen,
651                     datlen + 2)) {
652                         m_freem(m);
653                         ifp->if_ierrors++;
654                         return;
655                 }
656
657                 m->m_pkthdr.len = m->m_len = hdrlen + datlen;
658
659                 ifp->if_ipackets++;
660
661                 /* Handle BPF listeners. */
662                 if (ifp->if_bpf)
663                         bpf_mtap(ifp, m);
664
665                 m_freem(m);
666         } else {
667                 struct wi_frame         rx_frame;
668
669                 /* First read in the frame header */
670                 if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame,
671                     sizeof(rx_frame))) {
672                         ifp->if_ierrors++;
673                         return;
674                 }
675
676                 if (rx_frame.wi_status & WI_STAT_ERRSTAT) {
677                         ifp->if_ierrors++;
678                         return;
679                 }
680
681                 MGETHDR(m, M_DONTWAIT, MT_DATA);
682                 if (m == NULL) {
683                         ifp->if_ierrors++;
684                         return;
685                 }
686                 MCLGET(m, M_DONTWAIT);
687                 if (!(m->m_flags & M_EXT)) {
688                         m_freem(m);
689                         ifp->if_ierrors++;
690                         return;
691                 }
692
693                 eh = mtod(m, struct ether_header *);
694                 m->m_pkthdr.rcvif = ifp;
695
696                 if (rx_frame.wi_status == WI_STAT_MGMT &&
697                     sc->wi_ptype == WI_PORTTYPE_AP) {
698                         if ((WI_802_11_OFFSET_RAW + rx_frame.wi_dat_len + 2) >
699                             MCLBYTES) {
700                                 device_printf(sc->dev, "oversized mgmt packet "
701                                     "received in hostap mode " 
702                                     "(wi_dat_len=%d, wi_status=0x%x)\n",
703                                     rx_frame.wi_dat_len, rx_frame.wi_status);
704                                 m_freem(m);
705                                 ifp->if_ierrors++;
706                                 return;
707                         }
708
709                         /* Put the whole header in there. */
710                         bcopy(&rx_frame, mtod(m, void *),
711                             sizeof(struct wi_frame));
712                         if (wi_read_data(sc, id, WI_802_11_OFFSET_RAW, 
713                             mtod(m, caddr_t) + WI_802_11_OFFSET_RAW,
714                             rx_frame.wi_dat_len + 2)) {
715                                 m_freem(m);
716                                 ifp->if_ierrors++;
717                                 return;
718                         }
719                         m->m_pkthdr.len = m->m_len =
720                             WI_802_11_OFFSET_RAW + rx_frame.wi_dat_len;
721                         /* XXX: consider giving packet to bhp? */
722                         wihap_mgmt_input(sc, &rx_frame, m);
723                         return;
724                 }
725
726                 if (rx_frame.wi_status == WI_STAT_1042 ||
727                     rx_frame.wi_status == WI_STAT_TUNNEL ||
728                     rx_frame.wi_status == WI_STAT_WMP_MSG) {
729                         if((rx_frame.wi_dat_len + WI_SNAPHDR_LEN) > MCLBYTES) {
730                                 device_printf(sc->dev,
731                                     "oversized packet received "
732                                     "(wi_dat_len=%d, wi_status=0x%x)\n",
733                                     rx_frame.wi_dat_len, rx_frame.wi_status);
734                                 m_freem(m);
735                                 ifp->if_ierrors++;
736                                 return;
737                         }
738                         m->m_pkthdr.len = m->m_len =
739                             rx_frame.wi_dat_len + WI_SNAPHDR_LEN;
740
741 #if 0
742                         bcopy((char *)&rx_frame.wi_addr1,
743                             (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
744                         if (sc->wi_ptype == WI_PORTTYPE_ADHOC) {
745                                 bcopy((char *)&rx_frame.wi_addr2,
746                                     (char *)&eh->ether_shost, ETHER_ADDR_LEN);
747                         } else {
748                                 bcopy((char *)&rx_frame.wi_addr3,
749                                     (char *)&eh->ether_shost, ETHER_ADDR_LEN);
750                         }
751 #else
752                         bcopy((char *)&rx_frame.wi_dst_addr,
753                                 (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
754                         bcopy((char *)&rx_frame.wi_src_addr,
755                                 (char *)&eh->ether_shost, ETHER_ADDR_LEN);
756 #endif
757
758                         bcopy((char *)&rx_frame.wi_type,
759                             (char *)&eh->ether_type, ETHER_TYPE_LEN);
760
761                         if (wi_read_data(sc, id, WI_802_11_OFFSET,
762                             mtod(m, caddr_t) + sizeof(struct ether_header),
763                             m->m_len + 2)) {
764                                 m_freem(m);
765                                 ifp->if_ierrors++;
766                                 return;
767                         }
768                 } else {
769                         if((rx_frame.wi_dat_len +
770                             sizeof(struct ether_header)) > MCLBYTES) {
771                                 device_printf(sc->dev,
772                                     "oversized packet received "
773                                     "(wi_dat_len=%d, wi_status=0x%x)\n",
774                                     rx_frame.wi_dat_len, rx_frame.wi_status);
775                                 m_freem(m);
776                                 ifp->if_ierrors++;
777                                 return;
778                         }
779                         m->m_pkthdr.len = m->m_len =
780                             rx_frame.wi_dat_len + sizeof(struct ether_header);
781
782                         if (wi_read_data(sc, id, WI_802_3_OFFSET,
783                             mtod(m, caddr_t), m->m_len + 2)) {
784                                 m_freem(m);
785                                 ifp->if_ierrors++;
786                                 return;
787                         }
788                 }
789
790                 ifp->if_ipackets++;
791
792                 if (sc->wi_ptype == WI_PORTTYPE_AP) {
793                         /* 
794                          * Give host AP code first crack at data
795                          * packets.  If it decides to handle it (or
796                          * drop it), it will return a non-zero.
797                          * Otherwise, it is destined for this host.
798                          */
799                         if (wihap_data_input(sc, &rx_frame, m))
800                                 return;
801                 }
802                 /* Receive packet. */
803                 m_adj(m, sizeof(struct ether_header));
804 #ifdef WICACHE
805                 wi_cache_store(sc, eh, m, rx_frame.wi_q_info);
806 #endif  
807                 ether_input(ifp, eh, m);
808         }
809 }
810
811 static void
812 wi_txeof(sc, status)
813         struct wi_softc         *sc;
814         int                     status;
815 {
816         struct ifnet            *ifp;
817
818         ifp = &sc->arpcom.ac_if;
819
820         ifp->if_timer = 0;
821         ifp->if_flags &= ~IFF_OACTIVE;
822
823         if (status & WI_EV_TX_EXC)
824                 ifp->if_oerrors++;
825         else
826                 ifp->if_opackets++;
827
828         return;
829 }
830
831 void
832 wi_inquire(xsc)
833         void                    *xsc;
834 {
835         struct wi_softc         *sc;
836         struct ifnet            *ifp;
837         int                     s;
838
839         sc = xsc;
840         ifp = &sc->arpcom.ac_if;
841
842         sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60);
843
844         /* Don't do this while we're transmitting */
845         if (ifp->if_flags & IFF_OACTIVE)
846                 return;
847
848         WI_LOCK(sc, s);
849         wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS, 0, 0);
850         WI_UNLOCK(sc, s);
851
852         return;
853 }
854
855 void
856 wi_update_stats(sc)
857         struct wi_softc         *sc;
858 {
859         struct wi_ltv_gen       gen;
860         u_int16_t               id;
861         struct ifnet            *ifp;
862         u_int32_t               *ptr;
863         int                     len, i;
864         u_int16_t               t;
865
866         ifp = &sc->arpcom.ac_if;
867
868         id = CSR_READ_2(sc, WI_INFO_FID);
869
870         wi_read_data(sc, id, 0, (char *)&gen, 4);
871
872         /*
873          * if we just got our scan results, copy it over into the scan buffer
874          * so we can return it to anyone that asks for it. (add a little
875          * compatibility with the prism2 scanning mechanism)
876          */
877         if (gen.wi_type == WI_INFO_SCAN_RESULTS)
878         {
879                 sc->wi_scanbuf_len = gen.wi_len;
880                 wi_read_data(sc, id, 4, (char *)sc->wi_scanbuf,
881                     sc->wi_scanbuf_len * 2);
882
883                 return;
884         }
885         else if (gen.wi_type != WI_INFO_COUNTERS)
886                 return;
887
888         len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
889                 gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
890         ptr = (u_int32_t *)&sc->wi_stats;
891
892         for (i = 0; i < len - 1; i++) {
893                 t = CSR_READ_2(sc, WI_DATA1);
894 #ifdef WI_HERMES_STATS_WAR
895                 if (t > 0xF000)
896                         t = ~t & 0xFFFF;
897 #endif
898                 ptr[i] += t;
899         }
900
901         ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
902             sc->wi_stats.wi_tx_multi_retries +
903             sc->wi_stats.wi_tx_retry_limit;
904
905         return;
906 }
907
908 static void
909 wi_intr(xsc)
910         void            *xsc;
911 {
912         struct wi_softc         *sc = xsc;
913         struct ifnet            *ifp;
914         u_int16_t               status;
915         int                     s;
916
917         WI_LOCK(sc, s);
918
919         ifp = &sc->arpcom.ac_if;
920
921         if (sc->wi_gone || !(ifp->if_flags & IFF_UP)) {
922                 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
923                 CSR_WRITE_2(sc, WI_INT_EN, 0);
924                 WI_UNLOCK(sc, s);
925                 return;
926         }
927
928         /* Disable interrupts. */
929         CSR_WRITE_2(sc, WI_INT_EN, 0);
930
931         status = CSR_READ_2(sc, WI_EVENT_STAT);
932         CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
933
934         if (status & WI_EV_RX) {
935                 wi_rxeof(sc);
936                 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
937         }
938
939         if (status & WI_EV_TX) {
940                 wi_txeof(sc, status);
941                 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
942         }
943
944         if (status & WI_EV_ALLOC) {
945                 int                     id;
946
947                 id = CSR_READ_2(sc, WI_ALLOC_FID);
948                 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
949                 if (id == sc->wi_tx_data_id)
950                         wi_txeof(sc, status);
951         }
952
953         if (status & WI_EV_INFO) {
954                 wi_update_stats(sc);
955                 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
956         }
957
958         if (status & WI_EV_TX_EXC) {
959                 wi_txeof(sc, status);
960                 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
961         }
962
963         if (status & WI_EV_INFO_DROP) {
964                 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
965         }
966
967         /* Re-enable interrupts. */
968         CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
969
970         if (ifp->if_snd.ifq_head != NULL) {
971                 wi_start(ifp);
972         }
973
974         WI_UNLOCK(sc, s);
975
976         return;
977 }
978
979 static int
980 wi_cmd(sc, cmd, val0, val1, val2)
981         struct wi_softc         *sc;
982         int                     cmd;
983         int                     val0;
984         int                     val1;
985         int                     val2;
986 {
987         int                     i, s = 0;
988         static volatile int count  = 0;
989         
990         if (count > 1)
991                 panic("Hey partner, hold on there!");
992         count++;
993
994         /* wait for the busy bit to clear */
995         for (i = 500; i > 0; i--) {     /* 5s */
996                 if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY)) {
997                         break;
998                 }
999                 DELAY(10*1000); /* 10 m sec */
1000         }
1001         if (i == 0) {
1002                 device_printf(sc->dev, "wi_cmd: busy bit won't clear.\n" );
1003                 count--;
1004                 return(ETIMEDOUT);
1005         }
1006
1007         CSR_WRITE_2(sc, WI_PARAM0, val0);
1008         CSR_WRITE_2(sc, WI_PARAM1, val1);
1009         CSR_WRITE_2(sc, WI_PARAM2, val2);
1010         CSR_WRITE_2(sc, WI_COMMAND, cmd);
1011
1012         for (i = 0; i < WI_TIMEOUT; i++) {
1013                 /*
1014                  * Wait for 'command complete' bit to be
1015                  * set in the event status register.
1016                  */
1017                 s = CSR_READ_2(sc, WI_EVENT_STAT);
1018                 if (s & WI_EV_CMD) {
1019                         /* Ack the event and read result code. */
1020                         s = CSR_READ_2(sc, WI_STATUS);
1021                         CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
1022 #ifdef foo
1023                         if ((s & WI_CMD_CODE_MASK) != (cmd & WI_CMD_CODE_MASK))
1024                                 return(EIO);
1025 #endif
1026                         if (s & WI_STAT_CMD_RESULT) {
1027                                 count--;
1028                                 return(EIO);
1029                         }
1030                         break;
1031                 }
1032                 DELAY(WI_DELAY);
1033         }
1034
1035         count--;
1036         if (i == WI_TIMEOUT) {
1037                 device_printf(sc->dev,
1038                     "timeout in wi_cmd 0x%04x; event status 0x%04x\n", cmd, s);
1039                 return(ETIMEDOUT);
1040         }
1041         return(0);
1042 }
1043
1044 static void
1045 wi_reset(sc)
1046         struct wi_softc         *sc;
1047 {
1048 #define WI_INIT_TRIES 3
1049         int i;
1050         int tries;
1051         
1052         /* Symbol firmware cannot be initialized more than once */
1053         if (sc->sc_firmware_type == WI_SYMBOL && sc->sc_enabled)
1054                 return;
1055         if (sc->sc_firmware_type == WI_SYMBOL)
1056                 tries = 1;
1057         else
1058                 tries = WI_INIT_TRIES;
1059
1060         for (i = 0; i < tries; i++) {
1061                 if (wi_cmd(sc, WI_CMD_INI, 0, 0, 0) == 0)
1062                         break;
1063                 DELAY(WI_DELAY * 1000);
1064         }
1065         sc->sc_enabled = 1;
1066
1067         if (i == tries) {
1068                 device_printf(sc->dev, "init failed\n");
1069                 return;
1070         }
1071
1072         CSR_WRITE_2(sc, WI_INT_EN, 0);
1073         CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
1074
1075         /* Calibrate timer. */
1076         WI_SETVAL(WI_RID_TICK_TIME, 8);
1077
1078         return;
1079 }
1080
1081 /*
1082  * Read an LTV record from the NIC.
1083  */
1084 static int
1085 wi_read_record(sc, ltv)
1086         struct wi_softc         *sc;
1087         struct wi_ltv_gen       *ltv;
1088 {
1089         u_int16_t               *ptr;
1090         int                     i, len, code;
1091         struct wi_ltv_gen       *oltv, p2ltv;
1092
1093         oltv = ltv;
1094         if (sc->sc_firmware_type != WI_LUCENT) {
1095                 switch (ltv->wi_type) {
1096                 case WI_RID_ENCRYPTION:
1097                         p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
1098                         p2ltv.wi_len = 2;
1099                         ltv = &p2ltv;
1100                         break;
1101                 case WI_RID_TX_CRYPT_KEY:
1102                         p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
1103                         p2ltv.wi_len = 2;
1104                         ltv = &p2ltv;
1105                         break;
1106                 case WI_RID_ROAMING_MODE:
1107                         if (sc->sc_firmware_type == WI_INTERSIL)
1108                                 break;
1109                         /* not supported */
1110                         ltv->wi_len = 1;
1111                         return 0;
1112                 case WI_RID_MICROWAVE_OVEN:
1113                         /* not supported */
1114                         ltv->wi_len = 1;
1115                         return 0;
1116                 }
1117         }
1118
1119         /* Tell the NIC to enter record read mode. */
1120         if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type, 0, 0))
1121                 return(EIO);
1122
1123         /* Seek to the record. */
1124         if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
1125                 return(EIO);
1126
1127         /*
1128          * Read the length and record type and make sure they
1129          * match what we expect (this verifies that we have enough
1130          * room to hold all of the returned data).
1131          */
1132         len = CSR_READ_2(sc, WI_DATA1);
1133         if (len > ltv->wi_len)
1134                 return(ENOSPC);
1135         code = CSR_READ_2(sc, WI_DATA1);
1136         if (code != ltv->wi_type)
1137                 return(EIO);
1138
1139         ltv->wi_len = len;
1140         ltv->wi_type = code;
1141
1142         /* Now read the data. */
1143         ptr = &ltv->wi_val;
1144         for (i = 0; i < ltv->wi_len - 1; i++)
1145                 ptr[i] = CSR_READ_2(sc, WI_DATA1);
1146
1147         if (ltv->wi_type == WI_RID_PORTTYPE && sc->wi_ptype == WI_PORTTYPE_IBSS
1148             && ltv->wi_val == sc->wi_ibss_port) {
1149                 /*
1150                  * Convert vendor IBSS port type to WI_PORTTYPE_IBSS.
1151                  * Since Lucent uses port type 1 for BSS *and* IBSS we
1152                  * have to rely on wi_ptype to distinguish this for us.
1153                  */
1154                 ltv->wi_val = htole16(WI_PORTTYPE_IBSS);
1155         } else if (sc->sc_firmware_type != WI_LUCENT) {
1156                 switch (oltv->wi_type) {
1157                 case WI_RID_TX_RATE:
1158                 case WI_RID_CUR_TX_RATE:
1159                         switch (ltv->wi_val) {
1160                         case 1: oltv->wi_val = 1; break;
1161                         case 2: oltv->wi_val = 2; break;
1162                         case 3: oltv->wi_val = 6; break;
1163                         case 4: oltv->wi_val = 5; break;
1164                         case 7: oltv->wi_val = 7; break;
1165                         case 8: oltv->wi_val = 11; break;
1166                         case 15: oltv->wi_val = 3; break;
1167                         default: oltv->wi_val = 0x100 + ltv->wi_val; break;
1168                         }
1169                         break;
1170                 case WI_RID_ENCRYPTION:
1171                         oltv->wi_len = 2;
1172                         if (ltv->wi_val & 0x01)
1173                                 oltv->wi_val = 1;
1174                         else
1175                                 oltv->wi_val = 0;
1176                         break;
1177                 case WI_RID_TX_CRYPT_KEY:
1178                         oltv->wi_len = 2;
1179                         oltv->wi_val = ltv->wi_val;
1180                         break;
1181                 case WI_RID_CNFAUTHMODE:
1182                         oltv->wi_len = 2;
1183                         if (le16toh(ltv->wi_val) & 0x01)
1184                                 oltv->wi_val = htole16(1);
1185                         else if (le16toh(ltv->wi_val) & 0x02)
1186                                 oltv->wi_val = htole16(2);
1187                         break;
1188                 }
1189         }
1190
1191         return(0);
1192 }
1193
1194 /*
1195  * Same as read, except we inject data instead of reading it.
1196  */
1197 static int
1198 wi_write_record(sc, ltv)
1199         struct wi_softc         *sc;
1200         struct wi_ltv_gen       *ltv;
1201 {
1202         u_int16_t               *ptr;
1203         int                     i;
1204         struct wi_ltv_gen       p2ltv;
1205
1206         if (ltv->wi_type == WI_RID_PORTTYPE &&
1207             le16toh(ltv->wi_val) == WI_PORTTYPE_IBSS) {
1208                 /* Convert WI_PORTTYPE_IBSS to vendor IBSS port type. */
1209                 p2ltv.wi_type = WI_RID_PORTTYPE;
1210                 p2ltv.wi_len = 2;
1211                 p2ltv.wi_val = sc->wi_ibss_port;
1212                 ltv = &p2ltv;
1213         } else if (sc->sc_firmware_type != WI_LUCENT) {
1214                 switch (ltv->wi_type) {
1215                 case WI_RID_TX_RATE:
1216                         p2ltv.wi_type = WI_RID_TX_RATE;
1217                         p2ltv.wi_len = 2;
1218                         switch (ltv->wi_val) {
1219                         case 1: p2ltv.wi_val = 1; break;
1220                         case 2: p2ltv.wi_val = 2; break;
1221                         case 3: p2ltv.wi_val = 15; break;
1222                         case 5: p2ltv.wi_val = 4; break;
1223                         case 6: p2ltv.wi_val = 3; break;
1224                         case 7: p2ltv.wi_val = 7; break;
1225                         case 11: p2ltv.wi_val = 8; break;
1226                         default: return EINVAL;
1227                         }
1228                         ltv = &p2ltv;
1229                         break;
1230                 case WI_RID_ENCRYPTION:
1231                         p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
1232                         p2ltv.wi_len = 2;
1233                         if (le16toh(ltv->wi_val)) {
1234                                 p2ltv.wi_val =htole16(PRIVACY_INVOKED |
1235                                     EXCLUDE_UNENCRYPTED);
1236                                 if (sc->wi_ptype == WI_PORTTYPE_AP)
1237                                         /* 
1238                                          * Disable tx encryption...
1239                                          * it's broken.
1240                                          */
1241                                         p2ltv.wi_val |= htole16(HOST_ENCRYPT);
1242                         } else
1243                                 p2ltv.wi_val =
1244                                     htole16(HOST_ENCRYPT | HOST_DECRYPT);
1245                         ltv = &p2ltv;
1246                         break;
1247                 case WI_RID_TX_CRYPT_KEY:
1248                         p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
1249                         p2ltv.wi_len = 2;
1250                         p2ltv.wi_val = ltv->wi_val;
1251                         ltv = &p2ltv;
1252                         break;
1253                 case WI_RID_DEFLT_CRYPT_KEYS:
1254                     {
1255                         int error;
1256                         int keylen;
1257                         struct wi_ltv_str       ws;
1258                         struct wi_ltv_keys      *wk =
1259                             (struct wi_ltv_keys *)ltv;
1260
1261                         keylen = wk->wi_keys[sc->wi_tx_key].wi_keylen;
1262
1263                         for (i = 0; i < 4; i++) {
1264                                 bzero(&ws, sizeof(ws));
1265                                 ws.wi_len = (keylen > 5) ? 8 : 4;
1266                                 ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
1267                                 memcpy(ws.wi_str,
1268                                     &wk->wi_keys[i].wi_keydat, keylen);
1269                                 error = wi_write_record(sc,
1270                                     (struct wi_ltv_gen *)&ws);
1271                                 if (error)
1272                                         return error;
1273                         }
1274                         return 0;
1275                     }
1276                 case WI_RID_CNFAUTHMODE:
1277                         p2ltv.wi_type = WI_RID_CNFAUTHMODE;
1278                         p2ltv.wi_len = 2;
1279                         if (le16toh(ltv->wi_val) == 1)
1280                                 p2ltv.wi_val = htole16(0x01);
1281                         else if (le16toh(ltv->wi_val) == 2)
1282                                 p2ltv.wi_val = htole16(0x02);
1283                         ltv = &p2ltv;
1284                         break;
1285                 case WI_RID_ROAMING_MODE:
1286                         if (sc->sc_firmware_type == WI_INTERSIL)
1287                                 break;
1288                         /* not supported */
1289                         return 0;
1290                 case WI_RID_MICROWAVE_OVEN:
1291                         /* not supported */
1292                         return 0;
1293                 }
1294         } else {
1295                 /* LUCENT */
1296                 switch (ltv->wi_type) {  
1297                 case WI_RID_TX_RATE:
1298                         switch (ltv->wi_val) {
1299                         case 1: ltv->wi_val = 1; break;  /* 1Mb/s fixed */
1300                         case 2: ltv->wi_val = 2; break;  /* 2Mb/s fixed */
1301                         case 3: ltv->wi_val = 3; break;  /* 11Mb/s auto */
1302                         case 5: ltv->wi_val = 4; break;  /* 5.5Mb/s fixed */
1303                         case 6: ltv->wi_val = 6; break;  /* 2Mb/s auto */
1304                         case 7: ltv->wi_val = 7; break;  /* 5.5Mb/s auto */
1305                         case 11: ltv->wi_val = 5; break; /* 11Mb/s fixed */
1306                         default: return EINVAL;
1307                         }
1308                 }
1309         }
1310
1311         if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
1312                 return(EIO);
1313
1314         CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
1315         CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
1316
1317         ptr = &ltv->wi_val;
1318         for (i = 0; i < ltv->wi_len - 1; i++)
1319                 CSR_WRITE_2(sc, WI_DATA1, ptr[i]);
1320
1321         if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type, 0, 0))
1322                 return(EIO);
1323
1324         return(0);
1325 }
1326
1327 static int
1328 wi_seek(sc, id, off, chan)
1329         struct wi_softc         *sc;
1330         int                     id, off, chan;
1331 {
1332         int                     i;
1333         int                     selreg, offreg;
1334         int                     status;
1335
1336         switch (chan) {
1337         case WI_BAP0:
1338                 selreg = WI_SEL0;
1339                 offreg = WI_OFF0;
1340                 break;
1341         case WI_BAP1:
1342                 selreg = WI_SEL1;
1343                 offreg = WI_OFF1;
1344                 break;
1345         default:
1346                 device_printf(sc->dev, "invalid data path: %x\n", chan);
1347                 return(EIO);
1348         }
1349
1350         CSR_WRITE_2(sc, selreg, id);
1351         CSR_WRITE_2(sc, offreg, off);
1352
1353         for (i = 0; i < WI_TIMEOUT; i++) {
1354                 status = CSR_READ_2(sc, offreg);
1355                 if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
1356                         break;
1357                 DELAY(WI_DELAY);
1358         }
1359
1360         if (i == WI_TIMEOUT) {
1361                 device_printf(sc->dev, "timeout in wi_seek to %x/%x; last status %x\n",
1362                         id, off, status);
1363                 return(ETIMEDOUT);
1364         }
1365
1366         return(0);
1367 }
1368
1369 static int
1370 wi_read_data(sc, id, off, buf, len)
1371         struct wi_softc         *sc;
1372         int                     id, off;
1373         caddr_t                 buf;
1374         int                     len;
1375 {
1376         int                     i;
1377         u_int16_t               *ptr;
1378
1379         if (wi_seek(sc, id, off, WI_BAP1))
1380                 return(EIO);
1381
1382         ptr = (u_int16_t *)buf;
1383         for (i = 0; i < len / 2; i++)
1384                 ptr[i] = CSR_READ_2(sc, WI_DATA1);
1385
1386         return(0);
1387 }
1388
1389 /*
1390  * According to the comments in the HCF Light code, there is a bug in
1391  * the Hermes (or possibly in certain Hermes firmware revisions) where
1392  * the chip's internal autoincrement counter gets thrown off during
1393  * data writes: the autoincrement is missed, causing one data word to
1394  * be overwritten and subsequent words to be written to the wrong memory
1395  * locations. The end result is that we could end up transmitting bogus
1396  * frames without realizing it. The workaround for this is to write a
1397  * couple of extra guard words after the end of the transfer, then
1398  * attempt to read then back. If we fail to locate the guard words where
1399  * we expect them, we preform the transfer over again.
1400  */
1401 static int
1402 wi_write_data(sc, id, off, buf, len)
1403         struct wi_softc         *sc;
1404         int                     id, off;
1405         caddr_t                 buf;
1406         int                     len;
1407 {
1408         int                     i;
1409         u_int16_t               *ptr;
1410 #ifdef WI_HERMES_AUTOINC_WAR
1411         int                     retries;
1412
1413         retries = 512;
1414 again:
1415 #endif
1416
1417         if (wi_seek(sc, id, off, WI_BAP0))
1418                 return(EIO);
1419
1420         ptr = (u_int16_t *)buf;
1421         for (i = 0; i < (len / 2); i++)
1422                 CSR_WRITE_2(sc, WI_DATA0, ptr[i]);
1423
1424 #ifdef WI_HERMES_AUTOINC_WAR
1425         CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1426         CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1427
1428         if (wi_seek(sc, id, off + len, WI_BAP0))
1429                 return(EIO);
1430
1431         if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1432             CSR_READ_2(sc, WI_DATA0) != 0x5678) {
1433                 if (--retries >= 0)
1434                         goto again;
1435                 device_printf(sc->dev, "wi_write_data device timeout\n");
1436                 return (EIO);
1437         }
1438 #endif
1439
1440         return(0);
1441 }
1442
1443 /*
1444  * Allocate a region of memory inside the NIC and zero
1445  * it out.
1446  */
1447 static int
1448 wi_alloc_nicmem(sc, len, id)
1449         struct wi_softc         *sc;
1450         int                     len;
1451         int                     *id;
1452 {
1453         int                     i;
1454
1455         if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
1456                 device_printf(sc->dev,
1457                     "failed to allocate %d bytes on NIC\n", len);
1458                 return(ENOMEM);
1459         }
1460
1461         for (i = 0; i < WI_TIMEOUT; i++) {
1462                 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1463                         break;
1464                 DELAY(WI_DELAY);
1465         }
1466
1467         if (i == WI_TIMEOUT) {
1468                 device_printf(sc->dev, "time out allocating memory on card\n");
1469                 return(ETIMEDOUT);
1470         }
1471
1472         CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1473         *id = CSR_READ_2(sc, WI_ALLOC_FID);
1474
1475         if (wi_seek(sc, *id, 0, WI_BAP0)) {
1476                 device_printf(sc->dev, "seek failed while allocating memory on card\n");
1477                 return(EIO);
1478         }
1479
1480         for (i = 0; i < len / 2; i++)
1481                 CSR_WRITE_2(sc, WI_DATA0, 0);
1482
1483         return(0);
1484 }
1485
1486 static void
1487 wi_setmulti(sc)
1488         struct wi_softc         *sc;
1489 {
1490         struct ifnet            *ifp;
1491         int                     i = 0;
1492         struct ifmultiaddr      *ifma;
1493         struct wi_ltv_mcast     mcast;
1494
1495         ifp = &sc->arpcom.ac_if;
1496
1497         bzero((char *)&mcast, sizeof(mcast));
1498
1499         mcast.wi_type = WI_RID_MCAST_LIST;
1500         mcast.wi_len = (3 * 16) + 1;
1501
1502         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1503                 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1504                 return;
1505         }
1506
1507 #if __FreeBSD_version < 500000
1508         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1509 #else
1510         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1511 #endif
1512                 if (ifma->ifma_addr->sa_family != AF_LINK)
1513                         continue;
1514                 if (i < 16) {
1515                         bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1516                             (char *)&mcast.wi_mcast[i], ETHER_ADDR_LEN);
1517                         i++;
1518                 } else {
1519                         bzero((char *)&mcast, sizeof(mcast));
1520                         break;
1521                 }
1522         }
1523
1524         mcast.wi_len = (i * 3) + 1;
1525         wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1526
1527         return;
1528 }
1529
1530 static void
1531 wi_setdef(sc, wreq)
1532         struct wi_softc         *sc;
1533         struct wi_req           *wreq;
1534 {
1535         struct sockaddr_dl      *sdl;
1536         struct ifaddr           *ifa;
1537         struct ifnet            *ifp;
1538
1539         ifp = &sc->arpcom.ac_if;
1540
1541         switch(wreq->wi_type) {
1542         case WI_RID_MAC_NODE:
1543                 ifa = ifaddr_byindex(ifp->if_index);
1544                 sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1545                 bcopy((char *)&wreq->wi_val, (char *)&sc->arpcom.ac_enaddr,
1546                    ETHER_ADDR_LEN);
1547                 bcopy((char *)&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
1548                 break;
1549         case WI_RID_PORTTYPE:
1550                 sc->wi_ptype = le16toh(wreq->wi_val[0]);
1551                 break;
1552         case WI_RID_TX_RATE:
1553                 sc->wi_tx_rate = le16toh(wreq->wi_val[0]);
1554                 break;
1555         case WI_RID_MAX_DATALEN:
1556                 sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
1557                 break;
1558         case WI_RID_RTS_THRESH:
1559                 sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
1560                 break;
1561         case WI_RID_SYSTEM_SCALE:
1562                 sc->wi_ap_density = le16toh(wreq->wi_val[0]);
1563                 break;
1564         case WI_RID_CREATE_IBSS:
1565                 sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
1566                 break;
1567         case WI_RID_OWN_CHNL:
1568                 sc->wi_channel = le16toh(wreq->wi_val[0]);
1569                 break;
1570         case WI_RID_NODENAME:
1571                 bzero(sc->wi_node_name, sizeof(sc->wi_node_name));
1572                 bcopy((char *)&wreq->wi_val[1], sc->wi_node_name, 30);
1573                 break;
1574         case WI_RID_DESIRED_SSID:
1575                 bzero(sc->wi_net_name, sizeof(sc->wi_net_name));
1576                 bcopy((char *)&wreq->wi_val[1], sc->wi_net_name, 30);
1577                 break;
1578         case WI_RID_OWN_SSID:
1579                 bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name));
1580                 bcopy((char *)&wreq->wi_val[1], sc->wi_ibss_name, 30);
1581                 break;
1582         case WI_RID_PM_ENABLED:
1583                 sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
1584                 break;
1585         case WI_RID_MICROWAVE_OVEN:
1586                 sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
1587                 break;
1588         case WI_RID_MAX_SLEEP:
1589                 sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
1590                 break;
1591         case WI_RID_CNFAUTHMODE:
1592                 sc->wi_authtype = le16toh(wreq->wi_val[0]);
1593                 break;
1594         case WI_RID_ROAMING_MODE:
1595                 sc->wi_roaming = le16toh(wreq->wi_val[0]);
1596                 break;
1597         case WI_RID_ENCRYPTION:
1598                 sc->wi_use_wep = le16toh(wreq->wi_val[0]);
1599                 break;
1600         case WI_RID_TX_CRYPT_KEY:
1601                 sc->wi_tx_key = le16toh(wreq->wi_val[0]);
1602                 break;
1603         case WI_RID_DEFLT_CRYPT_KEYS:
1604                 bcopy((char *)wreq, (char *)&sc->wi_keys,
1605                     sizeof(struct wi_ltv_keys));
1606                 break;
1607         default:
1608                 break;
1609         }
1610
1611         /* Reinitialize WaveLAN. */
1612         wi_init(sc);
1613
1614         return;
1615 }
1616
1617 static int
1618 wi_ioctl(ifp, command, data)
1619         struct ifnet            *ifp;
1620         u_long                  command;
1621         caddr_t                 data;
1622 {
1623         int                     error = 0;
1624         int                     len;
1625         u_int8_t                tmpkey[14];
1626         char                    tmpssid[IEEE80211_NWID_LEN];
1627         struct wi_softc         *sc;
1628         struct wi_req           wreq;
1629         struct ifreq            *ifr;
1630         struct ieee80211req     *ireq;
1631         struct thread           *td = curthread;
1632         int                     s;
1633
1634         sc = ifp->if_softc;
1635         WI_LOCK(sc, s);
1636         ifr = (struct ifreq *)data;
1637         ireq = (struct ieee80211req *)data;
1638
1639         if (sc->wi_gone) {
1640                 error = ENODEV;
1641                 goto out;
1642         }
1643
1644         switch(command) {
1645         case SIOCSIFADDR:
1646         case SIOCGIFADDR:
1647         case SIOCSIFMTU:
1648                 error = ether_ioctl(ifp, command, data);
1649                 break;
1650         case SIOCSIFFLAGS:
1651                 /*
1652                  * Can't do promisc and hostap at the same time.  If all that's
1653                  * changing is the promisc flag, try to short-circuit a call to
1654                  * wi_init() by just setting PROMISC in the hardware.
1655                  */
1656                 if (ifp->if_flags & IFF_UP) {
1657                         if (sc->wi_ptype != WI_PORTTYPE_AP &&
1658                             ifp->if_flags & IFF_RUNNING) {
1659                                 if (ifp->if_flags & IFF_PROMISC &&
1660                                     !(sc->wi_if_flags & IFF_PROMISC)) {
1661                                         WI_SETVAL(WI_RID_PROMISC, 1);
1662                                 } else if (!(ifp->if_flags & IFF_PROMISC) &&
1663                                     sc->wi_if_flags & IFF_PROMISC) {
1664                                         WI_SETVAL(WI_RID_PROMISC, 0);
1665                                 } else {
1666                                         wi_init(sc);
1667                                 }
1668                         } else {
1669                                 wi_init(sc);
1670                         }
1671                 } else {
1672                         if (ifp->if_flags & IFF_RUNNING) {
1673                                 wi_stop(sc);
1674                         }
1675                 }
1676                 sc->wi_if_flags = ifp->if_flags;
1677                 error = 0;
1678                 break;
1679         case SIOCSIFMEDIA:
1680         case SIOCGIFMEDIA:
1681                 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1682                 break;
1683         case SIOCADDMULTI:
1684         case SIOCDELMULTI:
1685                 wi_setmulti(sc);
1686                 error = 0;
1687                 break;
1688         case SIOCGWAVELAN:
1689                 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1690                 if (error)
1691                         break;
1692                 if (wreq.wi_len > WI_MAX_DATALEN) {
1693                         error = EINVAL;
1694                         break;
1695                 }
1696                 /* Don't show WEP keys to non-root users. */
1697                 if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS && suser(td))
1698                         break;
1699                 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1700                         bcopy((char *)&sc->wi_stats, (char *)&wreq.wi_val,
1701                             sizeof(sc->wi_stats));
1702                         wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1703                 } else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
1704                         bcopy((char *)&sc->wi_keys, (char *)&wreq,
1705                             sizeof(struct wi_ltv_keys));
1706                 }
1707 #ifdef WICACHE
1708                 else if (wreq.wi_type == WI_RID_ZERO_CACHE) {
1709                         sc->wi_sigitems = sc->wi_nextitem = 0;
1710                 } else if (wreq.wi_type == WI_RID_READ_CACHE) {
1711                         char *pt = (char *)&wreq.wi_val;
1712                         bcopy((char *)&sc->wi_sigitems,
1713                             (char *)pt, sizeof(int));
1714                         pt += (sizeof (int));
1715                         wreq.wi_len = sizeof(int) / 2;
1716                         bcopy((char *)&sc->wi_sigcache, (char *)pt,
1717                             sizeof(struct wi_sigcache) * sc->wi_sigitems);
1718                         wreq.wi_len += ((sizeof(struct wi_sigcache) *
1719                             sc->wi_sigitems) / 2) + 1;
1720                 }
1721 #endif
1722                 else if (wreq.wi_type == WI_RID_PROCFRAME) {
1723                         wreq.wi_len = 2;
1724                         wreq.wi_val[0] = sc->wi_procframe;
1725                 } else if (wreq.wi_type == WI_RID_PRISM2) {
1726                         wreq.wi_len = 2;
1727                         wreq.wi_val[0] = sc->sc_firmware_type != WI_LUCENT;
1728                 } else if (wreq.wi_type == WI_RID_SCAN_RES && 
1729                     sc->sc_firmware_type == WI_LUCENT) {
1730                         memcpy((char *)wreq.wi_val, (char *)sc->wi_scanbuf,
1731                             sc->wi_scanbuf_len * 2);
1732                         wreq.wi_len = sc->wi_scanbuf_len;
1733                 } else {
1734                         if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq)) {
1735                                 error = EINVAL;
1736                                 break;
1737                         }
1738                 }
1739                 error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1740                 break;
1741         case SIOCSWAVELAN:
1742                 if ((error = suser(td)))
1743                         goto out;
1744                 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1745                 if (error)
1746                         break;
1747                 if (wreq.wi_len > WI_MAX_DATALEN) {
1748                         error = EINVAL;
1749                         break;
1750                 }
1751                 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1752                         error = EINVAL;
1753                         break;
1754                 } else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
1755                         error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1756                             wreq.wi_len);
1757                 } else if (wreq.wi_type == WI_RID_PROCFRAME) {
1758                         sc->wi_procframe = wreq.wi_val[0];
1759                 /*
1760                  * if we're getting a scan request from a wavelan card
1761                  * (non-prism2), send out a cmd_inquire to the card to scan
1762                  * results for the scan will be received through the info
1763                  * interrupt handler. otherwise the scan request can be
1764                  * directly handled by a prism2 card's rid interface.
1765                  */
1766                 } else if (wreq.wi_type == WI_RID_SCAN_REQ && 
1767                     sc->sc_firmware_type == WI_LUCENT) {
1768                         wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
1769                 } else {
1770                         error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
1771                         if (!error)
1772                                 wi_setdef(sc, &wreq);
1773                 }
1774                 break;
1775         case SIOCGPRISM2DEBUG:
1776                 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1777                 if (error)
1778                         break;
1779                 if (!(ifp->if_flags & IFF_RUNNING) ||
1780                     sc->sc_firmware_type == WI_LUCENT) {
1781                         error = EIO;
1782                         break;
1783                 }
1784                 error = wi_get_debug(sc, &wreq);
1785                 if (error == 0)
1786                         error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1787                 break;
1788         case SIOCSPRISM2DEBUG:
1789                 if ((error = suser(td)))
1790                         goto out;
1791                 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1792                 if (error)
1793                         break;
1794                 error = wi_set_debug(sc, &wreq);
1795                 break;
1796         case SIOCG80211:
1797                 switch(ireq->i_type) {
1798                 case IEEE80211_IOC_SSID:
1799                         if(ireq->i_val == -1) {
1800                                 bzero(tmpssid, IEEE80211_NWID_LEN);
1801                                 error = wi_get_cur_ssid(sc, tmpssid, &len);
1802                                 if (error != 0)
1803                                         break;
1804                                 error = copyout(tmpssid, ireq->i_data,
1805                                         IEEE80211_NWID_LEN);
1806                                 ireq->i_len = len;
1807                         } else if (ireq->i_val == 0) {
1808                                 error = copyout(sc->wi_net_name,
1809                                     ireq->i_data,
1810                                     IEEE80211_NWID_LEN);
1811                                 ireq->i_len = IEEE80211_NWID_LEN;
1812                         } else
1813                                 error = EINVAL;
1814                         break;
1815                 case IEEE80211_IOC_NUMSSIDS:
1816                         ireq->i_val = 1;
1817                         break;
1818                 case IEEE80211_IOC_WEP:
1819                         if(!sc->wi_has_wep) {
1820                                 ireq->i_val = IEEE80211_WEP_NOSUP; 
1821                         } else {
1822                                 if(sc->wi_use_wep) {
1823                                         ireq->i_val =
1824                                             IEEE80211_WEP_MIXED;
1825                                 } else {
1826                                         ireq->i_val =
1827                                             IEEE80211_WEP_OFF;
1828                                 }
1829                         }
1830                         break;
1831                 case IEEE80211_IOC_WEPKEY:
1832                         if(!sc->wi_has_wep ||
1833                             ireq->i_val < 0 || ireq->i_val > 3) {
1834                                 error = EINVAL;
1835                                 break;
1836                         }
1837                         len = sc->wi_keys.wi_keys[ireq->i_val].wi_keylen;
1838                         if (suser(td))
1839                                 bcopy(sc->wi_keys.wi_keys[ireq->i_val].wi_keydat,
1840                                     tmpkey, len);
1841                         else
1842                                 bzero(tmpkey, len);
1843
1844                         ireq->i_len = len;
1845                         error = copyout(tmpkey, ireq->i_data, len);
1846
1847                         break;
1848                 case IEEE80211_IOC_NUMWEPKEYS:
1849                         if(!sc->wi_has_wep)
1850                                 error = EINVAL;
1851                         else
1852                                 ireq->i_val = 4;
1853                         break;
1854                 case IEEE80211_IOC_WEPTXKEY:
1855                         if(!sc->wi_has_wep)
1856                                 error = EINVAL;
1857                         else
1858                                 ireq->i_val = sc->wi_tx_key;
1859                         break;
1860                 case IEEE80211_IOC_AUTHMODE:
1861                         ireq->i_val = sc->wi_authmode;
1862                         break;
1863                 case IEEE80211_IOC_STATIONNAME:
1864                         error = copyout(sc->wi_node_name,
1865                             ireq->i_data, IEEE80211_NWID_LEN);
1866                         ireq->i_len = IEEE80211_NWID_LEN;
1867                         break;
1868                 case IEEE80211_IOC_CHANNEL:
1869                         wreq.wi_type = WI_RID_CURRENT_CHAN;
1870                         wreq.wi_len = WI_MAX_DATALEN;
1871                         if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
1872                                 error = EINVAL;
1873                         else {
1874                                 ireq->i_val = wreq.wi_val[0];
1875                         }
1876                         break;
1877                 case IEEE80211_IOC_POWERSAVE:
1878                         if(sc->wi_pm_enabled)
1879                                 ireq->i_val = IEEE80211_POWERSAVE_ON;
1880                         else
1881                                 ireq->i_val = IEEE80211_POWERSAVE_OFF;
1882                         break;
1883                 case IEEE80211_IOC_POWERSAVESLEEP:
1884                         ireq->i_val = sc->wi_max_sleep;
1885                         break;
1886                 default:
1887                         error = EINVAL;
1888                 }
1889                 break;
1890         case SIOCS80211:
1891                 if ((error = suser(td)))
1892                         goto out;
1893                 switch(ireq->i_type) {
1894                 case IEEE80211_IOC_SSID:
1895                         if (ireq->i_val != 0 ||
1896                             ireq->i_len > IEEE80211_NWID_LEN) {
1897                                 error = EINVAL;
1898                                 break;
1899                         }
1900                         /* We set both of them */
1901                         bzero(sc->wi_net_name, IEEE80211_NWID_LEN);
1902                         error = copyin(ireq->i_data,
1903                             sc->wi_net_name, ireq->i_len);
1904                         bcopy(sc->wi_net_name, sc->wi_ibss_name, IEEE80211_NWID_LEN);
1905                         break;
1906                 case IEEE80211_IOC_WEP:
1907                         /*
1908                          * These cards only support one mode so
1909                          * we just turn wep on what ever is
1910                          * passed in if it's not OFF.
1911                          */
1912                         if (ireq->i_val == IEEE80211_WEP_OFF) {
1913                                 sc->wi_use_wep = 0;
1914                         } else {
1915                                 sc->wi_use_wep = 1;
1916                         }
1917                         break;
1918                 case IEEE80211_IOC_WEPKEY:
1919                         if (ireq->i_val < 0 || ireq->i_val > 3 ||
1920                                 ireq->i_len > 13) {
1921                                 error = EINVAL;
1922                                 break;
1923                         } 
1924                         bzero(sc->wi_keys.wi_keys[ireq->i_val].wi_keydat, 13);
1925                         error = copyin(ireq->i_data, 
1926                             sc->wi_keys.wi_keys[ireq->i_val].wi_keydat,
1927                             ireq->i_len);
1928                         if(error)
1929                                 break;
1930                         sc->wi_keys.wi_keys[ireq->i_val].wi_keylen =
1931                                     ireq->i_len;
1932                         break;
1933                 case IEEE80211_IOC_WEPTXKEY:
1934                         if (ireq->i_val < 0 || ireq->i_val > 3) {
1935                                 error = EINVAL;
1936                                 break;
1937                         }
1938                         sc->wi_tx_key = ireq->i_val;
1939                         break;
1940                 case IEEE80211_IOC_AUTHMODE:
1941                         sc->wi_authmode = ireq->i_val;
1942                         break;
1943                 case IEEE80211_IOC_STATIONNAME:
1944                         if (ireq->i_len > 32) {
1945                                 error = EINVAL;
1946                                 break;
1947                         }
1948                         bzero(sc->wi_node_name, 32);
1949                         error = copyin(ireq->i_data,
1950                             sc->wi_node_name, ireq->i_len);
1951                         break;
1952                 case IEEE80211_IOC_CHANNEL:
1953                         /*
1954                          * The actual range is 1-14, but if you
1955                          * set it to 0 you get the default. So
1956                          * we let that work too.
1957                          */
1958                         if (ireq->i_val < 0 || ireq->i_val > 14) {
1959                                 error = EINVAL;
1960                                 break;
1961                         }
1962                         sc->wi_channel = ireq->i_val;
1963                         break;
1964                 case IEEE80211_IOC_POWERSAVE:
1965                         switch (ireq->i_val) {
1966                         case IEEE80211_POWERSAVE_OFF:
1967                                 sc->wi_pm_enabled = 0;
1968                                 break;
1969                         case IEEE80211_POWERSAVE_ON:
1970                                 sc->wi_pm_enabled = 1;
1971                                 break;
1972                         default:
1973                                 error = EINVAL;
1974                                 break;
1975                         }
1976                         break;
1977                 case IEEE80211_IOC_POWERSAVESLEEP:
1978                         if (ireq->i_val < 0) {
1979                                 error = EINVAL;
1980                                 break;
1981                         }
1982                         sc->wi_max_sleep = ireq->i_val;
1983                         break;
1984                 default:
1985                         error = EINVAL;
1986                         break;
1987                 }
1988
1989                 /* Reinitialize WaveLAN. */
1990                 wi_init(sc);
1991
1992         break;
1993         case SIOCHOSTAP_ADD:
1994         case SIOCHOSTAP_DEL:
1995         case SIOCHOSTAP_GET:
1996         case SIOCHOSTAP_GETALL:
1997         case SIOCHOSTAP_GFLAGS:
1998         case SIOCHOSTAP_SFLAGS:
1999                 /* Send all Host AP specific ioctl's to Host AP code. */
2000                 error = wihap_ioctl(sc, command, data);
2001                 break;
2002         default:
2003                 error = EINVAL;
2004                 break;
2005         }
2006 out:
2007         WI_UNLOCK(sc, s);
2008
2009         return(error);
2010 }
2011
2012 static void
2013 wi_init(xsc)
2014         void                    *xsc;
2015 {
2016         struct wi_softc         *sc = xsc;
2017         struct ifnet            *ifp = &sc->arpcom.ac_if;
2018         struct wi_ltv_macaddr   mac;
2019         int                     id = 0;
2020         int                     s;
2021
2022         WI_LOCK(sc, s);
2023
2024         if (sc->wi_gone) {
2025                 WI_UNLOCK(sc, s);
2026                 return;
2027         }
2028
2029         if (ifp->if_flags & IFF_RUNNING)
2030                 wi_stop(sc);
2031
2032         wi_reset(sc);
2033
2034         /* Program max data length. */
2035         WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
2036
2037         /* Set the port type. */
2038         WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
2039
2040         /* Enable/disable IBSS creation. */
2041         WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
2042
2043         /* Program the RTS/CTS threshold. */
2044         WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
2045
2046         /* Program the TX rate */
2047         WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
2048
2049         /* Access point density */
2050         WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
2051
2052         /* Power Management Enabled */
2053         WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
2054
2055         /* Power Managment Max Sleep */
2056         WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
2057
2058         /* Roaming type */
2059         WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
2060
2061         /* Specify the IBSS name */
2062         WI_SETSTR(WI_RID_OWN_SSID, sc->wi_ibss_name);
2063
2064         /* Specify the network name */
2065         WI_SETSTR(WI_RID_DESIRED_SSID, sc->wi_net_name);
2066
2067         /* Specify the frequency to use */
2068         WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
2069
2070         /* Program the nodename. */
2071         WI_SETSTR(WI_RID_NODENAME, sc->wi_node_name);
2072
2073         /* Specify the authentication mode. */
2074         WI_SETVAL(WI_RID_CNFAUTHMODE, sc->wi_authmode);
2075
2076         /* Set our MAC address. */
2077         mac.wi_len = 4;
2078         mac.wi_type = WI_RID_MAC_NODE;
2079         bcopy((char *)&sc->arpcom.ac_enaddr,
2080            (char *)&mac.wi_mac_addr, ETHER_ADDR_LEN);
2081         wi_write_record(sc, (struct wi_ltv_gen *)&mac);
2082
2083         /*
2084          * Initialize promisc mode.
2085          *      Being in the Host-AP mode causes
2086          *      great deal of pain if promisc mode is set.
2087          *      Therefore we avoid confusing the firmware
2088          *      and always reset promisc mode in Host-AP regime,
2089          *      it shows us all the packets anyway.
2090          */
2091         if (sc->wi_ptype != WI_PORTTYPE_AP && ifp->if_flags & IFF_PROMISC)
2092                 WI_SETVAL(WI_RID_PROMISC, 1);
2093         else
2094                 WI_SETVAL(WI_RID_PROMISC, 0);
2095
2096         /* Configure WEP. */
2097         if (sc->wi_has_wep) {
2098                 WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
2099                 WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
2100                 sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
2101                 sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
2102                 wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
2103                 if (sc->sc_firmware_type != WI_LUCENT && sc->wi_use_wep) {
2104                         /*
2105                          * ONLY HWB3163 EVAL-CARD Firmware version
2106                          * less than 0.8 variant2
2107                          *
2108                          * If promiscuous mode disable, Prism2 chip
2109                          * does not work with WEP.
2110                          * It is under investigation for details.
2111                          * (ichiro@netbsd.org)
2112                          *
2113                          * And make sure that we don't need to do it
2114                          * in hostap mode, since it interferes with
2115                          * the above hostap workaround.
2116                          */
2117                         if (sc->wi_ptype != WI_PORTTYPE_AP &&
2118                             sc->sc_firmware_type == WI_INTERSIL &&
2119                             sc->sc_sta_firmware_ver < 802 ) {
2120                                 /* firm ver < 0.8 variant 2 */
2121                                 WI_SETVAL(WI_RID_PROMISC, 1);
2122                         }
2123                         WI_SETVAL(WI_RID_CNFAUTHMODE, sc->wi_authtype);
2124                 }
2125         }
2126
2127         /* Set multicast filter. */
2128         wi_setmulti(sc);
2129
2130         /* Enable desired port */
2131         wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0, 0, 0);
2132
2133         if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id))
2134                 device_printf(sc->dev, "tx buffer allocation failed\n");
2135         sc->wi_tx_data_id = id;
2136
2137         if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id))
2138                 device_printf(sc->dev, "mgmt. buffer allocation failed\n");
2139         sc->wi_tx_mgmt_id = id;
2140
2141         /* enable interrupts */
2142         CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
2143
2144         wihap_init(sc);
2145
2146         ifp->if_flags |= IFF_RUNNING;
2147         ifp->if_flags &= ~IFF_OACTIVE;
2148
2149         sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60);
2150         WI_UNLOCK(sc, s);
2151
2152         return;
2153 }
2154
2155 #define RC4STATE 256
2156 #define RC4KEYLEN 16
2157 #define RC4SWAP(x,y) \
2158     do { u_int8_t t = state[x]; state[x] = state[y]; state[y] = t; } while(0)
2159
2160 static void
2161 wi_do_hostencrypt(struct wi_softc *sc, caddr_t buf, int len)
2162 {
2163         u_int32_t i, crc, klen;
2164         u_int8_t state[RC4STATE], key[RC4KEYLEN];
2165         u_int8_t x, y, *dat;
2166
2167         if (!sc->wi_icv_flag) {
2168                 sc->wi_icv = arc4random();
2169                 sc->wi_icv_flag++;
2170         } else
2171                 sc->wi_icv++;
2172         /*
2173          * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
2174          * (B, 255, N) with 3 <= B < 8
2175          */
2176         if (sc->wi_icv >= 0x03ff00 &&
2177             (sc->wi_icv & 0xf8ff00) == 0x00ff00)
2178                 sc->wi_icv += 0x000100;
2179
2180         /* prepend 24bit IV to tx key, byte order does not matter */
2181         key[0] = sc->wi_icv >> 16;
2182         key[1] = sc->wi_icv >> 8;
2183         key[2] = sc->wi_icv;
2184
2185         klen = sc->wi_keys.wi_keys[sc->wi_tx_key].wi_keylen +
2186             IEEE80211_WEP_IVLEN;
2187         klen = (klen >= RC4KEYLEN) ? RC4KEYLEN : RC4KEYLEN/2;
2188         bcopy((char *)&sc->wi_keys.wi_keys[sc->wi_tx_key].wi_keydat,
2189             (char *)key + IEEE80211_WEP_IVLEN, klen - IEEE80211_WEP_IVLEN);
2190
2191         /* rc4 keysetup */
2192         x = y = 0;
2193         for (i = 0; i < RC4STATE; i++)
2194                 state[i] = i;
2195         for (i = 0; i < RC4STATE; i++) {
2196                 y = (key[x] + state[i] + y) % RC4STATE;
2197                 RC4SWAP(i, y);
2198                 x = (x + 1) % klen;
2199         }
2200
2201         /* output: IV, tx keyid, rc4(data), rc4(crc32(data)) */
2202         dat = buf;
2203         dat[0] = key[0];
2204         dat[1] = key[1];
2205         dat[2] = key[2];
2206         dat[3] = sc->wi_tx_key << 6;            /* pad and keyid */
2207         dat += 4;
2208
2209         /* compute rc4 over data, crc32 over data */
2210         crc = ~0;
2211         x = y = 0;
2212         for (i = 0; i < len; i++) {
2213                 x = (x + 1) % RC4STATE;
2214                 y = (state[x] + y) % RC4STATE;
2215                 RC4SWAP(x, y);
2216                 crc = crc32_tab[(crc ^ dat[i]) & 0xff] ^ (crc >> 8);
2217                 dat[i] ^= state[(state[x] + state[y]) % RC4STATE];
2218         }
2219         crc = ~crc;
2220         dat += len;
2221
2222         /* append little-endian crc32 and encrypt */
2223         dat[0] = crc;
2224         dat[1] = crc >> 8;
2225         dat[2] = crc >> 16;
2226         dat[3] = crc >> 24;
2227         for (i = 0; i < IEEE80211_WEP_CRCLEN; i++) {
2228                 x = (x + 1) % RC4STATE;
2229                 y = (state[x] + y) % RC4STATE;
2230                 RC4SWAP(x, y);
2231                 dat[i] ^= state[(state[x] + state[y]) % RC4STATE];
2232         }
2233 }
2234
2235 static void
2236 wi_start(ifp)
2237         struct ifnet            *ifp;
2238 {
2239         struct wi_softc         *sc;
2240         struct mbuf             *m0;
2241         struct wi_frame         tx_frame;
2242         struct ether_header     *eh;
2243         int                     id;
2244         int                     s;
2245
2246         sc = ifp->if_softc;
2247         WI_LOCK(sc, s);
2248
2249         if (sc->wi_gone) {
2250                 WI_UNLOCK(sc, s);
2251                 return;
2252         }
2253
2254         if (ifp->if_flags & IFF_OACTIVE) {
2255                 WI_UNLOCK(sc, s);
2256                 return;
2257         }
2258
2259 nextpkt:
2260         IF_DEQUEUE(&ifp->if_snd, m0);
2261         if (m0 == NULL) {
2262                 WI_UNLOCK(sc, s);
2263                 return;
2264         }
2265
2266         bzero((char *)&tx_frame, sizeof(tx_frame));
2267         tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
2268         id = sc->wi_tx_data_id;
2269         eh = mtod(m0, struct ether_header *);
2270
2271         if (sc->wi_ptype == WI_PORTTYPE_AP) {
2272                 if (!wihap_check_tx(&sc->wi_hostap_info,
2273                     eh->ether_dhost, &tx_frame.wi_tx_rate)) {
2274                         if (ifp->if_flags & IFF_DEBUG)
2275                                 printf("wi_start: dropping unassoc "
2276                                        "dst %6D\n", eh->ether_dhost, ":");
2277                         m_freem(m0);
2278                         goto nextpkt;
2279                 }
2280         }
2281         /*
2282          * Use RFC1042 encoding for IP and ARP datagrams,
2283          * 802.3 for anything else.
2284          */
2285         if (ntohs(eh->ether_type) > ETHER_MAX_LEN) {
2286                 bcopy((char *)&eh->ether_dhost,
2287                     (char *)&tx_frame.wi_addr1, ETHER_ADDR_LEN);
2288                 if (sc->wi_ptype == WI_PORTTYPE_AP) {
2289                         tx_frame.wi_tx_ctl = WI_ENC_TX_MGMT; /* XXX */
2290                         tx_frame.wi_frame_ctl |= WI_FCTL_FROMDS;
2291                         if (sc->wi_use_wep)
2292                                 tx_frame.wi_frame_ctl |= WI_FCTL_WEP;
2293                         bcopy((char *)&sc->arpcom.ac_enaddr,
2294                               (char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN);
2295                         bcopy((char *)&eh->ether_shost,
2296                               (char *)&tx_frame.wi_addr3, ETHER_ADDR_LEN);
2297                 }
2298                 else
2299                         bcopy((char *)&eh->ether_shost,
2300                             (char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN);
2301                 bcopy((char *)&eh->ether_dhost,
2302                     (char *)&tx_frame.wi_dst_addr, ETHER_ADDR_LEN);
2303                 bcopy((char *)&eh->ether_shost,
2304                     (char *)&tx_frame.wi_src_addr, ETHER_ADDR_LEN);
2305
2306                 tx_frame.wi_dat_len = m0->m_pkthdr.len - WI_SNAPHDR_LEN;
2307                 tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
2308                 tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
2309                 tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
2310                 tx_frame.wi_type = eh->ether_type;
2311
2312                 if (sc->wi_ptype == WI_PORTTYPE_AP && sc->wi_use_wep) {
2313                         /* Do host encryption. */
2314                         bcopy(&tx_frame.wi_dat[0], &sc->wi_txbuf[4], 8);
2315                         m_copydata(m0, sizeof(struct ether_header),
2316                             m0->m_pkthdr.len - sizeof(struct ether_header),
2317                             (caddr_t)&sc->wi_txbuf[12]);
2318                         wi_do_hostencrypt(sc, &sc->wi_txbuf[0],
2319                             tx_frame.wi_dat_len);
2320                         tx_frame.wi_dat_len += IEEE80211_WEP_IVLEN +
2321                             IEEE80211_WEP_KIDLEN + IEEE80211_WEP_CRCLEN;
2322                         wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
2323                             sizeof(struct wi_frame));
2324                         wi_write_data(sc, id, WI_802_11_OFFSET_RAW,
2325                             (caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len -
2326                             sizeof(struct ether_header)) + 18);
2327                 } else {
2328                         m_copydata(m0, sizeof(struct ether_header),
2329                             m0->m_pkthdr.len - sizeof(struct ether_header),
2330                             (caddr_t)&sc->wi_txbuf);
2331                         wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
2332                             sizeof(struct wi_frame));
2333                         wi_write_data(sc, id, WI_802_11_OFFSET,
2334                             (caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len -
2335                             sizeof(struct ether_header)) + 2);
2336                 }
2337         } else {
2338                 tx_frame.wi_dat_len = m0->m_pkthdr.len;
2339
2340                 if (sc->wi_ptype == WI_PORTTYPE_AP && sc->wi_use_wep) {
2341                         /* Do host encryption. */
2342                         printf( "XXX: host encrypt not implemented for 802.3\n" );
2343                 } else {
2344                         eh->ether_type = htons(m0->m_pkthdr.len -
2345                             WI_SNAPHDR_LEN);
2346                         m_copydata(m0, 0, m0->m_pkthdr.len,
2347                             (caddr_t)&sc->wi_txbuf);
2348
2349                         wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
2350                             sizeof(struct wi_frame));
2351                         wi_write_data(sc, id, WI_802_3_OFFSET,
2352                             (caddr_t)&sc->wi_txbuf, m0->m_pkthdr.len + 2);
2353                 }
2354         }
2355
2356         /*
2357          * If there's a BPF listner, bounce a copy of
2358          * this frame to him. Also, don't send this to the bpf sniffer
2359          * if we're in procframe or monitor sniffing mode.
2360          */
2361         if (!(sc->wi_procframe || sc->wi_debug.wi_monitor) && ifp->if_bpf)
2362                 bpf_mtap(ifp, m0);
2363
2364         m_freem(m0);
2365
2366         if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id, 0, 0))
2367                 device_printf(sc->dev, "xmit failed\n");
2368
2369         ifp->if_flags |= IFF_OACTIVE;
2370
2371         /*
2372          * Set a timeout in case the chip goes out to lunch.
2373          */
2374         ifp->if_timer = 5;
2375
2376         WI_UNLOCK(sc, s);
2377         return;
2378 }
2379
2380 int
2381 wi_mgmt_xmit(sc, data, len)
2382         struct wi_softc         *sc;
2383         caddr_t                 data;
2384         int                     len;
2385 {
2386         struct wi_frame         tx_frame;
2387         int                     id;
2388         struct wi_80211_hdr     *hdr;
2389         caddr_t                 dptr;
2390
2391         if (sc->wi_gone)
2392                 return(ENODEV);
2393
2394         hdr = (struct wi_80211_hdr *)data;
2395         dptr = data + sizeof(struct wi_80211_hdr);
2396
2397         bzero((char *)&tx_frame, sizeof(tx_frame));
2398         id = sc->wi_tx_mgmt_id;
2399
2400         bcopy((char *)hdr, (char *)&tx_frame.wi_frame_ctl,
2401            sizeof(struct wi_80211_hdr));
2402
2403         tx_frame.wi_tx_ctl = WI_ENC_TX_MGMT;
2404         tx_frame.wi_dat_len = len - sizeof(struct wi_80211_hdr);
2405         tx_frame.wi_len = htons(tx_frame.wi_dat_len);
2406
2407         wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
2408         wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
2409             len - sizeof(struct wi_80211_hdr) + 2);
2410
2411         if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id, 0, 0)) {
2412                 device_printf(sc->dev, "xmit failed\n");
2413                 return(EIO);
2414         }
2415
2416         return(0);
2417 }
2418
2419 static void
2420 wi_stop(sc)
2421         struct wi_softc         *sc;
2422 {
2423         struct ifnet            *ifp;
2424         int                     s;
2425
2426         WI_LOCK(sc, s);
2427
2428         if (sc->wi_gone) {
2429                 WI_UNLOCK(sc, s);
2430                 return;
2431         }
2432
2433         wihap_shutdown(sc);
2434
2435         ifp = &sc->arpcom.ac_if;
2436
2437         /*
2438          * If the card is gone and the memory port isn't mapped, we will
2439          * (hopefully) get 0xffff back from the status read, which is not
2440          * a valid status value.
2441          */
2442         if (CSR_READ_2(sc, WI_STATUS) != 0xffff) {
2443                 CSR_WRITE_2(sc, WI_INT_EN, 0);
2444                 wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0, 0, 0);
2445         }
2446
2447         untimeout(wi_inquire, sc, sc->wi_stat_ch);
2448
2449         ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2450
2451         WI_UNLOCK(sc, s);
2452         return;
2453 }
2454
2455 static void
2456 wi_watchdog(ifp)
2457         struct ifnet            *ifp;
2458 {
2459         struct wi_softc         *sc;
2460
2461         sc = ifp->if_softc;
2462
2463         device_printf(sc->dev, "watchdog timeout\n");
2464
2465         wi_init(sc);
2466
2467         ifp->if_oerrors++;
2468
2469         return;
2470 }
2471
2472 int
2473 wi_alloc(dev, rid)
2474         device_t                dev;
2475         int                     rid;
2476 {
2477         struct wi_softc         *sc = device_get_softc(dev);
2478
2479         if (sc->wi_bus_type != WI_BUS_PCI_NATIVE) {
2480                 sc->iobase_rid = rid;
2481                 sc->iobase = bus_alloc_resource(dev, SYS_RES_IOPORT,
2482                     &sc->iobase_rid, 0, ~0, (1 << 6),
2483                     rman_make_alignment_flags(1 << 6) | RF_ACTIVE);
2484                 if (!sc->iobase) {
2485                         device_printf(dev, "No I/O space?!\n");
2486                         return (ENXIO);
2487                 }
2488
2489                 sc->wi_io_addr = rman_get_start(sc->iobase);
2490                 sc->wi_btag = rman_get_bustag(sc->iobase);
2491                 sc->wi_bhandle = rman_get_bushandle(sc->iobase);
2492         } else {
2493                 sc->mem_rid = rid;
2494                 sc->mem = bus_alloc_resource(dev, SYS_RES_MEMORY,
2495                     &sc->mem_rid, 0, ~0, 1, RF_ACTIVE);
2496
2497                 if (!sc->mem) {
2498                         device_printf(dev, "No Mem space on prism2.5?\n");
2499                         return (ENXIO);
2500                 }
2501
2502                 sc->wi_btag = rman_get_bustag(sc->mem);
2503                 sc->wi_bhandle = rman_get_bushandle(sc->mem);
2504         }
2505
2506
2507         sc->irq_rid = 0;
2508         sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irq_rid,
2509             0, ~0, 1, RF_ACTIVE |
2510             ((sc->wi_bus_type == WI_BUS_PCCARD) ? 0 : RF_SHAREABLE));
2511
2512         if (!sc->irq) {
2513                 wi_free(dev);
2514                 device_printf(dev, "No irq?!\n");
2515                 return (ENXIO);
2516         }
2517
2518         sc->dev = dev;
2519         sc->wi_unit = device_get_unit(dev);
2520
2521         return (0);
2522 }
2523
2524 void
2525 wi_free(dev)
2526         device_t                dev;
2527 {
2528         struct wi_softc         *sc = device_get_softc(dev);
2529
2530         if (sc->iobase != NULL) {
2531                 bus_release_resource(dev, SYS_RES_IOPORT, sc->iobase_rid, sc->iobase);
2532                 sc->iobase = NULL;
2533         }
2534         if (sc->irq != NULL) {
2535                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
2536                 sc->irq = NULL;
2537         }
2538         if (sc->mem != NULL) {
2539                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
2540                 sc->mem = NULL;
2541         }
2542
2543         return;
2544 }
2545
2546 void
2547 wi_shutdown(dev)
2548         device_t                dev;
2549 {
2550         struct wi_softc         *sc;
2551
2552         sc = device_get_softc(dev);
2553         wi_stop(sc);
2554
2555         return;
2556 }
2557
2558 #ifdef WICACHE
2559 /* wavelan signal strength cache code.
2560  * store signal/noise/quality on per MAC src basis in
2561  * a small fixed cache.  The cache wraps if > MAX slots
2562  * used.  The cache may be zeroed out to start over.
2563  * Two simple filters exist to reduce computation:
2564  * 1. ip only (literally 0x800) which may be used
2565  * to ignore some packets.  It defaults to ip only.
2566  * it could be used to focus on broadcast, non-IP 802.11 beacons.
2567  * 2. multicast/broadcast only.  This may be used to
2568  * ignore unicast packets and only cache signal strength
2569  * for multicast/broadcast packets (beacons); e.g., Mobile-IP
2570  * beacons and not unicast traffic.
2571  *
2572  * The cache stores (MAC src(index), IP src (major clue), signal,
2573  *      quality, noise)
2574  *
2575  * No apologies for storing IP src here.  It's easy and saves much
2576  * trouble elsewhere.  The cache is assumed to be INET dependent, 
2577  * although it need not be.
2578  */
2579
2580 #ifdef documentation
2581
2582 int wi_sigitems;                                /* number of cached entries */
2583 struct wi_sigcache wi_sigcache[MAXWICACHE];  /*  array of cache entries */
2584 int wi_nextitem;                                /*  index/# of entries */
2585
2586
2587 #endif
2588
2589 /* control variables for cache filtering.  Basic idea is
2590  * to reduce cost (e.g., to only Mobile-IP agent beacons
2591  * which are broadcast or multicast).  Still you might
2592  * want to measure signal strength with unicast ping packets
2593  * on a pt. to pt. ant. setup.
2594  */
2595 /* set true if you want to limit cache items to broadcast/mcast 
2596  * only packets (not unicast).  Useful for mobile-ip beacons which
2597  * are broadcast/multicast at network layer.  Default is all packets
2598  * so ping/unicast will work say with pt. to pt. antennae setup.
2599  */
2600 static int wi_cache_mcastonly = 0;
2601 SYSCTL_INT(_machdep, OID_AUTO, wi_cache_mcastonly, CTLFLAG_RW, 
2602         &wi_cache_mcastonly, 0, "");
2603
2604 /* set true if you want to limit cache items to IP packets only
2605 */
2606 static int wi_cache_iponly = 1;
2607 SYSCTL_INT(_machdep, OID_AUTO, wi_cache_iponly, CTLFLAG_RW, 
2608         &wi_cache_iponly, 0, "");
2609
2610 /*
2611  * Original comments:
2612  * -----------------
2613  * wi_cache_store, per rx packet store signal
2614  * strength in MAC (src) indexed cache.
2615  *
2616  * follows linux driver in how signal strength is computed.
2617  * In ad hoc mode, we use the rx_quality field. 
2618  * signal and noise are trimmed to fit in the range from 47..138.
2619  * rx_quality field MSB is signal strength.
2620  * rx_quality field LSB is noise.
2621  * "quality" is (signal - noise) as is log value.
2622  * note: quality CAN be negative.
2623  * 
2624  * In BSS mode, we use the RID for communication quality.
2625  * TBD:  BSS mode is currently untested.
2626  *
2627  * Bill's comments:
2628  * ---------------
2629  * Actually, we use the rx_quality field all the time for both "ad-hoc"
2630  * and BSS modes. Why? Because reading an RID is really, really expensive:
2631  * there's a bunch of PIO operations that have to be done to read a record
2632  * from the NIC, and reading the comms quality RID each time a packet is
2633  * received can really hurt performance. We don't have to do this anyway:
2634  * the comms quality field only reflects the values in the rx_quality field
2635  * anyway. The comms quality RID is only meaningful in infrastructure mode,
2636  * but the values it contains are updated based on the rx_quality from
2637  * frames received from the access point.
2638  *
2639  * Also, according to Lucent, the signal strength and noise level values
2640  * can be converted to dBms by subtracting 149, so I've modified the code
2641  * to do that instead of the scaling it did originally.
2642  */
2643 static void
2644 wi_cache_store(struct wi_softc *sc, struct ether_header *eh,
2645                      struct mbuf *m, unsigned short rx_quality)
2646 {
2647         struct ip *ip = 0; 
2648         int i;
2649         static int cache_slot = 0;      /* use this cache entry */
2650         static int wrapindex = 0;       /* next "free" cache entry */
2651         int sig, noise;
2652         int sawip=0;
2653
2654         /* 
2655          * filters:
2656          * 1. ip only
2657          * 2. configurable filter to throw out unicast packets,
2658          * keep multicast only.
2659          */
2660  
2661         if ((ntohs(eh->ether_type) == ETHERTYPE_IP)) {
2662                 sawip = 1;
2663         }
2664
2665         /* 
2666          * filter for ip packets only 
2667         */
2668         if (wi_cache_iponly && !sawip) {
2669                 return;
2670         }
2671
2672         /*
2673          *  filter for broadcast/multicast only
2674          */
2675         if (wi_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
2676                 return;
2677         }
2678
2679 #ifdef SIGDEBUG
2680         printf("wi%d: q value %x (MSB=0x%x, LSB=0x%x) \n", sc->wi_unit,
2681             rx_quality & 0xffff, rx_quality >> 8, rx_quality & 0xff);
2682 #endif
2683
2684         /*
2685          *  find the ip header.  we want to store the ip_src
2686          * address.  
2687          */
2688         if (sawip)
2689                 ip = mtod(m, struct ip *);
2690         
2691         /*
2692          * do a linear search for a matching MAC address 
2693          * in the cache table
2694          * . MAC address is 6 bytes,
2695          * . var w_nextitem holds total number of entries already cached
2696          */
2697         for(i = 0; i < sc->wi_nextitem; i++) {
2698                 if (! bcmp(eh->ether_shost , sc->wi_sigcache[i].macsrc,  6 )) {
2699                         /* 
2700                          * Match!,
2701                          * so we already have this entry,
2702                          * update the data
2703                          */
2704                         break;  
2705                 }
2706         }
2707
2708         /*
2709          *  did we find a matching mac address?
2710          * if yes, then overwrite a previously existing cache entry
2711          */
2712         if (i < sc->wi_nextitem )   {
2713                 cache_slot = i; 
2714         }
2715         /*
2716          * else, have a new address entry,so
2717          * add this new entry,
2718          * if table full, then we need to replace LRU entry
2719          */
2720         else    {                          
2721
2722                 /* 
2723                  * check for space in cache table 
2724                  * note: wi_nextitem also holds number of entries
2725                  * added in the cache table 
2726                  */
2727                 if ( sc->wi_nextitem < MAXWICACHE ) {
2728                         cache_slot = sc->wi_nextitem;
2729                         sc->wi_nextitem++;                 
2730                         sc->wi_sigitems = sc->wi_nextitem;
2731                 }
2732                 /* no space found, so simply wrap with wrap index
2733                  * and "zap" the next entry
2734                  */
2735                 else {
2736                         if (wrapindex == MAXWICACHE) {
2737                                 wrapindex = 0;
2738                         }
2739                         cache_slot = wrapindex++;
2740                 }
2741         }
2742
2743         /* 
2744          * invariant: cache_slot now points at some slot
2745          * in cache.
2746          */
2747         if (cache_slot < 0 || cache_slot >= MAXWICACHE) {
2748                 log(LOG_ERR, "wi_cache_store, bad index: %d of "
2749                     "[0..%d], gross cache error\n",
2750                     cache_slot, MAXWICACHE);
2751                 return;
2752         }
2753
2754         /*
2755          *  store items in cache
2756          *  .ip source address
2757          *  .mac src
2758          *  .signal, etc.
2759          */
2760         if (sawip)
2761                 sc->wi_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
2762         bcopy( eh->ether_shost, sc->wi_sigcache[cache_slot].macsrc,  6);
2763
2764         sig = (rx_quality >> 8) & 0xFF;
2765         noise = rx_quality & 0xFF;
2766         sc->wi_sigcache[cache_slot].signal = sig - 149;
2767         sc->wi_sigcache[cache_slot].noise = noise - 149;
2768         sc->wi_sigcache[cache_slot].quality = sig - noise;
2769
2770         return;
2771 }
2772 #endif
2773
2774 static int
2775 wi_get_cur_ssid(sc, ssid, len)
2776         struct wi_softc         *sc;
2777         char                    *ssid;
2778         int                     *len;
2779 {
2780         int                     error = 0;
2781         struct wi_req           wreq;
2782
2783         wreq.wi_len = WI_MAX_DATALEN;
2784         switch (sc->wi_ptype) {
2785         case WI_PORTTYPE_AP:
2786                 *len = IEEE80211_NWID_LEN;
2787                 bcopy(sc->wi_net_name, ssid, IEEE80211_NWID_LEN);
2788                 break;
2789         case WI_PORTTYPE_ADHOC:
2790                 wreq.wi_type = WI_RID_CURRENT_SSID;
2791                 error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
2792                 if (error != 0)
2793                         break;
2794                 if (wreq.wi_val[0] > IEEE80211_NWID_LEN) {
2795                         error = EINVAL;
2796                         break;
2797                 }
2798                 *len = wreq.wi_val[0];
2799                 bcopy(&wreq.wi_val[1], ssid, IEEE80211_NWID_LEN);
2800                 break;
2801         case WI_PORTTYPE_BSS:
2802                 wreq.wi_type = WI_RID_COMMQUAL;
2803                 error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
2804                 if (error != 0)
2805                         break;
2806                 if (wreq.wi_val[0] != 0) /* associated */ {
2807                         wreq.wi_type = WI_RID_CURRENT_SSID;
2808                         wreq.wi_len = WI_MAX_DATALEN;
2809                         error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
2810                         if (error != 0)
2811                                 break;
2812                         if (wreq.wi_val[0] > IEEE80211_NWID_LEN) {
2813                                 error = EINVAL;
2814                                 break;
2815                         }
2816                         *len = wreq.wi_val[0];
2817                         bcopy(&wreq.wi_val[1], ssid, IEEE80211_NWID_LEN);
2818                 } else {
2819                         *len = IEEE80211_NWID_LEN;
2820                         bcopy(sc->wi_net_name, ssid, IEEE80211_NWID_LEN);
2821                 }
2822                 break;
2823         default:
2824                 error = EINVAL;
2825                 break;
2826         }
2827
2828         return error;
2829 }
2830
2831 static int
2832 wi_media_change(ifp)
2833         struct ifnet            *ifp;
2834 {
2835         struct wi_softc         *sc = ifp->if_softc;
2836         int                     otype = sc->wi_ptype;
2837         int                     orate = sc->wi_tx_rate;
2838         int                     ocreate_ibss = sc->wi_create_ibss;
2839
2840         if ((sc->ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_HOSTAP) &&
2841             sc->sc_firmware_type != WI_INTERSIL)
2842                 return (EINVAL);
2843
2844         sc->wi_create_ibss = 0;
2845
2846         switch (sc->ifmedia.ifm_cur->ifm_media & IFM_OMASK) {
2847         case 0:
2848                 sc->wi_ptype = WI_PORTTYPE_BSS;
2849                 break;
2850         case IFM_IEEE80211_ADHOC:
2851                 sc->wi_ptype = WI_PORTTYPE_ADHOC;
2852                 break;
2853         case IFM_IEEE80211_HOSTAP:
2854                 sc->wi_ptype = WI_PORTTYPE_AP;
2855                 break;
2856         case IFM_IEEE80211_IBSSMASTER:
2857         case IFM_IEEE80211_IBSSMASTER|IFM_IEEE80211_IBSS:
2858                 if (!(sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS))
2859                         return (EINVAL);
2860                 sc->wi_create_ibss = 1;
2861                 /* FALLTHROUGH */
2862         case IFM_IEEE80211_IBSS:
2863                 sc->wi_ptype = WI_PORTTYPE_IBSS;
2864                 break;
2865         default:
2866                 /* Invalid combination. */
2867                 return (EINVAL);
2868         }
2869
2870         switch (IFM_SUBTYPE(sc->ifmedia.ifm_cur->ifm_media)) {
2871         case IFM_IEEE80211_DS1:
2872                 sc->wi_tx_rate = 1;
2873                 break;
2874         case IFM_IEEE80211_DS2:
2875                 sc->wi_tx_rate = 2;
2876                 break;
2877         case IFM_IEEE80211_DS5:
2878                 sc->wi_tx_rate = 5;
2879                 break;
2880         case IFM_IEEE80211_DS11:
2881                 sc->wi_tx_rate = 11;
2882                 break;
2883         case IFM_AUTO:
2884                 sc->wi_tx_rate = 3;
2885                 break;
2886         }
2887
2888         if (ocreate_ibss != sc->wi_create_ibss || otype != sc->wi_ptype ||
2889             orate != sc->wi_tx_rate)
2890                 wi_init(sc);
2891
2892         return(0);
2893 }
2894
2895 static void
2896 wi_media_status(ifp, imr)
2897         struct ifnet            *ifp;
2898         struct ifmediareq       *imr;
2899 {
2900         struct wi_req           wreq;
2901         struct wi_softc         *sc = ifp->if_softc;
2902
2903         if (sc->wi_tx_rate == 3) {
2904                 imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
2905                 if (sc->wi_ptype == WI_PORTTYPE_ADHOC)
2906                         imr->ifm_active |= IFM_IEEE80211_ADHOC;
2907                 else if (sc->wi_ptype == WI_PORTTYPE_AP)
2908                         imr->ifm_active |= IFM_IEEE80211_HOSTAP;
2909                 else if (sc->wi_ptype == WI_PORTTYPE_IBSS) {
2910                         if (sc->wi_create_ibss)
2911                                 imr->ifm_active |= IFM_IEEE80211_IBSSMASTER;
2912                         else
2913                                 imr->ifm_active |= IFM_IEEE80211_IBSS;
2914                 }
2915                 wreq.wi_type = WI_RID_CUR_TX_RATE;
2916                 wreq.wi_len = WI_MAX_DATALEN;
2917                 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0) {
2918                         switch(wreq.wi_val[0]) {
2919                         case 1:
2920                                 imr->ifm_active |= IFM_IEEE80211_DS1;
2921                                 break;
2922                         case 2:
2923                                 imr->ifm_active |= IFM_IEEE80211_DS2;
2924                                 break;
2925                         case 6:
2926                                 imr->ifm_active |= IFM_IEEE80211_DS5;
2927                                 break;
2928                         case 11:
2929                                 imr->ifm_active |= IFM_IEEE80211_DS11;
2930                                 break;
2931                                 }
2932                 }
2933         } else {
2934                 imr->ifm_active = sc->ifmedia.ifm_cur->ifm_media;
2935         }
2936
2937         imr->ifm_status = IFM_AVALID;
2938         if (sc->wi_ptype == WI_PORTTYPE_ADHOC ||
2939             sc->wi_ptype == WI_PORTTYPE_IBSS)
2940                 /*
2941                  * XXX: It would be nice if we could give some actually
2942                  * useful status like whether we joined another IBSS or
2943                  * created one ourselves.
2944                  */
2945                 imr->ifm_status |= IFM_ACTIVE;
2946         else if (sc->wi_ptype == WI_PORTTYPE_AP)
2947                 imr->ifm_status |= IFM_ACTIVE;
2948         else {
2949                 wreq.wi_type = WI_RID_COMMQUAL;
2950                 wreq.wi_len = WI_MAX_DATALEN;
2951                 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0 &&
2952                     wreq.wi_val[0] != 0)
2953                         imr->ifm_status |= IFM_ACTIVE;
2954         }
2955 }
2956
2957 static int
2958 wi_get_debug(sc, wreq)
2959         struct wi_softc         *sc;
2960         struct wi_req           *wreq;
2961 {
2962         int                     error = 0;
2963
2964         wreq->wi_len = 1;
2965
2966         switch (wreq->wi_type) {
2967         case WI_DEBUG_SLEEP:
2968                 wreq->wi_len++;
2969                 wreq->wi_val[0] = sc->wi_debug.wi_sleep;
2970                 break;
2971         case WI_DEBUG_DELAYSUPP:
2972                 wreq->wi_len++;
2973                 wreq->wi_val[0] = sc->wi_debug.wi_delaysupp;
2974                 break;
2975         case WI_DEBUG_TXSUPP:
2976                 wreq->wi_len++;
2977                 wreq->wi_val[0] = sc->wi_debug.wi_txsupp;
2978                 break;
2979         case WI_DEBUG_MONITOR:
2980                 wreq->wi_len++;
2981                 wreq->wi_val[0] = sc->wi_debug.wi_monitor;
2982                 break;
2983         case WI_DEBUG_LEDTEST:
2984                 wreq->wi_len += 3;
2985                 wreq->wi_val[0] = sc->wi_debug.wi_ledtest;
2986                 wreq->wi_val[1] = sc->wi_debug.wi_ledtest_param0;
2987                 wreq->wi_val[2] = sc->wi_debug.wi_ledtest_param1;
2988                 break;
2989         case WI_DEBUG_CONTTX:
2990                 wreq->wi_len += 2;
2991                 wreq->wi_val[0] = sc->wi_debug.wi_conttx;
2992                 wreq->wi_val[1] = sc->wi_debug.wi_conttx_param0;
2993                 break;
2994         case WI_DEBUG_CONTRX:
2995                 wreq->wi_len++;
2996                 wreq->wi_val[0] = sc->wi_debug.wi_contrx;
2997                 break;
2998         case WI_DEBUG_SIGSTATE:
2999                 wreq->wi_len += 2;
3000                 wreq->wi_val[0] = sc->wi_debug.wi_sigstate;
3001                 wreq->wi_val[1] = sc->wi_debug.wi_sigstate_param0;
3002                 break;
3003         case WI_DEBUG_CONFBITS:
3004                 wreq->wi_len += 2;
3005                 wreq->wi_val[0] = sc->wi_debug.wi_confbits;
3006                 wreq->wi_val[1] = sc->wi_debug.wi_confbits_param0;
3007                 break;
3008         default:
3009                 error = EIO;
3010                 break;
3011         }
3012
3013         return (error);
3014 }
3015
3016 static int
3017 wi_set_debug(sc, wreq)
3018         struct wi_softc         *sc;
3019         struct wi_req           *wreq;
3020 {
3021         int                     error = 0;
3022         u_int16_t               cmd, param0 = 0, param1 = 0;
3023
3024         switch (wreq->wi_type) {
3025         case WI_DEBUG_RESET:
3026         case WI_DEBUG_INIT:
3027         case WI_DEBUG_CALENABLE:
3028                 break;
3029         case WI_DEBUG_SLEEP:
3030                 sc->wi_debug.wi_sleep = 1;
3031                 break;
3032         case WI_DEBUG_WAKE:
3033                 sc->wi_debug.wi_sleep = 0;
3034                 break;
3035         case WI_DEBUG_CHAN:
3036                 param0 = wreq->wi_val[0];
3037                 break;
3038         case WI_DEBUG_DELAYSUPP:
3039                 sc->wi_debug.wi_delaysupp = 1;
3040                 break;
3041         case WI_DEBUG_TXSUPP:
3042                 sc->wi_debug.wi_txsupp = 1;
3043                 break;
3044         case WI_DEBUG_MONITOR:
3045                 sc->wi_debug.wi_monitor = 1;
3046                 break;
3047         case WI_DEBUG_LEDTEST:
3048                 param0 = wreq->wi_val[0];
3049                 param1 = wreq->wi_val[1];
3050                 sc->wi_debug.wi_ledtest = 1;
3051                 sc->wi_debug.wi_ledtest_param0 = param0;
3052                 sc->wi_debug.wi_ledtest_param1 = param1;
3053                 break;
3054         case WI_DEBUG_CONTTX:
3055                 param0 = wreq->wi_val[0];
3056                 sc->wi_debug.wi_conttx = 1;
3057                 sc->wi_debug.wi_conttx_param0 = param0;
3058                 break;
3059         case WI_DEBUG_STOPTEST:
3060                 sc->wi_debug.wi_delaysupp = 0;
3061                 sc->wi_debug.wi_txsupp = 0;
3062                 sc->wi_debug.wi_monitor = 0;
3063                 sc->wi_debug.wi_ledtest = 0;
3064                 sc->wi_debug.wi_ledtest_param0 = 0;
3065                 sc->wi_debug.wi_ledtest_param1 = 0;
3066                 sc->wi_debug.wi_conttx = 0;
3067                 sc->wi_debug.wi_conttx_param0 = 0;
3068                 sc->wi_debug.wi_contrx = 0;
3069                 sc->wi_debug.wi_sigstate = 0;
3070                 sc->wi_debug.wi_sigstate_param0 = 0;
3071                 break;
3072         case WI_DEBUG_CONTRX:
3073                 sc->wi_debug.wi_contrx = 1;
3074                 break;
3075         case WI_DEBUG_SIGSTATE:
3076                 param0 = wreq->wi_val[0];
3077                 sc->wi_debug.wi_sigstate = 1;
3078                 sc->wi_debug.wi_sigstate_param0 = param0;
3079                 break;
3080         case WI_DEBUG_CONFBITS:
3081                 param0 = wreq->wi_val[0];
3082                 param1 = wreq->wi_val[1];
3083                 sc->wi_debug.wi_confbits = param0;
3084                 sc->wi_debug.wi_confbits_param0 = param1;
3085                 break;
3086         default:
3087                 error = EIO;
3088                 break;
3089         }
3090
3091         if (error)
3092                 return (error);
3093
3094         cmd = WI_CMD_DEBUG | (wreq->wi_type << 8);
3095         error = wi_cmd(sc, cmd, param0, param1, 0);
3096
3097         return (error);
3098 }