Merge branch 'master' of /home/aggelos/devel/dfly/dfly.git/
[dragonfly.git] / sys / vfs / hammer / hammer_object.c
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  * 
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * 
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  * 
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  * 
34  * $DragonFly: src/sys/vfs/hammer/hammer_object.c,v 1.97 2008/09/23 22:28:56 dillon Exp $
35  */
36
37 #include "hammer.h"
38
39 static int hammer_mem_lookup(hammer_cursor_t cursor);
40 static void hammer_mem_first(hammer_cursor_t cursor);
41 static int hammer_frontend_trunc_callback(hammer_record_t record,
42                                 void *data __unused);
43 static int hammer_bulk_scan_callback(hammer_record_t record, void *data);
44 static int hammer_record_needs_overwrite_delete(hammer_record_t record);
45 static int hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
46                       hammer_btree_leaf_elm_t leaf);
47
48 struct rec_trunc_info {
49         u_int16_t       rec_type;
50         int64_t         trunc_off;
51 };
52
53 struct hammer_bulk_info {
54         hammer_record_t record;
55         struct hammer_btree_leaf_elm leaf;
56 };
57
58 /*
59  * Red-black tree support.  Comparison code for insertion.
60  */
61 static int
62 hammer_rec_rb_compare(hammer_record_t rec1, hammer_record_t rec2)
63 {
64         if (rec1->leaf.base.rec_type < rec2->leaf.base.rec_type)
65                 return(-1);
66         if (rec1->leaf.base.rec_type > rec2->leaf.base.rec_type)
67                 return(1);
68
69         if (rec1->leaf.base.key < rec2->leaf.base.key)
70                 return(-1);
71         if (rec1->leaf.base.key > rec2->leaf.base.key)
72                 return(1);
73
74         /*
75          * For search & insertion purposes records deleted by the
76          * frontend or deleted/committed by the backend are silently
77          * ignored.  Otherwise pipelined insertions will get messed
78          * up.
79          *
80          * rec1 is greater then rec2 if rec1 is marked deleted.
81          * rec1 is less then rec2 if rec2 is marked deleted.
82          *
83          * Multiple deleted records may be present, do not return 0
84          * if both are marked deleted.
85          */
86         if (rec1->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
87                            HAMMER_RECF_COMMITTED)) {
88                 return(1);
89         }
90         if (rec2->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
91                            HAMMER_RECF_COMMITTED)) {
92                 return(-1);
93         }
94
95         return(0);
96 }
97
98 /*
99  * Basic record comparison code similar to hammer_btree_cmp().
100  */
101 static int
102 hammer_rec_cmp(hammer_base_elm_t elm, hammer_record_t rec)
103 {
104         if (elm->rec_type < rec->leaf.base.rec_type)
105                 return(-3);
106         if (elm->rec_type > rec->leaf.base.rec_type)
107                 return(3);
108
109         if (elm->key < rec->leaf.base.key)
110                 return(-2);
111         if (elm->key > rec->leaf.base.key)
112                 return(2);
113
114         /*
115          * Never match against an item deleted by the frontend
116          * or backend, or committed by the backend.
117          *
118          * elm is less then rec if rec is marked deleted.
119          */
120         if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
121                           HAMMER_RECF_COMMITTED)) {
122                 return(-1);
123         }
124         return(0);
125 }
126
127 /*
128  * Ranged scan to locate overlapping record(s).  This is used by
129  * hammer_ip_get_bulk() to locate an overlapping record.  We have
130  * to use a ranged scan because the keys for data records with the
131  * same file base offset can be different due to differing data_len's.
132  *
133  * NOTE: The base file offset of a data record is (key - data_len), not (key).
134  */
135 static int
136 hammer_rec_overlap_cmp(hammer_record_t rec, void *data)
137 {
138         struct hammer_bulk_info *info = data;
139         hammer_btree_leaf_elm_t leaf = &info->leaf;
140
141         if (rec->leaf.base.rec_type < leaf->base.rec_type)
142                 return(-3);
143         if (rec->leaf.base.rec_type > leaf->base.rec_type)
144                 return(3);
145
146         /*
147          * Overlap compare
148          */
149         if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
150                 /* rec_beg >= leaf_end */
151                 if (rec->leaf.base.key - rec->leaf.data_len >= leaf->base.key)
152                         return(2);
153                 /* rec_end <= leaf_beg */
154                 if (rec->leaf.base.key <= leaf->base.key - leaf->data_len)
155                         return(-2);
156         } else {
157                 if (rec->leaf.base.key < leaf->base.key)
158                         return(-2);
159                 if (rec->leaf.base.key > leaf->base.key)
160                         return(2);
161         }
162
163         /*
164          * We have to return 0 at this point, even if DELETED_FE is set,
165          * because returning anything else will cause the scan to ignore
166          * one of the branches when we really want it to check both.
167          */
168         return(0);
169 }
170
171 /*
172  * RB_SCAN comparison code for hammer_mem_first().  The argument order
173  * is reversed so the comparison result has to be negated.  key_beg and
174  * key_end are both range-inclusive.
175  *
176  * Localized deletions are not cached in-memory.
177  */
178 static
179 int
180 hammer_rec_scan_cmp(hammer_record_t rec, void *data)
181 {
182         hammer_cursor_t cursor = data;
183         int r;
184
185         r = hammer_rec_cmp(&cursor->key_beg, rec);
186         if (r > 1)
187                 return(-1);
188         r = hammer_rec_cmp(&cursor->key_end, rec);
189         if (r < -1)
190                 return(1);
191         return(0);
192 }
193
194 /*
195  * This compare function is used when simply looking up key_beg.
196  */
197 static
198 int
199 hammer_rec_find_cmp(hammer_record_t rec, void *data)
200 {
201         hammer_cursor_t cursor = data;
202         int r;
203
204         r = hammer_rec_cmp(&cursor->key_beg, rec);
205         if (r > 1)
206                 return(-1);
207         if (r < -1)
208                 return(1);
209         return(0);
210 }
211
212 /*
213  * Locate blocks within the truncation range.  Partial blocks do not count.
214  */
215 static
216 int
217 hammer_rec_trunc_cmp(hammer_record_t rec, void *data)
218 {
219         struct rec_trunc_info *info = data;
220
221         if (rec->leaf.base.rec_type < info->rec_type)
222                 return(-1);
223         if (rec->leaf.base.rec_type > info->rec_type)
224                 return(1);
225
226         switch(rec->leaf.base.rec_type) {
227         case HAMMER_RECTYPE_DB:
228                 /*
229                  * DB record key is not beyond the truncation point, retain.
230                  */
231                 if (rec->leaf.base.key < info->trunc_off)
232                         return(-1);
233                 break;
234         case HAMMER_RECTYPE_DATA:
235                 /*
236                  * DATA record offset start is not beyond the truncation point,
237                  * retain.
238                  */
239                 if (rec->leaf.base.key - rec->leaf.data_len < info->trunc_off)
240                         return(-1);
241                 break;
242         default:
243                 panic("hammer_rec_trunc_cmp: unexpected record type");
244         }
245
246         /*
247          * The record start is >= the truncation point, return match,
248          * the record should be destroyed.
249          */
250         return(0);
251 }
252
253 RB_GENERATE(hammer_rec_rb_tree, hammer_record, rb_node, hammer_rec_rb_compare);
254
255 /*
256  * Allocate a record for the caller to finish filling in.  The record is
257  * returned referenced.
258  */
259 hammer_record_t
260 hammer_alloc_mem_record(hammer_inode_t ip, int data_len)
261 {
262         hammer_record_t record;
263         hammer_mount_t hmp;
264
265         hmp = ip->hmp;
266         ++hammer_count_records;
267         record = kmalloc(sizeof(*record), hmp->m_misc,
268                          M_WAITOK | M_ZERO | M_USE_RESERVE);
269         record->flush_state = HAMMER_FST_IDLE;
270         record->ip = ip;
271         record->leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
272         record->leaf.data_len = data_len;
273         hammer_ref(&record->lock);
274
275         if (data_len) {
276                 record->data = kmalloc(data_len, hmp->m_misc, M_WAITOK | M_ZERO);
277                 record->flags |= HAMMER_RECF_ALLOCDATA;
278                 ++hammer_count_record_datas;
279         }
280
281         return (record);
282 }
283
284 void
285 hammer_wait_mem_record_ident(hammer_record_t record, const char *ident)
286 {
287         while (record->flush_state == HAMMER_FST_FLUSH) {
288                 record->flags |= HAMMER_RECF_WANTED;
289                 tsleep(record, 0, ident, 0);
290         }
291 }
292
293 /*
294  * Called from the backend, hammer_inode.c, after a record has been
295  * flushed to disk.  The record has been exclusively locked by the
296  * caller and interlocked with BE.
297  *
298  * We clean up the state, unlock, and release the record (the record
299  * was referenced by the fact that it was in the HAMMER_FST_FLUSH state).
300  */
301 void
302 hammer_flush_record_done(hammer_record_t record, int error)
303 {
304         hammer_inode_t target_ip;
305
306         KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
307         KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
308
309         /*
310          * If an error occured, the backend was unable to sync the
311          * record to its media.  Leave the record intact.
312          */
313         if (error) {
314                 hammer_critical_error(record->ip->hmp, record->ip, error,
315                                       "while flushing record");
316         }
317
318         --record->flush_group->refs;
319         record->flush_group = NULL;
320
321         /*
322          * Adjust the flush state and dependancy based on success or
323          * failure.
324          */
325         if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) {
326                 if ((target_ip = record->target_ip) != NULL) {
327                         TAILQ_REMOVE(&target_ip->target_list, record,
328                                      target_entry);
329                         record->target_ip = NULL;
330                         hammer_test_inode(target_ip);
331                 }
332                 record->flush_state = HAMMER_FST_IDLE;
333         } else {
334                 if (record->target_ip) {
335                         record->flush_state = HAMMER_FST_SETUP;
336                         hammer_test_inode(record->ip);
337                         hammer_test_inode(record->target_ip);
338                 } else {
339                         record->flush_state = HAMMER_FST_IDLE;
340                 }
341         }
342         record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
343
344         /*
345          * Cleanup
346          */
347         if (record->flags & HAMMER_RECF_WANTED) {
348                 record->flags &= ~HAMMER_RECF_WANTED;
349                 wakeup(record);
350         }
351         hammer_rel_mem_record(record);
352 }
353
354 /*
355  * Release a memory record.  Records marked for deletion are immediately
356  * removed from the RB-Tree but otherwise left intact until the last ref
357  * goes away.
358  */
359 void
360 hammer_rel_mem_record(struct hammer_record *record)
361 {
362         hammer_mount_t hmp;
363         hammer_reserve_t resv;
364         hammer_inode_t ip;
365         hammer_inode_t target_ip;
366
367         hammer_unref(&record->lock);
368
369         if (record->lock.refs == 0) {
370                 /*
371                  * Upon release of the last reference wakeup any waiters.
372                  * The record structure may get destroyed so callers will
373                  * loop up and do a relookup.
374                  *
375                  * WARNING!  Record must be removed from RB-TREE before we
376                  * might possibly block.  hammer_test_inode() can block!
377                  */
378                 ip = record->ip;
379                 hmp = ip->hmp;
380
381                 /*
382                  * Upon release of the last reference a record marked deleted
383                  * by the front or backend, or committed by the backend,
384                  * is destroyed.
385                  */
386                 if (record->flags & (HAMMER_RECF_DELETED_FE |
387                                      HAMMER_RECF_DELETED_BE |
388                                      HAMMER_RECF_COMMITTED)) {
389                         KKASSERT(ip->lock.refs > 0);
390                         KKASSERT(record->flush_state != HAMMER_FST_FLUSH);
391
392                         /*
393                          * target_ip may have zero refs, we have to ref it
394                          * to prevent it from being ripped out from under
395                          * us.
396                          */
397                         if ((target_ip = record->target_ip) != NULL) {
398                                 TAILQ_REMOVE(&target_ip->target_list,
399                                              record, target_entry);
400                                 record->target_ip = NULL;
401                                 hammer_ref(&target_ip->lock);
402                         }
403
404                         if (record->flags & HAMMER_RECF_ONRBTREE) {
405                                 RB_REMOVE(hammer_rec_rb_tree,
406                                           &record->ip->rec_tree,
407                                           record);
408                                 KKASSERT(ip->rsv_recs > 0);
409                                 --hmp->rsv_recs;
410                                 --ip->rsv_recs;
411                                 hmp->rsv_databytes -= record->leaf.data_len;
412                                 record->flags &= ~HAMMER_RECF_ONRBTREE;
413
414                                 if (RB_EMPTY(&record->ip->rec_tree)) {
415                                         record->ip->flags &= ~HAMMER_INODE_XDIRTY;
416                                         record->ip->sync_flags &= ~HAMMER_INODE_XDIRTY;
417                                         hammer_test_inode(record->ip);
418                                 }
419                         }
420
421                         /*
422                          * We must wait for any direct-IO to complete before
423                          * we can destroy the record because the bio may
424                          * have a reference to it.
425                          */
426                         if (record->flags & 
427                            (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL)) {
428                                 hammer_io_direct_wait(record);
429                         }
430
431
432                         /*
433                          * Do this test after removing record from the B-Tree.
434                          */
435                         if (target_ip) {
436                                 hammer_test_inode(target_ip);
437                                 hammer_rel_inode(target_ip, 0);
438                         }
439
440                         if (record->flags & HAMMER_RECF_ALLOCDATA) {
441                                 --hammer_count_record_datas;
442                                 kfree(record->data, hmp->m_misc);
443                                 record->flags &= ~HAMMER_RECF_ALLOCDATA;
444                         }
445
446                         /*
447                          * Release the reservation.
448                          *
449                          * If the record was not committed we can theoretically
450                          * undo the reservation.  However, doing so might
451                          * create weird edge cases with the ordering of
452                          * direct writes because the related buffer cache
453                          * elements are per-vnode.  So we don't try.
454                          */
455                         if ((resv = record->resv) != NULL) {
456                                 /* XXX undo leaf.data_offset,leaf.data_len */
457                                 hammer_blockmap_reserve_complete(hmp, resv);
458                                 record->resv = NULL;
459                         }
460                         record->data = NULL;
461                         --hammer_count_records;
462                         kfree(record, hmp->m_misc);
463                 }
464         }
465 }
466
467 /*
468  * Record visibility depends on whether the record is being accessed by
469  * the backend or the frontend.  Backend tests ignore the frontend delete
470  * flag.  Frontend tests do NOT ignore the backend delete/commit flags and
471  * must also check for commit races.
472  *
473  * Return non-zero if the record is visible, zero if it isn't or if it is
474  * deleted.  Returns 0 if the record has been comitted (unless the special
475  * delete-visibility flag is set).  A committed record must be located
476  * via the media B-Tree.  Returns non-zero if the record is good.
477  *
478  * If HAMMER_CURSOR_DELETE_VISIBILITY is set we allow deleted memory
479  * records to be returned.  This is so pending deletions are detected
480  * when using an iterator to locate an unused hash key, or when we need
481  * to locate historical records on-disk to destroy.
482  */
483 static __inline
484 int
485 hammer_ip_iterate_mem_good(hammer_cursor_t cursor, hammer_record_t record)
486 {
487         if (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY)
488                 return(1);
489         if (cursor->flags & HAMMER_CURSOR_BACKEND) {
490                 if (record->flags & (HAMMER_RECF_DELETED_BE |
491                                      HAMMER_RECF_COMMITTED)) {
492                         return(0);
493                 }
494         } else {
495                 if (record->flags & (HAMMER_RECF_DELETED_FE |
496                                      HAMMER_RECF_DELETED_BE |
497                                      HAMMER_RECF_COMMITTED)) {
498                         return(0);
499                 }
500         }
501         return(1);
502 }
503
504 /*
505  * This callback is used as part of the RB_SCAN function for in-memory
506  * records.  We terminate it (return -1) as soon as we get a match.
507  *
508  * This routine is used by frontend code.
509  *
510  * The primary compare code does not account for ASOF lookups.  This
511  * code handles that case as well as a few others.
512  */
513 static
514 int
515 hammer_rec_scan_callback(hammer_record_t rec, void *data)
516 {
517         hammer_cursor_t cursor = data;
518
519         /*
520          * We terminate on success, so this should be NULL on entry.
521          */
522         KKASSERT(cursor->iprec == NULL);
523
524         /*
525          * Skip if the record was marked deleted or committed.
526          */
527         if (hammer_ip_iterate_mem_good(cursor, rec) == 0)
528                 return(0);
529
530         /*
531          * Skip if not visible due to our as-of TID
532          */
533         if (cursor->flags & HAMMER_CURSOR_ASOF) {
534                 if (cursor->asof < rec->leaf.base.create_tid)
535                         return(0);
536                 if (rec->leaf.base.delete_tid &&
537                     cursor->asof >= rec->leaf.base.delete_tid) {
538                         return(0);
539                 }
540         }
541
542         /*
543          * ref the record.  The record is protected from backend B-Tree
544          * interactions by virtue of the cursor's IP lock.
545          */
546         hammer_ref(&rec->lock);
547
548         /*
549          * The record may have been deleted or committed while we
550          * were blocked.  XXX remove?
551          */
552         if (hammer_ip_iterate_mem_good(cursor, rec) == 0) {
553                 hammer_rel_mem_record(rec);
554                 return(0);
555         }
556
557         /*
558          * Set the matching record and stop the scan.
559          */
560         cursor->iprec = rec;
561         return(-1);
562 }
563
564
565 /*
566  * Lookup an in-memory record given the key specified in the cursor.  Works
567  * just like hammer_btree_lookup() but operates on an inode's in-memory
568  * record list.
569  *
570  * The lookup must fail if the record is marked for deferred deletion.
571  *
572  * The API for mem/btree_lookup() does not mess with the ATE/EOF bits.
573  */
574 static
575 int
576 hammer_mem_lookup(hammer_cursor_t cursor)
577 {
578         KKASSERT(cursor->ip);
579         if (cursor->iprec) {
580                 hammer_rel_mem_record(cursor->iprec);
581                 cursor->iprec = NULL;
582         }
583         hammer_rec_rb_tree_RB_SCAN(&cursor->ip->rec_tree, hammer_rec_find_cmp,
584                                    hammer_rec_scan_callback, cursor);
585
586         return (cursor->iprec ? 0 : ENOENT);
587 }
588
589 /*
590  * hammer_mem_first() - locate the first in-memory record matching the
591  * cursor within the bounds of the key range.
592  *
593  * WARNING!  API is slightly different from btree_first().  hammer_mem_first()
594  * will set ATEMEM the same as MEMEOF, and does not return any error.
595  */
596 static
597 void
598 hammer_mem_first(hammer_cursor_t cursor)
599 {
600         hammer_inode_t ip;
601
602         ip = cursor->ip;
603         KKASSERT(ip != NULL);
604
605         if (cursor->iprec) {
606                 hammer_rel_mem_record(cursor->iprec);
607                 cursor->iprec = NULL;
608         }
609         hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_scan_cmp,
610                                    hammer_rec_scan_callback, cursor);
611
612         if (cursor->iprec)
613                 cursor->flags &= ~(HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM);
614         else
615                 cursor->flags |= HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM;
616 }
617
618 /************************************************************************
619  *                   HAMMER IN-MEMORY RECORD FUNCTIONS                  *
620  ************************************************************************
621  *
622  * These functions manipulate in-memory records.  Such records typically
623  * exist prior to being committed to disk or indexed via the on-disk B-Tree.
624  */
625
626 /*
627  * Add a directory entry (dip,ncp) which references inode (ip).
628  *
629  * Note that the low 32 bits of the namekey are set temporarily to create
630  * a unique in-memory record, and may be modified a second time when the
631  * record is synchronized to disk.  In particular, the low 32 bits cannot be
632  * all 0's when synching to disk, which is not handled here.
633  *
634  * NOTE: bytes does not include any terminating \0 on name, and name might
635  * not be terminated.
636  */
637 int
638 hammer_ip_add_directory(struct hammer_transaction *trans,
639                      struct hammer_inode *dip, const char *name, int bytes,
640                      struct hammer_inode *ip)
641 {
642         struct hammer_cursor cursor;
643         hammer_record_t record;
644         int error;
645         u_int32_t max_iterations;
646
647         record = hammer_alloc_mem_record(dip, HAMMER_ENTRY_SIZE(bytes));
648
649         record->type = HAMMER_MEM_RECORD_ADD;
650         record->leaf.base.localization = dip->obj_localization +
651                                          HAMMER_LOCALIZE_MISC;
652         record->leaf.base.obj_id = dip->obj_id;
653         record->leaf.base.key = hammer_directory_namekey(dip, name, bytes,
654                                                          &max_iterations);
655         record->leaf.base.rec_type = HAMMER_RECTYPE_DIRENTRY;
656         record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
657         record->data->entry.obj_id = ip->obj_id;
658         record->data->entry.localization = ip->obj_localization;
659         bcopy(name, record->data->entry.name, bytes);
660
661         ++ip->ino_data.nlinks;
662         ip->ino_data.ctime = trans->time;
663         hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
664
665         /*
666          * Find an unused namekey.  Both the in-memory record tree and
667          * the B-Tree are checked.  We do not want historically deleted
668          * names to create a collision as our iteration space may be limited,
669          * and since create_tid wouldn't match anyway an ASOF search
670          * must be used to locate collisions.
671          *
672          * delete-visibility is set so pending deletions do not give us
673          * a false-negative on our ability to use an iterator.
674          *
675          * The iterator must not rollover the key.  Directory keys only
676          * use the positive key space.
677          */
678         hammer_init_cursor(trans, &cursor, &dip->cache[1], dip);
679         cursor.key_beg = record->leaf.base;
680         cursor.flags |= HAMMER_CURSOR_ASOF;
681         cursor.flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
682         cursor.asof = ip->obj_asof;
683
684         while (hammer_ip_lookup(&cursor) == 0) {
685                 ++record->leaf.base.key;
686                 KKASSERT(record->leaf.base.key > 0);
687                 cursor.key_beg.key = record->leaf.base.key;
688                 if (--max_iterations == 0) {
689                         hammer_rel_mem_record(record);
690                         error = ENOSPC;
691                         goto failed;
692                 }
693         }
694
695         /*
696          * The target inode and the directory entry are bound together.
697          */
698         record->target_ip = ip;
699         record->flush_state = HAMMER_FST_SETUP;
700         TAILQ_INSERT_TAIL(&ip->target_list, record, target_entry);
701
702         /*
703          * The inode now has a dependancy and must be taken out of the idle
704          * state.  An inode not in an idle state is given an extra reference.
705          *
706          * When transitioning to a SETUP state flag for an automatic reflush
707          * when the dependancies are disposed of if someone is waiting on
708          * the inode.
709          */
710         if (ip->flush_state == HAMMER_FST_IDLE) {
711                 hammer_ref(&ip->lock);
712                 ip->flush_state = HAMMER_FST_SETUP;
713                 if (ip->flags & HAMMER_INODE_FLUSHW)
714                         ip->flags |= HAMMER_INODE_REFLUSH;
715         }
716         error = hammer_mem_add(record);
717         if (error == 0) {
718                 dip->ino_data.mtime = trans->time;
719                 hammer_modify_inode(dip, HAMMER_INODE_MTIME);
720         }
721 failed:
722         hammer_done_cursor(&cursor);
723         return(error);
724 }
725
726 /*
727  * Delete the directory entry and update the inode link count.  The
728  * cursor must be seeked to the directory entry record being deleted.
729  *
730  * The related inode should be share-locked by the caller.  The caller is
731  * on the frontend.  It could also be NULL indicating that the directory
732  * entry being removed has no related inode.
733  *
734  * This function can return EDEADLK requiring the caller to terminate
735  * the cursor, any locks, wait on the returned record, and retry.
736  */
737 int
738 hammer_ip_del_directory(struct hammer_transaction *trans,
739                      hammer_cursor_t cursor, struct hammer_inode *dip,
740                      struct hammer_inode *ip)
741 {
742         hammer_record_t record;
743         int error;
744
745         if (hammer_cursor_inmem(cursor)) {
746                 /*
747                  * In-memory (unsynchronized) records can simply be freed.
748                  *
749                  * Even though the HAMMER_RECF_DELETED_FE flag is ignored
750                  * by the backend, we must still avoid races against the
751                  * backend potentially syncing the record to the media.
752                  *
753                  * We cannot call hammer_ip_delete_record(), that routine may
754                  * only be called from the backend.
755                  */
756                 record = cursor->iprec;
757                 if (record->flags & (HAMMER_RECF_INTERLOCK_BE |
758                                      HAMMER_RECF_DELETED_BE |
759                                      HAMMER_RECF_COMMITTED)) {
760                         KKASSERT(cursor->deadlk_rec == NULL);
761                         hammer_ref(&record->lock);
762                         cursor->deadlk_rec = record;
763                         error = EDEADLK;
764                 } else {
765                         KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
766                         record->flags |= HAMMER_RECF_DELETED_FE;
767                         error = 0;
768                 }
769         } else {
770                 /*
771                  * If the record is on-disk we have to queue the deletion by
772                  * the record's key.  This also causes lookups to skip the
773                  * record.
774                  */
775                 KKASSERT(dip->flags &
776                          (HAMMER_INODE_ONDISK | HAMMER_INODE_DONDISK));
777                 record = hammer_alloc_mem_record(dip, 0);
778                 record->type = HAMMER_MEM_RECORD_DEL;
779                 record->leaf.base = cursor->leaf->base;
780
781                 /*
782                  * ip may be NULL, indicating the deletion of a directory
783                  * entry which has no related inode.
784                  */
785                 record->target_ip = ip;
786                 if (ip) {
787                         record->flush_state = HAMMER_FST_SETUP;
788                         TAILQ_INSERT_TAIL(&ip->target_list, record,
789                                           target_entry);
790                 } else {
791                         record->flush_state = HAMMER_FST_IDLE;
792                 }
793
794                 /*
795                  * The inode now has a dependancy and must be taken out of
796                  * the idle state.  An inode not in an idle state is given
797                  * an extra reference.
798                  *
799                  * When transitioning to a SETUP state flag for an automatic
800                  * reflush when the dependancies are disposed of if someone
801                  * is waiting on the inode.
802                  */
803                 if (ip && ip->flush_state == HAMMER_FST_IDLE) {
804                         hammer_ref(&ip->lock);
805                         ip->flush_state = HAMMER_FST_SETUP;
806                         if (ip->flags & HAMMER_INODE_FLUSHW)
807                                 ip->flags |= HAMMER_INODE_REFLUSH;
808                 }
809
810                 error = hammer_mem_add(record);
811         }
812
813         /*
814          * One less link.  The file may still be open in the OS even after
815          * all links have gone away.
816          *
817          * We have to terminate the cursor before syncing the inode to
818          * avoid deadlocking against ourselves.  XXX this may no longer
819          * be true.
820          *
821          * If nlinks drops to zero and the vnode is inactive (or there is
822          * no vnode), call hammer_inode_unloadable_check() to zonk the
823          * inode.  If we don't do this here the inode will not be destroyed
824          * on-media until we unmount.
825          */
826         if (error == 0) {
827                 if (ip) {
828                         --ip->ino_data.nlinks;  /* do before we might block */
829                         ip->ino_data.ctime = trans->time;
830                 }
831                 dip->ino_data.mtime = trans->time;
832                 hammer_modify_inode(dip, HAMMER_INODE_MTIME);
833                 if (ip) {
834                         hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
835                         if (ip->ino_data.nlinks == 0 &&
836                             (ip->vp == NULL || (ip->vp->v_flag & VINACTIVE))) {
837                                 hammer_done_cursor(cursor);
838                                 hammer_inode_unloadable_check(ip, 1);
839                                 hammer_flush_inode(ip, 0);
840                         }
841                 }
842
843         }
844         return(error);
845 }
846
847 /*
848  * Add a record to an inode.
849  *
850  * The caller must allocate the record with hammer_alloc_mem_record(ip) and
851  * initialize the following additional fields:
852  *
853  * The related inode should be share-locked by the caller.  The caller is
854  * on the frontend.
855  *
856  * record->rec.entry.base.base.key
857  * record->rec.entry.base.base.rec_type
858  * record->rec.entry.base.base.data_len
859  * record->data         (a copy will be kmalloc'd if it cannot be embedded)
860  */
861 int
862 hammer_ip_add_record(struct hammer_transaction *trans, hammer_record_t record)
863 {
864         hammer_inode_t ip = record->ip;
865         int error;
866
867         KKASSERT(record->leaf.base.localization != 0);
868         record->leaf.base.obj_id = ip->obj_id;
869         record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
870         error = hammer_mem_add(record);
871         return(error);
872 }
873
874 /*
875  * Locate a bulk record in-memory.  Bulk records allow disk space to be
876  * reserved so the front-end can flush large data writes without having
877  * to queue the BIO to the flusher.  Only the related record gets queued
878  * to the flusher.
879  */
880
881 static hammer_record_t
882 hammer_ip_get_bulk(hammer_inode_t ip, off_t file_offset, int bytes)
883 {
884         struct hammer_bulk_info info;
885         
886         bzero(&info, sizeof(info));
887         info.leaf.base.obj_id = ip->obj_id;
888         info.leaf.base.key = file_offset + bytes;
889         info.leaf.base.create_tid = 0;
890         info.leaf.base.delete_tid = 0;
891         info.leaf.base.rec_type = HAMMER_RECTYPE_DATA;
892         info.leaf.base.obj_type = 0;                            /* unused */
893         info.leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;        /* unused */
894         info.leaf.base.localization = ip->obj_localization +    /* unused */
895                                       HAMMER_LOCALIZE_MISC;
896         info.leaf.data_len = bytes;
897
898         hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_overlap_cmp,
899                                    hammer_bulk_scan_callback, &info);
900
901         return(info.record);    /* may be NULL */
902 }
903
904 /*
905  * Take records vetted by overlap_cmp.  The first non-deleted record
906  * (if any) stops the scan.
907  */
908 static int
909 hammer_bulk_scan_callback(hammer_record_t record, void *data)
910 {
911         struct hammer_bulk_info *info = data;
912
913         if (record->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
914                              HAMMER_RECF_COMMITTED)) {
915                 return(0);
916         }
917         hammer_ref(&record->lock);
918         info->record = record;
919         return(-1);                     /* stop scan */
920 }
921
922 /*
923  * Reserve blockmap space placemarked with an in-memory record.  
924  *
925  * This routine is called by the frontend in order to be able to directly
926  * flush a buffer cache buffer.  The frontend has locked the related buffer
927  * cache buffers and we should be able to manipulate any overlapping
928  * in-memory records.
929  *
930  * The caller is responsible for adding the returned record.
931  */
932 hammer_record_t
933 hammer_ip_add_bulk(hammer_inode_t ip, off_t file_offset, void *data, int bytes,
934                    int *errorp)
935 {
936         hammer_record_t record;
937         hammer_record_t conflict;
938         int zone;
939
940         /*
941          * Deal with conflicting in-memory records.  We cannot have multiple
942          * in-memory records for the same base offset without seriously
943          * confusing the backend, including but not limited to the backend
944          * issuing delete-create-delete or create-delete-create sequences
945          * and asserting on the delete_tid being the same as the create_tid.
946          *
947          * If we encounter a record with the backend interlock set we cannot
948          * immediately delete it without confusing the backend.
949          */
950         while ((conflict = hammer_ip_get_bulk(ip, file_offset, bytes)) !=NULL) {
951                 if (conflict->flags & HAMMER_RECF_INTERLOCK_BE) {
952                         conflict->flags |= HAMMER_RECF_WANTED;
953                         tsleep(conflict, 0, "hmrrc3", 0);
954                 } else {
955                         conflict->flags |= HAMMER_RECF_DELETED_FE;
956                 }
957                 hammer_rel_mem_record(conflict);
958         }
959
960         /*
961          * Create a record to cover the direct write.  This is called with
962          * the related BIO locked so there should be no possible conflict.
963          *
964          * The backend is responsible for finalizing the space reserved in
965          * this record.
966          *
967          * XXX bytes not aligned, depend on the reservation code to
968          * align the reservation.
969          */
970         record = hammer_alloc_mem_record(ip, 0);
971         zone = (bytes >= HAMMER_BUFSIZE) ? HAMMER_ZONE_LARGE_DATA_INDEX :
972                                            HAMMER_ZONE_SMALL_DATA_INDEX;
973         record->resv = hammer_blockmap_reserve(ip->hmp, zone, bytes,
974                                                &record->leaf.data_offset,
975                                                errorp);
976         if (record->resv == NULL) {
977                 kprintf("hammer_ip_add_bulk: reservation failed\n");
978                 hammer_rel_mem_record(record);
979                 return(NULL);
980         }
981         record->type = HAMMER_MEM_RECORD_DATA;
982         record->leaf.base.rec_type = HAMMER_RECTYPE_DATA;
983         record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
984         record->leaf.base.obj_id = ip->obj_id;
985         record->leaf.base.key = file_offset + bytes;
986         record->leaf.base.localization = ip->obj_localization +
987                                          HAMMER_LOCALIZE_MISC;
988         record->leaf.data_len = bytes;
989         hammer_crc_set_leaf(data, &record->leaf);
990         KKASSERT(*errorp == 0);
991         return(record);
992 }
993
994 /*
995  * Frontend truncation code.  Scan in-memory records only.  On-disk records
996  * and records in a flushing state are handled by the backend.  The vnops
997  * setattr code will handle the block containing the truncation point.
998  *
999  * Partial blocks are not deleted.
1000  */
1001 int
1002 hammer_ip_frontend_trunc(struct hammer_inode *ip, off_t file_size)
1003 {
1004         struct rec_trunc_info info;
1005
1006         switch(ip->ino_data.obj_type) {
1007         case HAMMER_OBJTYPE_REGFILE:
1008                 info.rec_type = HAMMER_RECTYPE_DATA;
1009                 break;
1010         case HAMMER_OBJTYPE_DBFILE:
1011                 info.rec_type = HAMMER_RECTYPE_DB;
1012                 break;
1013         default:
1014                 return(EINVAL);
1015         }
1016         info.trunc_off = file_size;
1017         hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_trunc_cmp,
1018                                    hammer_frontend_trunc_callback, &info);
1019         return(0);
1020 }
1021
1022 static int
1023 hammer_frontend_trunc_callback(hammer_record_t record, void *data __unused)
1024 {
1025         if (record->flags & HAMMER_RECF_DELETED_FE)
1026                 return(0);
1027         if (record->flush_state == HAMMER_FST_FLUSH)
1028                 return(0);
1029         KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
1030         hammer_ref(&record->lock);
1031         record->flags |= HAMMER_RECF_DELETED_FE;
1032         hammer_rel_mem_record(record);
1033         return(0);
1034 }
1035
1036 /*
1037  * Return 1 if the caller must check for and delete existing records
1038  * before writing out a new data record.
1039  *
1040  * Return 0 if the caller can just insert the record into the B-Tree without
1041  * checking.
1042  */
1043 static int
1044 hammer_record_needs_overwrite_delete(hammer_record_t record)
1045 {
1046         hammer_inode_t ip = record->ip;
1047         int64_t file_offset;
1048         int r;
1049
1050         if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE)
1051                 file_offset = record->leaf.base.key;
1052         else
1053                 file_offset = record->leaf.base.key - record->leaf.data_len;
1054         r = (file_offset < ip->save_trunc_off);
1055         if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1056                 if (ip->save_trunc_off <= record->leaf.base.key)
1057                         ip->save_trunc_off = record->leaf.base.key + 1;
1058         } else {
1059                 if (ip->save_trunc_off < record->leaf.base.key)
1060                         ip->save_trunc_off = record->leaf.base.key;
1061         }
1062         return(r);
1063 }
1064
1065 /*
1066  * Backend code.  Sync a record to the media.
1067  */
1068 int
1069 hammer_ip_sync_record_cursor(hammer_cursor_t cursor, hammer_record_t record)
1070 {
1071         hammer_transaction_t trans = cursor->trans;
1072         int64_t file_offset;
1073         int bytes;
1074         void *bdata;
1075         int error;
1076         int doprop;
1077
1078         KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1079         KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
1080         KKASSERT(record->leaf.base.localization != 0);
1081
1082         /*
1083          * Any direct-write related to the record must complete before we
1084          * can sync the record to the on-disk media.
1085          */
1086         if (record->flags & (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL))
1087                 hammer_io_direct_wait(record);
1088
1089         /*
1090          * If this is a bulk-data record placemarker there may be an existing
1091          * record on-disk, indicating a data overwrite.  If there is the
1092          * on-disk record must be deleted before we can insert our new record.
1093          *
1094          * We've synthesized this record and do not know what the create_tid
1095          * on-disk is, nor how much data it represents.
1096          *
1097          * Keep in mind that (key) for data records is (base_offset + len),
1098          * not (base_offset).  Also, we only want to get rid of on-disk
1099          * records since we are trying to sync our in-memory record, call
1100          * hammer_ip_delete_range() with truncating set to 1 to make sure
1101          * it skips in-memory records.
1102          *
1103          * It is ok for the lookup to return ENOENT.
1104          *
1105          * NOTE OPTIMIZATION: sync_trunc_off is used to determine if we have
1106          * to call hammer_ip_delete_range() or not.  This also means we must
1107          * update sync_trunc_off() as we write.
1108          */
1109         if (record->type == HAMMER_MEM_RECORD_DATA &&
1110             hammer_record_needs_overwrite_delete(record)) {
1111                 file_offset = record->leaf.base.key - record->leaf.data_len;
1112                 bytes = (record->leaf.data_len + HAMMER_BUFMASK) & 
1113                         ~HAMMER_BUFMASK;
1114                 KKASSERT((file_offset & HAMMER_BUFMASK) == 0);
1115                 error = hammer_ip_delete_range(
1116                                 cursor, record->ip,
1117                                 file_offset, file_offset + bytes - 1,
1118                                 1);
1119                 if (error && error != ENOENT)
1120                         goto done;
1121         }
1122
1123         /*
1124          * If this is a general record there may be an on-disk version
1125          * that must be deleted before we can insert the new record.
1126          */
1127         if (record->type == HAMMER_MEM_RECORD_GENERAL) {
1128                 error = hammer_delete_general(cursor, record->ip,
1129                                               &record->leaf);
1130                 if (error && error != ENOENT)
1131                         goto done;
1132         }
1133
1134         /*
1135          * Setup the cursor.
1136          */
1137         hammer_normalize_cursor(cursor);
1138         cursor->key_beg = record->leaf.base;
1139         cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1140         cursor->flags |= HAMMER_CURSOR_BACKEND;
1141         cursor->flags &= ~HAMMER_CURSOR_INSERT;
1142
1143         /*
1144          * Records can wind up on-media before the inode itself is on-media.
1145          * Flag the case.
1146          */
1147         record->ip->flags |= HAMMER_INODE_DONDISK;
1148
1149         /*
1150          * If we are deleting a directory entry an exact match must be
1151          * found on-disk.
1152          */
1153         if (record->type == HAMMER_MEM_RECORD_DEL) {
1154                 error = hammer_btree_lookup(cursor);
1155                 if (error == 0) {
1156                         KKASSERT(cursor->iprec == NULL);
1157                         error = hammer_ip_delete_record(cursor, record->ip,
1158                                                         trans->tid);
1159                         if (error == 0) {
1160                                 record->flags |= HAMMER_RECF_DELETED_BE |
1161                                                  HAMMER_RECF_COMMITTED;
1162                                 ++record->ip->rec_generation;
1163                         }
1164                 }
1165                 goto done;
1166         }
1167
1168         /*
1169          * We are inserting.
1170          *
1171          * Issue a lookup to position the cursor and locate the cluster.  The
1172          * target key should not exist.  If we are creating a directory entry
1173          * we may have to iterate the low 32 bits of the key to find an unused
1174          * key.
1175          */
1176         hammer_sync_lock_sh(trans);
1177         cursor->flags |= HAMMER_CURSOR_INSERT;
1178         error = hammer_btree_lookup(cursor);
1179         if (hammer_debug_inode)
1180                 kprintf("DOINSERT LOOKUP %d\n", error);
1181         if (error == 0) {
1182                 kprintf("hammer_ip_sync_record: duplicate rec "
1183                         "at (%016llx)\n", record->leaf.base.key);
1184                 Debugger("duplicate record1");
1185                 error = EIO;
1186         }
1187 #if 0
1188         if (record->type == HAMMER_MEM_RECORD_DATA)
1189                 kprintf("sync_record  %016llx ---------------- %016llx %d\n",
1190                         record->leaf.base.key - record->leaf.data_len,
1191                         record->leaf.data_offset, error);
1192 #endif
1193
1194         if (error != ENOENT)
1195                 goto done_unlock;
1196
1197         /*
1198          * Allocate the record and data.  The result buffers will be
1199          * marked as being modified and further calls to
1200          * hammer_modify_buffer() will result in unneeded UNDO records.
1201          *
1202          * Support zero-fill records (data == NULL and data_len != 0)
1203          */
1204         if (record->type == HAMMER_MEM_RECORD_DATA) {
1205                 /*
1206                  * The data portion of a bulk-data record has already been
1207                  * committed to disk, we need only adjust the layer2
1208                  * statistics in the same transaction as our B-Tree insert.
1209                  */
1210                 KKASSERT(record->leaf.data_offset != 0);
1211                 error = hammer_blockmap_finalize(trans,
1212                                                  record->resv,
1213                                                  record->leaf.data_offset,
1214                                                  record->leaf.data_len);
1215         } else if (record->data && record->leaf.data_len) {
1216                 /*
1217                  * Wholely cached record, with data.  Allocate the data.
1218                  */
1219                 bdata = hammer_alloc_data(trans, record->leaf.data_len,
1220                                           record->leaf.base.rec_type,
1221                                           &record->leaf.data_offset,
1222                                           &cursor->data_buffer, &error);
1223                 if (bdata == NULL)
1224                         goto done_unlock;
1225                 hammer_crc_set_leaf(record->data, &record->leaf);
1226                 hammer_modify_buffer(trans, cursor->data_buffer, NULL, 0);
1227                 bcopy(record->data, bdata, record->leaf.data_len);
1228                 hammer_modify_buffer_done(cursor->data_buffer);
1229         } else {
1230                 /*
1231                  * Wholely cached record, without data.
1232                  */
1233                 record->leaf.data_offset = 0;
1234                 record->leaf.data_crc = 0;
1235         }
1236
1237         error = hammer_btree_insert(cursor, &record->leaf, &doprop);
1238         if (hammer_debug_inode && error)
1239                 kprintf("BTREE INSERT error %d @ %016llx:%d key %016llx\n", error, cursor->node->node_offset, cursor->index, record->leaf.base.key);
1240
1241         /*
1242          * Our record is on-disk and we normally mark the in-memory version
1243          * as having been committed (and not BE-deleted).
1244          *
1245          * If the record represented a directory deletion but we had to
1246          * sync a valid directory entry to disk due to dependancies,
1247          * we must convert the record to a covering delete so the
1248          * frontend does not have visibility on the synced entry.
1249          */
1250         if (error == 0) {
1251                 if (doprop) {
1252                         hammer_btree_do_propagation(cursor,
1253                                                     record->ip->pfsm,
1254                                                     &record->leaf);
1255                 }
1256                 if (record->flags & HAMMER_RECF_CONVERT_DELETE) {
1257                         /*
1258                          * Must convert deleted directory entry add
1259                          * to a directory entry delete.
1260                          */
1261                         KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
1262                         record->flags &= ~HAMMER_RECF_DELETED_FE;
1263                         record->type = HAMMER_MEM_RECORD_DEL;
1264                         KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1265                         record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
1266                         KKASSERT((record->flags & (HAMMER_RECF_COMMITTED |
1267                                                  HAMMER_RECF_DELETED_BE)) == 0);
1268                         /* converted record is not yet committed */
1269                         /* hammer_flush_record_done takes care of the rest */
1270                 } else {
1271                         /*
1272                          * Everything went fine and we are now done with
1273                          * this record.
1274                          */
1275                         record->flags |= HAMMER_RECF_COMMITTED;
1276                         ++record->ip->rec_generation;
1277                 }
1278         } else {
1279                 if (record->leaf.data_offset) {
1280                         hammer_blockmap_free(trans, record->leaf.data_offset,
1281                                              record->leaf.data_len);
1282                 }
1283         }
1284 done_unlock:
1285         hammer_sync_unlock(trans);
1286 done:
1287         return(error);
1288 }
1289
1290 /*
1291  * Add the record to the inode's rec_tree.  The low 32 bits of a directory
1292  * entry's key is used to deal with hash collisions in the upper 32 bits.
1293  * A unique 64 bit key is generated in-memory and may be regenerated a
1294  * second time when the directory record is flushed to the on-disk B-Tree.
1295  *
1296  * A referenced record is passed to this function.  This function
1297  * eats the reference.  If an error occurs the record will be deleted.
1298  *
1299  * A copy of the temporary record->data pointer provided by the caller
1300  * will be made.
1301  */
1302 int
1303 hammer_mem_add(hammer_record_t record)
1304 {
1305         hammer_mount_t hmp = record->ip->hmp;
1306
1307         /*
1308          * Make a private copy of record->data
1309          */
1310         if (record->data)
1311                 KKASSERT(record->flags & HAMMER_RECF_ALLOCDATA);
1312
1313         /*
1314          * Insert into the RB tree.  A unique key should have already
1315          * been selected if this is a directory entry.
1316          */
1317         if (RB_INSERT(hammer_rec_rb_tree, &record->ip->rec_tree, record)) {
1318                 record->flags |= HAMMER_RECF_DELETED_FE;
1319                 hammer_rel_mem_record(record);
1320                 return (EEXIST);
1321         }
1322         ++hmp->count_newrecords;
1323         ++hmp->rsv_recs;
1324         ++record->ip->rsv_recs;
1325         record->ip->hmp->rsv_databytes += record->leaf.data_len;
1326         record->flags |= HAMMER_RECF_ONRBTREE;
1327         hammer_modify_inode(record->ip, HAMMER_INODE_XDIRTY);
1328         hammer_rel_mem_record(record);
1329         return(0);
1330 }
1331
1332 /************************************************************************
1333  *                   HAMMER INODE MERGED-RECORD FUNCTIONS               *
1334  ************************************************************************
1335  *
1336  * These functions augment the B-Tree scanning functions in hammer_btree.c
1337  * by merging in-memory records with on-disk records.
1338  */
1339
1340 /*
1341  * Locate a particular record either in-memory or on-disk.
1342  *
1343  * NOTE: This is basically a standalone routine, hammer_ip_next() may
1344  * NOT be called to iterate results.
1345  */
1346 int
1347 hammer_ip_lookup(hammer_cursor_t cursor)
1348 {
1349         int error;
1350
1351         /*
1352          * If the element is in-memory return it without searching the
1353          * on-disk B-Tree
1354          */
1355         KKASSERT(cursor->ip);
1356         error = hammer_mem_lookup(cursor);
1357         if (error == 0) {
1358                 cursor->leaf = &cursor->iprec->leaf;
1359                 return(error);
1360         }
1361         if (error != ENOENT)
1362                 return(error);
1363
1364         /*
1365          * If the inode has on-disk components search the on-disk B-Tree.
1366          */
1367         if ((cursor->ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) == 0)
1368                 return(error);
1369         error = hammer_btree_lookup(cursor);
1370         if (error == 0)
1371                 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1372         return(error);
1373 }
1374
1375 /*
1376  * Helper for hammer_ip_first()/hammer_ip_next()
1377  *
1378  * NOTE: Both ATEDISK and DISKEOF will be set the same.  This sets up
1379  * hammer_ip_first() for calling hammer_ip_next(), and sets up the re-seek
1380  * state if hammer_ip_next() needs to re-seek.
1381  */
1382 static __inline
1383 int
1384 _hammer_ip_seek_btree(hammer_cursor_t cursor)
1385 {
1386         hammer_inode_t ip = cursor->ip;
1387         int error;
1388
1389         if (ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) {
1390                 error = hammer_btree_lookup(cursor);
1391                 if (error == ENOENT || error == EDEADLK) {
1392                         if (hammer_debug_general & 0x2000)
1393                                 kprintf("error %d node %p %016llx index %d\n", error, cursor->node, cursor->node->node_offset, cursor->index);
1394                         cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1395                         error = hammer_btree_iterate(cursor);
1396                 }
1397                 if (error == 0) {
1398                         cursor->flags &= ~(HAMMER_CURSOR_DISKEOF |
1399                                            HAMMER_CURSOR_ATEDISK);
1400                 } else {
1401                         cursor->flags |= HAMMER_CURSOR_DISKEOF |
1402                                          HAMMER_CURSOR_ATEDISK;
1403                         if (error == ENOENT)
1404                                 error = 0;
1405                 }
1406         } else {
1407                 cursor->flags |= HAMMER_CURSOR_DISKEOF | HAMMER_CURSOR_ATEDISK;
1408                 error = 0;
1409         }
1410         return(error);
1411 }
1412
1413 /*
1414  * Helper for hammer_ip_next()
1415  *
1416  * The caller has determined that the media cursor is further along than the
1417  * memory cursor and must be reseeked after a generation number change.
1418  */
1419 static
1420 int
1421 _hammer_ip_reseek(hammer_cursor_t cursor)
1422 {
1423         struct hammer_base_elm save;
1424         hammer_btree_elm_t elm;
1425         int error;
1426         int r;
1427         int again = 0;
1428
1429         /*
1430          * Do the re-seek.
1431          */
1432         kprintf("HAMMER: Debug: re-seeked during scan @ino=%016llx\n",
1433                 (long long)cursor->ip->obj_id);
1434         save = cursor->key_beg;
1435         cursor->key_beg = cursor->iprec->leaf.base;
1436         error = _hammer_ip_seek_btree(cursor);
1437         KKASSERT(error == 0);
1438         cursor->key_beg = save;
1439
1440         /*
1441          * If the memory record was previous returned to
1442          * the caller and the media record matches
1443          * (-1/+1: only create_tid differs), then iterate
1444          * the media record to avoid a double result.
1445          */
1446         if ((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0 &&
1447             (cursor->flags & HAMMER_CURSOR_LASTWASMEM)) {
1448                 elm = &cursor->node->ondisk->elms[cursor->index];
1449                 r = hammer_btree_cmp(&elm->base,
1450                                      &cursor->iprec->leaf.base);
1451                 if (cursor->flags & HAMMER_CURSOR_ASOF) {
1452                         if (r >= -1 && r <= 1) {
1453                                 kprintf("HAMMER: Debug: iterated after "
1454                                         "re-seek (asof r=%d)\n", r);
1455                                 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1456                                 again = 1;
1457                         }
1458                 } else {
1459                         if (r == 0) {
1460                                 kprintf("HAMMER: Debug: iterated after "
1461                                         "re-seek\n");
1462                                 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1463                                 again = 1;
1464                         }
1465                 }
1466         }
1467         return(again);
1468 }
1469
1470 /*
1471  * Locate the first record within the cursor's key_beg/key_end range,
1472  * restricted to a particular inode.  0 is returned on success, ENOENT
1473  * if no records matched the requested range, or some other error.
1474  *
1475  * When 0 is returned hammer_ip_next() may be used to iterate additional
1476  * records within the requested range.
1477  *
1478  * This function can return EDEADLK, requiring the caller to terminate
1479  * the cursor and try again.
1480  */
1481
1482 int
1483 hammer_ip_first(hammer_cursor_t cursor)
1484 {
1485         hammer_inode_t ip = cursor->ip;
1486         int error;
1487
1488         KKASSERT(ip != NULL);
1489
1490         /*
1491          * Clean up fields and setup for merged scan
1492          */
1493         cursor->flags &= ~HAMMER_CURSOR_RETEST;
1494
1495         /*
1496          * Search the in-memory record list (Red-Black tree).  Unlike the
1497          * B-Tree search, mem_first checks for records in the range.
1498          *
1499          * This function will setup both ATEMEM and MEMEOF properly for
1500          * the ip iteration.  ATEMEM will be set if MEMEOF is set.
1501          */
1502         hammer_mem_first(cursor);
1503
1504         /*
1505          * Detect generation changes during blockages, including
1506          * blockages which occur on the initial btree search.
1507          */
1508         cursor->rec_generation = cursor->ip->rec_generation;
1509
1510         /*
1511          * Initial search and result
1512          */
1513         error = _hammer_ip_seek_btree(cursor);
1514         if (error == 0)
1515                 error = hammer_ip_next(cursor);
1516
1517         return (error);
1518 }
1519
1520 /*
1521  * Retrieve the next record in a merged iteration within the bounds of the
1522  * cursor.  This call may be made multiple times after the cursor has been
1523  * initially searched with hammer_ip_first().
1524  *
1525  * There are numerous special cases in this code to deal with races between
1526  * in-memory records and on-media records.
1527  *
1528  * 0 is returned on success, ENOENT if no further records match the
1529  * requested range, or some other error code is returned.
1530  */
1531 int
1532 hammer_ip_next(hammer_cursor_t cursor)
1533 {
1534         hammer_btree_elm_t elm;
1535         hammer_record_t rec;
1536         hammer_record_t tmprec;
1537         int error;
1538         int r;
1539
1540 again:
1541         /*
1542          * Get the next on-disk record
1543          *
1544          * NOTE: If we deleted the last on-disk record we had scanned
1545          *       ATEDISK will be clear and RETEST will be set, forcing
1546          *       a call to iterate.  The fact that ATEDISK is clear causes
1547          *       iterate to re-test the 'current' element.  If ATEDISK is
1548          *       set, iterate will skip the 'current' element.
1549          */
1550         error = 0;
1551         if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
1552                 if (cursor->flags & (HAMMER_CURSOR_ATEDISK |
1553                                      HAMMER_CURSOR_RETEST)) {
1554                         error = hammer_btree_iterate(cursor);
1555                         cursor->flags &= ~HAMMER_CURSOR_RETEST;
1556                         if (error == 0) {
1557                                 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1558                                 hammer_cache_node(&cursor->ip->cache[1],
1559                                                   cursor->node);
1560                         } else if (error == ENOENT) {
1561                                 cursor->flags |= HAMMER_CURSOR_DISKEOF |
1562                                                  HAMMER_CURSOR_ATEDISK;
1563                                 error = 0;
1564                         }
1565                 }
1566         }
1567
1568         /*
1569          * If the generation changed the backend has deleted or committed
1570          * one or more memory records since our last check.
1571          *
1572          * When this case occurs if the disk cursor is > current memory record
1573          * or the disk cursor is at EOF, we must re-seek the disk-cursor.
1574          * Since the cursor is ahead it must have not yet been eaten (if
1575          * not at eof anyway). (XXX data offset case?)
1576          *
1577          * NOTE: we are not doing a full check here.  That will be handled
1578          * later on.
1579          *
1580          * If we have exhausted all memory records we do not have to do any
1581          * further seeks.
1582          */
1583         while (cursor->rec_generation != cursor->ip->rec_generation &&
1584                error == 0
1585         ) {
1586                 kprintf("HAMMER: Debug: generation changed during scan @ino=%016llx\n", (long long)cursor->ip->obj_id);
1587                 cursor->rec_generation = cursor->ip->rec_generation;
1588                 if (cursor->flags & HAMMER_CURSOR_MEMEOF)
1589                         break;
1590                 if (cursor->flags & HAMMER_CURSOR_DISKEOF) {
1591                         r = 1;
1592                 } else {
1593                         KKASSERT((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0);
1594                         elm = &cursor->node->ondisk->elms[cursor->index];
1595                         r = hammer_btree_cmp(&elm->base,
1596                                              &cursor->iprec->leaf.base);
1597                 }
1598
1599                 /*
1600                  * Do we re-seek the media cursor?
1601                  */
1602                 if (r > 0) {
1603                         if (_hammer_ip_reseek(cursor))
1604                                 goto again;
1605                 }
1606         }
1607
1608         /*
1609          * We can now safely get the next in-memory record.  We cannot
1610          * block here.
1611          *
1612          * hammer_rec_scan_cmp:  Is the record still in our general range,
1613          *                       (non-inclusive of snapshot exclusions)?
1614          * hammer_rec_scan_callback: Is the record in our snapshot?
1615          */
1616         tmprec = NULL;
1617         if ((cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) {
1618                 /*
1619                  * If the current memory record was eaten then get the next
1620                  * one.  Stale records are skipped.
1621                  */
1622                 if (cursor->flags & HAMMER_CURSOR_ATEMEM) {
1623                         tmprec = cursor->iprec;
1624                         cursor->iprec = NULL;
1625                         rec = hammer_rec_rb_tree_RB_NEXT(tmprec);
1626                         while (rec) {
1627                                 if (hammer_rec_scan_cmp(rec, cursor) != 0)
1628                                         break;
1629                                 if (hammer_rec_scan_callback(rec, cursor) != 0)
1630                                         break;
1631                                 rec = hammer_rec_rb_tree_RB_NEXT(rec);
1632                         }
1633                         if (cursor->iprec) {
1634                                 KKASSERT(cursor->iprec == rec);
1635                                 cursor->flags &= ~HAMMER_CURSOR_ATEMEM;
1636                         } else {
1637                                 cursor->flags |= HAMMER_CURSOR_MEMEOF;
1638                         }
1639                         cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1640                 }
1641         }
1642
1643         /*
1644          * MEMORY RECORD VALIDITY TEST
1645          *
1646          * (We still can't block, which is why tmprec is being held so
1647          * long).
1648          *
1649          * If the memory record is no longer valid we skip it.  It may
1650          * have been deleted by the frontend.  If it was deleted or
1651          * committed by the backend the generation change re-seeked the
1652          * disk cursor and the record will be present there.
1653          */
1654         if (error == 0 && (cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) {
1655                 KKASSERT(cursor->iprec);
1656                 KKASSERT((cursor->flags & HAMMER_CURSOR_ATEMEM) == 0);
1657                 if (!hammer_ip_iterate_mem_good(cursor, cursor->iprec)) {
1658                         cursor->flags |= HAMMER_CURSOR_ATEMEM;
1659                         if (tmprec)
1660                                 hammer_rel_mem_record(tmprec);
1661                         goto again;
1662                 }
1663         }
1664         if (tmprec)
1665                 hammer_rel_mem_record(tmprec);
1666
1667         /*
1668          * Extract either the disk or memory record depending on their
1669          * relative position.
1670          */
1671         error = 0;
1672         switch(cursor->flags & (HAMMER_CURSOR_ATEDISK | HAMMER_CURSOR_ATEMEM)) {
1673         case 0:
1674                 /*
1675                  * Both entries valid.   Compare the entries and nominally
1676                  * return the first one in the sort order.  Numerous cases
1677                  * require special attention, however.
1678                  */
1679                 elm = &cursor->node->ondisk->elms[cursor->index];
1680                 r = hammer_btree_cmp(&elm->base, &cursor->iprec->leaf.base);
1681
1682                 /*
1683                  * If the two entries differ only by their key (-2/2) or
1684                  * create_tid (-1/1), and are DATA records, we may have a
1685                  * nominal match.  We have to calculate the base file
1686                  * offset of the data.
1687                  */
1688                 if (r <= 2 && r >= -2 && r != 0 &&
1689                     cursor->ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE &&
1690                     cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1691                         int64_t base1 = elm->leaf.base.key - elm->leaf.data_len;
1692                         int64_t base2 = cursor->iprec->leaf.base.key -
1693                                         cursor->iprec->leaf.data_len;
1694                         if (base1 == base2)
1695                                 r = 0;
1696                 }
1697
1698                 if (r < 0) {
1699                         error = hammer_btree_extract(cursor,
1700                                                      HAMMER_CURSOR_GET_LEAF);
1701                         cursor->flags |= HAMMER_CURSOR_ATEDISK;
1702                         cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1703                         break;
1704                 }
1705
1706                 /*
1707                  * If the entries match exactly the memory entry is either
1708                  * an on-disk directory entry deletion or a bulk data
1709                  * overwrite.  If it is a directory entry deletion we eat
1710                  * both entries.
1711                  *
1712                  * For the bulk-data overwrite case it is possible to have
1713                  * visibility into both, which simply means the syncer
1714                  * hasn't gotten around to doing the delete+insert sequence
1715                  * on the B-Tree.  Use the memory entry and throw away the
1716                  * on-disk entry.
1717                  *
1718                  * If the in-memory record is not either of these we
1719                  * probably caught the syncer while it was syncing it to
1720                  * the media.  Since we hold a shared lock on the cursor,
1721                  * the in-memory record had better be marked deleted at
1722                  * this point.
1723                  */
1724                 if (r == 0) {
1725                         if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL) {
1726                                 if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1727                                         cursor->flags |= HAMMER_CURSOR_ATEDISK;
1728                                         cursor->flags |= HAMMER_CURSOR_ATEMEM;
1729                                         goto again;
1730                                 }
1731                         } else if (cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1732                                 if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1733                                         cursor->flags |= HAMMER_CURSOR_ATEDISK;
1734                                 }
1735                                 /* fall through to memory entry */
1736                         } else {
1737                                 panic("hammer_ip_next: duplicate mem/b-tree entry %p %d %08x", cursor->iprec, cursor->iprec->type, cursor->iprec->flags);
1738                                 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1739                                 goto again;
1740                         }
1741                 }
1742                 /* fall through to the memory entry */
1743         case HAMMER_CURSOR_ATEDISK:
1744                 /*
1745                  * Only the memory entry is valid.
1746                  */
1747                 cursor->leaf = &cursor->iprec->leaf;
1748                 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1749                 cursor->flags |= HAMMER_CURSOR_LASTWASMEM;
1750
1751                 /*
1752                  * If the memory entry is an on-disk deletion we should have
1753                  * also had found a B-Tree record.  If the backend beat us
1754                  * to it it would have interlocked the cursor and we should
1755                  * have seen the in-memory record marked DELETED_FE.
1756                  */
1757                 if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL &&
1758                     (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1759                         panic("hammer_ip_next: del-on-disk with no b-tree entry iprec %p flags %08x", cursor->iprec, cursor->iprec->flags);
1760                 }
1761                 break;
1762         case HAMMER_CURSOR_ATEMEM:
1763                 /*
1764                  * Only the disk entry is valid
1765                  */
1766                 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1767                 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1768                 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1769                 break;
1770         default:
1771                 /*
1772                  * Neither entry is valid
1773                  *
1774                  * XXX error not set properly
1775                  */
1776                 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1777                 cursor->leaf = NULL;
1778                 error = ENOENT;
1779                 break;
1780         }
1781         return(error);
1782 }
1783
1784 /*
1785  * Resolve the cursor->data pointer for the current cursor position in
1786  * a merged iteration.
1787  */
1788 int
1789 hammer_ip_resolve_data(hammer_cursor_t cursor)
1790 {
1791         hammer_record_t record;
1792         int error;
1793
1794         if (hammer_cursor_inmem(cursor)) {
1795                 /*
1796                  * The data associated with an in-memory record is usually
1797                  * kmalloced, but reserve-ahead data records will have an
1798                  * on-disk reference.
1799                  *
1800                  * NOTE: Reserve-ahead data records must be handled in the
1801                  * context of the related high level buffer cache buffer
1802                  * to interlock against async writes.
1803                  */
1804                 record = cursor->iprec;
1805                 cursor->data = record->data;
1806                 error = 0;
1807                 if (cursor->data == NULL) {
1808                         KKASSERT(record->leaf.base.rec_type ==
1809                                  HAMMER_RECTYPE_DATA);
1810                         cursor->data = hammer_bread_ext(cursor->trans->hmp,
1811                                                     record->leaf.data_offset,
1812                                                     record->leaf.data_len,
1813                                                     &error,
1814                                                     &cursor->data_buffer);
1815                 }
1816         } else {
1817                 cursor->leaf = &cursor->node->ondisk->elms[cursor->index].leaf;
1818                 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_DATA);
1819         }
1820         return(error);
1821 }
1822
1823 /*
1824  * Backend truncation / record replacement - delete records in range.
1825  *
1826  * Delete all records within the specified range for inode ip.  In-memory
1827  * records still associated with the frontend are ignored. 
1828  *
1829  * If truncating is non-zero in-memory records associated with the back-end
1830  * are ignored.  If truncating is > 1 we can return EWOULDBLOCK.
1831  *
1832  * NOTES:
1833  *
1834  *      * An unaligned range will cause new records to be added to cover
1835  *        the edge cases. (XXX not implemented yet).
1836  *
1837  *      * Replacement via reservations (see hammer_ip_sync_record_cursor())
1838  *        also do not deal with unaligned ranges.
1839  *
1840  *      * ran_end is inclusive (e.g. 0,1023 instead of 0,1024).
1841  *
1842  *      * Record keys for regular file data have to be special-cased since
1843  *        they indicate the end of the range (key = base + bytes).
1844  *
1845  *      * This function may be asked to delete ridiculously huge ranges, for
1846  *        example if someone truncates or removes a 1TB regular file.  We
1847  *        must be very careful on restarts and we may have to stop w/
1848  *        EWOULDBLOCK to avoid blowing out the buffer cache.
1849  */
1850 int
1851 hammer_ip_delete_range(hammer_cursor_t cursor, hammer_inode_t ip,
1852                        int64_t ran_beg, int64_t ran_end, int truncating)
1853 {
1854         hammer_transaction_t trans = cursor->trans;
1855         hammer_btree_leaf_elm_t leaf;
1856         int error;
1857         int64_t off;
1858         int64_t tmp64;
1859
1860 #if 0
1861         kprintf("delete_range %p %016llx-%016llx\n", ip, ran_beg, ran_end);
1862 #endif
1863
1864         KKASSERT(trans->type == HAMMER_TRANS_FLS);
1865 retry:
1866         hammer_normalize_cursor(cursor);
1867         cursor->key_beg.localization = ip->obj_localization +
1868                                        HAMMER_LOCALIZE_MISC;
1869         cursor->key_beg.obj_id = ip->obj_id;
1870         cursor->key_beg.create_tid = 0;
1871         cursor->key_beg.delete_tid = 0;
1872         cursor->key_beg.obj_type = 0;
1873
1874         if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1875                 cursor->key_beg.key = ran_beg;
1876                 cursor->key_beg.rec_type = HAMMER_RECTYPE_DB;
1877         } else {
1878                 /*
1879                  * The key in the B-Tree is (base+bytes), so the first possible
1880                  * matching key is ran_beg + 1.
1881                  */
1882                 cursor->key_beg.key = ran_beg + 1;
1883                 cursor->key_beg.rec_type = HAMMER_RECTYPE_DATA;
1884         }
1885
1886         cursor->key_end = cursor->key_beg;
1887         if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1888                 cursor->key_end.key = ran_end;
1889         } else {
1890                 tmp64 = ran_end + MAXPHYS + 1;  /* work around GCC-4 bug */
1891                 if (tmp64 < ran_end)
1892                         cursor->key_end.key = 0x7FFFFFFFFFFFFFFFLL;
1893                 else
1894                         cursor->key_end.key = ran_end + MAXPHYS + 1;
1895         }
1896
1897         cursor->asof = ip->obj_asof;
1898         cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1899         cursor->flags |= HAMMER_CURSOR_ASOF;
1900         cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
1901         cursor->flags |= HAMMER_CURSOR_BACKEND;
1902         cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE;
1903
1904         error = hammer_ip_first(cursor);
1905
1906         /*
1907          * Iterate through matching records and mark them as deleted.
1908          */
1909         while (error == 0) {
1910                 leaf = cursor->leaf;
1911
1912                 KKASSERT(leaf->base.delete_tid == 0);
1913                 KKASSERT(leaf->base.obj_id == ip->obj_id);
1914
1915                 /*
1916                  * There may be overlap cases for regular file data.  Also
1917                  * remember the key for a regular file record is (base + len),
1918                  * NOT (base).
1919                  *
1920                  * Note that do to duplicates (mem & media) allowed by
1921                  * DELETE_VISIBILITY, off can wind up less then ran_beg.
1922                  */
1923                 if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
1924                         off = leaf->base.key - leaf->data_len;
1925                         /*
1926                          * Check the left edge case.  We currently do not
1927                          * split existing records.
1928                          */
1929                         if (off < ran_beg && leaf->base.key > ran_beg) {
1930                                 panic("hammer left edge case %016llx %d\n",
1931                                         leaf->base.key, leaf->data_len);
1932                         }
1933
1934                         /*
1935                          * Check the right edge case.  Note that the
1936                          * record can be completely out of bounds, which
1937                          * terminates the search.
1938                          *
1939                          * base->key is exclusive of the right edge while
1940                          * ran_end is inclusive of the right edge.  The
1941                          * (key - data_len) left boundary is inclusive.
1942                          *
1943                          * XXX theory-check this test at some point, are
1944                          * we missing a + 1 somewhere?  Note that ran_end
1945                          * could overflow.
1946                          */
1947                         if (leaf->base.key - 1 > ran_end) {
1948                                 if (leaf->base.key - leaf->data_len > ran_end)
1949                                         break;
1950                                 panic("hammer right edge case\n");
1951                         }
1952                 } else {
1953                         off = leaf->base.key;
1954                 }
1955
1956                 /*
1957                  * Delete the record.  When truncating we do not delete
1958                  * in-memory (data) records because they represent data
1959                  * written after the truncation.
1960                  *
1961                  * This will also physically destroy the B-Tree entry and
1962                  * data if the retention policy dictates.  The function
1963                  * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next()
1964                  * to retest the new 'current' element.
1965                  */
1966                 if (truncating == 0 || hammer_cursor_ondisk(cursor)) {
1967                         error = hammer_ip_delete_record(cursor, ip, trans->tid);
1968                         /*
1969                          * If we have built up too many meta-buffers we risk
1970                          * deadlocking the kernel and must stop.  This can
1971                          * occur when deleting ridiculously huge files.
1972                          * sync_trunc_off is updated so the next cycle does
1973                          * not re-iterate records we have already deleted.
1974                          *
1975                          * This is only done with formal truncations.
1976                          */
1977                         if (truncating > 1 && error == 0 &&
1978                             hammer_flusher_meta_limit(ip->hmp)) {
1979                                 ip->sync_trunc_off = off;
1980                                 error = EWOULDBLOCK;
1981                         }
1982                 }
1983                 if (error)
1984                         break;
1985                 ran_beg = off;  /* for restart */
1986                 error = hammer_ip_next(cursor);
1987         }
1988         if (cursor->node)
1989                 hammer_cache_node(&ip->cache[1], cursor->node);
1990
1991         if (error == EDEADLK) {
1992                 hammer_done_cursor(cursor);
1993                 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
1994                 if (error == 0)
1995                         goto retry;
1996         }
1997         if (error == ENOENT)
1998                 error = 0;
1999         return(error);
2000 }
2001
2002 /*
2003  * This backend function deletes the specified record on-disk, similar to
2004  * delete_range but for a specific record.  Unlike the exact deletions
2005  * used when deleting a directory entry this function uses an ASOF search 
2006  * like delete_range.
2007  *
2008  * This function may be called with ip->obj_asof set for a slave snapshot,
2009  * so don't use it.  We always delete non-historical records only.
2010  */
2011 static int
2012 hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
2013                       hammer_btree_leaf_elm_t leaf)
2014 {
2015         hammer_transaction_t trans = cursor->trans;
2016         int error;
2017
2018         KKASSERT(trans->type == HAMMER_TRANS_FLS);
2019 retry:
2020         hammer_normalize_cursor(cursor);
2021         cursor->key_beg = leaf->base;
2022         cursor->asof = HAMMER_MAX_TID;
2023         cursor->flags &= ~HAMMER_CURSOR_INITMASK;
2024         cursor->flags |= HAMMER_CURSOR_ASOF;
2025         cursor->flags |= HAMMER_CURSOR_BACKEND;
2026         cursor->flags &= ~HAMMER_CURSOR_INSERT;
2027
2028         error = hammer_btree_lookup(cursor);
2029         if (error == 0) {
2030                 error = hammer_ip_delete_record(cursor, ip, trans->tid);
2031         }
2032         if (error == EDEADLK) {
2033                 hammer_done_cursor(cursor);
2034                 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2035                 if (error == 0)
2036                         goto retry;
2037         }
2038         return(error);
2039 }
2040
2041 /*
2042  * This function deletes remaining auxillary records when an inode is
2043  * being deleted.  This function explicitly does not delete the
2044  * inode record, directory entry, data, or db records.  Those must be
2045  * properly disposed of prior to this call.
2046  */
2047 int
2048 hammer_ip_delete_clean(hammer_cursor_t cursor, hammer_inode_t ip, int *countp)
2049 {
2050         hammer_transaction_t trans = cursor->trans;
2051         hammer_btree_leaf_elm_t leaf;
2052         int error;
2053
2054         KKASSERT(trans->type == HAMMER_TRANS_FLS);
2055 retry:
2056         hammer_normalize_cursor(cursor);
2057         cursor->key_beg.localization = ip->obj_localization +
2058                                        HAMMER_LOCALIZE_MISC;
2059         cursor->key_beg.obj_id = ip->obj_id;
2060         cursor->key_beg.create_tid = 0;
2061         cursor->key_beg.delete_tid = 0;
2062         cursor->key_beg.obj_type = 0;
2063         cursor->key_beg.rec_type = HAMMER_RECTYPE_CLEAN_START;
2064         cursor->key_beg.key = HAMMER_MIN_KEY;
2065
2066         cursor->key_end = cursor->key_beg;
2067         cursor->key_end.rec_type = HAMMER_RECTYPE_MAX;
2068         cursor->key_end.key = HAMMER_MAX_KEY;
2069
2070         cursor->asof = ip->obj_asof;
2071         cursor->flags &= ~HAMMER_CURSOR_INITMASK;
2072         cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2073         cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
2074         cursor->flags |= HAMMER_CURSOR_BACKEND;
2075
2076         error = hammer_ip_first(cursor);
2077
2078         /*
2079          * Iterate through matching records and mark them as deleted.
2080          */
2081         while (error == 0) {
2082                 leaf = cursor->leaf;
2083
2084                 KKASSERT(leaf->base.delete_tid == 0);
2085
2086                 /*
2087                  * Mark the record and B-Tree entry as deleted.  This will
2088                  * also physically delete the B-Tree entry, record, and
2089                  * data if the retention policy dictates.  The function
2090                  * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next()
2091                  * to retest the new 'current' element.
2092                  *
2093                  * Directory entries (and delete-on-disk directory entries)
2094                  * must be synced and cannot be deleted.
2095                  */
2096                 error = hammer_ip_delete_record(cursor, ip, trans->tid);
2097                 ++*countp;
2098                 if (error)
2099                         break;
2100                 error = hammer_ip_next(cursor);
2101         }
2102         if (cursor->node)
2103                 hammer_cache_node(&ip->cache[1], cursor->node);
2104         if (error == EDEADLK) {
2105                 hammer_done_cursor(cursor);
2106                 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2107                 if (error == 0)
2108                         goto retry;
2109         }
2110         if (error == ENOENT)
2111                 error = 0;
2112         return(error);
2113 }
2114
2115 /*
2116  * Delete the record at the current cursor.  On success the cursor will
2117  * be positioned appropriately for an iteration but may no longer be at
2118  * a leaf node.
2119  *
2120  * This routine is only called from the backend.
2121  *
2122  * NOTE: This can return EDEADLK, requiring the caller to terminate the
2123  * cursor and retry.
2124  */
2125 int
2126 hammer_ip_delete_record(hammer_cursor_t cursor, hammer_inode_t ip,
2127                         hammer_tid_t tid)
2128 {
2129         hammer_record_t iprec;
2130         hammer_mount_t hmp;
2131         int error;
2132
2133         KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
2134         KKASSERT(tid != 0);
2135         hmp = cursor->node->hmp;
2136
2137         /*
2138          * In-memory (unsynchronized) records can simply be freed.  This
2139          * only occurs in range iterations since all other records are
2140          * individually synchronized.  Thus there should be no confusion with
2141          * the interlock.
2142          *
2143          * An in-memory record may be deleted before being committed to disk,
2144          * but could have been accessed in the mean time.  The reservation
2145          * code will deal with the case.
2146          */
2147         if (hammer_cursor_inmem(cursor)) {
2148                 iprec = cursor->iprec;
2149                 KKASSERT((iprec->flags & HAMMER_RECF_INTERLOCK_BE) ==0);
2150                 iprec->flags |= HAMMER_RECF_DELETED_FE;
2151                 iprec->flags |= HAMMER_RECF_DELETED_BE;
2152                 KKASSERT(iprec->ip == ip);
2153                 ++ip->rec_generation;
2154                 return(0);
2155         }
2156
2157         /*
2158          * On-disk records are marked as deleted by updating their delete_tid.
2159          * This does not effect their position in the B-Tree (which is based
2160          * on their create_tid).
2161          *
2162          * Frontend B-Tree operations track inodes so we tell 
2163          * hammer_delete_at_cursor() not to.
2164          */
2165         error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
2166
2167         if (error == 0) {
2168                 error = hammer_delete_at_cursor(
2169                                 cursor,
2170                                 HAMMER_DELETE_ADJUST | hammer_nohistory(ip),
2171                                 cursor->trans->tid,
2172                                 cursor->trans->time32,
2173                                 0, NULL);
2174         }
2175         return(error);
2176 }
2177
2178 /*
2179  * Delete the B-Tree element at the current cursor and do any necessary
2180  * mirror propagation.
2181  *
2182  * The cursor must be properly positioned for an iteration on return but
2183  * may be pointing at an internal element.
2184  *
2185  * An element can be un-deleted by passing a delete_tid of 0 with
2186  * HAMMER_DELETE_ADJUST.
2187  */
2188 int
2189 hammer_delete_at_cursor(hammer_cursor_t cursor, int delete_flags,
2190                         hammer_tid_t delete_tid, u_int32_t delete_ts,
2191                         int track, int64_t *stat_bytes)
2192 {
2193         struct hammer_btree_leaf_elm save_leaf;
2194         hammer_transaction_t trans;
2195         hammer_btree_leaf_elm_t leaf;
2196         hammer_node_t node;
2197         hammer_btree_elm_t elm;
2198         hammer_off_t data_offset;
2199         int32_t data_len;
2200         u_int16_t rec_type;
2201         int error;
2202         int icount;
2203         int doprop;
2204
2205         error = hammer_cursor_upgrade(cursor);
2206         if (error)
2207                 return(error);
2208
2209         trans = cursor->trans;
2210         node = cursor->node;
2211         elm = &node->ondisk->elms[cursor->index];
2212         leaf = &elm->leaf;
2213         KKASSERT(elm->base.btype == HAMMER_BTREE_TYPE_RECORD);
2214
2215         hammer_sync_lock_sh(trans);
2216         doprop = 0;
2217         icount = 0;
2218
2219         /*
2220          * Adjust the delete_tid.  Update the mirror_tid propagation field
2221          * as well.  delete_tid can be 0 (undelete -- used by mirroring).
2222          */
2223         if (delete_flags & HAMMER_DELETE_ADJUST) {
2224                 if (elm->base.rec_type == HAMMER_RECTYPE_INODE) {
2225                         if (elm->leaf.base.delete_tid == 0 && delete_tid)
2226                                 icount = -1;
2227                         if (elm->leaf.base.delete_tid && delete_tid == 0)
2228                                 icount = 1;
2229                 }
2230
2231                 hammer_modify_node(trans, node, elm, sizeof(*elm));
2232                 elm->leaf.base.delete_tid = delete_tid;
2233                 elm->leaf.delete_ts = delete_ts;
2234                 hammer_modify_node_done(node);
2235
2236                 if (elm->leaf.base.delete_tid > node->ondisk->mirror_tid) {
2237                         hammer_modify_node_field(trans, node, mirror_tid);
2238                         node->ondisk->mirror_tid = elm->leaf.base.delete_tid;
2239                         hammer_modify_node_done(node);
2240                         doprop = 1;
2241                         if (hammer_debug_general & 0x0002) {
2242                                 kprintf("delete_at_cursor: propagate %016llx"
2243                                         " @%016llx\n",
2244                                         elm->leaf.base.delete_tid,
2245                                         node->node_offset);
2246                         }
2247                 }
2248
2249                 /*
2250                  * Adjust for the iteration.  We have deleted the current
2251                  * element and want to clear ATEDISK so the iteration does
2252                  * not skip the element after, which now becomes the current
2253                  * element.  This element must be re-tested if doing an
2254                  * iteration, which is handled by the RETEST flag.
2255                  */
2256                 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
2257                         cursor->flags |= HAMMER_CURSOR_RETEST;
2258                         cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2259                 }
2260
2261                 /*
2262                  * An on-disk record cannot have the same delete_tid
2263                  * as its create_tid.  In a chain of record updates
2264                  * this could result in a duplicate record.
2265                  */
2266                 KKASSERT(elm->leaf.base.delete_tid !=
2267                          elm->leaf.base.create_tid);
2268         }
2269
2270         /*
2271          * Destroy the B-Tree element if asked (typically if a nohistory
2272          * file or mount, or when called by the pruning code).
2273          *
2274          * Adjust the ATEDISK flag to properly support iterations.
2275          */
2276         if (delete_flags & HAMMER_DELETE_DESTROY) {
2277                 data_offset = elm->leaf.data_offset;
2278                 data_len = elm->leaf.data_len;
2279                 rec_type = elm->leaf.base.rec_type;
2280                 if (doprop) {
2281                         save_leaf = elm->leaf;
2282                         leaf = &save_leaf;
2283                 }
2284                 if (elm->base.rec_type == HAMMER_RECTYPE_INODE &&
2285                     elm->leaf.base.delete_tid == 0) {
2286                         icount = -1;
2287                 }
2288
2289                 error = hammer_btree_delete(cursor);
2290                 if (error == 0) {
2291                         /*
2292                          * The deletion moves the next element (if any) to
2293                          * the current element position.  We must clear
2294                          * ATEDISK so this element is not skipped and we
2295                          * must set RETEST to force any iteration to re-test
2296                          * the element.
2297                          */
2298                         if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
2299                                 cursor->flags |= HAMMER_CURSOR_RETEST;
2300                                 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2301                         }
2302                 }
2303                 if (error == 0) {
2304                         switch(data_offset & HAMMER_OFF_ZONE_MASK) {
2305                         case HAMMER_ZONE_LARGE_DATA:
2306                         case HAMMER_ZONE_SMALL_DATA:
2307                         case HAMMER_ZONE_META:
2308                                 hammer_blockmap_free(trans,
2309                                                      data_offset, data_len);
2310                                 break;
2311                         default:
2312                                 break;
2313                         }
2314                 }
2315         }
2316
2317         /*
2318          * Track inode count and next_tid.  This is used by the mirroring
2319          * and PFS code.  icount can be negative, zero, or positive.
2320          */
2321         if (error == 0 && track) {
2322                 if (icount) {
2323                         hammer_modify_volume_field(trans, trans->rootvol,
2324                                                    vol0_stat_inodes);
2325                         trans->rootvol->ondisk->vol0_stat_inodes += icount;
2326                         hammer_modify_volume_done(trans->rootvol);
2327                 }
2328                 if (trans->rootvol->ondisk->vol0_next_tid < delete_tid) {
2329                         hammer_modify_volume(trans, trans->rootvol, NULL, 0);
2330                         trans->rootvol->ondisk->vol0_next_tid = delete_tid;
2331                         hammer_modify_volume_done(trans->rootvol);
2332                 }
2333         }
2334
2335         /*
2336          * mirror_tid propagation occurs if the node's mirror_tid had to be
2337          * updated while adjusting the delete_tid.
2338          *
2339          * This occurs when deleting even in nohistory mode, but does not
2340          * occur when pruning an already-deleted node.
2341          *
2342          * cursor->ip is NULL when called from the pruning, mirroring,
2343          * and pfs code.  If non-NULL propagation will be conditionalized
2344          * on whether the PFS is in no-history mode or not.
2345          */
2346         if (doprop) {
2347                 if (cursor->ip)
2348                         hammer_btree_do_propagation(cursor, cursor->ip->pfsm, leaf);
2349                 else
2350                         hammer_btree_do_propagation(cursor, NULL, leaf);
2351         }
2352         hammer_sync_unlock(trans);
2353         return (error);
2354 }
2355
2356 /*
2357  * Determine whether we can remove a directory.  This routine checks whether
2358  * a directory is empty or not and enforces flush connectivity.
2359  *
2360  * Flush connectivity requires that we block if the target directory is
2361  * currently flushing, otherwise it may not end up in the same flush group.
2362  *
2363  * Returns 0 on success, ENOTEMPTY or EDEADLK (or other errors) on failure.
2364  */
2365 int
2366 hammer_ip_check_directory_empty(hammer_transaction_t trans, hammer_inode_t ip)
2367 {
2368         struct hammer_cursor cursor;
2369         int error;
2370
2371         /*
2372          * Check directory empty
2373          */
2374         hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2375
2376         cursor.key_beg.localization = ip->obj_localization +
2377                                       HAMMER_LOCALIZE_MISC;
2378         cursor.key_beg.obj_id = ip->obj_id;
2379         cursor.key_beg.create_tid = 0;
2380         cursor.key_beg.delete_tid = 0;
2381         cursor.key_beg.obj_type = 0;
2382         cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE + 1;
2383         cursor.key_beg.key = HAMMER_MIN_KEY;
2384
2385         cursor.key_end = cursor.key_beg;
2386         cursor.key_end.rec_type = 0xFFFF;
2387         cursor.key_end.key = HAMMER_MAX_KEY;
2388
2389         cursor.asof = ip->obj_asof;
2390         cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2391
2392         error = hammer_ip_first(&cursor);
2393         if (error == ENOENT)
2394                 error = 0;
2395         else if (error == 0)
2396                 error = ENOTEMPTY;
2397         hammer_done_cursor(&cursor);
2398         return(error);
2399 }
2400