Merge branch 'vendor/GDTOA'
[dragonfly.git] / sys / net / if.c
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by the University of
16  *      California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *      @(#)if.c        8.3 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
35  * $DragonFly: src/sys/net/if.c,v 1.84 2008/11/15 11:58:16 sephe Exp $
36  */
37
38 #include "opt_compat.h"
39 #include "opt_inet6.h"
40 #include "opt_inet.h"
41 #include "opt_polling.h"
42
43 #include <sys/param.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/priv.h>
49 #include <sys/protosw.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/socketops.h>
53 #include <sys/protosw.h>
54 #include <sys/kernel.h>
55 #include <sys/ktr.h>
56 #include <sys/sockio.h>
57 #include <sys/syslog.h>
58 #include <sys/sysctl.h>
59 #include <sys/domain.h>
60 #include <sys/thread.h>
61 #include <sys/thread2.h>
62 #include <sys/serialize.h>
63 #include <sys/msgport2.h>
64 #include <sys/bus.h>
65
66 #include <net/if.h>
67 #include <net/if_arp.h>
68 #include <net/if_dl.h>
69 #include <net/if_types.h>
70 #include <net/if_var.h>
71 #include <net/ifq_var.h>
72 #include <net/radix.h>
73 #include <net/route.h>
74 #include <net/if_clone.h>
75 #include <net/netisr.h>
76 #include <net/netmsg2.h>
77
78 #include <machine/atomic.h>
79 #include <machine/stdarg.h>
80 #include <machine/smp.h>
81
82 #if defined(INET) || defined(INET6)
83 /*XXX*/
84 #include <netinet/in.h>
85 #include <netinet/in_var.h>
86 #include <netinet/if_ether.h>
87 #ifdef INET6
88 #include <netinet6/in6_var.h>
89 #include <netinet6/in6_ifattach.h>
90 #endif
91 #endif
92
93 #if defined(COMPAT_43)
94 #include <emulation/43bsd/43bsd_socket.h>
95 #endif /* COMPAT_43 */
96
97 struct netmsg_ifaddr {
98         struct netmsg   netmsg;
99         struct ifaddr   *ifa;
100         struct ifnet    *ifp;
101         int             tail;
102 };
103
104 /*
105  * System initialization
106  */
107 static void     if_attachdomain(void *);
108 static void     if_attachdomain1(struct ifnet *);
109 static int      ifconf(u_long, caddr_t, struct ucred *);
110 static void     ifinit(void *);
111 static void     ifnetinit(void *);
112 static void     if_slowtimo(void *);
113 static void     link_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
114 static int      if_rtdel(struct radix_node *, void *);
115
116 #ifdef INET6
117 /*
118  * XXX: declare here to avoid to include many inet6 related files..
119  * should be more generalized?
120  */
121 extern void     nd6_setmtu(struct ifnet *);
122 #endif
123
124 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
125 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
126
127 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
128 /* Must be after netisr_init */
129 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
130
131 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
132 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
133
134 int                     ifqmaxlen = IFQ_MAXLEN;
135 struct ifnethead        ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
136
137 /* In ifq_dispatch(), try to do direct ifnet.if_start first */
138 static int              ifq_dispatch_schedonly = 0;
139 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schedonly, CTLFLAG_RW,
140            &ifq_dispatch_schedonly, 0, "");
141
142 /* In ifq_dispatch(), schedule ifnet.if_start without checking ifnet.if_snd */
143 static int              ifq_dispatch_schednochk = 0;
144 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schednochk, CTLFLAG_RW,
145            &ifq_dispatch_schednochk, 0, "");
146
147 /* In if_devstart(), try to do direct ifnet.if_start first */
148 static int              if_devstart_schedonly = 0;
149 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schedonly, CTLFLAG_RW,
150            &if_devstart_schedonly, 0, "");
151
152 /* In if_devstart(), schedule ifnet.if_start without checking ifnet.if_snd */
153 static int              if_devstart_schednochk = 0;
154 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schednochk, CTLFLAG_RW,
155            &if_devstart_schednochk, 0, "");
156
157 #ifdef SMP
158 /* Schedule ifnet.if_start on the current CPU */
159 static int              if_start_oncpu_sched = 0;
160 SYSCTL_INT(_net_link_generic, OID_AUTO, if_start_oncpu_sched, CTLFLAG_RW,
161            &if_start_oncpu_sched, 0, "");
162 #endif
163
164 struct callout          if_slowtimo_timer;
165
166 int                     if_index = 0;
167 struct ifnet            **ifindex2ifnet = NULL;
168 static struct thread    ifnet_threads[MAXCPU];
169 static int              ifnet_mpsafe_thread = NETMSG_SERVICE_MPSAFE;
170
171 #define IFQ_KTR_STRING          "ifq=%p"
172 #define IFQ_KTR_ARG_SIZE        (sizeof(void *))
173 #ifndef KTR_IFQ
174 #define KTR_IFQ                 KTR_ALL
175 #endif
176 KTR_INFO_MASTER(ifq);
177 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE);
178 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE);
179 #define logifq(name, arg)       KTR_LOG(ifq_ ## name, arg)
180
181 #define IF_START_KTR_STRING     "ifp=%p"
182 #define IF_START_KTR_ARG_SIZE   (sizeof(void *))
183 #ifndef KTR_IF_START
184 #define KTR_IF_START            KTR_ALL
185 #endif
186 KTR_INFO_MASTER(if_start);
187 KTR_INFO(KTR_IF_START, if_start, run, 0,
188          IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
189 KTR_INFO(KTR_IF_START, if_start, sched, 1,
190          IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
191 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
192          IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
193 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
194          IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
195 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
196          IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
197 #define logifstart(name, arg)   KTR_LOG(if_start_ ## name, arg)
198
199 /*
200  * Network interface utility routines.
201  *
202  * Routines with ifa_ifwith* names take sockaddr *'s as
203  * parameters.
204  */
205 /* ARGSUSED*/
206 void
207 ifinit(void *dummy)
208 {
209         struct ifnet *ifp;
210
211         callout_init(&if_slowtimo_timer);
212
213         crit_enter();
214         TAILQ_FOREACH(ifp, &ifnet, if_link) {
215                 if (ifp->if_snd.ifq_maxlen == 0) {
216                         if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n");
217                         ifp->if_snd.ifq_maxlen = ifqmaxlen;
218                 }
219         }
220         crit_exit();
221
222         if_slowtimo(0);
223 }
224
225 static int
226 if_start_cpuid(struct ifnet *ifp)
227 {
228         return ifp->if_cpuid;
229 }
230
231 #ifdef DEVICE_POLLING
232 static int
233 if_start_cpuid_poll(struct ifnet *ifp)
234 {
235         int poll_cpuid = ifp->if_poll_cpuid;
236
237         if (poll_cpuid >= 0)
238                 return poll_cpuid;
239         else
240                 return ifp->if_cpuid;
241 }
242 #endif
243
244 static void
245 if_start_ipifunc(void *arg)
246 {
247         struct ifnet *ifp = arg;
248         struct lwkt_msg *lmsg = &ifp->if_start_nmsg[mycpuid].nm_lmsg;
249
250         crit_enter();
251         if (lmsg->ms_flags & MSGF_DONE)
252                 lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
253         crit_exit();
254 }
255
256 /*
257  * Schedule ifnet.if_start on ifnet's CPU
258  */
259 static void
260 if_start_schedule(struct ifnet *ifp)
261 {
262 #ifdef SMP
263         int cpu;
264
265         if (if_start_oncpu_sched)
266                 cpu = mycpuid;
267         else
268                 cpu = ifp->if_start_cpuid(ifp);
269
270         if (cpu != mycpuid)
271                 lwkt_send_ipiq(globaldata_find(cpu), if_start_ipifunc, ifp);
272         else
273 #endif
274         if_start_ipifunc(ifp);
275 }
276
277 /*
278  * NOTE:
279  * This function will release ifnet.if_start interlock,
280  * if ifnet.if_start does not need to be scheduled
281  */
282 static __inline int
283 if_start_need_schedule(struct ifaltq *ifq, int running)
284 {
285         if (!running || ifq_is_empty(ifq)
286 #ifdef ALTQ
287             || ifq->altq_tbr != NULL
288 #endif
289         ) {
290                 ALTQ_LOCK(ifq);
291                 /*
292                  * ifnet.if_start interlock is released, if:
293                  * 1) Hardware can not take any packets, due to
294                  *    o  interface is marked down
295                  *    o  hardware queue is full (IFF_OACTIVE)
296                  *    Under the second situation, hardware interrupt
297                  *    or polling(4) will call/schedule ifnet.if_start
298                  *    when hardware queue is ready
299                  * 2) There is not packet in the ifnet.if_snd.
300                  *    Further ifq_dispatch or ifq_handoff will call/
301                  *    schedule ifnet.if_start
302                  * 3) TBR is used and it does not allow further
303                  *    dequeueing.
304                  *    TBR callout will call ifnet.if_start
305                  */
306                 if (!running || !ifq_data_ready(ifq)) {
307                         ifq->altq_started = 0;
308                         ALTQ_UNLOCK(ifq);
309                         return 0;
310                 }
311                 ALTQ_UNLOCK(ifq);
312         }
313         return 1;
314 }
315
316 static void
317 if_start_dispatch(struct netmsg *nmsg)
318 {
319         struct lwkt_msg *lmsg = &nmsg->nm_lmsg;
320         struct ifnet *ifp = lmsg->u.ms_resultp;
321         struct ifaltq *ifq = &ifp->if_snd;
322         int running = 0;
323
324         crit_enter();
325         lwkt_replymsg(lmsg, 0); /* reply ASAP */
326         crit_exit();
327
328 #ifdef SMP
329         if (!if_start_oncpu_sched && mycpuid != ifp->if_start_cpuid(ifp)) {
330                 /*
331                  * If the ifnet is still up, we need to
332                  * chase its CPU change.
333                  */
334                 if (ifp->if_flags & IFF_UP) {
335                         logifstart(chase_sched, ifp);
336                         if_start_schedule(ifp);
337                         return;
338                 } else {
339                         goto check;
340                 }
341         }
342 #endif
343
344         if (ifp->if_flags & IFF_UP) {
345                 lwkt_serialize_enter(ifp->if_serializer); /* XXX try? */
346                 if ((ifp->if_flags & IFF_OACTIVE) == 0) {
347                         logifstart(run, ifp);
348                         ifp->if_start(ifp);
349                         if ((ifp->if_flags &
350                         (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
351                                 running = 1;
352                 }
353                 lwkt_serialize_exit(ifp->if_serializer);
354         }
355 #ifdef SMP
356 check:
357 #endif
358         if (if_start_need_schedule(ifq, running)) {
359                 crit_enter();
360                 if (lmsg->ms_flags & MSGF_DONE) { /* XXX necessary? */
361                         logifstart(sched, ifp);
362                         lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
363                 }
364                 crit_exit();
365         }
366 }
367
368 /* Device driver ifnet.if_start helper function */
369 void
370 if_devstart(struct ifnet *ifp)
371 {
372         struct ifaltq *ifq = &ifp->if_snd;
373         int running = 0;
374
375         ASSERT_SERIALIZED(ifp->if_serializer);
376
377         ALTQ_LOCK(ifq);
378         if (ifq->altq_started || !ifq_data_ready(ifq)) {
379                 logifstart(avoid, ifp);
380                 ALTQ_UNLOCK(ifq);
381                 return;
382         }
383         ifq->altq_started = 1;
384         ALTQ_UNLOCK(ifq);
385
386         if (if_devstart_schedonly) {
387                 /*
388                  * Always schedule ifnet.if_start on ifnet's CPU,
389                  * short circuit the rest of this function.
390                  */
391                 logifstart(sched, ifp);
392                 if_start_schedule(ifp);
393                 return;
394         }
395
396         logifstart(run, ifp);
397         ifp->if_start(ifp);
398
399         if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
400                 running = 1;
401
402         if (if_devstart_schednochk || if_start_need_schedule(ifq, running)) {
403                 /*
404                  * More data need to be transmitted, ifnet.if_start is
405                  * scheduled on ifnet's CPU, and we keep going.
406                  * NOTE: ifnet.if_start interlock is not released.
407                  */
408                 logifstart(sched, ifp);
409                 if_start_schedule(ifp);
410         }
411 }
412
413 /*
414  * Attach an interface to the list of "active" interfaces.
415  *
416  * The serializer is optional.  If non-NULL access to the interface
417  * may be MPSAFE.
418  */
419 void
420 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
421 {
422         unsigned socksize, ifasize;
423         int namelen, masklen;
424         struct sockaddr_dl *sdl;
425         struct ifaddr *ifa;
426         struct ifaltq *ifq;
427         int i;
428
429         static int if_indexlim = 8;
430
431         /*
432          * The serializer can be passed in from the device, allowing the
433          * same serializer to be used for both the interrupt interlock and
434          * the device queue.  If not specified, the netif structure will
435          * use an embedded serializer.
436          */
437         if (serializer == NULL) {
438                 serializer = &ifp->if_default_serializer;
439                 lwkt_serialize_init(serializer);
440         }
441         ifp->if_serializer = serializer;
442
443         ifp->if_start_cpuid = if_start_cpuid;
444         ifp->if_cpuid = 0;
445
446 #ifdef DEVICE_POLLING
447         /* Device is not in polling mode by default */
448         ifp->if_poll_cpuid = -1;
449         if (ifp->if_poll != NULL)
450                 ifp->if_start_cpuid = if_start_cpuid_poll;
451 #endif
452
453         ifp->if_start_nmsg = kmalloc(ncpus * sizeof(struct netmsg),
454                                      M_LWKTMSG, M_WAITOK);
455         for (i = 0; i < ncpus; ++i) {
456                 netmsg_init(&ifp->if_start_nmsg[i], &netisr_adone_rport, 0,
457                             if_start_dispatch);
458                 ifp->if_start_nmsg[i].nm_lmsg.u.ms_resultp = ifp;
459         }
460
461         TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
462         ifp->if_index = ++if_index;
463
464         /*
465          * XXX -
466          * The old code would work if the interface passed a pre-existing
467          * chain of ifaddrs to this code.  We don't trust our callers to
468          * properly initialize the tailq, however, so we no longer allow
469          * this unlikely case.
470          */
471         ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
472                                     M_IFADDR, M_WAITOK | M_ZERO);
473         for (i = 0; i < ncpus; ++i)
474                 TAILQ_INIT(&ifp->if_addrheads[i]);
475
476         TAILQ_INIT(&ifp->if_prefixhead);
477         LIST_INIT(&ifp->if_multiaddrs);
478         getmicrotime(&ifp->if_lastchange);
479         if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
480                 unsigned int n;
481                 struct ifnet **q;
482
483                 if_indexlim <<= 1;
484
485                 /* grow ifindex2ifnet */
486                 n = if_indexlim * sizeof(*q);
487                 q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
488                 if (ifindex2ifnet) {
489                         bcopy(ifindex2ifnet, q, n/2);
490                         kfree(ifindex2ifnet, M_IFADDR);
491                 }
492                 ifindex2ifnet = q;
493         }
494
495         ifindex2ifnet[if_index] = ifp;
496
497         /*
498          * create a Link Level name for this device
499          */
500         namelen = strlen(ifp->if_xname);
501 #define _offsetof(t, m) ((int)((caddr_t)&((t *)0)->m))
502         masklen = _offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
503         socksize = masklen + ifp->if_addrlen;
504 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
505         if (socksize < sizeof(*sdl))
506                 socksize = sizeof(*sdl);
507         socksize = ROUNDUP(socksize);
508         ifasize = sizeof(struct ifaddr) + 2 * socksize;
509         ifa = ifa_create(ifasize, M_WAITOK);
510         sdl = (struct sockaddr_dl *)(ifa + 1);
511         sdl->sdl_len = socksize;
512         sdl->sdl_family = AF_LINK;
513         bcopy(ifp->if_xname, sdl->sdl_data, namelen);
514         sdl->sdl_nlen = namelen;
515         sdl->sdl_index = ifp->if_index;
516         sdl->sdl_type = ifp->if_type;
517         ifp->if_lladdr = ifa;
518         ifa->ifa_ifp = ifp;
519         ifa->ifa_rtrequest = link_rtrequest;
520         ifa->ifa_addr = (struct sockaddr *)sdl;
521         sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
522         ifa->ifa_netmask = (struct sockaddr *)sdl;
523         sdl->sdl_len = masklen;
524         while (namelen != 0)
525                 sdl->sdl_data[--namelen] = 0xff;
526         ifa_iflink(ifa, ifp, 0 /* Insert head */);
527
528         EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
529         devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
530
531         ifq = &ifp->if_snd;
532         ifq->altq_type = 0;
533         ifq->altq_disc = NULL;
534         ifq->altq_flags &= ALTQF_CANTCHANGE;
535         ifq->altq_tbr = NULL;
536         ifq->altq_ifp = ifp;
537         ifq->altq_started = 0;
538         ifq->altq_prepended = NULL;
539         ALTQ_LOCK_INIT(ifq);
540         ifq_set_classic(ifq);
541
542         if (!SLIST_EMPTY(&domains))
543                 if_attachdomain1(ifp);
544
545         /* Announce the interface. */
546         rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
547 }
548
549 static void
550 if_attachdomain(void *dummy)
551 {
552         struct ifnet *ifp;
553
554         crit_enter();
555         TAILQ_FOREACH(ifp, &ifnet, if_list)
556                 if_attachdomain1(ifp);
557         crit_exit();
558 }
559 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
560         if_attachdomain, NULL);
561
562 static void
563 if_attachdomain1(struct ifnet *ifp)
564 {
565         struct domain *dp;
566
567         crit_enter();
568
569         /* address family dependent data region */
570         bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
571         SLIST_FOREACH(dp, &domains, dom_next)
572                 if (dp->dom_ifattach)
573                         ifp->if_afdata[dp->dom_family] =
574                                 (*dp->dom_ifattach)(ifp);
575         crit_exit();
576 }
577
578 /*
579  * Purge all addresses whose type is _not_ AF_LINK
580  */
581 void
582 if_purgeaddrs_nolink(struct ifnet *ifp)
583 {
584         struct ifaddr_container *ifac, *next;
585
586         TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
587                               ifa_link, next) {
588                 struct ifaddr *ifa = ifac->ifa;
589
590                 /* Leave link ifaddr as it is */
591                 if (ifa->ifa_addr->sa_family == AF_LINK)
592                         continue;
593 #ifdef INET
594                 /* XXX: Ugly!! ad hoc just for INET */
595                 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
596                         struct ifaliasreq ifr;
597 #ifdef IFADDR_DEBUG_VERBOSE
598                         int i;
599
600                         kprintf("purge in4 addr %p: ", ifa);
601                         for (i = 0; i < ncpus; ++i)
602                                 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
603                         kprintf("\n");
604 #endif
605
606                         bzero(&ifr, sizeof ifr);
607                         ifr.ifra_addr = *ifa->ifa_addr;
608                         if (ifa->ifa_dstaddr)
609                                 ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
610                         if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
611                                        NULL) == 0)
612                                 continue;
613                 }
614 #endif /* INET */
615 #ifdef INET6
616                 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
617 #ifdef IFADDR_DEBUG_VERBOSE
618                         int i;
619
620                         kprintf("purge in6 addr %p: ", ifa);
621                         for (i = 0; i < ncpus; ++i)
622                                 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
623                         kprintf("\n");
624 #endif
625
626                         in6_purgeaddr(ifa);
627                         /* ifp_addrhead is already updated */
628                         continue;
629                 }
630 #endif /* INET6 */
631                 ifa_ifunlink(ifa, ifp);
632                 ifa_destroy(ifa);
633         }
634 }
635
636 /*
637  * Detach an interface, removing it from the
638  * list of "active" interfaces.
639  */
640 void
641 if_detach(struct ifnet *ifp)
642 {
643         struct radix_node_head  *rnh;
644         int i;
645         int cpu, origcpu;
646         struct domain *dp;
647
648         EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
649
650         /*
651          * Remove routes and flush queues.
652          */
653         crit_enter();
654 #ifdef DEVICE_POLLING
655         if (ifp->if_flags & IFF_POLLING)
656                 ether_poll_deregister(ifp);
657 #endif
658         if_down(ifp);
659
660         if (ifq_is_enabled(&ifp->if_snd))
661                 altq_disable(&ifp->if_snd);
662         if (ifq_is_attached(&ifp->if_snd))
663                 altq_detach(&ifp->if_snd);
664
665         /*
666          * Clean up all addresses.
667          */
668         ifp->if_lladdr = NULL;
669
670         if_purgeaddrs_nolink(ifp);
671         if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
672                 struct ifaddr *ifa;
673
674                 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
675                 KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
676                         ("non-link ifaddr is left on if_addrheads"));
677
678                 ifa_ifunlink(ifa, ifp);
679                 ifa_destroy(ifa);
680                 KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
681                         ("there are still ifaddrs left on if_addrheads"));
682         }
683
684 #ifdef INET
685         /*
686          * Remove all IPv4 kernel structures related to ifp.
687          */
688         in_ifdetach(ifp);
689 #endif
690
691 #ifdef INET6
692         /*
693          * Remove all IPv6 kernel structs related to ifp.  This should be done
694          * before removing routing entries below, since IPv6 interface direct
695          * routes are expected to be removed by the IPv6-specific kernel API.
696          * Otherwise, the kernel will detect some inconsistency and bark it.
697          */
698         in6_ifdetach(ifp);
699 #endif
700
701         /*
702          * Delete all remaining routes using this interface
703          * Unfortuneatly the only way to do this is to slog through
704          * the entire routing table looking for routes which point
705          * to this interface...oh well...
706          */
707         origcpu = mycpuid;
708         for (cpu = 0; cpu < ncpus2; cpu++) {
709                 lwkt_migratecpu(cpu);
710                 for (i = 1; i <= AF_MAX; i++) {
711                         if ((rnh = rt_tables[cpu][i]) == NULL)
712                                 continue;
713                         rnh->rnh_walktree(rnh, if_rtdel, ifp);
714                 }
715         }
716         lwkt_migratecpu(origcpu);
717
718         /* Announce that the interface is gone. */
719         rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
720         devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
721
722         SLIST_FOREACH(dp, &domains, dom_next)
723                 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
724                         (*dp->dom_ifdetach)(ifp,
725                                 ifp->if_afdata[dp->dom_family]);
726
727         /*
728          * Remove interface from ifindex2ifp[] and maybe decrement if_index.
729          */
730         ifindex2ifnet[ifp->if_index] = NULL;
731         while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
732                 if_index--;
733
734         TAILQ_REMOVE(&ifnet, ifp, if_link);
735         kfree(ifp->if_addrheads, M_IFADDR);
736         kfree(ifp->if_start_nmsg, M_LWKTMSG);
737         crit_exit();
738 }
739
740 /*
741  * Delete Routes for a Network Interface
742  *
743  * Called for each routing entry via the rnh->rnh_walktree() call above
744  * to delete all route entries referencing a detaching network interface.
745  *
746  * Arguments:
747  *      rn      pointer to node in the routing table
748  *      arg     argument passed to rnh->rnh_walktree() - detaching interface
749  *
750  * Returns:
751  *      0       successful
752  *      errno   failed - reason indicated
753  *
754  */
755 static int
756 if_rtdel(struct radix_node *rn, void *arg)
757 {
758         struct rtentry  *rt = (struct rtentry *)rn;
759         struct ifnet    *ifp = arg;
760         int             err;
761
762         if (rt->rt_ifp == ifp) {
763
764                 /*
765                  * Protect (sorta) against walktree recursion problems
766                  * with cloned routes
767                  */
768                 if (!(rt->rt_flags & RTF_UP))
769                         return (0);
770
771                 err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
772                                 rt_mask(rt), rt->rt_flags,
773                                 (struct rtentry **) NULL);
774                 if (err) {
775                         log(LOG_WARNING, "if_rtdel: error %d\n", err);
776                 }
777         }
778
779         return (0);
780 }
781
782 /*
783  * Locate an interface based on a complete address.
784  */
785 struct ifaddr *
786 ifa_ifwithaddr(struct sockaddr *addr)
787 {
788         struct ifnet *ifp;
789
790         TAILQ_FOREACH(ifp, &ifnet, if_link) {
791                 struct ifaddr_container *ifac;
792
793                 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
794                         struct ifaddr *ifa = ifac->ifa;
795
796                         if (ifa->ifa_addr->sa_family != addr->sa_family)
797                                 continue;
798                         if (sa_equal(addr, ifa->ifa_addr))
799                                 return (ifa);
800                         if ((ifp->if_flags & IFF_BROADCAST) &&
801                             ifa->ifa_broadaddr &&
802                             /* IPv6 doesn't have broadcast */
803                             ifa->ifa_broadaddr->sa_len != 0 &&
804                             sa_equal(ifa->ifa_broadaddr, addr))
805                                 return (ifa);
806                 }
807         }
808         return (NULL);
809 }
810 /*
811  * Locate the point to point interface with a given destination address.
812  */
813 struct ifaddr *
814 ifa_ifwithdstaddr(struct sockaddr *addr)
815 {
816         struct ifnet *ifp;
817
818         TAILQ_FOREACH(ifp, &ifnet, if_link) {
819                 struct ifaddr_container *ifac;
820
821                 if (!(ifp->if_flags & IFF_POINTOPOINT))
822                         continue;
823
824                 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
825                         struct ifaddr *ifa = ifac->ifa;
826
827                         if (ifa->ifa_addr->sa_family != addr->sa_family)
828                                 continue;
829                         if (ifa->ifa_dstaddr &&
830                             sa_equal(addr, ifa->ifa_dstaddr))
831                                 return (ifa);
832                 }
833         }
834         return (NULL);
835 }
836
837 /*
838  * Find an interface on a specific network.  If many, choice
839  * is most specific found.
840  */
841 struct ifaddr *
842 ifa_ifwithnet(struct sockaddr *addr)
843 {
844         struct ifnet *ifp;
845         struct ifaddr *ifa_maybe = NULL;
846         u_int af = addr->sa_family;
847         char *addr_data = addr->sa_data, *cplim;
848
849         /*
850          * AF_LINK addresses can be looked up directly by their index number,
851          * so do that if we can.
852          */
853         if (af == AF_LINK) {
854                 struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
855
856                 if (sdl->sdl_index && sdl->sdl_index <= if_index)
857                         return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
858         }
859
860         /*
861          * Scan though each interface, looking for ones that have
862          * addresses in this address family.
863          */
864         TAILQ_FOREACH(ifp, &ifnet, if_link) {
865                 struct ifaddr_container *ifac;
866
867                 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
868                         struct ifaddr *ifa = ifac->ifa;
869                         char *cp, *cp2, *cp3;
870
871                         if (ifa->ifa_addr->sa_family != af)
872 next:                           continue;
873                         if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
874                                 /*
875                                  * This is a bit broken as it doesn't
876                                  * take into account that the remote end may
877                                  * be a single node in the network we are
878                                  * looking for.
879                                  * The trouble is that we don't know the
880                                  * netmask for the remote end.
881                                  */
882                                 if (ifa->ifa_dstaddr != NULL &&
883                                     sa_equal(addr, ifa->ifa_dstaddr))
884                                         return (ifa);
885                         } else {
886                                 /*
887                                  * if we have a special address handler,
888                                  * then use it instead of the generic one.
889                                  */
890                                 if (ifa->ifa_claim_addr) {
891                                         if ((*ifa->ifa_claim_addr)(ifa, addr)) {
892                                                 return (ifa);
893                                         } else {
894                                                 continue;
895                                         }
896                                 }
897
898                                 /*
899                                  * Scan all the bits in the ifa's address.
900                                  * If a bit dissagrees with what we are
901                                  * looking for, mask it with the netmask
902                                  * to see if it really matters.
903                                  * (A byte at a time)
904                                  */
905                                 if (ifa->ifa_netmask == 0)
906                                         continue;
907                                 cp = addr_data;
908                                 cp2 = ifa->ifa_addr->sa_data;
909                                 cp3 = ifa->ifa_netmask->sa_data;
910                                 cplim = ifa->ifa_netmask->sa_len +
911                                         (char *)ifa->ifa_netmask;
912                                 while (cp3 < cplim)
913                                         if ((*cp++ ^ *cp2++) & *cp3++)
914                                                 goto next; /* next address! */
915                                 /*
916                                  * If the netmask of what we just found
917                                  * is more specific than what we had before
918                                  * (if we had one) then remember the new one
919                                  * before continuing to search
920                                  * for an even better one.
921                                  */
922                                 if (ifa_maybe == 0 ||
923                                     rn_refines((char *)ifa->ifa_netmask,
924                                                (char *)ifa_maybe->ifa_netmask))
925                                         ifa_maybe = ifa;
926                         }
927                 }
928         }
929         return (ifa_maybe);
930 }
931
932 /*
933  * Find an interface address specific to an interface best matching
934  * a given address.
935  */
936 struct ifaddr *
937 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
938 {
939         struct ifaddr_container *ifac;
940         char *cp, *cp2, *cp3;
941         char *cplim;
942         struct ifaddr *ifa_maybe = 0;
943         u_int af = addr->sa_family;
944
945         if (af >= AF_MAX)
946                 return (0);
947         TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
948                 struct ifaddr *ifa = ifac->ifa;
949
950                 if (ifa->ifa_addr->sa_family != af)
951                         continue;
952                 if (ifa_maybe == 0)
953                         ifa_maybe = ifa;
954                 if (ifa->ifa_netmask == NULL) {
955                         if (sa_equal(addr, ifa->ifa_addr) ||
956                             (ifa->ifa_dstaddr != NULL &&
957                              sa_equal(addr, ifa->ifa_dstaddr)))
958                                 return (ifa);
959                         continue;
960                 }
961                 if (ifp->if_flags & IFF_POINTOPOINT) {
962                         if (sa_equal(addr, ifa->ifa_dstaddr))
963                                 return (ifa);
964                 } else {
965                         cp = addr->sa_data;
966                         cp2 = ifa->ifa_addr->sa_data;
967                         cp3 = ifa->ifa_netmask->sa_data;
968                         cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
969                         for (; cp3 < cplim; cp3++)
970                                 if ((*cp++ ^ *cp2++) & *cp3)
971                                         break;
972                         if (cp3 == cplim)
973                                 return (ifa);
974                 }
975         }
976         return (ifa_maybe);
977 }
978
979 /*
980  * Default action when installing a route with a Link Level gateway.
981  * Lookup an appropriate real ifa to point to.
982  * This should be moved to /sys/net/link.c eventually.
983  */
984 static void
985 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info)
986 {
987         struct ifaddr *ifa;
988         struct sockaddr *dst;
989         struct ifnet *ifp;
990
991         if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
992             (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
993                 return;
994         ifa = ifaof_ifpforaddr(dst, ifp);
995         if (ifa != NULL) {
996                 IFAFREE(rt->rt_ifa);
997                 IFAREF(ifa);
998                 rt->rt_ifa = ifa;
999                 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1000                         ifa->ifa_rtrequest(cmd, rt, info);
1001         }
1002 }
1003
1004 /*
1005  * Mark an interface down and notify protocols of
1006  * the transition.
1007  * NOTE: must be called at splnet or eqivalent.
1008  */
1009 void
1010 if_unroute(struct ifnet *ifp, int flag, int fam)
1011 {
1012         struct ifaddr_container *ifac;
1013
1014         ifp->if_flags &= ~flag;
1015         getmicrotime(&ifp->if_lastchange);
1016         TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1017                 struct ifaddr *ifa = ifac->ifa;
1018
1019                 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1020                         kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1021         }
1022         ifq_purge(&ifp->if_snd);
1023         rt_ifmsg(ifp);
1024 }
1025
1026 /*
1027  * Mark an interface up and notify protocols of
1028  * the transition.
1029  * NOTE: must be called at splnet or eqivalent.
1030  */
1031 void
1032 if_route(struct ifnet *ifp, int flag, int fam)
1033 {
1034         struct ifaddr_container *ifac;
1035
1036         ifq_purge(&ifp->if_snd);
1037         ifp->if_flags |= flag;
1038         getmicrotime(&ifp->if_lastchange);
1039         TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1040                 struct ifaddr *ifa = ifac->ifa;
1041
1042                 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1043                         kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1044         }
1045         rt_ifmsg(ifp);
1046 #ifdef INET6
1047         in6_if_up(ifp);
1048 #endif
1049 }
1050
1051 /*
1052  * Mark an interface down and notify protocols of the transition.  An
1053  * interface going down is also considered to be a synchronizing event.
1054  * We must ensure that all packet processing related to the interface
1055  * has completed before we return so e.g. the caller can free the ifnet
1056  * structure that the mbufs may be referencing.
1057  *
1058  * NOTE: must be called at splnet or eqivalent.
1059  */
1060 void
1061 if_down(struct ifnet *ifp)
1062 {
1063         if_unroute(ifp, IFF_UP, AF_UNSPEC);
1064         netmsg_service_sync();
1065 }
1066
1067 /*
1068  * Mark an interface up and notify protocols of
1069  * the transition.
1070  * NOTE: must be called at splnet or eqivalent.
1071  */
1072 void
1073 if_up(struct ifnet *ifp)
1074 {
1075         if_route(ifp, IFF_UP, AF_UNSPEC);
1076 }
1077
1078 /*
1079  * Process a link state change.
1080  * NOTE: must be called at splsoftnet or equivalent.
1081  */
1082 void
1083 if_link_state_change(struct ifnet *ifp)
1084 {
1085         int link_state = ifp->if_link_state;
1086
1087         rt_ifmsg(ifp);
1088         devctl_notify("IFNET", ifp->if_xname,
1089             (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1090 }
1091
1092 /*
1093  * Handle interface watchdog timer routines.  Called
1094  * from softclock, we decrement timers (if set) and
1095  * call the appropriate interface routine on expiration.
1096  */
1097 static void
1098 if_slowtimo(void *arg)
1099 {
1100         struct ifnet *ifp;
1101
1102         crit_enter();
1103
1104         TAILQ_FOREACH(ifp, &ifnet, if_link) {
1105                 if (ifp->if_timer == 0 || --ifp->if_timer)
1106                         continue;
1107                 if (ifp->if_watchdog) {
1108                         if (lwkt_serialize_try(ifp->if_serializer)) {
1109                                 (*ifp->if_watchdog)(ifp);
1110                                 lwkt_serialize_exit(ifp->if_serializer);
1111                         } else {
1112                                 /* try again next timeout */
1113                                 ++ifp->if_timer;
1114                         }
1115                 }
1116         }
1117
1118         crit_exit();
1119
1120         callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1121 }
1122
1123 /*
1124  * Map interface name to
1125  * interface structure pointer.
1126  */
1127 struct ifnet *
1128 ifunit(const char *name)
1129 {
1130         struct ifnet *ifp;
1131
1132         /*
1133          * Search all the interfaces for this name/number
1134          */
1135
1136         TAILQ_FOREACH(ifp, &ifnet, if_link) {
1137                 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1138                         break;
1139         }
1140         return (ifp);
1141 }
1142
1143
1144 /*
1145  * Map interface name in a sockaddr_dl to
1146  * interface structure pointer.
1147  */
1148 struct ifnet *
1149 if_withname(struct sockaddr *sa)
1150 {
1151         char ifname[IFNAMSIZ+1];
1152         struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1153
1154         if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1155              (sdl->sdl_nlen > IFNAMSIZ) )
1156                 return NULL;
1157
1158         /*
1159          * ifunit wants a null-terminated name.  It may not be null-terminated
1160          * in the sockaddr.  We don't want to change the caller's sockaddr,
1161          * and there might not be room to put the trailing null anyway, so we
1162          * make a local copy that we know we can null terminate safely.
1163          */
1164
1165         bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1166         ifname[sdl->sdl_nlen] = '\0';
1167         return ifunit(ifname);
1168 }
1169
1170
1171 /*
1172  * Interface ioctls.
1173  */
1174 int
1175 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1176 {
1177         struct ifnet *ifp;
1178         struct ifreq *ifr;
1179         struct ifstat *ifs;
1180         int error;
1181         short oif_flags;
1182         int new_flags;
1183         size_t namelen, onamelen;
1184         char new_name[IFNAMSIZ];
1185         struct ifaddr *ifa;
1186         struct sockaddr_dl *sdl;
1187
1188         switch (cmd) {
1189
1190         case SIOCGIFCONF:
1191         case OSIOCGIFCONF:
1192                 return (ifconf(cmd, data, cred));
1193         }
1194         ifr = (struct ifreq *)data;
1195
1196         switch (cmd) {
1197         case SIOCIFCREATE:
1198         case SIOCIFDESTROY:
1199                 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1200                         return (error);
1201                 return ((cmd == SIOCIFCREATE) ?
1202                         if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name)) :
1203                         if_clone_destroy(ifr->ifr_name));
1204
1205         case SIOCIFGCLONERS:
1206                 return (if_clone_list((struct if_clonereq *)data));
1207         }
1208
1209         ifp = ifunit(ifr->ifr_name);
1210         if (ifp == 0)
1211                 return (ENXIO);
1212         switch (cmd) {
1213
1214         case SIOCGIFFLAGS:
1215                 ifr->ifr_flags = ifp->if_flags;
1216                 ifr->ifr_flagshigh = ifp->if_flags >> 16;
1217                 break;
1218
1219         case SIOCGIFCAP:
1220                 ifr->ifr_reqcap = ifp->if_capabilities;
1221                 ifr->ifr_curcap = ifp->if_capenable;
1222                 break;
1223
1224         case SIOCGIFMETRIC:
1225                 ifr->ifr_metric = ifp->if_metric;
1226                 break;
1227
1228         case SIOCGIFMTU:
1229                 ifr->ifr_mtu = ifp->if_mtu;
1230                 break;
1231
1232         case SIOCGIFPHYS:
1233                 ifr->ifr_phys = ifp->if_physical;
1234                 break;
1235
1236         case SIOCGIFPOLLCPU:
1237 #ifdef DEVICE_POLLING
1238                 ifr->ifr_pollcpu = ifp->if_poll_cpuid;
1239 #else
1240                 ifr->ifr_pollcpu = -1;
1241 #endif
1242                 break;
1243
1244         case SIOCSIFPOLLCPU:
1245 #ifdef DEVICE_POLLING
1246                 if ((ifp->if_flags & IFF_POLLING) == 0)
1247                         ether_pollcpu_register(ifp, ifr->ifr_pollcpu);
1248 #endif
1249                 break;
1250
1251         case SIOCSIFFLAGS:
1252                 error = priv_check_cred(cred, PRIV_ROOT, 0);
1253                 if (error)
1254                         return (error);
1255                 new_flags = (ifr->ifr_flags & 0xffff) |
1256                     (ifr->ifr_flagshigh << 16);
1257                 if (ifp->if_flags & IFF_SMART) {
1258                         /* Smart drivers twiddle their own routes */
1259                 } else if (ifp->if_flags & IFF_UP &&
1260                     (new_flags & IFF_UP) == 0) {
1261                         crit_enter();
1262                         if_down(ifp);
1263                         crit_exit();
1264                 } else if (new_flags & IFF_UP &&
1265                     (ifp->if_flags & IFF_UP) == 0) {
1266                         crit_enter();
1267                         if_up(ifp);
1268                         crit_exit();
1269                 }
1270
1271 #ifdef DEVICE_POLLING
1272                 if ((new_flags ^ ifp->if_flags) & IFF_POLLING) {
1273                         if (new_flags & IFF_POLLING) {
1274                                 ether_poll_register(ifp);
1275                         } else {
1276                                 ether_poll_deregister(ifp);
1277                         }
1278                 }
1279 #endif
1280
1281                 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1282                         (new_flags &~ IFF_CANTCHANGE);
1283                 if (new_flags & IFF_PPROMISC) {
1284                         /* Permanently promiscuous mode requested */
1285                         ifp->if_flags |= IFF_PROMISC;
1286                 } else if (ifp->if_pcount == 0) {
1287                         ifp->if_flags &= ~IFF_PROMISC;
1288                 }
1289                 if (ifp->if_ioctl) {
1290                         lwkt_serialize_enter(ifp->if_serializer);
1291                         ifp->if_ioctl(ifp, cmd, data, cred);
1292                         lwkt_serialize_exit(ifp->if_serializer);
1293                 }
1294                 getmicrotime(&ifp->if_lastchange);
1295                 break;
1296
1297         case SIOCSIFCAP:
1298                 error = priv_check_cred(cred, PRIV_ROOT, 0);
1299                 if (error)
1300                         return (error);
1301                 if (ifr->ifr_reqcap & ~ifp->if_capabilities)
1302                         return (EINVAL);
1303                 lwkt_serialize_enter(ifp->if_serializer);
1304                 ifp->if_ioctl(ifp, cmd, data, cred);
1305                 lwkt_serialize_exit(ifp->if_serializer);
1306                 break;
1307
1308         case SIOCSIFNAME:
1309                 error = priv_check_cred(cred, PRIV_ROOT, 0);
1310                 if (error != 0)
1311                         return (error);
1312                 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1313                 if (error != 0)
1314                         return (error);
1315                 if (new_name[0] == '\0')
1316                         return (EINVAL);
1317                 if (ifunit(new_name) != NULL)
1318                         return (EEXIST);
1319
1320                 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1321
1322                 /* Announce the departure of the interface. */
1323                 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1324
1325                 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1326                 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1327                 /* XXX IFA_LOCK(ifa); */
1328                 sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1329                 namelen = strlen(new_name);
1330                 onamelen = sdl->sdl_nlen;
1331                 /*
1332                  * Move the address if needed.  This is safe because we
1333                  * allocate space for a name of length IFNAMSIZ when we
1334                  * create this in if_attach().
1335                  */
1336                 if (namelen != onamelen) {
1337                         bcopy(sdl->sdl_data + onamelen,
1338                             sdl->sdl_data + namelen, sdl->sdl_alen);
1339                 }
1340                 bcopy(new_name, sdl->sdl_data, namelen);
1341                 sdl->sdl_nlen = namelen;
1342                 sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1343                 bzero(sdl->sdl_data, onamelen);
1344                 while (namelen != 0)
1345                         sdl->sdl_data[--namelen] = 0xff;
1346                 /* XXX IFA_UNLOCK(ifa) */
1347
1348                 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1349
1350                 /* Announce the return of the interface. */
1351                 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1352                 break;
1353
1354         case SIOCSIFMETRIC:
1355                 error = priv_check_cred(cred, PRIV_ROOT, 0);
1356                 if (error)
1357                         return (error);
1358                 ifp->if_metric = ifr->ifr_metric;
1359                 getmicrotime(&ifp->if_lastchange);
1360                 break;
1361
1362         case SIOCSIFPHYS:
1363                 error = priv_check_cred(cred, PRIV_ROOT, 0);
1364                 if (error)
1365                         return error;
1366                 if (!ifp->if_ioctl)
1367                         return EOPNOTSUPP;
1368                 lwkt_serialize_enter(ifp->if_serializer);
1369                 error = ifp->if_ioctl(ifp, cmd, data, cred);
1370                 lwkt_serialize_exit(ifp->if_serializer);
1371                 if (error == 0)
1372                         getmicrotime(&ifp->if_lastchange);
1373                 return (error);
1374
1375         case SIOCSIFMTU:
1376         {
1377                 u_long oldmtu = ifp->if_mtu;
1378
1379                 error = priv_check_cred(cred, PRIV_ROOT, 0);
1380                 if (error)
1381                         return (error);
1382                 if (ifp->if_ioctl == NULL)
1383                         return (EOPNOTSUPP);
1384                 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
1385                         return (EINVAL);
1386                 lwkt_serialize_enter(ifp->if_serializer);
1387                 error = ifp->if_ioctl(ifp, cmd, data, cred);
1388                 lwkt_serialize_exit(ifp->if_serializer);
1389                 if (error == 0) {
1390                         getmicrotime(&ifp->if_lastchange);
1391                         rt_ifmsg(ifp);
1392                 }
1393                 /*
1394                  * If the link MTU changed, do network layer specific procedure.
1395                  */
1396                 if (ifp->if_mtu != oldmtu) {
1397 #ifdef INET6
1398                         nd6_setmtu(ifp);
1399 #endif
1400                 }
1401                 return (error);
1402         }
1403
1404         case SIOCADDMULTI:
1405         case SIOCDELMULTI:
1406                 error = priv_check_cred(cred, PRIV_ROOT, 0);
1407                 if (error)
1408                         return (error);
1409
1410                 /* Don't allow group membership on non-multicast interfaces. */
1411                 if ((ifp->if_flags & IFF_MULTICAST) == 0)
1412                         return EOPNOTSUPP;
1413
1414                 /* Don't let users screw up protocols' entries. */
1415                 if (ifr->ifr_addr.sa_family != AF_LINK)
1416                         return EINVAL;
1417
1418                 if (cmd == SIOCADDMULTI) {
1419                         struct ifmultiaddr *ifma;
1420                         error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1421                 } else {
1422                         error = if_delmulti(ifp, &ifr->ifr_addr);
1423                 }
1424                 if (error == 0)
1425                         getmicrotime(&ifp->if_lastchange);
1426                 return error;
1427
1428         case SIOCSIFPHYADDR:
1429         case SIOCDIFPHYADDR:
1430 #ifdef INET6
1431         case SIOCSIFPHYADDR_IN6:
1432 #endif
1433         case SIOCSLIFPHYADDR:
1434         case SIOCSIFMEDIA:
1435         case SIOCSIFGENERIC:
1436                 error = priv_check_cred(cred, PRIV_ROOT, 0);
1437                 if (error)
1438                         return (error);
1439                 if (ifp->if_ioctl == 0)
1440                         return (EOPNOTSUPP);
1441                 lwkt_serialize_enter(ifp->if_serializer);
1442                 error = ifp->if_ioctl(ifp, cmd, data, cred);
1443                 lwkt_serialize_exit(ifp->if_serializer);
1444                 if (error == 0)
1445                         getmicrotime(&ifp->if_lastchange);
1446                 return error;
1447
1448         case SIOCGIFSTATUS:
1449                 ifs = (struct ifstat *)data;
1450                 ifs->ascii[0] = '\0';
1451
1452         case SIOCGIFPSRCADDR:
1453         case SIOCGIFPDSTADDR:
1454         case SIOCGLIFPHYADDR:
1455         case SIOCGIFMEDIA:
1456         case SIOCGIFGENERIC:
1457                 if (ifp->if_ioctl == NULL)
1458                         return (EOPNOTSUPP);
1459                 lwkt_serialize_enter(ifp->if_serializer);
1460                 error = ifp->if_ioctl(ifp, cmd, data, cred);
1461                 lwkt_serialize_exit(ifp->if_serializer);
1462                 return (error);
1463
1464         case SIOCSIFLLADDR:
1465                 error = priv_check_cred(cred, PRIV_ROOT, 0);
1466                 if (error)
1467                         return (error);
1468                 return if_setlladdr(ifp,
1469                     ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
1470
1471         default:
1472                 oif_flags = ifp->if_flags;
1473                 if (so->so_proto == 0)
1474                         return (EOPNOTSUPP);
1475 #ifndef COMPAT_43
1476                 error = so_pru_control(so, cmd, data, ifp);
1477 #else
1478             {
1479                 int ocmd = cmd;
1480
1481                 switch (cmd) {
1482
1483                 case SIOCSIFDSTADDR:
1484                 case SIOCSIFADDR:
1485                 case SIOCSIFBRDADDR:
1486                 case SIOCSIFNETMASK:
1487 #if BYTE_ORDER != BIG_ENDIAN
1488                         if (ifr->ifr_addr.sa_family == 0 &&
1489                             ifr->ifr_addr.sa_len < 16) {
1490                                 ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1491                                 ifr->ifr_addr.sa_len = 16;
1492                         }
1493 #else
1494                         if (ifr->ifr_addr.sa_len == 0)
1495                                 ifr->ifr_addr.sa_len = 16;
1496 #endif
1497                         break;
1498
1499                 case OSIOCGIFADDR:
1500                         cmd = SIOCGIFADDR;
1501                         break;
1502
1503                 case OSIOCGIFDSTADDR:
1504                         cmd = SIOCGIFDSTADDR;
1505                         break;
1506
1507                 case OSIOCGIFBRDADDR:
1508                         cmd = SIOCGIFBRDADDR;
1509                         break;
1510
1511                 case OSIOCGIFNETMASK:
1512                         cmd = SIOCGIFNETMASK;
1513                 }
1514                 error =  so_pru_control(so, cmd, data, ifp);
1515                 switch (ocmd) {
1516
1517                 case OSIOCGIFADDR:
1518                 case OSIOCGIFDSTADDR:
1519                 case OSIOCGIFBRDADDR:
1520                 case OSIOCGIFNETMASK:
1521                         *(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1522
1523                 }
1524             }
1525 #endif /* COMPAT_43 */
1526
1527                 if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1528 #ifdef INET6
1529                         DELAY(100);/* XXX: temporary workaround for fxp issue*/
1530                         if (ifp->if_flags & IFF_UP) {
1531                                 crit_enter();
1532                                 in6_if_up(ifp);
1533                                 crit_exit();
1534                         }
1535 #endif
1536                 }
1537                 return (error);
1538
1539         }
1540         return (0);
1541 }
1542
1543 /*
1544  * Set/clear promiscuous mode on interface ifp based on the truth value
1545  * of pswitch.  The calls are reference counted so that only the first
1546  * "on" request actually has an effect, as does the final "off" request.
1547  * Results are undefined if the "off" and "on" requests are not matched.
1548  */
1549 int
1550 ifpromisc(struct ifnet *ifp, int pswitch)
1551 {
1552         struct ifreq ifr;
1553         int error;
1554         int oldflags;
1555
1556         oldflags = ifp->if_flags;
1557         if (ifp->if_flags & IFF_PPROMISC) {
1558                 /* Do nothing if device is in permanently promiscuous mode */
1559                 ifp->if_pcount += pswitch ? 1 : -1;
1560                 return (0);
1561         }
1562         if (pswitch) {
1563                 /*
1564                  * If the device is not configured up, we cannot put it in
1565                  * promiscuous mode.
1566                  */
1567                 if ((ifp->if_flags & IFF_UP) == 0)
1568                         return (ENETDOWN);
1569                 if (ifp->if_pcount++ != 0)
1570                         return (0);
1571                 ifp->if_flags |= IFF_PROMISC;
1572                 log(LOG_INFO, "%s: promiscuous mode enabled\n",
1573                     ifp->if_xname);
1574         } else {
1575                 if (--ifp->if_pcount > 0)
1576                         return (0);
1577                 ifp->if_flags &= ~IFF_PROMISC;
1578                 log(LOG_INFO, "%s: promiscuous mode disabled\n",
1579                     ifp->if_xname);
1580         }
1581         ifr.ifr_flags = ifp->if_flags;
1582         ifr.ifr_flagshigh = ifp->if_flags >> 16;
1583         lwkt_serialize_enter(ifp->if_serializer);
1584         error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1585                                  (struct ucred *)NULL);
1586         lwkt_serialize_exit(ifp->if_serializer);
1587         if (error == 0)
1588                 rt_ifmsg(ifp);
1589         else
1590                 ifp->if_flags = oldflags;
1591         return error;
1592 }
1593
1594 /*
1595  * Return interface configuration
1596  * of system.  List may be used
1597  * in later ioctl's (above) to get
1598  * other information.
1599  */
1600 static int
1601 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
1602 {
1603         struct ifconf *ifc = (struct ifconf *)data;
1604         struct ifnet *ifp;
1605         struct sockaddr *sa;
1606         struct ifreq ifr, *ifrp;
1607         int space = ifc->ifc_len, error = 0;
1608
1609         ifrp = ifc->ifc_req;
1610         TAILQ_FOREACH(ifp, &ifnet, if_link) {
1611                 struct ifaddr_container *ifac;
1612                 int addrs;
1613
1614                 if (space <= sizeof ifr)
1615                         break;
1616
1617                 /*
1618                  * Zero the stack declared structure first to prevent
1619                  * memory disclosure.
1620                  */
1621                 bzero(&ifr, sizeof(ifr));
1622                 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
1623                     >= sizeof(ifr.ifr_name)) {
1624                         error = ENAMETOOLONG;
1625                         break;
1626                 }
1627
1628                 addrs = 0;
1629                 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1630                         struct ifaddr *ifa = ifac->ifa;
1631
1632                         if (space <= sizeof ifr)
1633                                 break;
1634                         sa = ifa->ifa_addr;
1635                         if (cred->cr_prison &&
1636                             prison_if(cred, sa))
1637                                 continue;
1638                         addrs++;
1639 #ifdef COMPAT_43
1640                         if (cmd == OSIOCGIFCONF) {
1641                                 struct osockaddr *osa =
1642                                          (struct osockaddr *)&ifr.ifr_addr;
1643                                 ifr.ifr_addr = *sa;
1644                                 osa->sa_family = sa->sa_family;
1645                                 error = copyout(&ifr, ifrp, sizeof ifr);
1646                                 ifrp++;
1647                         } else
1648 #endif
1649                         if (sa->sa_len <= sizeof(*sa)) {
1650                                 ifr.ifr_addr = *sa;
1651                                 error = copyout(&ifr, ifrp, sizeof ifr);
1652                                 ifrp++;
1653                         } else {
1654                                 if (space < (sizeof ifr) + sa->sa_len -
1655                                             sizeof(*sa))
1656                                         break;
1657                                 space -= sa->sa_len - sizeof(*sa);
1658                                 error = copyout(&ifr, ifrp,
1659                                                 sizeof ifr.ifr_name);
1660                                 if (error == 0)
1661                                         error = copyout(sa, &ifrp->ifr_addr,
1662                                                         sa->sa_len);
1663                                 ifrp = (struct ifreq *)
1664                                         (sa->sa_len + (caddr_t)&ifrp->ifr_addr);
1665                         }
1666                         if (error)
1667                                 break;
1668                         space -= sizeof ifr;
1669                 }
1670                 if (error)
1671                         break;
1672                 if (!addrs) {
1673                         bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
1674                         error = copyout(&ifr, ifrp, sizeof ifr);
1675                         if (error)
1676                                 break;
1677                         space -= sizeof ifr;
1678                         ifrp++;
1679                 }
1680         }
1681         ifc->ifc_len -= space;
1682         return (error);
1683 }
1684
1685 /*
1686  * Just like if_promisc(), but for all-multicast-reception mode.
1687  */
1688 int
1689 if_allmulti(struct ifnet *ifp, int onswitch)
1690 {
1691         int error = 0;
1692         struct ifreq ifr;
1693
1694         crit_enter();
1695
1696         if (onswitch) {
1697                 if (ifp->if_amcount++ == 0) {
1698                         ifp->if_flags |= IFF_ALLMULTI;
1699                         ifr.ifr_flags = ifp->if_flags;
1700                         ifr.ifr_flagshigh = ifp->if_flags >> 16;
1701                         lwkt_serialize_enter(ifp->if_serializer);
1702                         error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1703                                               (struct ucred *)NULL);
1704                         lwkt_serialize_exit(ifp->if_serializer);
1705                 }
1706         } else {
1707                 if (ifp->if_amcount > 1) {
1708                         ifp->if_amcount--;
1709                 } else {
1710                         ifp->if_amcount = 0;
1711                         ifp->if_flags &= ~IFF_ALLMULTI;
1712                         ifr.ifr_flags = ifp->if_flags;
1713                         ifr.ifr_flagshigh = ifp->if_flags >> 16;
1714                         lwkt_serialize_enter(ifp->if_serializer);
1715                         error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1716                                               (struct ucred *)NULL);
1717                         lwkt_serialize_exit(ifp->if_serializer);
1718                 }
1719         }
1720
1721         crit_exit();
1722
1723         if (error == 0)
1724                 rt_ifmsg(ifp);
1725         return error;
1726 }
1727
1728 /*
1729  * Add a multicast listenership to the interface in question.
1730  * The link layer provides a routine which converts
1731  */
1732 int
1733 if_addmulti(
1734         struct ifnet *ifp,      /* interface to manipulate */
1735         struct sockaddr *sa,    /* address to add */
1736         struct ifmultiaddr **retifma)
1737 {
1738         struct sockaddr *llsa, *dupsa;
1739         int error;
1740         struct ifmultiaddr *ifma;
1741
1742         /*
1743          * If the matching multicast address already exists
1744          * then don't add a new one, just add a reference
1745          */
1746         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1747                 if (sa_equal(sa, ifma->ifma_addr)) {
1748                         ifma->ifma_refcount++;
1749                         if (retifma)
1750                                 *retifma = ifma;
1751                         return 0;
1752                 }
1753         }
1754
1755         /*
1756          * Give the link layer a chance to accept/reject it, and also
1757          * find out which AF_LINK address this maps to, if it isn't one
1758          * already.
1759          */
1760         if (ifp->if_resolvemulti) {
1761                 lwkt_serialize_enter(ifp->if_serializer);
1762                 error = ifp->if_resolvemulti(ifp, &llsa, sa);
1763                 lwkt_serialize_exit(ifp->if_serializer);
1764                 if (error) 
1765                         return error;
1766         } else {
1767                 llsa = 0;
1768         }
1769
1770         MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, M_IFMADDR, M_WAITOK);
1771         MALLOC(dupsa, struct sockaddr *, sa->sa_len, M_IFMADDR, M_WAITOK);
1772         bcopy(sa, dupsa, sa->sa_len);
1773
1774         ifma->ifma_addr = dupsa;
1775         ifma->ifma_lladdr = llsa;
1776         ifma->ifma_ifp = ifp;
1777         ifma->ifma_refcount = 1;
1778         ifma->ifma_protospec = 0;
1779         rt_newmaddrmsg(RTM_NEWMADDR, ifma);
1780
1781         /*
1782          * Some network interfaces can scan the address list at
1783          * interrupt time; lock them out.
1784          */
1785         crit_enter();
1786         LIST_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
1787         crit_exit();
1788         *retifma = ifma;
1789
1790         if (llsa != 0) {
1791                 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1792                         if (sa_equal(ifma->ifma_addr, llsa))
1793                                 break;
1794                 }
1795                 if (ifma) {
1796                         ifma->ifma_refcount++;
1797                 } else {
1798                         MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma,
1799                                M_IFMADDR, M_WAITOK);
1800                         MALLOC(dupsa, struct sockaddr *, llsa->sa_len,
1801                                M_IFMADDR, M_WAITOK);
1802                         bcopy(llsa, dupsa, llsa->sa_len);
1803                         ifma->ifma_addr = dupsa;
1804                         ifma->ifma_ifp = ifp;
1805                         ifma->ifma_refcount = 1;
1806                         crit_enter();
1807                         LIST_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
1808                         crit_exit();
1809                 }
1810         }
1811         /*
1812          * We are certain we have added something, so call down to the
1813          * interface to let them know about it.
1814          */
1815         crit_enter();
1816         lwkt_serialize_enter(ifp->if_serializer);
1817         ifp->if_ioctl(ifp, SIOCADDMULTI, 0, (struct ucred *)NULL);
1818         lwkt_serialize_exit(ifp->if_serializer);
1819         crit_exit();
1820
1821         return 0;
1822 }
1823
1824 /*
1825  * Remove a reference to a multicast address on this interface.  Yell
1826  * if the request does not match an existing membership.
1827  */
1828 int
1829 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
1830 {
1831         struct ifmultiaddr *ifma;
1832
1833         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
1834                 if (sa_equal(sa, ifma->ifma_addr))
1835                         break;
1836         if (ifma == 0)
1837                 return ENOENT;
1838
1839         if (ifma->ifma_refcount > 1) {
1840                 ifma->ifma_refcount--;
1841                 return 0;
1842         }
1843
1844         rt_newmaddrmsg(RTM_DELMADDR, ifma);
1845         sa = ifma->ifma_lladdr;
1846         crit_enter();
1847         LIST_REMOVE(ifma, ifma_link);
1848         /*
1849          * Make sure the interface driver is notified
1850          * in the case of a link layer mcast group being left.
1851          */
1852         if (ifma->ifma_addr->sa_family == AF_LINK && sa == 0) {
1853                 lwkt_serialize_enter(ifp->if_serializer);
1854                 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, (struct ucred *)NULL);
1855                 lwkt_serialize_exit(ifp->if_serializer);
1856         }
1857         crit_exit();
1858         kfree(ifma->ifma_addr, M_IFMADDR);
1859         kfree(ifma, M_IFMADDR);
1860         if (sa == 0)
1861                 return 0;
1862
1863         /*
1864          * Now look for the link-layer address which corresponds to
1865          * this network address.  It had been squirreled away in
1866          * ifma->ifma_lladdr for this purpose (so we don't have
1867          * to call ifp->if_resolvemulti() again), and we saved that
1868          * value in sa above.  If some nasty deleted the
1869          * link-layer address out from underneath us, we can deal because
1870          * the address we stored was is not the same as the one which was
1871          * in the record for the link-layer address.  (So we don't complain
1872          * in that case.)
1873          */
1874         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
1875                 if (sa_equal(sa, ifma->ifma_addr))
1876                         break;
1877         if (ifma == 0)
1878                 return 0;
1879
1880         if (ifma->ifma_refcount > 1) {
1881                 ifma->ifma_refcount--;
1882                 return 0;
1883         }
1884
1885         crit_enter();
1886         lwkt_serialize_enter(ifp->if_serializer);
1887         LIST_REMOVE(ifma, ifma_link);
1888         ifp->if_ioctl(ifp, SIOCDELMULTI, 0, (struct ucred *)NULL);
1889         lwkt_serialize_exit(ifp->if_serializer);
1890         crit_exit();
1891         kfree(ifma->ifma_addr, M_IFMADDR);
1892         kfree(sa, M_IFMADDR);
1893         kfree(ifma, M_IFMADDR);
1894
1895         return 0;
1896 }
1897
1898 /*
1899  * Set the link layer address on an interface.
1900  *
1901  * At this time we only support certain types of interfaces,
1902  * and we don't allow the length of the address to change.
1903  */
1904 int
1905 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
1906 {
1907         struct sockaddr_dl *sdl;
1908         struct ifreq ifr;
1909
1910         sdl = IF_LLSOCKADDR(ifp);
1911         if (sdl == NULL)
1912                 return (EINVAL);
1913         if (len != sdl->sdl_alen)       /* don't allow length to change */
1914                 return (EINVAL);
1915         switch (ifp->if_type) {
1916         case IFT_ETHER:                 /* these types use struct arpcom */
1917         case IFT_XETHER:
1918         case IFT_L2VLAN:
1919                 bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
1920                 bcopy(lladdr, LLADDR(sdl), len);
1921                 break;
1922         default:
1923                 return (ENODEV);
1924         }
1925         /*
1926          * If the interface is already up, we need
1927          * to re-init it in order to reprogram its
1928          * address filter.
1929          */
1930         lwkt_serialize_enter(ifp->if_serializer);
1931         if ((ifp->if_flags & IFF_UP) != 0) {
1932                 struct ifaddr_container *ifac;
1933
1934                 ifp->if_flags &= ~IFF_UP;
1935                 ifr.ifr_flags = ifp->if_flags;
1936                 ifr.ifr_flagshigh = ifp->if_flags >> 16;
1937                 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1938                               (struct ucred *)NULL);
1939                 ifp->if_flags |= IFF_UP;
1940                 ifr.ifr_flags = ifp->if_flags;
1941                 ifr.ifr_flagshigh = ifp->if_flags >> 16;
1942                 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1943                                  (struct ucred *)NULL);
1944 #ifdef INET
1945                 /*
1946                  * Also send gratuitous ARPs to notify other nodes about
1947                  * the address change.
1948                  */
1949                 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1950                         struct ifaddr *ifa = ifac->ifa;
1951
1952                         if (ifa->ifa_addr != NULL &&
1953                             ifa->ifa_addr->sa_family == AF_INET)
1954                                 arp_ifinit(ifp, ifa);
1955                 }
1956 #endif
1957         }
1958         lwkt_serialize_exit(ifp->if_serializer);
1959         return (0);
1960 }
1961
1962 struct ifmultiaddr *
1963 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
1964 {
1965         struct ifmultiaddr *ifma;
1966
1967         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
1968                 if (sa_equal(ifma->ifma_addr, sa))
1969                         break;
1970
1971         return ifma;
1972 }
1973
1974 /*
1975  * This function locates the first real ethernet MAC from a network
1976  * card and loads it into node, returning 0 on success or ENOENT if
1977  * no suitable interfaces were found.  It is used by the uuid code to
1978  * generate a unique 6-byte number.
1979  */
1980 int
1981 if_getanyethermac(uint16_t *node, int minlen)
1982 {
1983         struct ifnet *ifp;
1984         struct sockaddr_dl *sdl;
1985
1986         TAILQ_FOREACH(ifp, &ifnet, if_link) {
1987                 if (ifp->if_type != IFT_ETHER)
1988                         continue;
1989                 sdl = IF_LLSOCKADDR(ifp);
1990                 if (sdl->sdl_alen < minlen)
1991                         continue;
1992                 bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
1993                       minlen);
1994                 return(0);
1995         }
1996         return (ENOENT);
1997 }
1998
1999 /*
2000  * The name argument must be a pointer to storage which will last as
2001  * long as the interface does.  For physical devices, the result of
2002  * device_get_name(dev) is a good choice and for pseudo-devices a
2003  * static string works well.
2004  */
2005 void
2006 if_initname(struct ifnet *ifp, const char *name, int unit)
2007 {
2008         ifp->if_dname = name;
2009         ifp->if_dunit = unit;
2010         if (unit != IF_DUNIT_NONE)
2011                 ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2012         else
2013                 strlcpy(ifp->if_xname, name, IFNAMSIZ);
2014 }
2015
2016 int
2017 if_printf(struct ifnet *ifp, const char *fmt, ...)
2018 {
2019         __va_list ap;
2020         int retval;
2021
2022         retval = kprintf("%s: ", ifp->if_xname);
2023         __va_start(ap, fmt);
2024         retval += kvprintf(fmt, ap);
2025         __va_end(ap);
2026         return (retval);
2027 }
2028
2029 void
2030 ifq_set_classic(struct ifaltq *ifq)
2031 {
2032         ifq->altq_enqueue = ifq_classic_enqueue;
2033         ifq->altq_dequeue = ifq_classic_dequeue;
2034         ifq->altq_request = ifq_classic_request;
2035 }
2036
2037 int
2038 ifq_classic_enqueue(struct ifaltq *ifq, struct mbuf *m,
2039                     struct altq_pktattr *pa __unused)
2040 {
2041         logifq(enqueue, ifq);
2042         if (IF_QFULL(ifq)) {
2043                 m_freem(m);
2044                 return(ENOBUFS);
2045         } else {
2046                 IF_ENQUEUE(ifq, m);
2047                 return(0);
2048         }       
2049 }
2050
2051 struct mbuf *
2052 ifq_classic_dequeue(struct ifaltq *ifq, struct mbuf *mpolled, int op)
2053 {
2054         struct mbuf *m;
2055
2056         switch (op) {
2057         case ALTDQ_POLL:
2058                 IF_POLL(ifq, m);
2059                 break;
2060         case ALTDQ_REMOVE:
2061                 logifq(dequeue, ifq);
2062                 IF_DEQUEUE(ifq, m);
2063                 break;
2064         default:
2065                 panic("unsupported ALTQ dequeue op: %d", op);
2066         }
2067         KKASSERT(mpolled == NULL || mpolled == m);
2068         return(m);
2069 }
2070
2071 int
2072 ifq_classic_request(struct ifaltq *ifq, int req, void *arg)
2073 {
2074         switch (req) {
2075         case ALTRQ_PURGE:
2076                 IF_DRAIN(ifq);
2077                 break;
2078         default:
2079                 panic("unsupported ALTQ request: %d", req);
2080         }
2081         return(0);
2082 }
2083
2084 int
2085 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2086 {
2087         struct ifaltq *ifq = &ifp->if_snd;
2088         int running = 0, error, start = 0;
2089
2090         ASSERT_NOT_SERIALIZED(ifp->if_serializer);
2091
2092         ALTQ_LOCK(ifq);
2093         error = ifq_enqueue_locked(ifq, m, pa);
2094         if (error) {
2095                 ALTQ_UNLOCK(ifq);
2096                 return error;
2097         }
2098         if (!ifq->altq_started) {
2099                 /*
2100                  * Hold the interlock of ifnet.if_start
2101                  */
2102                 ifq->altq_started = 1;
2103                 start = 1;
2104         }
2105         ALTQ_UNLOCK(ifq);
2106
2107         ifp->if_obytes += m->m_pkthdr.len;
2108         if (m->m_flags & M_MCAST)
2109                 ifp->if_omcasts++;
2110
2111         if (!start) {
2112                 logifstart(avoid, ifp);
2113                 return 0;
2114         }
2115
2116         if (ifq_dispatch_schedonly) {
2117                 /*
2118                  * Always schedule ifnet.if_start on ifnet's CPU,
2119                  * short circuit the rest of this function.
2120                  */
2121                 logifstart(sched, ifp);
2122                 if_start_schedule(ifp);
2123                 return 0;
2124         }
2125
2126         /*
2127          * Try to do direct ifnet.if_start first, if there is
2128          * contention on ifnet's serializer, ifnet.if_start will
2129          * be scheduled on ifnet's CPU.
2130          */
2131         if (!lwkt_serialize_try(ifp->if_serializer)) {
2132                 /*
2133                  * ifnet serializer contention happened,
2134                  * ifnet.if_start is scheduled on ifnet's
2135                  * CPU, and we keep going.
2136                  */
2137                 logifstart(contend_sched, ifp);
2138                 if_start_schedule(ifp);
2139                 return 0;
2140         }
2141
2142         if ((ifp->if_flags & IFF_OACTIVE) == 0) {
2143                 logifstart(run, ifp);
2144                 ifp->if_start(ifp);
2145                 if ((ifp->if_flags &
2146                      (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
2147                         running = 1;
2148         }
2149
2150         lwkt_serialize_exit(ifp->if_serializer);
2151
2152         if (ifq_dispatch_schednochk || if_start_need_schedule(ifq, running)) {
2153                 /*
2154                  * More data need to be transmitted, ifnet.if_start is
2155                  * scheduled on ifnet's CPU, and we keep going.
2156                  * NOTE: ifnet.if_start interlock is not released.
2157                  */
2158                 logifstart(sched, ifp);
2159                 if_start_schedule(ifp);
2160         }
2161         return 0;
2162 }
2163
2164 void *
2165 ifa_create(int size, int flags)
2166 {
2167         struct ifaddr *ifa;
2168         int i;
2169
2170         KASSERT(size >= sizeof(*ifa), ("ifaddr size too small\n"));
2171
2172         ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2173         if (ifa == NULL)
2174                 return NULL;
2175
2176         ifa->ifa_containers = kmalloc(ncpus * sizeof(struct ifaddr_container),
2177                                       M_IFADDR, M_WAITOK | M_ZERO);
2178         ifa->ifa_ncnt = ncpus;
2179         for (i = 0; i < ncpus; ++i) {
2180                 struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2181
2182                 ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2183                 ifac->ifa = ifa;
2184                 ifac->ifa_refcnt = 1;
2185         }
2186 #ifdef IFADDR_DEBUG
2187         kprintf("alloc ifa %p %d\n", ifa, size);
2188 #endif
2189         return ifa;
2190 }
2191
2192 void
2193 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2194 {
2195         struct ifaddr *ifa = ifac->ifa;
2196
2197         KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2198         KKASSERT(ifac->ifa_refcnt == 0);
2199         KASSERT(ifac->ifa_listmask == 0,
2200                 ("ifa is still on %#x lists\n", ifac->ifa_listmask));
2201
2202         ifac->ifa_magic = IFA_CONTAINER_DEAD;
2203
2204 #ifdef IFADDR_DEBUG_VERBOSE
2205         kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2206 #endif
2207
2208         KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2209                 ("invalid # of ifac, %d\n", ifa->ifa_ncnt));
2210         if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2211 #ifdef IFADDR_DEBUG
2212                 kprintf("free ifa %p\n", ifa);
2213 #endif
2214                 kfree(ifa->ifa_containers, M_IFADDR);
2215                 kfree(ifa, M_IFADDR);
2216         }
2217 }
2218
2219 static void
2220 ifa_iflink_dispatch(struct netmsg *nmsg)
2221 {
2222         struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2223         struct ifaddr *ifa = msg->ifa;
2224         struct ifnet *ifp = msg->ifp;
2225         int cpu = mycpuid;
2226         struct ifaddr_container *ifac;
2227
2228         crit_enter();
2229
2230         ifac = &ifa->ifa_containers[cpu];
2231         ASSERT_IFAC_VALID(ifac);
2232         KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2233                 ("ifaddr is on if_addrheads\n"));
2234
2235         ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2236         if (msg->tail)
2237                 TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2238         else
2239                 TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2240
2241         crit_exit();
2242
2243         ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1);
2244 }
2245
2246 void
2247 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2248 {
2249         struct netmsg_ifaddr msg;
2250
2251         netmsg_init(&msg.netmsg, &curthread->td_msgport, 0,
2252                     ifa_iflink_dispatch);
2253         msg.ifa = ifa;
2254         msg.ifp = ifp;
2255         msg.tail = tail;
2256
2257         ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2258 }
2259
2260 static void
2261 ifa_ifunlink_dispatch(struct netmsg *nmsg)
2262 {
2263         struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2264         struct ifaddr *ifa = msg->ifa;
2265         struct ifnet *ifp = msg->ifp;
2266         int cpu = mycpuid;
2267         struct ifaddr_container *ifac;
2268
2269         crit_enter();
2270
2271         ifac = &ifa->ifa_containers[cpu];
2272         ASSERT_IFAC_VALID(ifac);
2273         KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
2274                 ("ifaddr is not on if_addrhead\n"));
2275
2276         TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
2277         ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
2278
2279         crit_exit();
2280
2281         ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1);
2282 }
2283
2284 void
2285 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
2286 {
2287         struct netmsg_ifaddr msg;
2288
2289         netmsg_init(&msg.netmsg, &curthread->td_msgport, 0,
2290                     ifa_ifunlink_dispatch);
2291         msg.ifa = ifa;
2292         msg.ifp = ifp;
2293
2294         ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2295 }
2296
2297 static void
2298 ifa_destroy_dispatch(struct netmsg *nmsg)
2299 {
2300         struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2301
2302         IFAFREE(msg->ifa);
2303         ifa_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
2304 }
2305
2306 void
2307 ifa_destroy(struct ifaddr *ifa)
2308 {
2309         struct netmsg_ifaddr msg;
2310
2311         netmsg_init(&msg.netmsg, &curthread->td_msgport, 0,
2312                     ifa_destroy_dispatch);
2313         msg.ifa = ifa;
2314
2315         ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2316 }
2317
2318 struct lwkt_port *
2319 ifnet_portfn(int cpu)
2320 {
2321         return &ifnet_threads[cpu].td_msgport;
2322 }
2323
2324 void
2325 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
2326 {
2327         KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
2328
2329         if (next_cpu < ncpus)
2330                 lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
2331         else
2332                 lwkt_replymsg(lmsg, 0);
2333 }
2334
2335 int
2336 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
2337 {
2338         KKASSERT(cpu < ncpus);
2339         return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
2340 }
2341
2342 void
2343 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
2344 {
2345         KKASSERT(cpu < ncpus);
2346         lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
2347 }
2348
2349 static void
2350 ifnetinit(void *dummy __unused)
2351 {
2352         int i;
2353
2354         for (i = 0; i < ncpus; ++i) {
2355                 struct thread *thr = &ifnet_threads[i];
2356
2357                 lwkt_create(netmsg_service_loop, &ifnet_mpsafe_thread, NULL,
2358                             thr, TDF_NETWORK | TDF_MPSAFE, i, "ifnet %d", i);
2359                 netmsg_service_port_init(&thr->td_msgport);
2360         }
2361 }