HAMMER 59E/Many: Stabilization pass
[dragonfly.git] / sys / vfs / hammer / hammer_inode.c
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  * 
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * 
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  * 
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  * 
34  * $DragonFly: src/sys/vfs/hammer/hammer_inode.c,v 1.90 2008/06/30 02:45:30 dillon Exp $
35  */
36
37 #include "hammer.h"
38 #include <vm/vm_extern.h>
39 #include <sys/buf.h>
40 #include <sys/buf2.h>
41
42 static int      hammer_unload_inode(struct hammer_inode *ip);
43 static void     hammer_flush_inode_core(hammer_inode_t ip, int flags);
44 static int      hammer_setup_child_callback(hammer_record_t rec, void *data);
45 static int      hammer_syncgrp_child_callback(hammer_record_t rec, void *data);
46 static int      hammer_setup_parent_inodes(hammer_inode_t ip);
47 static int      hammer_setup_parent_inodes_helper(hammer_record_t record);
48 static void     hammer_inode_wakereclaims(hammer_inode_t ip);
49
50 #ifdef DEBUG_TRUNCATE
51 extern struct hammer_inode *HammerTruncIp;
52 #endif
53
54 /*
55  * Red-Black tree support for inode structures.
56  *
57  * Insertions
58  */
59 int
60 hammer_ino_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
61 {
62         if (ip1->obj_localization < ip2->obj_localization)
63                 return(-1);
64         if (ip1->obj_localization > ip2->obj_localization)
65                 return(1);
66         if (ip1->obj_id < ip2->obj_id)
67                 return(-1);
68         if (ip1->obj_id > ip2->obj_id)
69                 return(1);
70         if (ip1->obj_asof < ip2->obj_asof)
71                 return(-1);
72         if (ip1->obj_asof > ip2->obj_asof)
73                 return(1);
74         return(0);
75 }
76
77 /*
78  * LOOKUP_INFO
79  */
80 static int
81 hammer_inode_info_cmp(hammer_inode_info_t info, hammer_inode_t ip)
82 {
83         if (info->obj_localization < ip->obj_localization)
84                 return(-1);
85         if (info->obj_localization > ip->obj_localization)
86                 return(1);
87         if (info->obj_id < ip->obj_id)
88                 return(-1);
89         if (info->obj_id > ip->obj_id)
90                 return(1);
91         if (info->obj_asof < ip->obj_asof)
92                 return(-1);
93         if (info->obj_asof > ip->obj_asof)
94                 return(1);
95         return(0);
96 }
97
98 /*
99  * Used by hammer_scan_inode_snapshots() to locate all of an object's
100  * snapshots.  Note that the asof field is not tested, which we can get
101  * away with because it is the lowest-priority field.
102  */
103 static int
104 hammer_inode_info_cmp_all_history(hammer_inode_t ip, void *data)
105 {
106         hammer_inode_info_t info = data;
107
108         if (ip->obj_localization > info->obj_localization)
109                 return(1);
110         if (ip->obj_localization < info->obj_localization)
111                 return(-1);
112         if (ip->obj_id > info->obj_id)
113                 return(1);
114         if (ip->obj_id < info->obj_id)
115                 return(-1);
116         return(0);
117 }
118
119 RB_GENERATE(hammer_ino_rb_tree, hammer_inode, rb_node, hammer_ino_rb_compare);
120 RB_GENERATE_XLOOKUP(hammer_ino_rb_tree, INFO, hammer_inode, rb_node,
121                 hammer_inode_info_cmp, hammer_inode_info_t);
122
123 /*
124  * The kernel is not actively referencing this vnode but is still holding
125  * it cached.
126  *
127  * This is called from the frontend.
128  */
129 int
130 hammer_vop_inactive(struct vop_inactive_args *ap)
131 {
132         struct hammer_inode *ip = VTOI(ap->a_vp);
133
134         /*
135          * Degenerate case
136          */
137         if (ip == NULL) {
138                 vrecycle(ap->a_vp);
139                 return(0);
140         }
141
142         /*
143          * If the inode no longer has visibility in the filesystem try to
144          * recycle it immediately, even if the inode is dirty.  Recycling
145          * it quickly allows the system to reclaim buffer cache and VM
146          * resources which can matter a lot in a heavily loaded system.
147          *
148          * This can deadlock in vfsync() if we aren't careful.
149          * 
150          * Do not queue the inode to the flusher if we still have visibility,
151          * otherwise namespace calls such as chmod will unnecessarily generate
152          * multiple inode updates.
153          */
154         hammer_inode_unloadable_check(ip, 0);
155         if (ip->ino_data.nlinks == 0) {
156                 if (ip->flags & HAMMER_INODE_MODMASK)
157                         hammer_flush_inode(ip, 0);
158                 vrecycle(ap->a_vp);
159         }
160         return(0);
161 }
162
163 /*
164  * Release the vnode association.  This is typically (but not always)
165  * the last reference on the inode.
166  *
167  * Once the association is lost we are on our own with regards to
168  * flushing the inode.
169  */
170 int
171 hammer_vop_reclaim(struct vop_reclaim_args *ap)
172 {
173         struct hammer_inode *ip;
174         hammer_mount_t hmp;
175         struct vnode *vp;
176
177         vp = ap->a_vp;
178
179         if ((ip = vp->v_data) != NULL) {
180                 hmp = ip->hmp;
181                 vp->v_data = NULL;
182                 ip->vp = NULL;
183
184                 if ((ip->flags & HAMMER_INODE_RECLAIM) == 0) {
185                         ++hammer_count_reclaiming;
186                         ++hmp->inode_reclaims;
187                         ip->flags |= HAMMER_INODE_RECLAIM;
188                         if (hmp->inode_reclaims > HAMMER_RECLAIM_FLUSH &&
189                             (hmp->inode_reclaims & 255) == 0) {
190                                 hammer_flusher_async(hmp);
191                         }
192                 }
193                 hammer_rel_inode(ip, 1);
194         }
195         return(0);
196 }
197
198 /*
199  * Return a locked vnode for the specified inode.  The inode must be
200  * referenced but NOT LOCKED on entry and will remain referenced on
201  * return.
202  *
203  * Called from the frontend.
204  */
205 int
206 hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
207 {
208         hammer_mount_t hmp;
209         struct vnode *vp;
210         int error = 0;
211
212         hmp = ip->hmp;
213
214         for (;;) {
215                 if ((vp = ip->vp) == NULL) {
216                         error = getnewvnode(VT_HAMMER, hmp->mp, vpp, 0, 0);
217                         if (error)
218                                 break;
219                         hammer_lock_ex(&ip->lock);
220                         if (ip->vp != NULL) {
221                                 hammer_unlock(&ip->lock);
222                                 vp->v_type = VBAD;
223                                 vx_put(vp);
224                                 continue;
225                         }
226                         hammer_ref(&ip->lock);
227                         vp = *vpp;
228                         ip->vp = vp;
229                         vp->v_type =
230                                 hammer_get_vnode_type(ip->ino_data.obj_type);
231
232                         hammer_inode_wakereclaims(ip);
233
234                         switch(ip->ino_data.obj_type) {
235                         case HAMMER_OBJTYPE_CDEV:
236                         case HAMMER_OBJTYPE_BDEV:
237                                 vp->v_ops = &hmp->mp->mnt_vn_spec_ops;
238                                 addaliasu(vp, ip->ino_data.rmajor,
239                                           ip->ino_data.rminor);
240                                 break;
241                         case HAMMER_OBJTYPE_FIFO:
242                                 vp->v_ops = &hmp->mp->mnt_vn_fifo_ops;
243                                 break;
244                         default:
245                                 break;
246                         }
247
248                         /*
249                          * Only mark as the root vnode if the ip is not
250                          * historical, otherwise the VFS cache will get
251                          * confused.  The other half of the special handling
252                          * is in hammer_vop_nlookupdotdot().
253                          *
254                          * Pseudo-filesystem roots also do not count.
255                          */
256                         if (ip->obj_id == HAMMER_OBJID_ROOT &&
257                             ip->obj_asof == hmp->asof &&
258                             ip->obj_localization == 0) {
259                                 vp->v_flag |= VROOT;
260                         }
261
262                         vp->v_data = (void *)ip;
263                         /* vnode locked by getnewvnode() */
264                         /* make related vnode dirty if inode dirty? */
265                         hammer_unlock(&ip->lock);
266                         if (vp->v_type == VREG)
267                                 vinitvmio(vp, ip->ino_data.size);
268                         break;
269                 }
270
271                 /*
272                  * loop if the vget fails (aka races), or if the vp
273                  * no longer matches ip->vp.
274                  */
275                 if (vget(vp, LK_EXCLUSIVE) == 0) {
276                         if (vp == ip->vp)
277                                 break;
278                         vput(vp);
279                 }
280         }
281         *vpp = vp;
282         return(error);
283 }
284
285 /*
286  * Locate all copies of the inode for obj_id compatible with the specified
287  * asof, reference, and issue the related call-back.  This routine is used
288  * for direct-io invalidation and does not create any new inodes.
289  */
290 void
291 hammer_scan_inode_snapshots(hammer_mount_t hmp, hammer_inode_info_t iinfo,
292                             int (*callback)(hammer_inode_t ip, void *data),
293                             void *data)
294 {
295         hammer_ino_rb_tree_RB_SCAN(&hmp->rb_inos_root,
296                                    hammer_inode_info_cmp_all_history,
297                                    callback, iinfo);
298 }
299
300 /*
301  * Acquire a HAMMER inode.  The returned inode is not locked.  These functions
302  * do not attach or detach the related vnode (use hammer_get_vnode() for
303  * that).
304  *
305  * The flags argument is only applied for newly created inodes, and only
306  * certain flags are inherited.
307  *
308  * Called from the frontend.
309  */
310 struct hammer_inode *
311 hammer_get_inode(hammer_transaction_t trans, hammer_inode_t dip,
312                  u_int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
313                  int flags, int *errorp)
314 {
315         hammer_mount_t hmp = trans->hmp;
316         struct hammer_inode_info iinfo;
317         struct hammer_cursor cursor;
318         struct hammer_inode *ip;
319
320         /*
321          * Determine if we already have an inode cached.  If we do then
322          * we are golden.
323          */
324         iinfo.obj_id = obj_id;
325         iinfo.obj_asof = asof;
326         iinfo.obj_localization = localization;
327 loop:
328         ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
329         if (ip) {
330                 hammer_ref(&ip->lock);
331                 *errorp = 0;
332                 return(ip);
333         }
334
335         /*
336          * Allocate a new inode structure and deal with races later.
337          */
338         ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
339         ++hammer_count_inodes;
340         ++hmp->count_inodes;
341         ip->obj_id = obj_id;
342         ip->obj_asof = iinfo.obj_asof;
343         ip->obj_localization = localization;
344         ip->hmp = hmp;
345         ip->flags = flags & HAMMER_INODE_RO;
346         ip->cache[0].ip = ip;
347         ip->cache[1].ip = ip;
348         if (hmp->ronly || (hmp->hflags & HMNT_SLAVE))
349                 ip->flags |= HAMMER_INODE_RO;
350         ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
351                 0x7FFFFFFFFFFFFFFFLL;
352         RB_INIT(&ip->rec_tree);
353         TAILQ_INIT(&ip->target_list);
354
355         /*
356          * Locate the on-disk inode.
357          */
358 retry:
359         hammer_init_cursor(trans, &cursor, (dip ? &dip->cache[0] : NULL), NULL);
360         cursor.key_beg.localization = localization + HAMMER_LOCALIZE_INODE;
361         cursor.key_beg.obj_id = ip->obj_id;
362         cursor.key_beg.key = 0;
363         cursor.key_beg.create_tid = 0;
364         cursor.key_beg.delete_tid = 0;
365         cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
366         cursor.key_beg.obj_type = 0;
367         cursor.asof = iinfo.obj_asof;
368         cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
369                        HAMMER_CURSOR_ASOF;
370
371         *errorp = hammer_btree_lookup(&cursor);
372         if (*errorp == EDEADLK) {
373                 hammer_done_cursor(&cursor);
374                 goto retry;
375         }
376
377         /*
378          * On success the B-Tree lookup will hold the appropriate
379          * buffer cache buffers and provide a pointer to the requested
380          * information.  Copy the information to the in-memory inode
381          * and cache the B-Tree node to improve future operations.
382          */
383         if (*errorp == 0) {
384                 ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
385                 ip->ino_data = cursor.data->inode;
386
387                 /*
388                  * cache[0] tries to cache the location of the object inode.
389                  * The assumption is that it is near the directory inode.
390                  *
391                  * cache[1] tries to cache the location of the object data.
392                  * The assumption is that it is near the directory data.
393                  */
394                 hammer_cache_node(&ip->cache[0], cursor.node);
395                 if (dip && dip->cache[1].node)
396                         hammer_cache_node(&ip->cache[1], dip->cache[1].node);
397
398                 /*
399                  * The file should not contain any data past the file size
400                  * stored in the inode.  Setting save_trunc_off to the
401                  * file size instead of max reduces B-Tree lookup overheads
402                  * on append by allowing the flusher to avoid checking for
403                  * record overwrites.
404                  */
405                 ip->save_trunc_off = ip->ino_data.size;
406         }
407
408         /*
409          * The inode is placed on the red-black tree and will be synced to
410          * the media when flushed or by the filesystem sync.  If this races
411          * another instantiation/lookup the insertion will fail.
412          */
413         if (*errorp == 0) {
414                 hammer_ref(&ip->lock);
415                 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
416                         hammer_uncache_node(&ip->cache[0]);
417                         hammer_uncache_node(&ip->cache[1]);
418                         KKASSERT(ip->lock.refs == 1);
419                         --hammer_count_inodes;
420                         --hmp->count_inodes;
421                         kfree(ip, M_HAMMER);
422                         hammer_done_cursor(&cursor);
423                         goto loop;
424                 }
425                 ip->flags |= HAMMER_INODE_ONDISK;
426         } else {
427                 if (ip->flags & HAMMER_INODE_RSV_INODES) {
428                         ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
429                         --hmp->rsv_inodes;
430                 }
431                 hmp->rsv_databufs -= ip->rsv_databufs;
432                 ip->rsv_databufs = 0;                          /* sanity */
433
434                 --hammer_count_inodes;
435                 --hmp->count_inodes;
436                 kfree(ip, M_HAMMER);
437                 ip = NULL;
438         }
439         hammer_done_cursor(&cursor);
440         return (ip);
441 }
442
443 /*
444  * Create a new filesystem object, returning the inode in *ipp.  The
445  * returned inode will be referenced.
446  *
447  * The inode is created in-memory.
448  */
449 int
450 hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
451                     struct ucred *cred, hammer_inode_t dip,
452                     int pseudofs, struct hammer_inode **ipp)
453 {
454         hammer_mount_t hmp;
455         hammer_inode_t ip;
456         uid_t xuid;
457         u_int32_t localization;
458         int error;
459
460         hmp = trans->hmp;
461
462         /*
463          * Assign the localization domain.  If if dip is NULL we are creating
464          * a pseudo-fs and must locate an unused localization domain.
465          */
466         if (pseudofs) {
467                 for (localization = HAMMER_DEF_LOCALIZATION;
468                      localization < HAMMER_LOCALIZE_PSEUDOFS_MASK;
469                      localization += HAMMER_LOCALIZE_PSEUDOFS_INC) {
470                         ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT,
471                                               hmp->asof, localization,
472                                               0, &error);
473                         if (ip == NULL) {
474                                 if (error != ENOENT)
475                                         return(error);
476                                 break;
477                         }
478                         if (ip)
479                                 hammer_rel_inode(ip, 0);
480                 }
481         } else {
482                 localization = dip->obj_localization;
483         }
484
485         ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
486         ++hammer_count_inodes;
487         ++hmp->count_inodes;
488
489         /*
490          * Allocate a new object id.  If creating a new pseudo-fs the
491          * obj_id is 1.
492          */
493         if (pseudofs)
494                 ip->obj_id = HAMMER_OBJID_ROOT;
495         else
496                 ip->obj_id = hammer_alloc_objid(hmp, dip);
497         ip->obj_localization = localization;
498
499         KKASSERT(ip->obj_id != 0);
500         ip->obj_asof = hmp->asof;
501         ip->hmp = hmp;
502         ip->flush_state = HAMMER_FST_IDLE;
503         ip->flags = HAMMER_INODE_DDIRTY |
504                     HAMMER_INODE_ATIME | HAMMER_INODE_MTIME;
505         ip->cache[0].ip = ip;
506         ip->cache[1].ip = ip;
507
508         ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
509         /* ip->save_trunc_off = 0; (already zero) */
510         RB_INIT(&ip->rec_tree);
511         TAILQ_INIT(&ip->target_list);
512
513         ip->ino_data.atime = trans->time;
514         ip->ino_data.mtime = trans->time;
515         ip->ino_data.size = 0;
516         ip->ino_data.nlinks = 0;
517
518         /*
519          * A nohistory designator on the parent directory is inherited by
520          * the child.  We will do this even for pseudo-fs creation... the
521          * sysad can turn it off.
522          */
523         ip->ino_data.uflags = dip->ino_data.uflags &
524                               (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
525
526         ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
527         ip->ino_leaf.base.localization = ip->obj_localization +
528                                          HAMMER_LOCALIZE_INODE;
529         ip->ino_leaf.base.obj_id = ip->obj_id;
530         ip->ino_leaf.base.key = 0;
531         ip->ino_leaf.base.create_tid = 0;
532         ip->ino_leaf.base.delete_tid = 0;
533         ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
534         ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
535
536         ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
537         ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
538         ip->ino_data.mode = vap->va_mode;
539         ip->ino_data.ctime = trans->time;
540
541         /*
542          * Setup the ".." pointer.  This only needs to be done for directories
543          * but we do it for all objects as a recovery aid.
544          *
545          * The parent_obj_localization field only applies to pseudo-fs roots.
546          */
547         ip->ino_data.parent_obj_id = dip->ino_leaf.base.obj_id;
548         if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY &&
549             ip->obj_id == HAMMER_OBJID_ROOT) {
550                 ip->ino_data.ext.obj.parent_obj_localization = 
551                                                 dip->obj_localization;
552         }
553
554         switch(ip->ino_leaf.base.obj_type) {
555         case HAMMER_OBJTYPE_CDEV:
556         case HAMMER_OBJTYPE_BDEV:
557                 ip->ino_data.rmajor = vap->va_rmajor;
558                 ip->ino_data.rminor = vap->va_rminor;
559                 break;
560         default:
561                 break;
562         }
563
564         /*
565          * Calculate default uid/gid and overwrite with information from
566          * the vap.
567          */
568         xuid = hammer_to_unix_xid(&dip->ino_data.uid);
569         xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode, xuid, cred,
570                                      &vap->va_mode);
571         ip->ino_data.mode = vap->va_mode;
572
573         if (vap->va_vaflags & VA_UID_UUID_VALID)
574                 ip->ino_data.uid = vap->va_uid_uuid;
575         else if (vap->va_uid != (uid_t)VNOVAL)
576                 hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
577         else
578                 hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
579
580         if (vap->va_vaflags & VA_GID_UUID_VALID)
581                 ip->ino_data.gid = vap->va_gid_uuid;
582         else if (vap->va_gid != (gid_t)VNOVAL)
583                 hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
584         else
585                 ip->ino_data.gid = dip->ino_data.gid;
586
587         hammer_ref(&ip->lock);
588         if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
589                 hammer_unref(&ip->lock);
590                 panic("hammer_create_inode: duplicate obj_id %llx", ip->obj_id);
591         }
592         *ipp = ip;
593         return(0);
594 }
595
596 /*
597  * Called by hammer_sync_inode().
598  */
599 static int
600 hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
601 {
602         hammer_transaction_t trans = cursor->trans;
603         hammer_record_t record;
604         int error;
605         int redirty;
606
607 retry:
608         error = 0;
609
610         /*
611          * If the inode has a presence on-disk then locate it and mark
612          * it deleted, setting DELONDISK.
613          *
614          * The record may or may not be physically deleted, depending on
615          * the retention policy.
616          */
617         if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
618             HAMMER_INODE_ONDISK) {
619                 hammer_normalize_cursor(cursor);
620                 cursor->key_beg.localization = ip->obj_localization + 
621                                                HAMMER_LOCALIZE_INODE;
622                 cursor->key_beg.obj_id = ip->obj_id;
623                 cursor->key_beg.key = 0;
624                 cursor->key_beg.create_tid = 0;
625                 cursor->key_beg.delete_tid = 0;
626                 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
627                 cursor->key_beg.obj_type = 0;
628                 cursor->asof = ip->obj_asof;
629                 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
630                 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
631                 cursor->flags |= HAMMER_CURSOR_BACKEND;
632
633                 error = hammer_btree_lookup(cursor);
634                 if (hammer_debug_inode)
635                         kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
636                 if (error) {
637                         kprintf("error %d\n", error);
638                         Debugger("hammer_update_inode");
639                 }
640
641                 if (error == 0) {
642                         error = hammer_ip_delete_record(cursor, ip, trans->tid);
643                         if (hammer_debug_inode)
644                                 kprintf(" error %d\n", error);
645                         if (error && error != EDEADLK) {
646                                 kprintf("error %d\n", error);
647                                 Debugger("hammer_update_inode2");
648                         }
649                         if (error == 0) {
650                                 ip->flags |= HAMMER_INODE_DELONDISK;
651                         }
652                         if (cursor->node)
653                                 hammer_cache_node(&ip->cache[0], cursor->node);
654                 }
655                 if (error == EDEADLK) {
656                         hammer_done_cursor(cursor);
657                         error = hammer_init_cursor(trans, cursor,
658                                                    &ip->cache[0], ip);
659                         if (hammer_debug_inode)
660                                 kprintf("IPDED %p %d\n", ip, error);
661                         if (error == 0)
662                                 goto retry;
663                 }
664         }
665
666         /*
667          * Ok, write out the initial record or a new record (after deleting
668          * the old one), unless the DELETED flag is set.  This routine will
669          * clear DELONDISK if it writes out a record.
670          *
671          * Update our inode statistics if this is the first application of
672          * the inode on-disk.
673          */
674         if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
675                 /*
676                  * Generate a record and write it to the media
677                  */
678                 record = hammer_alloc_mem_record(ip, 0);
679                 record->type = HAMMER_MEM_RECORD_INODE;
680                 record->flush_state = HAMMER_FST_FLUSH;
681                 record->leaf = ip->sync_ino_leaf;
682                 record->leaf.base.create_tid = trans->tid;
683                 record->leaf.data_len = sizeof(ip->sync_ino_data);
684                 record->leaf.create_ts = trans->time32;
685                 record->data = (void *)&ip->sync_ino_data;
686                 record->flags |= HAMMER_RECF_INTERLOCK_BE;
687
688                 /*
689                  * If this flag is set we cannot sync the new file size
690                  * because we haven't finished related truncations.  The
691                  * inode will be flushed in another flush group to finish
692                  * the job.
693                  */
694                 if ((ip->flags & HAMMER_INODE_WOULDBLOCK) &&
695                     ip->sync_ino_data.size != ip->ino_data.size) {
696                         redirty = 1;
697                         ip->sync_ino_data.size = ip->ino_data.size;
698                 } else {
699                         redirty = 0;
700                 }
701
702                 for (;;) {
703                         error = hammer_ip_sync_record_cursor(cursor, record);
704                         if (hammer_debug_inode)
705                                 kprintf("GENREC %p rec %08x %d\n",      
706                                         ip, record->flags, error);
707                         if (error != EDEADLK)
708                                 break;
709                         hammer_done_cursor(cursor);
710                         error = hammer_init_cursor(trans, cursor,
711                                                    &ip->cache[0], ip);
712                         if (hammer_debug_inode)
713                                 kprintf("GENREC reinit %d\n", error);
714                         if (error)
715                                 break;
716                 }
717                 if (error) {
718                         kprintf("error %d\n", error);
719                         Debugger("hammer_update_inode3");
720                 }
721
722                 /*
723                  * The record isn't managed by the inode's record tree,
724                  * destroy it whether we succeed or fail.
725                  */
726                 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
727                 record->flags |= HAMMER_RECF_DELETED_FE;
728                 record->flush_state = HAMMER_FST_IDLE;
729                 hammer_rel_mem_record(record);
730
731                 /*
732                  * Finish up.
733                  */
734                 if (error == 0) {
735                         if (hammer_debug_inode)
736                                 kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
737                         ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
738                                             HAMMER_INODE_ATIME |
739                                             HAMMER_INODE_MTIME);
740                         ip->flags &= ~HAMMER_INODE_DELONDISK;
741                         if (redirty)
742                                 ip->sync_flags |= HAMMER_INODE_DDIRTY;
743
744                         /*
745                          * Root volume count of inodes
746                          */
747                         if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
748                                 hammer_modify_volume_field(trans,
749                                                            trans->rootvol,
750                                                            vol0_stat_inodes);
751                                 ++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
752                                 hammer_modify_volume_done(trans->rootvol);
753                                 ip->flags |= HAMMER_INODE_ONDISK;
754                                 if (hammer_debug_inode)
755                                         kprintf("NOWONDISK %p\n", ip);
756                         }
757                 }
758         }
759
760         /*
761          * If the inode has been destroyed, clean out any left-over flags
762          * that may have been set by the frontend.
763          */
764         if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) { 
765                 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
766                                     HAMMER_INODE_ATIME |
767                                     HAMMER_INODE_MTIME);
768         }
769         return(error);
770 }
771
772 /*
773  * Update only the itimes fields.
774  *
775  * ATIME can be updated without generating any UNDO.  MTIME is updated
776  * with UNDO so it is guaranteed to be synchronized properly in case of
777  * a crash.
778  *
779  * Neither field is included in the B-Tree leaf element's CRC, which is how
780  * we can get away with updating ATIME the way we do.
781  */
782 static int
783 hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
784 {
785         hammer_transaction_t trans = cursor->trans;
786         int error;
787
788 retry:
789         if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) !=
790             HAMMER_INODE_ONDISK) {
791                 return(0);
792         }
793
794         hammer_normalize_cursor(cursor);
795         cursor->key_beg.localization = ip->obj_localization + 
796                                        HAMMER_LOCALIZE_INODE;
797         cursor->key_beg.obj_id = ip->obj_id;
798         cursor->key_beg.key = 0;
799         cursor->key_beg.create_tid = 0;
800         cursor->key_beg.delete_tid = 0;
801         cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
802         cursor->key_beg.obj_type = 0;
803         cursor->asof = ip->obj_asof;
804         cursor->flags &= ~HAMMER_CURSOR_INITMASK;
805         cursor->flags |= HAMMER_CURSOR_ASOF;
806         cursor->flags |= HAMMER_CURSOR_GET_LEAF;
807         cursor->flags |= HAMMER_CURSOR_GET_DATA;
808         cursor->flags |= HAMMER_CURSOR_BACKEND;
809
810         error = hammer_btree_lookup(cursor);
811         if (error) {
812                 kprintf("error %d\n", error);
813                 Debugger("hammer_update_itimes1");
814         }
815         if (error == 0) {
816                 hammer_cache_node(&ip->cache[0], cursor->node);
817                 if (ip->sync_flags & HAMMER_INODE_MTIME) {
818                         /*
819                          * Updating MTIME requires an UNDO.  Just cover
820                          * both atime and mtime.
821                          */
822                         hammer_modify_buffer(trans, cursor->data_buffer,
823                                      HAMMER_ITIMES_BASE(&cursor->data->inode),
824                                      HAMMER_ITIMES_BYTES);
825                         cursor->data->inode.atime = ip->sync_ino_data.atime;
826                         cursor->data->inode.mtime = ip->sync_ino_data.mtime;
827                         hammer_modify_buffer_done(cursor->data_buffer);
828                 } else if (ip->sync_flags & HAMMER_INODE_ATIME) {
829                         /*
830                          * Updating atime only can be done in-place with
831                          * no UNDO.
832                          */
833                         hammer_modify_buffer(trans, cursor->data_buffer,
834                                              NULL, 0);
835                         cursor->data->inode.atime = ip->sync_ino_data.atime;
836                         hammer_modify_buffer_done(cursor->data_buffer);
837                 }
838                 ip->sync_flags &= ~(HAMMER_INODE_ATIME | HAMMER_INODE_MTIME);
839         }
840         if (error == EDEADLK) {
841                 hammer_done_cursor(cursor);
842                 error = hammer_init_cursor(trans, cursor,
843                                            &ip->cache[0], ip);
844                 if (error == 0)
845                         goto retry;
846         }
847         return(error);
848 }
849
850 /*
851  * Release a reference on an inode, flush as requested.
852  *
853  * On the last reference we queue the inode to the flusher for its final
854  * disposition.
855  */
856 void
857 hammer_rel_inode(struct hammer_inode *ip, int flush)
858 {
859         hammer_mount_t hmp = ip->hmp;
860
861         /*
862          * Handle disposition when dropping the last ref.
863          */
864         for (;;) {
865                 if (ip->lock.refs == 1) {
866                         /*
867                          * Determine whether on-disk action is needed for
868                          * the inode's final disposition.
869                          */
870                         KKASSERT(ip->vp == NULL);
871                         hammer_inode_unloadable_check(ip, 0);
872                         if (ip->flags & HAMMER_INODE_MODMASK) {
873                                 if (hmp->rsv_inodes > desiredvnodes) {
874                                         hammer_flush_inode(ip,
875                                                            HAMMER_FLUSH_SIGNAL);
876                                 } else {
877                                         hammer_flush_inode(ip, 0);
878                                 }
879                         } else if (ip->lock.refs == 1) {
880                                 hammer_unload_inode(ip);
881                                 break;
882                         }
883                 } else {
884                         if (flush)
885                                 hammer_flush_inode(ip, 0);
886
887                         /*
888                          * The inode still has multiple refs, try to drop
889                          * one ref.
890                          */
891                         KKASSERT(ip->lock.refs >= 1);
892                         if (ip->lock.refs > 1) {
893                                 hammer_unref(&ip->lock);
894                                 break;
895                         }
896                 }
897         }
898 }
899
900 /*
901  * Unload and destroy the specified inode.  Must be called with one remaining
902  * reference.  The reference is disposed of.
903  *
904  * This can only be called in the context of the flusher.
905  */
906 static int
907 hammer_unload_inode(struct hammer_inode *ip)
908 {
909         hammer_mount_t hmp = ip->hmp;
910
911         KASSERT(ip->lock.refs == 1,
912                 ("hammer_unload_inode: %d refs\n", ip->lock.refs));
913         KKASSERT(ip->vp == NULL);
914         KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
915         KKASSERT(ip->cursor_ip_refs == 0);
916         KKASSERT(ip->lock.lockcount == 0);
917         KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
918
919         KKASSERT(RB_EMPTY(&ip->rec_tree));
920         KKASSERT(TAILQ_EMPTY(&ip->target_list));
921
922         RB_REMOVE(hammer_ino_rb_tree, &hmp->rb_inos_root, ip);
923
924         hammer_uncache_node(&ip->cache[0]);
925         hammer_uncache_node(&ip->cache[1]);
926         if (ip->objid_cache)
927                 hammer_clear_objid(ip);
928         --hammer_count_inodes;
929         --hmp->count_inodes;
930
931         hammer_inode_wakereclaims(ip);
932         kfree(ip, M_HAMMER);
933
934         return(0);
935 }
936
937 /*
938  * Called on mount -u when switching from RW to RO or vise-versa.  Adjust
939  * the read-only flag for cached inodes.
940  *
941  * This routine is called from a RB_SCAN().
942  */
943 int
944 hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
945 {
946         hammer_mount_t hmp = ip->hmp;
947
948         if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
949                 ip->flags |= HAMMER_INODE_RO;
950         else
951                 ip->flags &= ~HAMMER_INODE_RO;
952         return(0);
953 }
954
955 /*
956  * A transaction has modified an inode, requiring updates as specified by
957  * the passed flags.
958  *
959  * HAMMER_INODE_DDIRTY: Inode data has been updated
960  * HAMMER_INODE_XDIRTY: Dirty in-memory records
961  * HAMMER_INODE_BUFS:   Dirty buffer cache buffers
962  * HAMMER_INODE_DELETED: Inode record/data must be deleted
963  * HAMMER_INODE_ATIME/MTIME: mtime/atime has been updated
964  */
965 void
966 hammer_modify_inode(hammer_inode_t ip, int flags)
967 {
968         KKASSERT ((ip->flags & HAMMER_INODE_RO) == 0 ||
969                   (flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY | 
970                             HAMMER_INODE_BUFS | HAMMER_INODE_DELETED |
971                             HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) == 0);
972         if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
973                 ip->flags |= HAMMER_INODE_RSV_INODES;
974                 ++ip->hmp->rsv_inodes;
975         }
976
977         ip->flags |= flags;
978 }
979
980 /*
981  * Request that an inode be flushed.  This whole mess cannot block and may
982  * recurse (if not synchronous).  Once requested HAMMER will attempt to
983  * actively flush the inode until the flush can be done.
984  *
985  * The inode may already be flushing, or may be in a setup state.  We can
986  * place the inode in a flushing state if it is currently idle and flag it
987  * to reflush if it is currently flushing.
988  *
989  * If the HAMMER_FLUSH_SYNCHRONOUS flag is specified we will attempt to
990  * flush the indoe synchronously using the caller's context.
991  */
992 void
993 hammer_flush_inode(hammer_inode_t ip, int flags)
994 {
995         int good;
996
997         /*
998          * Trivial 'nothing to flush' case.  If the inode is ina SETUP
999          * state we have to put it back into an IDLE state so we can
1000          * drop the extra ref.
1001          */
1002         if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
1003                 if (ip->flush_state == HAMMER_FST_SETUP) {
1004                         ip->flush_state = HAMMER_FST_IDLE;
1005                         hammer_rel_inode(ip, 0);
1006                 }
1007                 return;
1008         }
1009
1010         /*
1011          * Our flush action will depend on the current state.
1012          */
1013         switch(ip->flush_state) {
1014         case HAMMER_FST_IDLE:
1015                 /*
1016                  * We have no dependancies and can flush immediately.  Some
1017                  * our children may not be flushable so we have to re-test
1018                  * with that additional knowledge.
1019                  */
1020                 hammer_flush_inode_core(ip, flags);
1021                 break;
1022         case HAMMER_FST_SETUP:
1023                 /*
1024                  * Recurse upwards through dependancies via target_list
1025                  * and start their flusher actions going if possible.
1026                  *
1027                  * 'good' is our connectivity.  -1 means we have none and
1028                  * can't flush, 0 means there weren't any dependancies, and
1029                  * 1 means we have good connectivity.
1030                  */
1031                 good = hammer_setup_parent_inodes(ip);
1032
1033                 /*
1034                  * We can continue if good >= 0.  Determine how many records
1035                  * under our inode can be flushed (and mark them).
1036                  */
1037                 if (good >= 0) {
1038                         hammer_flush_inode_core(ip, flags);
1039                 } else {
1040                         ip->flags |= HAMMER_INODE_REFLUSH;
1041                         if (flags & HAMMER_FLUSH_SIGNAL) {
1042                                 ip->flags |= HAMMER_INODE_RESIGNAL;
1043                                 hammer_flusher_async(ip->hmp);
1044                         }
1045                 }
1046                 break;
1047         default:
1048                 /*
1049                  * We are already flushing, flag the inode to reflush
1050                  * if needed after it completes its current flush.
1051                  */
1052                 if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
1053                         ip->flags |= HAMMER_INODE_REFLUSH;
1054                 if (flags & HAMMER_FLUSH_SIGNAL) {
1055                         ip->flags |= HAMMER_INODE_RESIGNAL;
1056                         hammer_flusher_async(ip->hmp);
1057                 }
1058                 break;
1059         }
1060 }
1061
1062 /*
1063  * Scan ip->target_list, which is a list of records owned by PARENTS to our
1064  * ip which reference our ip.
1065  *
1066  * XXX This is a huge mess of recursive code, but not one bit of it blocks
1067  *     so for now do not ref/deref the structures.  Note that if we use the
1068  *     ref/rel code later, the rel CAN block.
1069  */
1070 static int
1071 hammer_setup_parent_inodes(hammer_inode_t ip)
1072 {
1073         hammer_record_t depend;
1074 #if 0
1075         hammer_record_t next;
1076         hammer_inode_t  pip;
1077 #endif
1078         int good;
1079         int r;
1080
1081         good = 0;
1082         TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
1083                 r = hammer_setup_parent_inodes_helper(depend);
1084                 KKASSERT(depend->target_ip == ip);
1085                 if (r < 0 && good == 0)
1086                         good = -1;
1087                 if (r > 0)
1088                         good = 1;
1089         }
1090         return(good);
1091
1092 #if 0
1093 retry:
1094         good = 0;
1095         next = TAILQ_FIRST(&ip->target_list);
1096         if (next) {
1097                 hammer_ref(&next->lock);
1098                 hammer_ref(&next->ip->lock);
1099         }
1100         while ((depend = next) != NULL) {
1101                 if (depend->target_ip == NULL) {
1102                         pip = depend->ip;
1103                         hammer_rel_mem_record(depend);
1104                         hammer_rel_inode(pip, 0);
1105                         goto retry;
1106                 }
1107                 KKASSERT(depend->target_ip == ip);
1108                 next = TAILQ_NEXT(depend, target_entry);
1109                 if (next) {
1110                         hammer_ref(&next->lock);
1111                         hammer_ref(&next->ip->lock);
1112                 }
1113                 r = hammer_setup_parent_inodes_helper(depend);
1114                 if (r < 0 && good == 0)
1115                         good = -1;
1116                 if (r > 0)
1117                         good = 1;
1118                 pip = depend->ip;
1119                 hammer_rel_mem_record(depend);
1120                 hammer_rel_inode(pip, 0);
1121         }
1122         return(good);
1123 #endif
1124 }
1125
1126 /*
1127  * This helper function takes a record representing the dependancy between
1128  * the parent inode and child inode.
1129  *
1130  * record->ip           = parent inode
1131  * record->target_ip    = child inode
1132  * 
1133  * We are asked to recurse upwards and convert the record from SETUP
1134  * to FLUSH if possible.
1135  *
1136  * Return 1 if the record gives us connectivity
1137  *
1138  * Return 0 if the record is not relevant 
1139  *
1140  * Return -1 if we can't resolve the dependancy and there is no connectivity.
1141  */
1142 static int
1143 hammer_setup_parent_inodes_helper(hammer_record_t record)
1144 {
1145         hammer_mount_t hmp;
1146         hammer_inode_t pip;
1147         int good;
1148
1149         KKASSERT(record->flush_state != HAMMER_FST_IDLE);
1150         pip = record->ip;
1151         hmp = pip->hmp;
1152
1153         /*
1154          * If the record is already flushing, is it in our flush group?
1155          *
1156          * If it is in our flush group but it is a general record or a 
1157          * delete-on-disk, it does not improve our connectivity (return 0),
1158          * and if the target inode is not trying to destroy itself we can't
1159          * allow the operation yet anyway (the second return -1).
1160          */
1161         if (record->flush_state == HAMMER_FST_FLUSH) {
1162                 if (record->flush_group != hmp->flusher.next) {
1163                         pip->flags |= HAMMER_INODE_REFLUSH;
1164                         return(-1);
1165                 }
1166                 if (record->type == HAMMER_MEM_RECORD_ADD)
1167                         return(1);
1168                 /* GENERAL or DEL */
1169                 return(0);
1170         }
1171
1172         /*
1173          * It must be a setup record.  Try to resolve the setup dependancies
1174          * by recursing upwards so we can place ip on the flush list.
1175          */
1176         KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1177
1178         good = hammer_setup_parent_inodes(pip);
1179
1180         /*
1181          * We can't flush ip because it has no connectivity (XXX also check
1182          * nlinks for pre-existing connectivity!).  Flag it so any resolution
1183          * recurses back down.
1184          */
1185         if (good < 0) {
1186                 pip->flags |= HAMMER_INODE_REFLUSH;
1187                 return(good);
1188         }
1189
1190         /*
1191          * We are go, place the parent inode in a flushing state so we can
1192          * place its record in a flushing state.  Note that the parent
1193          * may already be flushing.  The record must be in the same flush
1194          * group as the parent.
1195          */
1196         if (pip->flush_state != HAMMER_FST_FLUSH)
1197                 hammer_flush_inode_core(pip, HAMMER_FLUSH_RECURSION);
1198         KKASSERT(pip->flush_state == HAMMER_FST_FLUSH);
1199         KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1200
1201 #if 0
1202         if (record->type == HAMMER_MEM_RECORD_DEL &&
1203             (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
1204                 /*
1205                  * Regardless of flushing state we cannot sync this path if the
1206                  * record represents a delete-on-disk but the target inode
1207                  * is not ready to sync its own deletion.
1208                  *
1209                  * XXX need to count effective nlinks to determine whether
1210                  * the flush is ok, otherwise removing a hardlink will
1211                  * just leave the DEL record to rot.
1212                  */
1213                 record->target_ip->flags |= HAMMER_INODE_REFLUSH;
1214                 return(-1);
1215         } else
1216 #endif
1217         if (pip->flush_group == pip->hmp->flusher.next) {
1218                 /*
1219                  * This is the record we wanted to synchronize.  If the
1220                  * record went into a flush state while we blocked it 
1221                  * had better be in the correct flush group.
1222                  */
1223                 if (record->flush_state != HAMMER_FST_FLUSH) {
1224                         record->flush_state = HAMMER_FST_FLUSH;
1225                         record->flush_group = pip->flush_group;
1226                         hammer_ref(&record->lock);
1227                 } else {
1228                         KKASSERT(record->flush_group == pip->flush_group);
1229                 }
1230                 if (record->type == HAMMER_MEM_RECORD_ADD)
1231                         return(1);
1232
1233                 /*
1234                  * A general or delete-on-disk record does not contribute
1235                  * to our visibility.  We can still flush it, however.
1236                  */
1237                 return(0);
1238         } else {
1239                 /*
1240                  * We couldn't resolve the dependancies, request that the
1241                  * inode be flushed when the dependancies can be resolved.
1242                  */
1243                 pip->flags |= HAMMER_INODE_REFLUSH;
1244                 return(-1);
1245         }
1246 }
1247
1248 /*
1249  * This is the core routine placing an inode into the FST_FLUSH state.
1250  */
1251 static void
1252 hammer_flush_inode_core(hammer_inode_t ip, int flags)
1253 {
1254         int go_count;
1255
1256         /*
1257          * Set flush state and prevent the flusher from cycling into
1258          * the next flush group.  Do not place the ip on the list yet.
1259          * Inodes not in the idle state get an extra reference.
1260          */
1261         KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
1262         if (ip->flush_state == HAMMER_FST_IDLE)
1263                 hammer_ref(&ip->lock);
1264         ip->flush_state = HAMMER_FST_FLUSH;
1265         ip->flush_group = ip->hmp->flusher.next;
1266         ++ip->hmp->flusher.group_lock;
1267         ++ip->hmp->count_iqueued;
1268         ++hammer_count_iqueued;
1269
1270         /*
1271          * We need to be able to vfsync/truncate from the backend.
1272          */
1273         KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
1274         if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
1275                 ip->flags |= HAMMER_INODE_VHELD;
1276                 vref(ip->vp);
1277         }
1278
1279         /*
1280          * Figure out how many in-memory records we can actually flush
1281          * (not including inode meta-data, buffers, etc).
1282          *
1283          * Do not add new records to the flush if this is a recursion or
1284          * if we must still complete a flush from the previous flush cycle.
1285          */
1286         if (flags & HAMMER_FLUSH_RECURSION) {
1287                 go_count = 1;
1288         } else if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
1289                 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1290                                    hammer_syncgrp_child_callback, NULL);
1291                 go_count = 1;
1292         } else {
1293                 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1294                                    hammer_setup_child_callback, NULL);
1295         }
1296
1297         /*
1298          * This is a more involved test that includes go_count.  If we
1299          * can't flush, flag the inode and return.  If go_count is 0 we
1300          * were are unable to flush any records in our rec_tree and
1301          * must ignore the XDIRTY flag.
1302          */
1303         if (go_count == 0) {
1304                 if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
1305                         ip->flags |= HAMMER_INODE_REFLUSH;
1306
1307                         --ip->hmp->count_iqueued;
1308                         --hammer_count_iqueued;
1309
1310                         ip->flush_state = HAMMER_FST_SETUP;
1311                         if (ip->flags & HAMMER_INODE_VHELD) {
1312                                 ip->flags &= ~HAMMER_INODE_VHELD;
1313                                 vrele(ip->vp);
1314                         }
1315                         if (flags & HAMMER_FLUSH_SIGNAL) {
1316                                 ip->flags |= HAMMER_INODE_RESIGNAL;
1317                                 hammer_flusher_async(ip->hmp);
1318                         }
1319                         if (--ip->hmp->flusher.group_lock == 0)
1320                                 wakeup(&ip->hmp->flusher.group_lock);
1321                         return;
1322                 }
1323         }
1324
1325         /*
1326          * Snapshot the state of the inode for the backend flusher.
1327          *
1328          * We continue to retain save_trunc_off even when all truncations
1329          * have been resolved as an optimization to determine if we can
1330          * skip the B-Tree lookup for overwrite deletions.
1331          *
1332          * NOTE: The DELETING flag is a mod flag, but it is also sticky,
1333          * and stays in ip->flags.  Once set, it stays set until the
1334          * inode is destroyed.
1335          *
1336          * NOTE: If a truncation from a previous flush cycle had to be
1337          * continued into this one, the TRUNCATED flag will still be
1338          * set in sync_flags as will WOULDBLOCK.  When this occurs
1339          * we CANNOT safely integrate a new truncation from the front-end
1340          * because there may be data records in-memory assigned a flush
1341          * state from the previous cycle that are supposed to be flushed
1342          * before the next frontend truncation.
1343          */
1344         if ((ip->flags & (HAMMER_INODE_TRUNCATED | HAMMER_INODE_WOULDBLOCK)) ==
1345             HAMMER_INODE_TRUNCATED) {
1346                 KKASSERT((ip->sync_flags & HAMMER_INODE_TRUNCATED) == 0);
1347                 ip->sync_trunc_off = ip->trunc_off;
1348                 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
1349                 ip->flags &= ~HAMMER_INODE_TRUNCATED;
1350                 ip->sync_flags |= HAMMER_INODE_TRUNCATED;
1351
1352                 /*
1353                  * The save_trunc_off used to cache whether the B-Tree
1354                  * holds any records past that point is not used until
1355                  * after the truncation has succeeded, so we can safely
1356                  * set it now.
1357                  */
1358                 if (ip->save_trunc_off > ip->sync_trunc_off)
1359                         ip->save_trunc_off = ip->sync_trunc_off;
1360         }
1361         ip->sync_flags |= (ip->flags & HAMMER_INODE_MODMASK &
1362                            ~HAMMER_INODE_TRUNCATED);
1363         ip->sync_ino_leaf = ip->ino_leaf;
1364         ip->sync_ino_data = ip->ino_data;
1365         ip->flags &= ~HAMMER_INODE_MODMASK | HAMMER_INODE_TRUNCATED;
1366 #ifdef DEBUG_TRUNCATE
1367         if ((ip->sync_flags & HAMMER_INODE_TRUNCATED) && ip == HammerTruncIp)
1368                 kprintf("truncateS %016llx\n", ip->sync_trunc_off);
1369 #endif
1370
1371         /*
1372          * The flusher list inherits our inode and reference.
1373          */
1374         TAILQ_INSERT_TAIL(&ip->hmp->flush_list, ip, flush_entry);
1375         if (--ip->hmp->flusher.group_lock == 0)
1376                 wakeup(&ip->hmp->flusher.group_lock);
1377
1378         if (flags & HAMMER_FLUSH_SIGNAL) {
1379                 hammer_flusher_async(ip->hmp);
1380         }
1381 }
1382
1383 /*
1384  * Callback for scan of ip->rec_tree.  Try to include each record in our
1385  * flush.  ip->flush_group has been set but the inode has not yet been
1386  * moved into a flushing state.
1387  *
1388  * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
1389  * both inodes.
1390  *
1391  * We return 1 for any record placed or found in FST_FLUSH, which prevents
1392  * the caller from shortcutting the flush.
1393  */
1394 static int
1395 hammer_setup_child_callback(hammer_record_t rec, void *data)
1396 {
1397         hammer_inode_t target_ip;
1398         hammer_inode_t ip;
1399         int r;
1400
1401         /*
1402          * Deleted records are ignored.  Note that the flush detects deleted
1403          * front-end records at multiple points to deal with races.  This is
1404          * just the first line of defense.  The only time DELETED_FE cannot
1405          * be set is when HAMMER_RECF_INTERLOCK_BE is set. 
1406          *
1407          * Don't get confused between record deletion and, say, directory
1408          * entry deletion.  The deletion of a directory entry that is on
1409          * the media has nothing to do with the record deletion flags.
1410          *
1411          * The flush_group for a record already in a flush state must
1412          * be updated.  This case can only occur if the inode deleting
1413          * too many records had to be moved to the next flush group.
1414          */
1415         if (rec->flags & (HAMMER_RECF_DELETED_FE|HAMMER_RECF_DELETED_BE)) {
1416                 if (rec->flush_state == HAMMER_FST_FLUSH) {
1417                         KKASSERT(rec->ip->flags & HAMMER_INODE_WOULDBLOCK);
1418                         rec->flush_group = rec->ip->flush_group;
1419                         r = 1;
1420                 } else {
1421                         r = 0;
1422                 }
1423                 return(r);
1424         }
1425
1426         /*
1427          * If the record is in an idle state it has no dependancies and
1428          * can be flushed.
1429          */
1430         ip = rec->ip;
1431         r = 0;
1432
1433         switch(rec->flush_state) {
1434         case HAMMER_FST_IDLE:
1435                 /*
1436                  * Record has no setup dependancy, we can flush it.
1437                  */
1438                 KKASSERT(rec->target_ip == NULL);
1439                 rec->flush_state = HAMMER_FST_FLUSH;
1440                 rec->flush_group = ip->flush_group;
1441                 hammer_ref(&rec->lock);
1442                 r = 1;
1443                 break;
1444         case HAMMER_FST_SETUP:
1445                 /*
1446                  * Record has a setup dependancy.  Try to include the
1447                  * target ip in the flush. 
1448                  *
1449                  * We have to be careful here, if we do not do the right
1450                  * thing we can lose track of dirty inodes and the system
1451                  * will lockup trying to allocate buffers.
1452                  */
1453                 target_ip = rec->target_ip;
1454                 KKASSERT(target_ip != NULL);
1455                 KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
1456                 if (target_ip->flush_state == HAMMER_FST_FLUSH) {
1457                         /*
1458                          * If the target IP is already flushing in our group
1459                          * we are golden, otherwise make sure the target
1460                          * reflushes.
1461                          */
1462                         if (target_ip->flush_group == ip->flush_group) {
1463                                 rec->flush_state = HAMMER_FST_FLUSH;
1464                                 rec->flush_group = ip->flush_group;
1465                                 hammer_ref(&rec->lock);
1466                                 r = 1;
1467                         } else {
1468                                 target_ip->flags |= HAMMER_INODE_REFLUSH;
1469                         }
1470                 } else if (rec->type == HAMMER_MEM_RECORD_ADD) {
1471                         /*
1472                          * If the target IP is not flushing we can force
1473                          * it to flush, even if it is unable to write out
1474                          * any of its own records we have at least one in
1475                          * hand that we CAN deal with.
1476                          */
1477                         rec->flush_state = HAMMER_FST_FLUSH;
1478                         rec->flush_group = ip->flush_group;
1479                         hammer_ref(&rec->lock);
1480                         hammer_flush_inode_core(target_ip,
1481                                                 HAMMER_FLUSH_RECURSION);
1482                         r = 1;
1483                 } else {
1484                         /*
1485                          * General or delete-on-disk record.
1486                          *
1487                          * XXX this needs help.  If a delete-on-disk we could
1488                          * disconnect the target.  If the target has its own
1489                          * dependancies they really need to be flushed.
1490                          *
1491                          * XXX
1492                          */
1493                         rec->flush_state = HAMMER_FST_FLUSH;
1494                         rec->flush_group = ip->flush_group;
1495                         hammer_ref(&rec->lock);
1496                         hammer_flush_inode_core(target_ip,
1497                                                 HAMMER_FLUSH_RECURSION);
1498                         r = 1;
1499                 }
1500                 break;
1501         case HAMMER_FST_FLUSH:
1502                 /* 
1503                  * If the WOULDBLOCK flag is set records may have been left
1504                  * over from a previous flush attempt and should be moved
1505                  * to the current flush group.  If it is not set then all
1506                  * such records had better have been flushed already or
1507                  * already associated with the current flush group.
1508                  */
1509                 if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
1510                         rec->flush_group = ip->flush_group;
1511                 } else {
1512                         KKASSERT(rec->flush_group == ip->flush_group);
1513                 }
1514                 r = 1;
1515                 break;
1516         }
1517         return(r);
1518 }
1519
1520 /*
1521  * This version just moves records already in a flush state to the new
1522  * flush group and that is it.
1523  */
1524 static int
1525 hammer_syncgrp_child_callback(hammer_record_t rec, void *data)
1526 {
1527         hammer_inode_t ip = rec->ip;
1528
1529         switch(rec->flush_state) {
1530         case HAMMER_FST_FLUSH:
1531                 if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
1532                         rec->flush_group = ip->flush_group;
1533                 } else {
1534                         KKASSERT(rec->flush_group == ip->flush_group);
1535                 }
1536                 break;
1537         default:
1538                 break;
1539         }
1540         return(0);
1541 }
1542
1543 /*
1544  * Wait for a previously queued flush to complete.  Not only do we need to
1545  * wait for the inode to sync out, we also may have to run the flusher again
1546  * to get it past the UNDO position pertaining to the flush so a crash does
1547  * not 'undo' our flush.
1548  */
1549 void
1550 hammer_wait_inode(hammer_inode_t ip)
1551 {
1552         hammer_mount_t hmp = ip->hmp;
1553         int sync_group;
1554         int waitcount;
1555
1556         sync_group = ip->flush_group;
1557         waitcount = (ip->flags & HAMMER_INODE_REFLUSH) ? 2 : 1;
1558
1559         if (ip->flush_state == HAMMER_FST_SETUP) {
1560                 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1561         }
1562         /* XXX can we make this != FST_IDLE ? check SETUP depends */
1563         while (ip->flush_state == HAMMER_FST_FLUSH &&
1564                (ip->flush_group - sync_group) < waitcount) {
1565                 ip->flags |= HAMMER_INODE_FLUSHW;
1566                 tsleep(&ip->flags, 0, "hmrwin", 0);
1567         }
1568         while (hmp->flusher.done - sync_group < waitcount) {
1569                 kprintf("Y");
1570                 hammer_flusher_sync(hmp);
1571         }
1572 }
1573
1574 /*
1575  * Called by the backend code when a flush has been completed.
1576  * The inode has already been removed from the flush list.
1577  *
1578  * A pipelined flush can occur, in which case we must re-enter the
1579  * inode on the list and re-copy its fields.
1580  */
1581 void
1582 hammer_flush_inode_done(hammer_inode_t ip)
1583 {
1584         hammer_mount_t hmp;
1585         int dorel;
1586
1587         KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
1588
1589         hmp = ip->hmp;
1590
1591         /*
1592          * Merge left-over flags back into the frontend and fix the state.
1593          * Incomplete truncations are retained by the backend.
1594          */
1595         ip->flags |= ip->sync_flags & ~HAMMER_INODE_TRUNCATED;
1596         ip->sync_flags &= HAMMER_INODE_TRUNCATED;
1597
1598         /*
1599          * The backend may have adjusted nlinks, so if the adjusted nlinks
1600          * does not match the fronttend set the frontend's RDIRTY flag again.
1601          */
1602         if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
1603                 ip->flags |= HAMMER_INODE_DDIRTY;
1604
1605         /*
1606          * Fix up the dirty buffer status.  IO completions will also
1607          * try to clean up rsv_databufs.
1608          */
1609         if (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree)) {
1610                 ip->flags |= HAMMER_INODE_BUFS;
1611         } else {
1612                 hmp->rsv_databufs -= ip->rsv_databufs;
1613                 ip->rsv_databufs = 0;
1614         }
1615
1616         /*
1617          * Re-set the XDIRTY flag if some of the inode's in-memory records
1618          * could not be flushed.
1619          */
1620         KKASSERT((RB_EMPTY(&ip->rec_tree) &&
1621                   (ip->flags & HAMMER_INODE_XDIRTY) == 0) ||
1622                  (!RB_EMPTY(&ip->rec_tree) &&
1623                   (ip->flags & HAMMER_INODE_XDIRTY) != 0));
1624
1625         /*
1626          * Do not lose track of inodes which no longer have vnode
1627          * assocations, otherwise they may never get flushed again.
1628          */
1629         if ((ip->flags & HAMMER_INODE_MODMASK) && ip->vp == NULL)
1630                 ip->flags |= HAMMER_INODE_REFLUSH;
1631
1632         /*
1633          * Clean up the vnode ref
1634          */
1635         if (ip->flags & HAMMER_INODE_VHELD) {
1636                 ip->flags &= ~HAMMER_INODE_VHELD;
1637                 vrele(ip->vp);
1638         }
1639
1640         /*
1641          * Adjust flush_state.  The target state (idle or setup) shouldn't
1642          * be terribly important since we will reflush if we really need
1643          * to do anything.
1644          *
1645          * If the WOULDBLOCK flag is set we must re-flush immediately
1646          * to continue a potentially large deletion.  The flag also causes
1647          * the hammer_setup_child_callback() to move records in the old
1648          * flush group to the new one.
1649          */
1650         if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
1651                 kprintf("B");
1652                 ip->flush_state = HAMMER_FST_IDLE;
1653                 hammer_flush_inode_core(ip, HAMMER_FLUSH_SIGNAL);
1654                 ip->flags &= ~HAMMER_INODE_WOULDBLOCK;
1655                 dorel = 1;
1656         } else if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
1657                 ip->flush_state = HAMMER_FST_IDLE;
1658                 dorel = 1;
1659         } else {
1660                 ip->flush_state = HAMMER_FST_SETUP;
1661                 dorel = 0;
1662         }
1663
1664         --hmp->count_iqueued;
1665         --hammer_count_iqueued;
1666
1667         /*
1668          * If the frontend made more changes and requested another flush,
1669          * then try to get it running.
1670          */
1671         if (ip->flags & HAMMER_INODE_REFLUSH) {
1672                 ip->flags &= ~HAMMER_INODE_REFLUSH;
1673                 if (ip->flags & HAMMER_INODE_RESIGNAL) {
1674                         ip->flags &= ~HAMMER_INODE_RESIGNAL;
1675                         hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1676                 } else {
1677                         hammer_flush_inode(ip, 0);
1678                 }
1679         }
1680
1681         /*
1682          * If the inode is now clean drop the space reservation.
1683          */
1684         if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1685             (ip->flags & HAMMER_INODE_RSV_INODES)) {
1686                 ip->flags &= ~HAMMER_INODE_RSV_INODES;
1687                 --hmp->rsv_inodes;
1688         }
1689
1690         /*
1691          * Finally, if the frontend is waiting for a flush to complete,
1692          * wake it up.
1693          */
1694         if (ip->flush_state != HAMMER_FST_FLUSH) {
1695                 if (ip->flags & HAMMER_INODE_FLUSHW) {
1696                         ip->flags &= ~HAMMER_INODE_FLUSHW;
1697                         wakeup(&ip->flags);
1698                 }
1699         }
1700         if (dorel)
1701                 hammer_rel_inode(ip, 0);
1702 }
1703
1704 /*
1705  * Called from hammer_sync_inode() to synchronize in-memory records
1706  * to the media.
1707  */
1708 static int
1709 hammer_sync_record_callback(hammer_record_t record, void *data)
1710 {
1711         hammer_cursor_t cursor = data;
1712         hammer_transaction_t trans = cursor->trans;
1713         int error;
1714
1715         /*
1716          * Skip records that do not belong to the current flush.
1717          */
1718         ++hammer_stats_record_iterations;
1719         if (record->flush_state != HAMMER_FST_FLUSH)
1720                 return(0);
1721
1722 #if 1
1723         if (record->flush_group != record->ip->flush_group) {
1724                 kprintf("sync_record %p ip %p bad flush group %d %d\n", record, record->ip, record->flush_group ,record->ip->flush_group);
1725                 Debugger("blah2");
1726                 return(0);
1727         }
1728 #endif
1729         KKASSERT(record->flush_group == record->ip->flush_group);
1730
1731         /*
1732          * Interlock the record using the BE flag.  Once BE is set the
1733          * frontend cannot change the state of FE.
1734          *
1735          * NOTE: If FE is set prior to us setting BE we still sync the
1736          * record out, but the flush completion code converts it to 
1737          * a delete-on-disk record instead of destroying it.
1738          */
1739         KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
1740         record->flags |= HAMMER_RECF_INTERLOCK_BE;
1741
1742         /*
1743          * The backend may have already disposed of the record.
1744          */
1745         if (record->flags & HAMMER_RECF_DELETED_BE) {
1746                 error = 0;
1747                 goto done;
1748         }
1749
1750         /*
1751          * If the whole inode is being deleting all on-disk records will
1752          * be deleted very soon, we can't sync any new records to disk
1753          * because they will be deleted in the same transaction they were
1754          * created in (delete_tid == create_tid), which will assert.
1755          *
1756          * XXX There may be a case with RECORD_ADD with DELETED_FE set
1757          * that we currently panic on.
1758          */
1759         if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
1760                 switch(record->type) {
1761                 case HAMMER_MEM_RECORD_DATA:
1762                         /*
1763                          * We don't have to do anything, if the record was
1764                          * committed the space will have been accounted for
1765                          * in the blockmap.
1766                          */
1767                         /* fall through */
1768                 case HAMMER_MEM_RECORD_GENERAL:
1769                         record->flags |= HAMMER_RECF_DELETED_FE;
1770                         record->flags |= HAMMER_RECF_DELETED_BE;
1771                         error = 0;
1772                         goto done;
1773                 case HAMMER_MEM_RECORD_ADD:
1774                         panic("hammer_sync_record_callback: illegal add "
1775                               "during inode deletion record %p", record);
1776                         break; /* NOT REACHED */
1777                 case HAMMER_MEM_RECORD_INODE:
1778                         panic("hammer_sync_record_callback: attempt to "
1779                               "sync inode record %p?", record);
1780                         break; /* NOT REACHED */
1781                 case HAMMER_MEM_RECORD_DEL:
1782                         /* 
1783                          * Follow through and issue the on-disk deletion
1784                          */
1785                         break;
1786                 }
1787         }
1788
1789         /*
1790          * If DELETED_FE is set special handling is needed for directory
1791          * entries.  Dependant pieces related to the directory entry may
1792          * have already been synced to disk.  If this occurs we have to
1793          * sync the directory entry and then change the in-memory record
1794          * from an ADD to a DELETE to cover the fact that it's been
1795          * deleted by the frontend.
1796          *
1797          * A directory delete covering record (MEM_RECORD_DEL) can never
1798          * be deleted by the frontend.
1799          *
1800          * Any other record type (aka DATA) can be deleted by the frontend.
1801          * XXX At the moment the flusher must skip it because there may
1802          * be another data record in the flush group for the same block,
1803          * meaning that some frontend data changes can leak into the backend's
1804          * synchronization point.
1805          */
1806         if (record->flags & HAMMER_RECF_DELETED_FE) {
1807                 if (record->type == HAMMER_MEM_RECORD_ADD) {
1808                         record->flags |= HAMMER_RECF_CONVERT_DELETE;
1809                 } else {
1810                         KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
1811                         record->flags |= HAMMER_RECF_DELETED_BE;
1812                         error = 0;
1813                         goto done;
1814                 }
1815         }
1816
1817         /*
1818          * Assign the create_tid for new records.  Deletions already
1819          * have the record's entire key properly set up.
1820          */
1821         if (record->type != HAMMER_MEM_RECORD_DEL)
1822                 record->leaf.base.create_tid = trans->tid;
1823                 record->leaf.create_ts = trans->time32;
1824         for (;;) {
1825                 error = hammer_ip_sync_record_cursor(cursor, record);
1826                 if (error != EDEADLK)
1827                         break;
1828                 hammer_done_cursor(cursor);
1829                 error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
1830                                            record->ip);
1831                 if (error)
1832                         break;
1833         }
1834         record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
1835
1836         if (error) {
1837                 error = -error;
1838                 if (error != -ENOSPC) {
1839                         kprintf("hammer_sync_record_callback: sync failed rec "
1840                                 "%p, error %d\n", record, error);
1841                         Debugger("sync failed rec");
1842                 }
1843         }
1844 done:
1845         hammer_flush_record_done(record, error);
1846         return(error);
1847 }
1848
1849 /*
1850  * XXX error handling
1851  */
1852 int
1853 hammer_sync_inode(hammer_inode_t ip)
1854 {
1855         struct hammer_transaction trans;
1856         struct hammer_cursor cursor;
1857         hammer_node_t tmp_node;
1858         hammer_record_t depend;
1859         hammer_record_t next;
1860         int error, tmp_error;
1861         u_int64_t nlinks;
1862
1863         if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
1864                 return(0);
1865
1866         hammer_start_transaction_fls(&trans, ip->hmp);
1867         error = hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
1868         if (error)
1869                 goto done;
1870
1871         /*
1872          * Any directory records referencing this inode which are not in
1873          * our current flush group must adjust our nlink count for the
1874          * purposes of synchronization to disk.
1875          *
1876          * Records which are in our flush group can be unlinked from our
1877          * inode now, potentially allowing the inode to be physically
1878          * deleted.
1879          *
1880          * This cannot block.
1881          */
1882         nlinks = ip->ino_data.nlinks;
1883         next = TAILQ_FIRST(&ip->target_list);
1884         while ((depend = next) != NULL) {
1885                 next = TAILQ_NEXT(depend, target_entry);
1886                 if (depend->flush_state == HAMMER_FST_FLUSH &&
1887                     depend->flush_group == ip->hmp->flusher.act) {
1888                         /*
1889                          * If this is an ADD that was deleted by the frontend
1890                          * the frontend nlinks count will have already been
1891                          * decremented, but the backend is going to sync its
1892                          * directory entry and must account for it.  The
1893                          * record will be converted to a delete-on-disk when
1894                          * it gets synced.
1895                          *
1896                          * If the ADD was not deleted by the frontend we
1897                          * can remove the dependancy from our target_list.
1898                          */
1899                         if (depend->flags & HAMMER_RECF_DELETED_FE) {
1900                                 ++nlinks;
1901                         } else {
1902                                 TAILQ_REMOVE(&ip->target_list, depend,
1903                                              target_entry);
1904                                 depend->target_ip = NULL;
1905                         }
1906                 } else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
1907                         /*
1908                          * Not part of our flush group
1909                          */
1910                         KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
1911                         switch(depend->type) {
1912                         case HAMMER_MEM_RECORD_ADD:
1913                                 --nlinks;
1914                                 break;
1915                         case HAMMER_MEM_RECORD_DEL:
1916                                 ++nlinks;
1917                                 break;
1918                         default:
1919                                 break;
1920                         }
1921                 }
1922         }
1923
1924         /*
1925          * Set dirty if we had to modify the link count.
1926          */
1927         if (ip->sync_ino_data.nlinks != nlinks) {
1928                 KKASSERT((int64_t)nlinks >= 0);
1929                 ip->sync_ino_data.nlinks = nlinks;
1930                 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1931         }
1932
1933         /*
1934          * If there is a trunction queued destroy any data past the (aligned)
1935          * truncation point.  Userland will have dealt with the buffer
1936          * containing the truncation point for us.
1937          *
1938          * We don't flush pending frontend data buffers until after we've
1939          * dealt with the truncation.
1940          */
1941         if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
1942                 /*
1943                  * Interlock trunc_off.  The VOP front-end may continue to
1944                  * make adjustments to it while we are blocked.
1945                  */
1946                 off_t trunc_off;
1947                 off_t aligned_trunc_off;
1948                 int blkmask;
1949
1950                 trunc_off = ip->sync_trunc_off;
1951                 blkmask = hammer_blocksize(trunc_off) - 1;
1952                 aligned_trunc_off = (trunc_off + blkmask) & ~(int64_t)blkmask;
1953
1954                 /*
1955                  * Delete any whole blocks on-media.  The front-end has
1956                  * already cleaned out any partial block and made it
1957                  * pending.  The front-end may have updated trunc_off
1958                  * while we were blocked so we only use sync_trunc_off.
1959                  *
1960                  * This operation can blow out the buffer cache, EWOULDBLOCK
1961                  * means we were unable to complete the deletion.  The
1962                  * deletion will update sync_trunc_off in that case.
1963                  */
1964                 error = hammer_ip_delete_range(&cursor, ip,
1965                                                 aligned_trunc_off,
1966                                                 0x7FFFFFFFFFFFFFFFLL, 2);
1967                 if (error == EWOULDBLOCK) {
1968                         ip->flags |= HAMMER_INODE_WOULDBLOCK;
1969                         error = 0;
1970                         goto defer_buffer_flush;
1971                 }
1972
1973                 if (error)
1974                         Debugger("hammer_ip_delete_range errored");
1975
1976                 /*
1977                  * Clear the truncation flag on the backend after we have
1978                  * complete the deletions.  Backend data is now good again
1979                  * (including new records we are about to sync, below).
1980                  *
1981                  * Leave sync_trunc_off intact.  As we write additional
1982                  * records the backend will update sync_trunc_off.  This
1983                  * tells the backend whether it can skip the overwrite
1984                  * test.  This should work properly even when the backend
1985                  * writes full blocks where the truncation point straddles
1986                  * the block because the comparison is against the base
1987                  * offset of the record.
1988                  */
1989                 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
1990                 /* ip->sync_trunc_off = 0x7FFFFFFFFFFFFFFFLL; */
1991         } else {
1992                 error = 0;
1993         }
1994
1995         /*
1996          * Now sync related records.  These will typically be directory
1997          * entries or delete-on-disk records.
1998          *
1999          * Not all records will be flushed, but clear XDIRTY anyway.  We
2000          * will set it again in the frontend hammer_flush_inode_done() 
2001          * if records remain.
2002          */
2003         if (error == 0) {
2004                 tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2005                                     hammer_sync_record_callback, &cursor);
2006                 if (tmp_error < 0)
2007                         tmp_error = -error;
2008                 if (tmp_error)
2009                         error = tmp_error;
2010         }
2011         hammer_cache_node(&ip->cache[1], cursor.node);
2012
2013         /*
2014          * Re-seek for inode update, assuming our cache hasn't been ripped
2015          * out from under us.
2016          */
2017         if (error == 0) {
2018                 tmp_node = hammer_ref_node_safe(ip->hmp, &ip->cache[0], &error);
2019                 if (tmp_node) {
2020                         if ((tmp_node->flags & HAMMER_NODE_DELETED) == 0)
2021                                 hammer_cursor_seek(&cursor, tmp_node, 0);
2022                         hammer_rel_node(tmp_node);
2023                 }
2024                 error = 0;
2025         }
2026
2027         /*
2028          * If we are deleting the inode the frontend had better not have
2029          * any active references on elements making up the inode.
2030          *
2031          * The call to hammer_ip_delete_clean() cleans up auxillary records
2032          * but not DB or DATA records.  Those must have already been deleted
2033          * by the normal truncation mechanic.
2034          */
2035         if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
2036                 RB_EMPTY(&ip->rec_tree)  &&
2037             (ip->sync_flags & HAMMER_INODE_DELETING) &&
2038             (ip->flags & HAMMER_INODE_DELETED) == 0) {
2039                 int count1 = 0;
2040
2041                 error = hammer_ip_delete_clean(&cursor, ip, &count1);
2042                 if (error == 0) {
2043                         ip->flags |= HAMMER_INODE_DELETED;
2044                         ip->sync_flags &= ~HAMMER_INODE_DELETING;
2045                         ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2046                         KKASSERT(RB_EMPTY(&ip->rec_tree));
2047
2048                         /*
2049                          * Set delete_tid in both the frontend and backend
2050                          * copy of the inode record.  The DELETED flag handles
2051                          * this, do not set RDIRTY.
2052                          */
2053                         ip->ino_leaf.base.delete_tid = trans.tid;
2054                         ip->sync_ino_leaf.base.delete_tid = trans.tid;
2055                         ip->ino_leaf.delete_ts = trans.time32;
2056                         ip->sync_ino_leaf.delete_ts = trans.time32;
2057
2058
2059                         /*
2060                          * Adjust the inode count in the volume header
2061                          */
2062                         if (ip->flags & HAMMER_INODE_ONDISK) {
2063                                 hammer_modify_volume_field(&trans,
2064                                                            trans.rootvol,
2065                                                            vol0_stat_inodes);
2066                                 --ip->hmp->rootvol->ondisk->vol0_stat_inodes;
2067                                 hammer_modify_volume_done(trans.rootvol);
2068                         }
2069                 } else {
2070                         Debugger("hammer_ip_delete_clean errored");
2071                 }
2072         }
2073
2074         ip->sync_flags &= ~HAMMER_INODE_BUFS;
2075
2076         if (error)
2077                 Debugger("RB_SCAN errored");
2078
2079 defer_buffer_flush:
2080         /*
2081          * Now update the inode's on-disk inode-data and/or on-disk record.
2082          * DELETED and ONDISK are managed only in ip->flags.
2083          *
2084          * In the case of a defered buffer flush we still update the on-disk
2085          * inode to satisfy visibility requirements if there happen to be
2086          * directory dependancies.
2087          */
2088         switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
2089         case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
2090                 /*
2091                  * If deleted and on-disk, don't set any additional flags.
2092                  * the delete flag takes care of things.
2093                  *
2094                  * Clear flags which may have been set by the frontend.
2095                  */
2096                 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2097                                     HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2098                                     HAMMER_INODE_DELETING);
2099                 break;
2100         case HAMMER_INODE_DELETED:
2101                 /*
2102                  * Take care of the case where a deleted inode was never
2103                  * flushed to the disk in the first place.
2104                  *
2105                  * Clear flags which may have been set by the frontend.
2106                  */
2107                 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2108                                     HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2109                                     HAMMER_INODE_DELETING);
2110                 while (RB_ROOT(&ip->rec_tree)) {
2111                         hammer_record_t record = RB_ROOT(&ip->rec_tree);
2112                         hammer_ref(&record->lock);
2113                         KKASSERT(record->lock.refs == 1);
2114                         record->flags |= HAMMER_RECF_DELETED_FE;
2115                         record->flags |= HAMMER_RECF_DELETED_BE;
2116                         hammer_rel_mem_record(record);
2117                 }
2118                 break;
2119         case HAMMER_INODE_ONDISK:
2120                 /*
2121                  * If already on-disk, do not set any additional flags.
2122                  */
2123                 break;
2124         default:
2125                 /*
2126                  * If not on-disk and not deleted, set DDIRTY to force
2127                  * an initial record to be written.
2128                  *
2129                  * Also set the create_tid in both the frontend and backend
2130                  * copy of the inode record.
2131                  */
2132                 ip->ino_leaf.base.create_tid = trans.tid;
2133                 ip->ino_leaf.create_ts = trans.time32;
2134                 ip->sync_ino_leaf.base.create_tid = trans.tid;
2135                 ip->sync_ino_leaf.create_ts = trans.time32;
2136                 ip->sync_flags |= HAMMER_INODE_DDIRTY;
2137                 break;
2138         }
2139
2140         /*
2141          * If RDIRTY or DDIRTY is set, write out a new record.  If the inode
2142          * is already on-disk the old record is marked as deleted.
2143          *
2144          * If DELETED is set hammer_update_inode() will delete the existing
2145          * record without writing out a new one.
2146          *
2147          * If *ONLY* the ITIMES flag is set we can update the record in-place.
2148          */
2149         if (ip->flags & HAMMER_INODE_DELETED) {
2150                 error = hammer_update_inode(&cursor, ip);
2151         } else 
2152         if ((ip->sync_flags & HAMMER_INODE_DDIRTY) == 0 &&
2153             (ip->sync_flags & (HAMMER_INODE_ATIME | HAMMER_INODE_MTIME))) {
2154                 error = hammer_update_itimes(&cursor, ip);
2155         } else
2156         if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) {
2157                 error = hammer_update_inode(&cursor, ip);
2158         }
2159         if (error)
2160                 Debugger("hammer_update_itimes/inode errored");
2161 done:
2162         /*
2163          * Save the TID we used to sync the inode with to make sure we
2164          * do not improperly reuse it.
2165          */
2166         hammer_done_cursor(&cursor);
2167         hammer_done_transaction(&trans);
2168         return(error);
2169 }
2170
2171 /*
2172  * This routine is called when the OS is no longer actively referencing
2173  * the inode (but might still be keeping it cached), or when releasing
2174  * the last reference to an inode.
2175  *
2176  * At this point if the inode's nlinks count is zero we want to destroy
2177  * it, which may mean destroying it on-media too.
2178  */
2179 void
2180 hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
2181 {
2182         struct vnode *vp;
2183
2184         /*
2185          * Set the DELETING flag when the link count drops to 0 and the
2186          * OS no longer has any opens on the inode.
2187          *
2188          * The backend will clear DELETING (a mod flag) and set DELETED
2189          * (a state flag) when it is actually able to perform the
2190          * operation.
2191          */
2192         if (ip->ino_data.nlinks == 0 &&
2193             (ip->flags & (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
2194                 ip->flags |= HAMMER_INODE_DELETING;
2195                 ip->flags |= HAMMER_INODE_TRUNCATED;
2196                 ip->trunc_off = 0;
2197                 vp = NULL;
2198                 if (getvp) {
2199                         if (hammer_get_vnode(ip, &vp) != 0)
2200                                 return;
2201                 }
2202
2203                 /*
2204                  * Final cleanup
2205                  */
2206                 if (ip->vp) {
2207                         vtruncbuf(ip->vp, 0, HAMMER_BUFSIZE);
2208                         vnode_pager_setsize(ip->vp, 0);
2209                 }
2210                 if (getvp) {
2211                         vput(vp);
2212                 }
2213         }
2214 }
2215
2216 /*
2217  * Re-test an inode when a dependancy had gone away to see if we
2218  * can chain flush it.
2219  */
2220 void
2221 hammer_test_inode(hammer_inode_t ip)
2222 {
2223         if (ip->flags & HAMMER_INODE_REFLUSH) {
2224                 ip->flags &= ~HAMMER_INODE_REFLUSH;
2225                 hammer_ref(&ip->lock);
2226                 if (ip->flags & HAMMER_INODE_RESIGNAL) {
2227                         ip->flags &= ~HAMMER_INODE_RESIGNAL;
2228                         hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2229                 } else {
2230                         hammer_flush_inode(ip, 0);
2231                 }
2232                 hammer_rel_inode(ip, 0);
2233         }
2234 }
2235
2236 /*
2237  * Clear the RECLAIM flag on an inode.  This occurs when the inode is
2238  * reassociated with a vp or just before it gets freed.
2239  *
2240  * Wakeup one thread blocked waiting on reclaims to complete.  Note that
2241  * the inode the thread is waiting on behalf of is a different inode then
2242  * the inode we are called with.  This is to create a pipeline.
2243  */
2244 static void
2245 hammer_inode_wakereclaims(hammer_inode_t ip)
2246 {
2247         struct hammer_reclaim *reclaim;
2248         hammer_mount_t hmp = ip->hmp;
2249
2250         if ((ip->flags & HAMMER_INODE_RECLAIM) == 0)
2251                 return;
2252
2253         --hammer_count_reclaiming;
2254         --hmp->inode_reclaims;
2255         ip->flags &= ~HAMMER_INODE_RECLAIM;
2256
2257         if ((reclaim = TAILQ_FIRST(&hmp->reclaim_list)) != NULL) {
2258                 TAILQ_REMOVE(&hmp->reclaim_list, reclaim, entry);
2259                 reclaim->okydoky = 1;
2260                 wakeup(reclaim);
2261         }
2262 }
2263
2264 /*
2265  * Setup our reclaim pipeline.  We only let so many detached (and dirty)
2266  * inodes build up before we start blocking.
2267  *
2268  * When we block we don't care *which* inode has finished reclaiming,
2269  * as lone as one does.  This is somewhat heuristical... we also put a
2270  * cap on how long we are willing to wait.
2271  */
2272 void
2273 hammer_inode_waitreclaims(hammer_mount_t hmp)
2274 {
2275         struct hammer_reclaim reclaim;
2276         int delay;
2277
2278         if (hmp->inode_reclaims > HAMMER_RECLAIM_WAIT) {
2279                 reclaim.okydoky = 0;
2280                 TAILQ_INSERT_TAIL(&hmp->reclaim_list,
2281                                   &reclaim, entry);
2282         } else {
2283                 reclaim.okydoky = 1;
2284         }
2285
2286         if (reclaim.okydoky == 0) {
2287                 delay = (hmp->inode_reclaims - HAMMER_RECLAIM_WAIT) * hz /
2288                         HAMMER_RECLAIM_WAIT;
2289                 if (delay >= 0)
2290                         tsleep(&reclaim, 0, "hmrrcm", delay + 1);
2291                 if (reclaim.okydoky == 0)
2292                         TAILQ_REMOVE(&hmp->reclaim_list, &reclaim, entry);
2293         }
2294 }
2295