Merge branch 'master' of /home/aggelos/devel/dfly/dfly.git/
[dragonfly.git] / sys / dev / netif / ath / hal / ath_hal / ar5212 / ar2413.c
1 /*
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $Id: ar2413.c,v 1.8 2008/11/15 22:15:46 sam Exp $
18  */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212phy.h"
27
28 #include "ah_eeprom_v3.h"
29
30 #define AH_5212_2413
31 #include "ar5212/ar5212.ini"
32
33 #define N(a)    (sizeof(a)/sizeof(a[0]))
34
35 struct ar2413State {
36         RF_HAL_FUNCS    base;           /* public state, must be first */
37         uint16_t        pcdacTable[PWR_TABLE_SIZE_2413];
38
39         uint32_t        Bank1Data[N(ar5212Bank1_2413)];
40         uint32_t        Bank2Data[N(ar5212Bank2_2413)];
41         uint32_t        Bank3Data[N(ar5212Bank3_2413)];
42         uint32_t        Bank6Data[N(ar5212Bank6_2413)];
43         uint32_t        Bank7Data[N(ar5212Bank7_2413)];
44
45         /*
46          * Private state for reduced stack usage.
47          */
48         /* filled out Vpd table for all pdGains (chanL) */
49         uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
50                             [MAX_PWR_RANGE_IN_HALF_DB];
51         /* filled out Vpd table for all pdGains (chanR) */
52         uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
53                             [MAX_PWR_RANGE_IN_HALF_DB];
54         /* filled out Vpd table for all pdGains (interpolated) */
55         uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
56                             [MAX_PWR_RANGE_IN_HALF_DB];
57 };
58 #define AR2413(ah)      ((struct ar2413State *) AH5212(ah)->ah_rfHal)
59
60 extern  void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61                 uint32_t numBits, uint32_t firstBit, uint32_t column);
62
63 static void
64 ar2413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65         int writes)
66 {
67         HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2413, modesIndex, writes);
68         HAL_INI_WRITE_ARRAY(ah, ar5212Common_2413, 1, writes);
69         HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2413, freqIndex, writes);
70 }
71
72 /*
73  * Take the MHz channel value and set the Channel value
74  *
75  * ASSUMES: Writes enabled to analog bus
76  */
77 static HAL_BOOL
78 ar2413SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
79 {
80         uint32_t channelSel  = 0;
81         uint32_t bModeSynth  = 0;
82         uint32_t aModeRefSel = 0;
83         uint32_t reg32       = 0;
84         uint16_t freq;
85
86         OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
87
88         if (chan->channel < 4800) {
89                 uint32_t txctl;
90
91                 if (((chan->channel - 2192) % 5) == 0) {
92                         channelSel = ((chan->channel - 672) * 2 - 3040)/10;
93                         bModeSynth = 0;
94                 } else if (((chan->channel - 2224) % 5) == 0) {
95                         channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
96                         bModeSynth = 1;
97                 } else {
98                         HALDEBUG(ah, HAL_DEBUG_ANY,
99                             "%s: invalid channel %u MHz\n",
100                             __func__, chan->channel);
101                         return AH_FALSE;
102                 }
103
104                 channelSel = (channelSel << 2) & 0xff;
105                 channelSel = ath_hal_reverseBits(channelSel, 8);
106
107                 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108                 if (chan->channel == 2484) {
109                         /* Enable channel spreading for channel 14 */
110                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111                                 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112                 } else {
113                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114                                 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115                 }
116         } else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
117                 freq = chan->channel - 2; /* Align to even 5MHz raster */
118                 channelSel = ath_hal_reverseBits(
119                         (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120                 aModeRefSel = ath_hal_reverseBits(0, 2);
121         } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
122                 channelSel = ath_hal_reverseBits(
123                         ((chan->channel - 4800) / 20 << 2), 8);
124                 aModeRefSel = ath_hal_reverseBits(3, 2);
125         } else if ((chan->channel % 10) == 0) {
126                 channelSel = ath_hal_reverseBits(
127                         ((chan->channel - 4800) / 10 << 1), 8);
128                 aModeRefSel = ath_hal_reverseBits(2, 2);
129         } else if ((chan->channel % 5) == 0) {
130                 channelSel = ath_hal_reverseBits(
131                         (chan->channel - 4800) / 5, 8);
132                 aModeRefSel = ath_hal_reverseBits(1, 2);
133         } else {
134                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135                     __func__, chan->channel);
136                 return AH_FALSE;
137         }
138
139         reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140                         (1 << 12) | 0x1;
141         OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142
143         reg32 >>= 8;
144         OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145
146         AH_PRIVATE(ah)->ah_curchan = chan;
147
148         return AH_TRUE;
149 }
150
151 /*
152  * Reads EEPROM header info from device structure and programs
153  * all rf registers
154  *
155  * REQUIRES: Access to the analog rf device
156  */
157 static HAL_BOOL
158 ar2413SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
159 {
160 #define RF_BANK_SETUP(_priv, _ix, _col) do {                                \
161         int i;                                                              \
162         for (i = 0; i < N(ar5212Bank##_ix##_2413); i++)                     \
163                 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\
164 } while (0)
165         struct ath_hal_5212 *ahp = AH5212(ah);
166         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
167         uint16_t ob2GHz = 0, db2GHz = 0;
168         struct ar2413State *priv = AR2413(ah);
169         int regWrites = 0;
170
171         HALDEBUG(ah, HAL_DEBUG_RFPARAM,
172             "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
173             __func__, chan->channel, chan->channelFlags, modesIndex);
174
175         HALASSERT(priv);
176
177         /* Setup rf parameters */
178         switch (chan->channelFlags & CHANNEL_ALL) {
179         case CHANNEL_B:
180                 ob2GHz = ee->ee_obFor24;
181                 db2GHz = ee->ee_dbFor24;
182                 break;
183         case CHANNEL_G:
184         case CHANNEL_108G:
185                 ob2GHz = ee->ee_obFor24g;
186                 db2GHz = ee->ee_dbFor24g;
187                 break;
188         default:
189                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
190                     __func__, chan->channelFlags);
191                 return AH_FALSE;
192         }
193
194         /* Bank 1 Write */
195         RF_BANK_SETUP(priv, 1, 1);
196
197         /* Bank 2 Write */
198         RF_BANK_SETUP(priv, 2, modesIndex);
199
200         /* Bank 3 Write */
201         RF_BANK_SETUP(priv, 3, modesIndex);
202
203         /* Bank 6 Write */
204         RF_BANK_SETUP(priv, 6, modesIndex);
205
206         ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 168, 0);
207         ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 165, 0);
208
209         /* Bank 7 Setup */
210         RF_BANK_SETUP(priv, 7, modesIndex);
211
212         /* Write Analog registers */
213         HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites);
214         HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites);
215         HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites);
216         HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites);
217         HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites);
218
219         /* Now that we have reprogrammed rfgain value, clear the flag. */
220         ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
221
222         return AH_TRUE;
223 #undef  RF_BANK_SETUP
224 }
225
226 /*
227  * Return a reference to the requested RF Bank.
228  */
229 static uint32_t *
230 ar2413GetRfBank(struct ath_hal *ah, int bank)
231 {
232         struct ar2413State *priv = AR2413(ah);
233
234         HALASSERT(priv != AH_NULL);
235         switch (bank) {
236         case 1: return priv->Bank1Data;
237         case 2: return priv->Bank2Data;
238         case 3: return priv->Bank3Data;
239         case 6: return priv->Bank6Data;
240         case 7: return priv->Bank7Data;
241         }
242         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
243             __func__, bank);
244         return AH_NULL;
245 }
246
247 /*
248  * Return indices surrounding the value in sorted integer lists.
249  *
250  * NB: the input list is assumed to be sorted in ascending order
251  */
252 static void
253 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
254                           uint32_t *vlo, uint32_t *vhi)
255 {
256         int16_t target = v;
257         const uint16_t *ep = lp+listSize;
258         const uint16_t *tp;
259
260         /*
261          * Check first and last elements for out-of-bounds conditions.
262          */
263         if (target < lp[0]) {
264                 *vlo = *vhi = 0;
265                 return;
266         }
267         if (target >= ep[-1]) {
268                 *vlo = *vhi = listSize - 1;
269                 return;
270         }
271
272         /* look for value being near or between 2 values in list */
273         for (tp = lp; tp < ep; tp++) {
274                 /*
275                  * If value is close to the current value of the list
276                  * then target is not between values, it is one of the values
277                  */
278                 if (*tp == target) {
279                         *vlo = *vhi = tp - (const uint16_t *) lp;
280                         return;
281                 }
282                 /*
283                  * Look for value being between current value and next value
284                  * if so return these 2 values
285                  */
286                 if (target < tp[1]) {
287                         *vlo = tp - (const uint16_t *) lp;
288                         *vhi = *vlo + 1;
289                         return;
290                 }
291         }
292 }
293
294 /*
295  * Fill the Vpdlist for indices Pmax-Pmin
296  */
297 static HAL_BOOL
298 ar2413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
299                    const int16_t *pwrList, const uint16_t *VpdList,
300                    uint16_t numIntercepts, uint16_t retVpdList[][64])
301 {
302         uint16_t ii, jj, kk;
303         int16_t currPwr = (int16_t)(2*Pmin);
304         /* since Pmin is pwr*2 and pwrList is 4*pwr */
305         uint32_t  idxL, idxR;
306
307         ii = 0;
308         jj = 0;
309
310         if (numIntercepts < 2)
311                 return AH_FALSE;
312
313         while (ii <= (uint16_t)(Pmax - Pmin)) {
314                 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
315                                    numIntercepts, &(idxL), &(idxR));
316                 if (idxR < 1)
317                         idxR = 1;                       /* extrapolate below */
318                 if (idxL == (uint32_t)(numIntercepts - 1))
319                         idxL = numIntercepts - 2;       /* extrapolate above */
320                 if (pwrList[idxL] == pwrList[idxR])
321                         kk = VpdList[idxL];
322                 else
323                         kk = (uint16_t)
324                                 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 
325                                   (pwrList[idxR] - currPwr)*VpdList[idxL])/
326                                  (pwrList[idxR] - pwrList[idxL]));
327                 retVpdList[pdGainIdx][ii] = kk;
328                 ii++;
329                 currPwr += 2;                           /* half dB steps */
330         }
331
332         return AH_TRUE;
333 }
334
335 /*
336  * Returns interpolated or the scaled up interpolated value
337  */
338 static int16_t
339 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
340         int16_t targetLeft, int16_t targetRight)
341 {
342         int16_t rv;
343
344         if (srcRight != srcLeft) {
345                 rv = ((target - srcLeft)*targetRight +
346                       (srcRight - target)*targetLeft) / (srcRight - srcLeft);
347         } else {
348                 rv = targetLeft;
349         }
350         return rv;
351 }
352
353 /*
354  * Uses the data points read from EEPROM to reconstruct the pdadc power table
355  * Called by ar2413SetPowerTable()
356  */
357 static int 
358 ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
359                 const RAW_DATA_STRUCT_2413 *pRawDataset,
360                 uint16_t pdGainOverlap_t2, 
361                 int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[], 
362                 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 
363 {
364         struct ar2413State *priv = AR2413(ah);
365 #define VpdTable_L      priv->vpdTable_L
366 #define VpdTable_R      priv->vpdTable_R
367 #define VpdTable_I      priv->vpdTable_I
368         uint32_t ii, jj, kk;
369         int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
370         uint32_t idxL, idxR;
371         uint32_t numPdGainsUsed = 0;
372         /* 
373          * If desired to support -ve power levels in future, just
374          * change pwr_I_0 to signed 5-bits.
375          */
376         int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
377         /* to accomodate -ve power levels later on. */
378         int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
379         /* to accomodate -ve power levels later on */
380         uint16_t numVpd = 0;
381         uint16_t Vpd_step;
382         int16_t tmpVal ; 
383         uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
384
385         /* Get upper lower index */
386         GetLowerUpperIndex(channel, pRawDataset->pChannels,
387                                  pRawDataset->numChannels, &(idxL), &(idxR));
388
389         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
390                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
391                 /* work backwards 'cause highest pdGain for lowest power */
392                 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
393                 if (numVpd > 0) {
394                         pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
395                         Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
396                         if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
397                                 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
398                         }
399                         Pmin_t2[numPdGainsUsed] = (int16_t)
400                                 (Pmin_t2[numPdGainsUsed] / 2);
401                         Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
402                         if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
403                                 Pmax_t2[numPdGainsUsed] = 
404                                         pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
405                         Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
406                         ar2413FillVpdTable(
407                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
408                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 
409                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
410                                            );
411                         ar2413FillVpdTable(
412                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
413                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
414                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
415                                            );
416                         for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
417                                 VpdTable_I[numPdGainsUsed][kk] = 
418                                         interpolate_signed(
419                                                            channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
420                                                            (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
421                         }
422                         /* fill VpdTable_I for this pdGain */
423                         numPdGainsUsed++;
424                 }
425                 /* if this pdGain is used */
426         }
427
428         *pMinCalPower = Pmin_t2[0];
429         kk = 0; /* index for the final table */
430         for (ii = 0; ii < numPdGainsUsed; ii++) {
431                 if (ii == (numPdGainsUsed - 1))
432                         pPdGainBoundaries[ii] = Pmax_t2[ii] +
433                                 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
434                 else 
435                         pPdGainBoundaries[ii] = (uint16_t)
436                                 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
437                 if (pPdGainBoundaries[ii] > 63) {
438                         HALDEBUG(ah, HAL_DEBUG_ANY,
439                             "%s: clamp pPdGainBoundaries[%d] %d\n",
440                             __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
441                         pPdGainBoundaries[ii] = 63;
442                 }
443
444                 /* Find starting index for this pdGain */
445                 if (ii == 0) 
446                         ss = 0; /* for the first pdGain, start from index 0 */
447                 else 
448                         ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 
449                                 pdGainOverlap_t2;
450                 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
451                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
452                 /*
453                  *-ve ss indicates need to extrapolate data below for this pdGain
454                  */
455                 while (ss < 0) {
456                         tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
457                         pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
458                         ss++;
459                 }
460
461                 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
462                 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
463                 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
464
465                 while (ss < (int16_t)maxIndex)
466                         pPDADCValues[kk++] = VpdTable_I[ii][ss++];
467
468                 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
469                                        VpdTable_I[ii][sizeCurrVpdTable-2]);
470                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);           
471                 /*
472                  * for last gain, pdGainBoundary == Pmax_t2, so will 
473                  * have to extrapolate
474                  */
475                 if (tgtIndex > maxIndex) {      /* need to extrapolate above */
476                         while(ss < (int16_t)tgtIndex) {
477                                 tmpVal = (uint16_t)
478                                         (VpdTable_I[ii][sizeCurrVpdTable-1] + 
479                                          (ss-maxIndex)*Vpd_step);
480                                 pPDADCValues[kk++] = (tmpVal > 127) ? 
481                                         127 : tmpVal;
482                                 ss++;
483                         }
484                 }                               /* extrapolated above */
485         }                                       /* for all pdGainUsed */
486
487         while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
488                 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
489                 ii++;
490         }
491         while (kk < 128) {
492                 pPDADCValues[kk] = pPDADCValues[kk-1];
493                 kk++;
494         }
495
496         return numPdGainsUsed;
497 #undef VpdTable_L
498 #undef VpdTable_R
499 #undef VpdTable_I
500 }
501
502 static HAL_BOOL
503 ar2413SetPowerTable(struct ath_hal *ah,
504         int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan, 
505         uint16_t *rfXpdGain)
506 {
507         struct ath_hal_5212 *ahp = AH5212(ah);
508         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
509         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
510         uint16_t pdGainOverlap_t2;
511         int16_t minCalPower2413_t2;
512         uint16_t *pdadcValues = ahp->ah_pcdacTable;
513         uint16_t gainBoundaries[4];
514         uint32_t reg32, regoffset;
515         int i, numPdGainsUsed;
516 #ifndef AH_USE_INIPDGAIN
517         uint32_t tpcrg1;
518 #endif
519
520         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
521             __func__, chan->channel,chan->channelFlags);
522
523         if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
524                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
525         else if (IS_CHAN_B(chan))
526                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
527         else {
528                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
529                 return AH_FALSE;
530         }
531
532         pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
533                                           AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
534     
535         numPdGainsUsed = ar2413getGainBoundariesAndPdadcsForPowers(ah,
536                 chan->channel, pRawDataset, pdGainOverlap_t2,
537                 &minCalPower2413_t2,gainBoundaries, rfXpdGain, pdadcValues);
538         HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
539
540 #ifdef AH_USE_INIPDGAIN
541         /*
542          * Use pd_gains curve from eeprom; Atheros always uses
543          * the default curve from the ini file but some vendors
544          * (e.g. Zcomax) want to override this curve and not
545          * honoring their settings results in tx power 5dBm low.
546          */
547         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 
548                          (pRawDataset->pDataPerChannel[0].numPdGains - 1));
549 #else
550         tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
551         tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
552                   | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
553         switch (numPdGainsUsed) {
554         case 3:
555                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
556                 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
557                 /* fall thru... */
558         case 2:
559                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
560                 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
561                 /* fall thru... */
562         case 1:
563                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
564                 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
565                 break;
566         }
567 #ifdef AH_DEBUG
568         if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
569                 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
570                     "pd_gains (default 0x%x, calculated 0x%x)\n",
571                     __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
572 #endif
573         OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
574 #endif
575
576         /*
577          * Note the pdadc table may not start at 0 dBm power, could be
578          * negative or greater than 0.  Need to offset the power
579          * values by the amount of minPower for griffin
580          */
581         if (minCalPower2413_t2 != 0)
582                 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
583         else
584                 ahp->ah_txPowerIndexOffset = 0;
585
586         /* Finally, write the power values into the baseband power table */
587         regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
588         for (i = 0; i < 32; i++) {
589                 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  | 
590                         ((pdadcValues[4*i + 1] & 0xFF) << 8)  |
591                         ((pdadcValues[4*i + 2] & 0xFF) << 16) |
592                         ((pdadcValues[4*i + 3] & 0xFF) << 24) ;        
593                 OS_REG_WRITE(ah, regoffset, reg32);
594                 regoffset += 4;
595         }
596
597         OS_REG_WRITE(ah, AR_PHY_TPCRG5, 
598                      SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 
599                      SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
600                      SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
601                      SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
602                      SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
603
604         return AH_TRUE;
605 }
606
607 static int16_t
608 ar2413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
609 {
610         uint32_t ii,jj;
611         uint16_t Pmin=0,numVpd;
612
613         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
614                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
615                 /* work backwards 'cause highest pdGain for lowest power */
616                 numVpd = data->pDataPerPDGain[jj].numVpd;
617                 if (numVpd > 0) {
618                         Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
619                         return(Pmin);
620                 }
621         }
622         return(Pmin);
623 }
624
625 static int16_t
626 ar2413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
627 {
628         uint32_t ii;
629         uint16_t Pmax=0,numVpd;
630         
631         for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
632                 /* work forwards cuase lowest pdGain for highest power */
633                 numVpd = data->pDataPerPDGain[ii].numVpd;
634                 if (numVpd > 0) {
635                         Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
636                         return(Pmax);
637                 }
638         }
639         return(Pmax);
640 }
641
642 static HAL_BOOL
643 ar2413GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
644         int16_t *maxPow, int16_t *minPow)
645 {
646         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
647         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
648         const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
649         uint16_t numChannels;
650         int totalD,totalF, totalMin,last, i;
651
652         *maxPow = 0;
653
654         if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
655                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
656         else if (IS_CHAN_B(chan))
657                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
658         else
659                 return(AH_FALSE);
660
661         numChannels = pRawDataset->numChannels;
662         data = pRawDataset->pDataPerChannel;
663         
664         /* Make sure the channel is in the range of the TP values 
665          *  (freq piers)
666          */
667         if (numChannels < 1)
668                 return(AH_FALSE);
669
670         if ((chan->channel < data[0].channelValue) ||
671             (chan->channel > data[numChannels-1].channelValue)) {
672                 if (chan->channel < data[0].channelValue) {
673                         *maxPow = ar2413GetMaxPower(ah, &data[0]);
674                         *minPow = ar2413GetMinPower(ah, &data[0]);
675                         return(AH_TRUE);
676                 } else {
677                         *maxPow = ar2413GetMaxPower(ah, &data[numChannels - 1]);
678                         *minPow = ar2413GetMinPower(ah, &data[numChannels - 1]);
679                         return(AH_TRUE);
680                 }
681         }
682
683         /* Linearly interpolate the power value now */
684         for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
685              last = i++);
686         totalD = data[i].channelValue - data[last].channelValue;
687         if (totalD > 0) {
688                 totalF = ar2413GetMaxPower(ah, &data[i]) - ar2413GetMaxPower(ah, &data[last]);
689                 *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + 
690                                      ar2413GetMaxPower(ah, &data[last])*totalD)/totalD);
691                 totalMin = ar2413GetMinPower(ah, &data[i]) - ar2413GetMinPower(ah, &data[last]);
692                 *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
693                                      ar2413GetMinPower(ah, &data[last])*totalD)/totalD);
694                 return(AH_TRUE);
695         } else {
696                 if (chan->channel == data[i].channelValue) {
697                         *maxPow = ar2413GetMaxPower(ah, &data[i]);
698                         *minPow = ar2413GetMinPower(ah, &data[i]);
699                         return(AH_TRUE);
700                 } else
701                         return(AH_FALSE);
702         }
703 }
704
705 /*
706  * Free memory for analog bank scratch buffers
707  */
708 static void
709 ar2413RfDetach(struct ath_hal *ah)
710 {
711         struct ath_hal_5212 *ahp = AH5212(ah);
712
713         HALASSERT(ahp->ah_rfHal != AH_NULL);
714         ath_hal_free(ahp->ah_rfHal);
715         ahp->ah_rfHal = AH_NULL;
716 }
717
718 /*
719  * Allocate memory for analog bank scratch buffers
720  * Scratch Buffer will be reinitialized every reset so no need to zero now
721  */
722 static HAL_BOOL
723 ar2413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
724 {
725         struct ath_hal_5212 *ahp = AH5212(ah);
726         struct ar2413State *priv;
727
728         HALASSERT(ah->ah_magic == AR5212_MAGIC);
729
730         HALASSERT(ahp->ah_rfHal == AH_NULL);
731         priv = ath_hal_malloc(sizeof(struct ar2413State));
732         if (priv == AH_NULL) {
733                 HALDEBUG(ah, HAL_DEBUG_ANY,
734                     "%s: cannot allocate private state\n", __func__);
735                 *status = HAL_ENOMEM;           /* XXX */
736                 return AH_FALSE;
737         }
738         priv->base.rfDetach             = ar2413RfDetach;
739         priv->base.writeRegs            = ar2413WriteRegs;
740         priv->base.getRfBank            = ar2413GetRfBank;
741         priv->base.setChannel           = ar2413SetChannel;
742         priv->base.setRfRegs            = ar2413SetRfRegs;
743         priv->base.setPowerTable        = ar2413SetPowerTable;
744         priv->base.getChannelMaxMinPower = ar2413GetChannelMaxMinPower;
745         priv->base.getNfAdjust          = ar5212GetNfAdjust;
746
747         ahp->ah_pcdacTable = priv->pcdacTable;
748         ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
749         ahp->ah_rfHal = &priv->base;
750
751         return AH_TRUE;
752 }
753
754 static HAL_BOOL
755 ar2413Probe(struct ath_hal *ah)
756 {
757         return IS_2413(ah);
758 }
759 AH_RF(RF2413, ar2413Probe, ar2413RfAttach);