wpi - Convert to wlan_global_serializer use.
[dragonfly.git] / sys / dev / netif / wpi / if_wpi.c
1 /*-
2  * Copyright (c) 2006,2007
3  *      Damien Bergamini <damien.bergamini@free.fr>
4  *      Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $
19  */
20
21 #define VERSION "20071127"
22
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  *
26  * The 3945ABG network adapter doesn't use traditional hardware as
27  * many other adaptors do. Instead at run time the eeprom is set into a known
28  * state and told to load boot firmware. The boot firmware loads an init and a
29  * main  binary firmware image into SRAM on the card via DMA.
30  * Once the firmware is loaded, the driver/hw then
31  * communicate by way of circular dma rings via the the SRAM to the firmware.
32  *
33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34  * The 4 tx data rings allow for prioritization QoS.
35  *
36  * The rx data ring consists of 32 dma buffers. Two registers are used to
37  * indicate where in the ring the driver and the firmware are up to. The
38  * driver sets the initial read index (reg1) and the initial write index (reg2),
39  * the firmware updates the read index (reg1) on rx of a packet and fires an
40  * interrupt. The driver then processes the buffers starting at reg1 indicating
41  * to the firmware which buffers have been accessed by updating reg2. At the
42  * same time allocating new memory for the processed buffer.
43  *
44  * A similar thing happens with the tx rings. The difference is the firmware
45  * stop processing buffers once the queue is full and until confirmation
46  * of a successful transmition (tx_intr) has occurred.
47  *
48  * The command ring operates in the same manner as the tx queues.
49  *
50  * All communication direct to the card (ie eeprom) is classed as Stage1
51  * communication
52  *
53  * All communication via the firmware to the card is classed as State2.
54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55  * firmware. The bootstrap firmware and runtime firmware are loaded
56  * from host memory via dma to the card then told to execute. From this point
57  * on the majority of communications between the driver and the card goes
58  * via the firmware.
59  */
60
61 #include <sys/param.h>
62 #include <sys/sysctl.h>
63 #include <sys/sockio.h>
64 #include <sys/mbuf.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/systm.h>
68 #include <sys/malloc.h>
69 #include <sys/queue.h>
70 #include <sys/taskqueue.h>
71 #include <sys/module.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74 #include <sys/linker.h>
75 #include <sys/firmware.h>
76
77 #include <sys/bus.h>
78 #include <sys/resource.h>
79 #include <sys/rman.h>
80
81 #include <bus/pci/pcireg.h>
82 #include <bus/pci/pcivar.h>
83
84 #include <net/bpf.h>
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ifq_var.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92
93 #include <netproto/802_11/ieee80211_var.h>
94 #include <netproto/802_11/ieee80211_radiotap.h>
95 #include <netproto/802_11/ieee80211_regdomain.h>
96 #include <netproto/802_11/ieee80211_ratectl.h>
97
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/if_ether.h>
103
104 /* XXX: move elsewhere */
105 #define abs(x) (((x) < 0) ? -(x) : (x))
106
107 #include "if_wpireg.h"
108 #include "if_wpivar.h"
109
110 #define WPI_DEBUG
111
112 #ifdef WPI_DEBUG
113 #define DPRINTF(x)      do { if (wpi_debug != 0) kprintf x; } while (0)
114 #define DPRINTFN(n, x)  do { if (wpi_debug & n) kprintf x; } while (0)
115 #define WPI_DEBUG_SET   (wpi_debug != 0)
116
117 enum {
118         WPI_DEBUG_UNUSED        = 0x00000001,   /* Unused */
119         WPI_DEBUG_HW            = 0x00000002,   /* Stage 1 (eeprom) debugging */
120         WPI_DEBUG_TX            = 0x00000004,   /* Stage 2 TX intrp debugging*/
121         WPI_DEBUG_RX            = 0x00000008,   /* Stage 2 RX intrp debugging */
122         WPI_DEBUG_CMD           = 0x00000010,   /* Stage 2 CMD intrp debugging*/
123         WPI_DEBUG_FIRMWARE      = 0x00000020,   /* firmware(9) loading debug  */
124         WPI_DEBUG_DMA           = 0x00000040,   /* DMA (de)allocations/syncs  */
125         WPI_DEBUG_SCANNING      = 0x00000080,   /* Stage 2 Scanning debugging */
126         WPI_DEBUG_NOTIFY        = 0x00000100,   /* State 2 Noftif intr debug */
127         WPI_DEBUG_TEMP          = 0x00000200,   /* TXPower/Temp Calibration */
128         WPI_DEBUG_OPS           = 0x00000400,   /* wpi_ops taskq debug */
129         WPI_DEBUG_WATCHDOG      = 0x00000800,   /* Watch dog debug */
130         WPI_DEBUG_ANY           = 0xffffffff
131 };
132
133 static int wpi_debug = 1;
134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
135 TUNABLE_INT("debug.wpi", &wpi_debug);
136
137 #else
138 #define DPRINTF(x)
139 #define DPRINTFN(n, x)
140 #define WPI_DEBUG_SET   0
141 #endif
142
143 struct wpi_ident {
144         uint16_t        vendor;
145         uint16_t        device;
146         uint16_t        subdevice;
147         const char      *name;
148 };
149
150 static const struct wpi_ident wpi_ident_table[] = {
151         /* The below entries support ABG regardless of the subid */
152         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
154         /* The below entries only support BG */
155         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
156         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
157         { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
158         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
159         { 0, 0, 0, NULL }
160 };
161
162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
163                     const char name[IFNAMSIZ], int unit, int opmode,
164                     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
165                     const uint8_t mac[IEEE80211_ADDR_LEN]);
166 static void     wpi_vap_delete(struct ieee80211vap *);
167 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
168                     void **, bus_size_t, bus_size_t, int);
169 static void     wpi_dma_contig_free(struct wpi_dma_info *);
170 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
171 static int      wpi_alloc_shared(struct wpi_softc *);
172 static void     wpi_free_shared(struct wpi_softc *);
173 static int      wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174 static void     wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175 static void     wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
176 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
177                     int, int);
178 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
181                             const uint8_t mac[IEEE80211_ADDR_LEN]);
182 static int      wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
183 static void     wpi_mem_lock(struct wpi_softc *);
184 static void     wpi_mem_unlock(struct wpi_softc *);
185 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
186 static void     wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
187 static void     wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
188                     const uint32_t *, int);
189 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
190 static int      wpi_alloc_fwmem(struct wpi_softc *);
191 static void     wpi_free_fwmem(struct wpi_softc *);
192 static int      wpi_load_firmware(struct wpi_softc *);
193 static void     wpi_unload_firmware(struct wpi_softc *);
194 static int      wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
195 static void     wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
196                     struct wpi_rx_data *);
197 static void     wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
198 static void     wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
199 static void     wpi_notif_intr(struct wpi_softc *);
200 static void     wpi_intr(void *);
201 static uint8_t  wpi_plcp_signal(int);
202 static void     wpi_watchdog_callout(void *);
203 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
204                     struct ieee80211_node *, int);
205 static void     wpi_start(struct ifnet *);
206 static void     wpi_start_locked(struct ifnet *);
207 static int      wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
208                     const struct ieee80211_bpf_params *);
209 static void     wpi_scan_start(struct ieee80211com *);
210 static void     wpi_scan_end(struct ieee80211com *);
211 static void     wpi_set_channel(struct ieee80211com *);
212 static void     wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
213 static void     wpi_scan_mindwell(struct ieee80211_scan_state *);
214 static int      wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
215 static void     wpi_read_eeprom(struct wpi_softc *,
216                     uint8_t macaddr[IEEE80211_ADDR_LEN]);
217 static void     wpi_read_eeprom_channels(struct wpi_softc *, int);
218 static void     wpi_read_eeprom_group(struct wpi_softc *, int);
219 static int      wpi_cmd(struct wpi_softc *, int, const void *, int, int);
220 static int      wpi_wme_update(struct ieee80211com *);
221 static int      wpi_mrr_setup(struct wpi_softc *);
222 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
223 static void     wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
224 #if 0
225 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
226 #endif
227 static int      wpi_auth(struct wpi_softc *, struct ieee80211vap *);
228 static int      wpi_run(struct wpi_softc *, struct ieee80211vap *);
229 static int      wpi_scan(struct wpi_softc *);
230 static int      wpi_config(struct wpi_softc *);
231 static void     wpi_stop_master(struct wpi_softc *);
232 static int      wpi_power_up(struct wpi_softc *);
233 static int      wpi_reset(struct wpi_softc *);
234 static void     wpi_hwreset_task(void *, int);
235 static void     wpi_rfreset_task(void *, int);
236 static void     wpi_hw_config(struct wpi_softc *);
237 static void     wpi_init(void *);
238 static void     wpi_init_locked(struct wpi_softc *, int);
239 static void     wpi_stop(struct wpi_softc *);
240 static void     wpi_stop_locked(struct wpi_softc *);
241
242 static void     wpi_newassoc(struct ieee80211_node *, int);
243 static int      wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
244                     int);
245 static void     wpi_calib_timeout_callout(void *);
246 static void     wpi_power_calibration(struct wpi_softc *, int);
247 static int      wpi_get_power_index(struct wpi_softc *,
248                     struct wpi_power_group *, struct ieee80211_channel *, int);
249 #ifdef WPI_DEBUG
250 static const char *wpi_cmd_str(int);
251 #endif
252 static int wpi_probe(device_t);
253 static int wpi_attach(device_t);
254 static int wpi_detach(device_t);
255 static int wpi_shutdown(device_t);
256 static int wpi_suspend(device_t);
257 static int wpi_resume(device_t);
258
259
260 static device_method_t wpi_methods[] = {
261         /* Device interface */
262         DEVMETHOD(device_probe,         wpi_probe),
263         DEVMETHOD(device_attach,        wpi_attach),
264         DEVMETHOD(device_detach,        wpi_detach),
265         DEVMETHOD(device_shutdown,      wpi_shutdown),
266         DEVMETHOD(device_suspend,       wpi_suspend),
267         DEVMETHOD(device_resume,        wpi_resume),
268
269         { 0, 0 }
270 };
271
272 static driver_t wpi_driver = {
273         "wpi",
274         wpi_methods,
275         sizeof (struct wpi_softc)
276 };
277
278 static devclass_t wpi_devclass;
279
280 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
281
282 static const uint8_t wpi_ridx_to_plcp[] = {
283         /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
284         /* R1-R4 (ral/ural is R4-R1) */
285         0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
286         /* CCK: device-dependent */
287         10, 20, 55, 110
288 };
289 static const uint8_t wpi_ridx_to_rate[] = {
290         12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
291         2, 4, 11, 22 /*CCK */
292 };
293
294
295 static int
296 wpi_probe(device_t dev)
297 {
298         const struct wpi_ident *ident;
299
300         wlan_serialize_enter();
301         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
302                 if (pci_get_vendor(dev) == ident->vendor &&
303                     pci_get_device(dev) == ident->device) {
304                         device_set_desc(dev, ident->name);
305                         wlan_serialize_exit();
306                         return 0;
307                 }
308         }
309         wlan_serialize_exit();
310         return ENXIO;
311 }
312
313 /**
314  * Load the firmare image from disk to the allocated dma buffer.
315  * we also maintain the reference to the firmware pointer as there
316  * is times where we may need to reload the firmware but we are not
317  * in a context that can access the filesystem (ie taskq cause by restart)
318  *
319  * @return 0 on success, an errno on failure
320  */
321 static int
322 wpi_load_firmware(struct wpi_softc *sc)
323 {
324         const struct firmware *fp;
325         struct wpi_dma_info *dma = &sc->fw_dma;
326         const struct wpi_firmware_hdr *hdr;
327         const uint8_t *itext, *idata, *rtext, *rdata, *btext;
328         uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
329         int error;
330
331         DPRINTFN(WPI_DEBUG_FIRMWARE,
332             ("Attempting Loading Firmware from wpi_fw module\n"));
333
334         wlan_assert_serialized();
335         wlan_serialize_exit();
336         if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
337                 device_printf(sc->sc_dev,
338                     "could not load firmware image 'wpifw_fw'\n");
339                 error = ENOENT;
340                 wlan_serialize_enter();
341                 goto fail;
342         }
343         wlan_serialize_enter();
344
345         fp = sc->fw_fp;
346
347         /* Validate the firmware is minimum a particular version */
348         if (fp->version < WPI_FW_MINVERSION) {
349             device_printf(sc->sc_dev,
350                            "firmware version is too old. Need %d, got %d\n",
351                            WPI_FW_MINVERSION,
352                            fp->version);
353             error = ENXIO;
354             goto fail;
355         }
356
357         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
358                 device_printf(sc->sc_dev,
359                     "firmware file too short: %zu bytes\n", fp->datasize);
360                 error = ENXIO;
361                 goto fail;
362         }
363
364         hdr = (const struct wpi_firmware_hdr *)fp->data;
365
366         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
367            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
368
369         rtextsz = le32toh(hdr->rtextsz);
370         rdatasz = le32toh(hdr->rdatasz);
371         itextsz = le32toh(hdr->itextsz);
372         idatasz = le32toh(hdr->idatasz);
373         btextsz = le32toh(hdr->btextsz);
374
375         /* check that all firmware segments are present */
376         if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
377                 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
378                 device_printf(sc->sc_dev,
379                     "firmware file too short: %zu bytes\n", fp->datasize);
380                 error = ENXIO; /* XXX appropriate error code? */
381                 goto fail;
382         }
383
384         /* get pointers to firmware segments */
385         rtext = (const uint8_t *)(hdr + 1);
386         rdata = rtext + rtextsz;
387         itext = rdata + rdatasz;
388         idata = itext + itextsz;
389         btext = idata + idatasz;
390
391         DPRINTFN(WPI_DEBUG_FIRMWARE,
392             ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
393              "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
394              (le32toh(hdr->version) & 0xff000000) >> 24,
395              (le32toh(hdr->version) & 0x00ff0000) >> 16,
396              (le32toh(hdr->version) & 0x0000ffff),
397              rtextsz, rdatasz,
398              itextsz, idatasz, btextsz));
399
400         DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
401         DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
402         DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
403         DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
404         DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
405
406         /* sanity checks */
407         if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
408             rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
409             itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
410             idatasz > WPI_FW_INIT_DATA_MAXSZ ||
411             btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
412             (btextsz & 3) != 0) {
413                 device_printf(sc->sc_dev, "firmware invalid\n");
414                 error = EINVAL;
415                 goto fail;
416         }
417
418         /* copy initialization images into pre-allocated DMA-safe memory */
419         memcpy(dma->vaddr, idata, idatasz);
420         memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
421
422         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
423
424         /* tell adapter where to find initialization images */
425         wpi_mem_lock(sc);
426         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
427         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
428         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
429             dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
430         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
431         wpi_mem_unlock(sc);
432
433         /* load firmware boot code */
434         if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
435             device_printf(sc->sc_dev, "Failed to load microcode\n");
436             goto fail;
437         }
438
439         /* now press "execute" */
440         WPI_WRITE(sc, WPI_RESET, 0);
441
442         /* wait at most one second for the first alive notification */
443         if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
444                 device_printf(sc->sc_dev,
445                     "timeout waiting for adapter to initialize\n");
446                 goto fail;
447         }
448
449         /* copy runtime images into pre-allocated DMA-sage memory */
450         memcpy(dma->vaddr, rdata, rdatasz);
451         memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
452         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
453
454         /* tell adapter where to find runtime images */
455         wpi_mem_lock(sc);
456         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
457         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
458         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
459             dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
460         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
461         wpi_mem_unlock(sc);
462
463         /* wait at most one second for the first alive notification */
464         if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
465                 device_printf(sc->sc_dev,
466                     "timeout waiting for adapter to initialize2\n");
467                 goto fail;
468         }
469
470         DPRINTFN(WPI_DEBUG_FIRMWARE,
471             ("Firmware loaded to driver successfully\n"));
472         return error;
473 fail:
474         wpi_unload_firmware(sc);
475         return error;
476 }
477
478 /**
479  * Free the referenced firmware image
480  */
481 static void
482 wpi_unload_firmware(struct wpi_softc *sc)
483 {
484         struct ifnet *ifp;
485         ifp = sc->sc_ifp;
486
487         if (sc->fw_fp) {
488                 wlan_assert_serialized();
489                 wlan_serialize_exit();
490                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
491                 wlan_serialize_enter();
492                 sc->fw_fp = NULL;
493         }
494 }
495
496 static int
497 wpi_attach(device_t dev)
498 {
499         struct wpi_softc *sc = device_get_softc(dev);
500         struct ifnet *ifp;
501         struct ieee80211com *ic;
502         int ac, error, supportsa = 1;
503         uint32_t tmp;
504         const struct wpi_ident *ident;
505         uint8_t macaddr[IEEE80211_ADDR_LEN];
506
507         wlan_serialize_enter();
508
509         sc->sc_dev = dev;
510
511         if (bootverbose || WPI_DEBUG_SET)
512             device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
513
514         /*
515          * Some card's only support 802.11b/g not a, check to see if
516          * this is one such card. A 0x0 in the subdevice table indicates
517          * the entire subdevice range is to be ignored.
518          */
519         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
520                 if (ident->subdevice &&
521                     pci_get_subdevice(dev) == ident->subdevice) {
522                     supportsa = 0;
523                     break;
524                 }
525         }
526
527         /* Create the tasks that can be queued */
528         TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset_task, sc);
529         TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset_task, sc);
530
531         callout_init(&sc->calib_to_callout);
532         callout_init(&sc->watchdog_to_callout);
533
534         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
535                 device_printf(dev, "chip is in D%d power mode "
536                     "-- setting to D0\n", pci_get_powerstate(dev));
537                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
538         }
539
540         /* disable the retry timeout register */
541         pci_write_config(dev, 0x41, 0, 1);
542
543         /* enable bus-mastering */
544         pci_enable_busmaster(dev);
545
546         sc->mem_rid = PCIR_BAR(0);
547         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
548             RF_ACTIVE);
549         if (sc->mem == NULL) {
550                 device_printf(dev, "could not allocate memory resource\n");
551                 error = ENOMEM;
552                 goto fail;
553         }
554
555         sc->sc_st = rman_get_bustag(sc->mem);
556         sc->sc_sh = rman_get_bushandle(sc->mem);
557
558         sc->irq_rid = 0;
559         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
560             RF_ACTIVE | RF_SHAREABLE);
561         if (sc->irq == NULL) {
562                 device_printf(dev, "could not allocate interrupt resource\n");
563                 error = ENOMEM;
564                 goto fail;
565         }
566
567         /*
568          * Allocate DMA memory for firmware transfers.
569          */
570         if ((error = wpi_alloc_fwmem(sc)) != 0) {
571                 kprintf(": could not allocate firmware memory\n");
572                 error = ENOMEM;
573                 goto fail;
574         }
575
576         /*
577          * Put adapter into a known state.
578          */
579         if ((error = wpi_reset(sc)) != 0) {
580                 device_printf(dev, "could not reset adapter\n");
581                 goto fail;
582         }
583
584         wpi_mem_lock(sc);
585         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
586         if (bootverbose || WPI_DEBUG_SET)
587             device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
588
589         wpi_mem_unlock(sc);
590
591         /* Allocate shared page */
592         if ((error = wpi_alloc_shared(sc)) != 0) {
593                 device_printf(dev, "could not allocate shared page\n");
594                 goto fail;
595         }
596
597         /* tx data queues  - 4 for QoS purposes */
598         for (ac = 0; ac < WME_NUM_AC; ac++) {
599                 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
600                 if (error != 0) {
601                     device_printf(dev, "could not allocate Tx ring %d\n",ac);
602                     goto fail;
603                 }
604         }
605
606         /* command queue to talk to the card's firmware */
607         error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
608         if (error != 0) {
609                 device_printf(dev, "could not allocate command ring\n");
610                 goto fail;
611         }
612
613         /* receive data queue */
614         error = wpi_alloc_rx_ring(sc, &sc->rxq);
615         if (error != 0) {
616                 device_printf(dev, "could not allocate Rx ring\n");
617                 goto fail;
618         }
619
620         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
621         if (ifp == NULL) {
622                 device_printf(dev, "can not if_alloc()\n");
623                 error = ENOMEM;
624                 goto fail;
625         }
626         ic = ifp->if_l2com;
627
628         ic->ic_ifp = ifp;
629         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
630         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
631
632         /* set device capabilities */
633         ic->ic_caps =
634                   IEEE80211_C_STA               /* station mode supported */
635                 | IEEE80211_C_MONITOR           /* monitor mode supported */
636                 | IEEE80211_C_TXPMGT            /* tx power management */
637                 | IEEE80211_C_SHSLOT            /* short slot time supported */
638                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
639                 | IEEE80211_C_WPA               /* 802.11i */
640 /* XXX looks like WME is partly supported? */
641 #if 0
642                 | IEEE80211_C_IBSS              /* IBSS mode support */
643                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
644                 | IEEE80211_C_WME               /* 802.11e */
645                 | IEEE80211_C_HOSTAP            /* Host access point mode */
646 #endif
647                 ;
648
649         /*
650          * Read in the eeprom and also setup the channels for
651          * net80211. We don't set the rates as net80211 does this for us
652          */
653         wpi_read_eeprom(sc, macaddr);
654
655         if (bootverbose || WPI_DEBUG_SET) {
656             device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
657             device_printf(sc->sc_dev, "Hardware Type: %c\n",
658                           sc->type > 1 ? 'B': '?');
659             device_printf(sc->sc_dev, "Hardware Revision: %c\n",
660                           ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
661             device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
662                           supportsa ? "does" : "does not");
663
664             /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
665                what sc->rev really represents - benjsc 20070615 */
666         }
667
668         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
669         ifp->if_softc = sc;
670         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
671         ifp->if_init = wpi_init;
672         ifp->if_ioctl = wpi_ioctl;
673         ifp->if_start = wpi_start;
674         ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
675         ifq_set_ready(&ifp->if_snd);
676
677         ieee80211_ifattach(ic, macaddr);
678         /* override default methods */
679         ic->ic_node_alloc = wpi_node_alloc;
680         ic->ic_newassoc = wpi_newassoc;
681         ic->ic_raw_xmit = wpi_raw_xmit;
682         ic->ic_wme.wme_update = wpi_wme_update;
683         ic->ic_scan_start = wpi_scan_start;
684         ic->ic_scan_end = wpi_scan_end;
685         ic->ic_set_channel = wpi_set_channel;
686         ic->ic_scan_curchan = wpi_scan_curchan;
687         ic->ic_scan_mindwell = wpi_scan_mindwell;
688
689         ic->ic_vap_create = wpi_vap_create;
690         ic->ic_vap_delete = wpi_vap_delete;
691
692         ieee80211_radiotap_attach(ic,
693             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
694                 WPI_TX_RADIOTAP_PRESENT,
695             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
696                 WPI_RX_RADIOTAP_PRESENT);
697
698         /*
699          * Hook our interrupt after all initialization is complete.
700          */
701         error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
702             wpi_intr, sc, &sc->sc_ih, &wlan_global_serializer);
703         if (error != 0) {
704                 device_printf(dev, "could not set up interrupt\n");
705                 goto fail;
706         }
707
708         if (bootverbose)
709                 ieee80211_announce(ic);
710 #ifdef XXX_DEBUG
711         ieee80211_announce_channels(ic);
712 #endif
713         wlan_serialize_exit();
714         return 0;
715
716 fail:
717         wlan_serialize_exit();
718         wpi_detach(dev);
719         return ENXIO;
720 }
721
722 static int
723 wpi_detach(device_t dev)
724 {
725         struct wpi_softc *sc = device_get_softc(dev);
726         struct ifnet *ifp = sc->sc_ifp;
727         struct ieee80211com *ic;
728         int ac;
729
730         wlan_serialize_enter();
731         if (ifp != NULL) {
732                 ic = ifp->if_l2com;
733
734                 ieee80211_draintask(ic, &sc->sc_restarttask);
735                 ieee80211_draintask(ic, &sc->sc_radiotask);
736                 wpi_stop(sc);
737                 callout_stop(&sc->watchdog_to_callout);
738                 callout_stop(&sc->calib_to_callout);
739                 ieee80211_ifdetach(ic);
740         }
741
742         if (sc->txq[0].data_dmat) {
743                 for (ac = 0; ac < WME_NUM_AC; ac++)
744                         wpi_free_tx_ring(sc, &sc->txq[ac]);
745
746                 wpi_free_tx_ring(sc, &sc->cmdq);
747                 wpi_free_rx_ring(sc, &sc->rxq);
748                 wpi_free_shared(sc);
749         }
750
751         if (sc->fw_fp != NULL) {
752                 wpi_unload_firmware(sc);
753         }
754
755         if (sc->fw_dma.tag)
756                 wpi_free_fwmem(sc);
757
758         if (sc->irq != NULL) {
759                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
760                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
761         }
762
763         if (sc->mem != NULL)
764                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
765
766         if (ifp != NULL)
767                 if_free(ifp);
768
769         wlan_serialize_exit();
770         return 0;
771 }
772
773 static struct ieee80211vap *
774 wpi_vap_create(struct ieee80211com *ic,
775         const char name[IFNAMSIZ], int unit, int opmode, int flags,
776         const uint8_t bssid[IEEE80211_ADDR_LEN],
777         const uint8_t mac[IEEE80211_ADDR_LEN])
778 {
779         struct wpi_vap *wvp;
780         struct ieee80211vap *vap;
781
782         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
783                 return NULL;
784         wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap),
785             M_80211_VAP, M_INTWAIT | M_ZERO);
786         if (wvp == NULL)
787                 return NULL;
788         vap = &wvp->vap;
789         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
790         /* override with driver methods */
791         wvp->newstate = vap->iv_newstate;
792         vap->iv_newstate = wpi_newstate;
793
794         ieee80211_ratectl_init(vap);
795
796         /* complete setup */
797         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
798         ic->ic_opmode = opmode;
799         return vap;
800 }
801
802 static void
803 wpi_vap_delete(struct ieee80211vap *vap)
804 {
805         struct wpi_vap *wvp = WPI_VAP(vap);
806
807         ieee80211_ratectl_deinit(vap);
808         ieee80211_vap_detach(vap);
809         kfree(wvp, M_80211_VAP);
810 }
811
812 static void
813 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
814 {
815         if (error != 0)
816                 return;
817
818         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
819
820         *(bus_addr_t *)arg = segs[0].ds_addr;
821 }
822
823 /*
824  * Allocates a contiguous block of dma memory of the requested size and
825  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
826  * allocations greater than 4096 may fail. Hence if the requested alignment is
827  * greater we allocate 'alignment' size extra memory and shift the vaddr and
828  * paddr after the dma load. This bypasses the problem at the cost of a little
829  * more memory.
830  */
831 static int
832 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
833     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
834 {
835         int error;
836         bus_size_t align;
837         bus_size_t reqsize;
838
839         DPRINTFN(WPI_DEBUG_DMA,
840             ("Size: %zd - alignment %zd\n", size, alignment));
841
842         dma->size = size;
843         dma->tag = NULL;
844
845         if (alignment > 4096) {
846                 align = PAGE_SIZE;
847                 reqsize = size + alignment;
848         } else {
849                 align = alignment;
850                 reqsize = size;
851         }
852         error = bus_dma_tag_create(dma->tag, align,
853             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
854             NULL, NULL, reqsize,
855             1, reqsize, flags,
856             &dma->tag);
857         if (error != 0) {
858                 device_printf(sc->sc_dev,
859                     "could not create shared page DMA tag\n");
860                 goto fail;
861         }
862         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
863             flags | BUS_DMA_ZERO, &dma->map);
864         if (error != 0) {
865                 device_printf(sc->sc_dev,
866                     "could not allocate shared page DMA memory\n");
867                 goto fail;
868         }
869
870         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
871             reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
872
873         /* Save the original pointers so we can free all the memory */
874         dma->paddr = dma->paddr_start;
875         dma->vaddr = dma->vaddr_start;
876
877         /*
878          * Check the alignment and increment by 4096 until we get the
879          * requested alignment. Fail if can't obtain the alignment
880          * we requested.
881          */
882         if ((dma->paddr & (alignment -1 )) != 0) {
883                 int i;
884
885                 for (i = 0; i < alignment / 4096; i++) {
886                         if ((dma->paddr & (alignment - 1 )) == 0)
887                                 break;
888                         dma->paddr += 4096;
889                         dma->vaddr += 4096;
890                 }
891                 if (i == alignment / 4096) {
892                         device_printf(sc->sc_dev,
893                             "alignment requirement was not satisfied\n");
894                         goto fail;
895                 }
896         }
897
898         if (error != 0) {
899                 device_printf(sc->sc_dev,
900                     "could not load shared page DMA map\n");
901                 goto fail;
902         }
903
904         if (kvap != NULL)
905                 *kvap = dma->vaddr;
906
907         return 0;
908
909 fail:
910         wpi_dma_contig_free(dma);
911         return error;
912 }
913
914 static void
915 wpi_dma_contig_free(struct wpi_dma_info *dma)
916 {
917         if (dma->tag) {
918                 if (dma->map != NULL) {
919                         if (dma->paddr_start != 0) {
920                                 bus_dmamap_sync(dma->tag, dma->map,
921                                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
922                                 bus_dmamap_unload(dma->tag, dma->map);
923                         }
924                         bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
925                 }
926                 bus_dma_tag_destroy(dma->tag);
927         }
928 }
929
930 /*
931  * Allocate a shared page between host and NIC.
932  */
933 static int
934 wpi_alloc_shared(struct wpi_softc *sc)
935 {
936         int error;
937
938         error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
939             (void **)&sc->shared, sizeof (struct wpi_shared),
940             PAGE_SIZE,
941             BUS_DMA_NOWAIT);
942
943         if (error != 0) {
944                 device_printf(sc->sc_dev,
945                     "could not allocate shared area DMA memory\n");
946         }
947
948         return error;
949 }
950
951 static void
952 wpi_free_shared(struct wpi_softc *sc)
953 {
954         wpi_dma_contig_free(&sc->shared_dma);
955 }
956
957 static int
958 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
959 {
960
961         int i, error;
962
963         ring->cur = 0;
964
965         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
966             (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
967             WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
968
969         if (error != 0) {
970                 device_printf(sc->sc_dev,
971                     "%s: could not allocate rx ring DMA memory, error %d\n",
972                     __func__, error);
973                 goto fail;
974         }
975
976         error = bus_dma_tag_create(ring->data_dmat, 1, 0,
977             BUS_SPACE_MAXADDR_32BIT,
978             BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
979             MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat);
980         if (error != 0) {
981                 device_printf(sc->sc_dev,
982                     "%s: bus_dma_tag_create_failed, error %d\n",
983                     __func__, error);
984                 goto fail;
985         }
986
987         /*
988          * Setup Rx buffers.
989          */
990         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
991                 struct wpi_rx_data *data = &ring->data[i];
992                 struct mbuf *m;
993                 bus_addr_t paddr;
994
995                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
996                 if (error != 0) {
997                         device_printf(sc->sc_dev,
998                             "%s: bus_dmamap_create failed, error %d\n",
999                             __func__, error);
1000                         goto fail;
1001                 }
1002                 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1003                 if (m == NULL) {
1004                         device_printf(sc->sc_dev,
1005                            "%s: could not allocate rx mbuf\n", __func__);
1006                         error = ENOMEM;
1007                         goto fail;
1008                 }
1009                 /* map page */
1010                 error = bus_dmamap_load(ring->data_dmat, data->map,
1011                     mtod(m, caddr_t), MCLBYTES,
1012                     wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1013                 if (error != 0 && error != EFBIG) {
1014                         device_printf(sc->sc_dev,
1015                             "%s: bus_dmamap_load failed, error %d\n",
1016                             __func__, error);
1017                         m_freem(m);
1018                         error = ENOMEM; /* XXX unique code */
1019                         goto fail;
1020                 }
1021                 bus_dmamap_sync(ring->data_dmat, data->map,
1022                     BUS_DMASYNC_PREWRITE);
1023
1024                 data->m = m;
1025                 ring->desc[i] = htole32(paddr);
1026         }
1027         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1028             BUS_DMASYNC_PREWRITE);
1029         return 0;
1030 fail:
1031         wpi_free_rx_ring(sc, ring);
1032         return error;
1033 }
1034
1035 static void
1036 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1037 {
1038         int ntries;
1039
1040         wpi_mem_lock(sc);
1041
1042         WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1043
1044         for (ntries = 0; ntries < 100; ntries++) {
1045                 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1046                         break;
1047                 DELAY(10);
1048         }
1049
1050         wpi_mem_unlock(sc);
1051
1052 #ifdef WPI_DEBUG
1053         if (ntries == 100 && wpi_debug > 0)
1054                 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1055 #endif
1056
1057         ring->cur = 0;
1058 }
1059
1060 static void
1061 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1062 {
1063         int i;
1064
1065         wpi_dma_contig_free(&ring->desc_dma);
1066
1067         for (i = 0; i < WPI_RX_RING_COUNT; i++)
1068                 if (ring->data[i].m != NULL)
1069                         m_freem(ring->data[i].m);
1070 }
1071
1072 static int
1073 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1074         int qid)
1075 {
1076         struct wpi_tx_data *data;
1077         int i, error;
1078
1079         ring->qid = qid;
1080         ring->count = count;
1081         ring->queued = 0;
1082         ring->cur = 0;
1083         ring->data = NULL;
1084
1085         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1086                 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1087                 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1088
1089         if (error != 0) {
1090             device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1091             goto fail;
1092         }
1093
1094         /* update shared page with ring's base address */
1095         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1096
1097         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1098                 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1099                 BUS_DMA_NOWAIT);
1100
1101         if (error != 0) {
1102                 device_printf(sc->sc_dev,
1103                     "could not allocate tx command DMA memory\n");
1104                 goto fail;
1105         }
1106
1107         ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1108             M_INTWAIT | M_ZERO);
1109         if (ring->data == NULL) {
1110                 device_printf(sc->sc_dev,
1111                     "could not allocate tx data slots\n");
1112                 goto fail;
1113         }
1114
1115         error = bus_dma_tag_create(ring->data_dmat, 1, 0,
1116             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1117             WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT,
1118             &ring->data_dmat);
1119         if (error != 0) {
1120                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
1121                 goto fail;
1122         }
1123
1124         for (i = 0; i < count; i++) {
1125                 data = &ring->data[i];
1126
1127                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1128                 if (error != 0) {
1129                         device_printf(sc->sc_dev,
1130                             "could not create tx buf DMA map\n");
1131                         goto fail;
1132                 }
1133                 bus_dmamap_sync(ring->data_dmat, data->map,
1134                     BUS_DMASYNC_PREWRITE);
1135         }
1136
1137         return 0;
1138
1139 fail:
1140         wpi_free_tx_ring(sc, ring);
1141         return error;
1142 }
1143
1144 static void
1145 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1146 {
1147         struct wpi_tx_data *data;
1148         int i, ntries;
1149
1150         wpi_mem_lock(sc);
1151
1152         WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1153         for (ntries = 0; ntries < 100; ntries++) {
1154                 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1155                         break;
1156                 DELAY(10);
1157         }
1158 #ifdef WPI_DEBUG
1159         if (ntries == 100 && wpi_debug > 0)
1160                 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1161                     ring->qid);
1162 #endif
1163         wpi_mem_unlock(sc);
1164
1165         for (i = 0; i < ring->count; i++) {
1166                 data = &ring->data[i];
1167
1168                 if (data->m != NULL) {
1169                         bus_dmamap_unload(ring->data_dmat, data->map);
1170                         m_freem(data->m);
1171                         data->m = NULL;
1172                 }
1173         }
1174
1175         ring->queued = 0;
1176         ring->cur = 0;
1177 }
1178
1179 static void
1180 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1181 {
1182         struct wpi_tx_data *data;
1183         int i;
1184
1185         wpi_dma_contig_free(&ring->desc_dma);
1186         wpi_dma_contig_free(&ring->cmd_dma);
1187
1188         if (ring->data != NULL) {
1189                 for (i = 0; i < ring->count; i++) {
1190                         data = &ring->data[i];
1191
1192                         if (data->m != NULL) {
1193                                 bus_dmamap_sync(ring->data_dmat, data->map,
1194                                     BUS_DMASYNC_POSTWRITE);
1195                                 bus_dmamap_unload(ring->data_dmat, data->map);
1196                                 m_freem(data->m);
1197                                 data->m = NULL;
1198                         }
1199                 }
1200                 kfree(ring->data, M_DEVBUF);
1201         }
1202
1203         if (ring->data_dmat != NULL)
1204                 bus_dma_tag_destroy(ring->data_dmat);
1205 }
1206
1207 static int
1208 wpi_shutdown(device_t dev)
1209 {
1210         struct wpi_softc *sc = device_get_softc(dev);
1211
1212         wlan_serialize_enter();
1213         wpi_stop_locked(sc);
1214         wpi_unload_firmware(sc);
1215         wlan_serialize_exit();
1216
1217         return 0;
1218 }
1219
1220 static int
1221 wpi_suspend(device_t dev)
1222 {
1223         struct wpi_softc *sc = device_get_softc(dev);
1224
1225         wlan_serialize_enter();
1226         wpi_stop(sc);
1227         wlan_serialize_exit();
1228         return 0;
1229 }
1230
1231 static int
1232 wpi_resume(device_t dev)
1233 {
1234         struct wpi_softc *sc = device_get_softc(dev);
1235         struct ifnet *ifp = sc->sc_ifp;
1236
1237         wlan_serialize_enter();
1238         pci_write_config(dev, 0x41, 0, 1);
1239
1240         if (ifp->if_flags & IFF_UP) {
1241                 wpi_init(ifp->if_softc);
1242                 if (ifp->if_flags & IFF_RUNNING)
1243                         wpi_start(ifp);
1244         }
1245         wlan_serialize_exit();
1246         return 0;
1247 }
1248
1249 /* ARGSUSED */
1250 static struct ieee80211_node *
1251 wpi_node_alloc(struct ieee80211vap *vap __unused,
1252         const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1253 {
1254         struct wpi_node *wn;
1255
1256         wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_INTWAIT | M_ZERO);
1257
1258         return &wn->ni;
1259 }
1260
1261 /**
1262  * Called by net80211 when ever there is a change to 80211 state machine
1263  */
1264 static int
1265 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1266 {
1267         struct wpi_vap *wvp = WPI_VAP(vap);
1268         struct ieee80211com *ic = vap->iv_ic;
1269         struct ifnet *ifp = ic->ic_ifp;
1270         struct wpi_softc *sc = ifp->if_softc;
1271         int error;
1272
1273         DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1274                 ieee80211_state_name[vap->iv_state],
1275                 ieee80211_state_name[nstate], sc->flags));
1276
1277         if (nstate == IEEE80211_S_AUTH) {
1278                 /* The node must be registered in the firmware before auth */
1279                 error = wpi_auth(sc, vap);
1280                 if (error != 0) {
1281                         device_printf(sc->sc_dev,
1282                             "%s: could not move to auth state, error %d\n",
1283                             __func__, error);
1284                 }
1285         }
1286         if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1287                 error = wpi_run(sc, vap);
1288                 if (error != 0) {
1289                         device_printf(sc->sc_dev,
1290                             "%s: could not move to run state, error %d\n",
1291                             __func__, error);
1292                 }
1293         }
1294         if (nstate == IEEE80211_S_RUN) {
1295                 /* RUN -> RUN transition; just restart the timers */
1296                 wpi_calib_timeout_callout(sc);
1297                 /* XXX split out rate control timer */
1298         }
1299         return wvp->newstate(vap, nstate, arg);
1300 }
1301
1302 /*
1303  * Grab exclusive access to NIC memory.
1304  */
1305 static void
1306 wpi_mem_lock(struct wpi_softc *sc)
1307 {
1308         int ntries;
1309         uint32_t tmp;
1310
1311         tmp = WPI_READ(sc, WPI_GPIO_CTL);
1312         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1313
1314         /* spin until we actually get the lock */
1315         for (ntries = 0; ntries < 100; ntries++) {
1316                 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1317                         (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1318                         break;
1319                 DELAY(10);
1320         }
1321         if (ntries == 100)
1322                 device_printf(sc->sc_dev, "could not lock memory\n");
1323 }
1324
1325 /*
1326  * Release lock on NIC memory.
1327  */
1328 static void
1329 wpi_mem_unlock(struct wpi_softc *sc)
1330 {
1331         uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1332         WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1333 }
1334
1335 static uint32_t
1336 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1337 {
1338         WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1339         return WPI_READ(sc, WPI_READ_MEM_DATA);
1340 }
1341
1342 static void
1343 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1344 {
1345         WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1346         WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1347 }
1348
1349 static void
1350 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1351     const uint32_t *data, int wlen)
1352 {
1353         for (; wlen > 0; wlen--, data++, addr+=4)
1354                 wpi_mem_write(sc, addr, *data);
1355 }
1356
1357 /*
1358  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1359  * using the traditional bit-bang method. Data is read up until len bytes have
1360  * been obtained.
1361  */
1362 static uint16_t
1363 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1364 {
1365         int ntries;
1366         uint32_t val;
1367         uint8_t *out = data;
1368
1369         wpi_mem_lock(sc);
1370
1371         for (; len > 0; len -= 2, addr++) {
1372                 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1373
1374                 for (ntries = 0; ntries < 10; ntries++) {
1375                         if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1376                                 break;
1377                         DELAY(5);
1378                 }
1379
1380                 if (ntries == 10) {
1381                         device_printf(sc->sc_dev, "could not read EEPROM\n");
1382                         return ETIMEDOUT;
1383                 }
1384
1385                 *out++= val >> 16;
1386                 if (len > 1)
1387                         *out ++= val >> 24;
1388         }
1389
1390         wpi_mem_unlock(sc);
1391
1392         return 0;
1393 }
1394
1395 /*
1396  * The firmware text and data segments are transferred to the NIC using DMA.
1397  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1398  * where to find it.  Once the NIC has copied the firmware into its internal
1399  * memory, we can free our local copy in the driver.
1400  */
1401 static int
1402 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1403 {
1404         int error, ntries;
1405
1406         DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1407
1408         size /= sizeof(uint32_t);
1409
1410         wpi_mem_lock(sc);
1411
1412         wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1413             (const uint32_t *)fw, size);
1414
1415         wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1416         wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1417         wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1418
1419         /* run microcode */
1420         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1421
1422         /* wait while the adapter is busy copying the firmware */
1423         for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1424                 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1425                 DPRINTFN(WPI_DEBUG_HW,
1426                     ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1427                      WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1428                 if (status & WPI_TX_IDLE(6)) {
1429                         DPRINTFN(WPI_DEBUG_HW,
1430                             ("Status Match! - ntries = %d\n", ntries));
1431                         break;
1432                 }
1433                 DELAY(10);
1434         }
1435         if (ntries == 1000) {
1436                 device_printf(sc->sc_dev, "timeout transferring firmware\n");
1437                 error = ETIMEDOUT;
1438         }
1439
1440         /* start the microcode executing */
1441         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1442
1443         wpi_mem_unlock(sc);
1444
1445         return (error);
1446 }
1447
1448 static void
1449 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1450         struct wpi_rx_data *data)
1451 {
1452         struct ifnet *ifp = sc->sc_ifp;
1453         struct ieee80211com *ic = ifp->if_l2com;
1454         struct wpi_rx_ring *ring = &sc->rxq;
1455         struct wpi_rx_stat *stat;
1456         struct wpi_rx_head *head;
1457         struct wpi_rx_tail *tail;
1458         struct ieee80211_node *ni;
1459         struct mbuf *m, *mnew;
1460         bus_addr_t paddr;
1461         int error;
1462
1463         stat = (struct wpi_rx_stat *)(desc + 1);
1464
1465         if (stat->len > WPI_STAT_MAXLEN) {
1466                 device_printf(sc->sc_dev, "invalid rx statistic header\n");
1467                 ifp->if_ierrors++;
1468                 return;
1469         }
1470
1471         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1472         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1473
1474         DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1475             "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1476             le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1477             (uintmax_t)le64toh(tail->tstamp)));
1478
1479         /* discard Rx frames with bad CRC early */
1480         if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1481                 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1482                     le32toh(tail->flags)));
1483                 ifp->if_ierrors++;
1484                 return;
1485         }
1486         if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1487                 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1488                     le16toh(head->len)));
1489                 ifp->if_ierrors++;
1490                 return;
1491         }
1492
1493         /* XXX don't need mbuf, just dma buffer */
1494         mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1495         if (mnew == NULL) {
1496                 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1497                     __func__));
1498                 ifp->if_ierrors++;
1499                 return;
1500         }
1501         error = bus_dmamap_load(ring->data_dmat, data->map,
1502             mtod(mnew, caddr_t), MCLBYTES,
1503             wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1504         if (error != 0 && error != EFBIG) {
1505                 device_printf(sc->sc_dev,
1506                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1507                 m_freem(mnew);
1508                 ifp->if_ierrors++;
1509                 return;
1510         }
1511         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1512
1513         /* finalize mbuf and swap in new one */
1514         m = data->m;
1515         m->m_pkthdr.rcvif = ifp;
1516         m->m_data = (caddr_t)(head + 1);
1517         m->m_pkthdr.len = m->m_len = le16toh(head->len);
1518
1519         data->m = mnew;
1520         /* update Rx descriptor */
1521         ring->desc[ring->cur] = htole32(paddr);
1522
1523         if (ieee80211_radiotap_active(ic)) {
1524                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1525
1526                 tap->wr_flags = 0;
1527                 tap->wr_chan_freq =
1528                         htole16(ic->ic_channels[head->chan].ic_freq);
1529                 tap->wr_chan_flags =
1530                         htole16(ic->ic_channels[head->chan].ic_flags);
1531                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1532                 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1533                 tap->wr_tsft = tail->tstamp;
1534                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1535                 switch (head->rate) {
1536                 /* CCK rates */
1537                 case  10: tap->wr_rate =   2; break;
1538                 case  20: tap->wr_rate =   4; break;
1539                 case  55: tap->wr_rate =  11; break;
1540                 case 110: tap->wr_rate =  22; break;
1541                 /* OFDM rates */
1542                 case 0xd: tap->wr_rate =  12; break;
1543                 case 0xf: tap->wr_rate =  18; break;
1544                 case 0x5: tap->wr_rate =  24; break;
1545                 case 0x7: tap->wr_rate =  36; break;
1546                 case 0x9: tap->wr_rate =  48; break;
1547                 case 0xb: tap->wr_rate =  72; break;
1548                 case 0x1: tap->wr_rate =  96; break;
1549                 case 0x3: tap->wr_rate = 108; break;
1550                 /* unknown rate: should not happen */
1551                 default:  tap->wr_rate =   0;
1552                 }
1553                 if (le16toh(head->flags) & 0x4)
1554                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1555         }
1556
1557         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1558         if (ni != NULL) {
1559                 (void) ieee80211_input(ni, m, stat->rssi, 0);
1560                 ieee80211_free_node(ni);
1561         } else
1562                 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
1563 }
1564
1565 static void
1566 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1567 {
1568         struct ifnet *ifp = sc->sc_ifp;
1569         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1570         struct wpi_tx_data *txdata = &ring->data[desc->idx];
1571         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1572         struct ieee80211_node *ni = txdata->ni;
1573         struct ieee80211vap *vap = ni->ni_vap;
1574         int retrycnt = 0;
1575
1576         DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1577             "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1578             stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1579             le32toh(stat->status)));
1580
1581         /*
1582          * Update rate control statistics for the node.
1583          * XXX we should not count mgmt frames since they're always sent at
1584          * the lowest available bit-rate.
1585          * XXX frames w/o ACK shouldn't be used either
1586          */
1587         if (stat->ntries > 0) {
1588                 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1589                 retrycnt = 1;
1590         }
1591         ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1592                 &retrycnt, NULL);
1593
1594         /* XXX oerrors should only count errors !maxtries */
1595         if ((le32toh(stat->status) & 0xff) != 1)
1596                 ifp->if_oerrors++;
1597         else
1598                 ifp->if_opackets++;
1599
1600         bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1601         bus_dmamap_unload(ring->data_dmat, txdata->map);
1602         /* XXX handle M_TXCB? */
1603         m_freem(txdata->m);
1604         txdata->m = NULL;
1605         ieee80211_free_node(txdata->ni);
1606         txdata->ni = NULL;
1607
1608         ring->queued--;
1609
1610         sc->sc_tx_timer = 0;
1611         ifp->if_flags &= ~IFF_OACTIVE;
1612         wpi_start_locked(ifp);
1613 }
1614
1615 static void
1616 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1617 {
1618         struct wpi_tx_ring *ring = &sc->cmdq;
1619         struct wpi_tx_data *data;
1620
1621         DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1622                                  "type=%s len=%d\n", desc->qid, desc->idx,
1623                                  desc->flags, wpi_cmd_str(desc->type),
1624                                  le32toh(desc->len)));
1625
1626         if ((desc->qid & 7) != 4)
1627                 return; /* not a command ack */
1628
1629         data = &ring->data[desc->idx];
1630
1631         /* if the command was mapped in a mbuf, free it */
1632         if (data->m != NULL) {
1633                 bus_dmamap_unload(ring->data_dmat, data->map);
1634                 m_freem(data->m);
1635                 data->m = NULL;
1636         }
1637
1638         sc->flags &= ~WPI_FLAG_BUSY;
1639         wakeup(&ring->cmd[desc->idx]);
1640 }
1641
1642 static void
1643 wpi_notif_intr(struct wpi_softc *sc)
1644 {
1645         struct ifnet *ifp = sc->sc_ifp;
1646         struct ieee80211com *ic = ifp->if_l2com;
1647         struct wpi_rx_desc *desc;
1648         struct wpi_rx_data *data;
1649         uint32_t hw;
1650
1651         hw = le32toh(sc->shared->next);
1652         while (sc->rxq.cur != hw) {
1653                 data = &sc->rxq.data[sc->rxq.cur];
1654                 desc = (void *)data->m->m_ext.ext_buf;
1655
1656                 DPRINTFN(WPI_DEBUG_NOTIFY,
1657                          ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1658                           desc->qid,
1659                           desc->idx,
1660                           desc->flags,
1661                           desc->type,
1662                           le32toh(desc->len)));
1663
1664                 if (!(desc->qid & 0x80))        /* reply to a command */
1665                         wpi_cmd_intr(sc, desc);
1666
1667                 switch (desc->type) {
1668                 case WPI_RX_DONE:
1669                         /* a 802.11 frame was received */
1670                         wpi_rx_intr(sc, desc, data);
1671                         break;
1672
1673                 case WPI_TX_DONE:
1674                         /* a 802.11 frame has been transmitted */
1675                         wpi_tx_intr(sc, desc);
1676                         break;
1677
1678                 case WPI_UC_READY:
1679                 {
1680                         struct wpi_ucode_info *uc =
1681                                 (struct wpi_ucode_info *)(desc + 1);
1682
1683                         /* the microcontroller is ready */
1684                         DPRINTF(("microcode alive notification version %x "
1685                                 "alive %x\n", le32toh(uc->version),
1686                                 le32toh(uc->valid)));
1687
1688                         if (le32toh(uc->valid) != 1) {
1689                                 device_printf(sc->sc_dev,
1690                                     "microcontroller initialization failed\n");
1691                                 wpi_stop_locked(sc);
1692                         }
1693                         break;
1694                 }
1695                 case WPI_STATE_CHANGED:
1696                 {
1697                         uint32_t *status = (uint32_t *)(desc + 1);
1698
1699                         /* enabled/disabled notification */
1700                         DPRINTF(("state changed to %x\n", le32toh(*status)));
1701
1702                         if (le32toh(*status) & 1) {
1703                                 device_printf(sc->sc_dev,
1704                                     "Radio transmitter is switched off\n");
1705                                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1706                                 ifp->if_flags &= ~IFF_RUNNING;
1707                                 /* Disable firmware commands */
1708                                 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1709                         }
1710                         break;
1711                 }
1712                 case WPI_START_SCAN:
1713                 {
1714 #ifdef WPI_DEBUG
1715                         struct wpi_start_scan *scan =
1716                                 (struct wpi_start_scan *)(desc + 1);
1717 #endif
1718
1719                         DPRINTFN(WPI_DEBUG_SCANNING,
1720                                  ("scanning channel %d status %x\n",
1721                             scan->chan, le32toh(scan->status)));
1722                         break;
1723                 }
1724                 case WPI_STOP_SCAN:
1725                 {
1726 #ifdef WPI_DEBUG
1727                         struct wpi_stop_scan *scan =
1728                                 (struct wpi_stop_scan *)(desc + 1);
1729 #endif
1730                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1731
1732                         DPRINTFN(WPI_DEBUG_SCANNING,
1733                             ("scan finished nchan=%d status=%d chan=%d\n",
1734                              scan->nchan, scan->status, scan->chan));
1735
1736                         sc->sc_scan_timer = 0;
1737                         ieee80211_scan_next(vap);
1738                         break;
1739                 }
1740                 case WPI_MISSED_BEACON:
1741                 {
1742                         struct wpi_missed_beacon *beacon =
1743                                 (struct wpi_missed_beacon *)(desc + 1);
1744                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1745
1746                         if (le32toh(beacon->consecutive) >=
1747                             vap->iv_bmissthreshold) {
1748                                 DPRINTF(("Beacon miss: %u >= %u\n",
1749                                          le32toh(beacon->consecutive),
1750                                          vap->iv_bmissthreshold));
1751                                 ieee80211_beacon_miss(ic);
1752                         }
1753                         break;
1754                 }
1755                 }
1756
1757                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1758         }
1759
1760         /* tell the firmware what we have processed */
1761         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1762         WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1763 }
1764
1765 static void
1766 wpi_intr(void *arg)
1767 {
1768         struct wpi_softc *sc = arg;
1769         uint32_t r;
1770
1771         r = WPI_READ(sc, WPI_INTR);
1772         if (r == 0 || r == 0xffffffff) {
1773                 return;
1774         }
1775
1776         /* disable interrupts */
1777         WPI_WRITE(sc, WPI_MASK, 0);
1778         /* ack interrupts */
1779         WPI_WRITE(sc, WPI_INTR, r);
1780
1781         if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1782                 struct ifnet *ifp = sc->sc_ifp;
1783                 struct ieee80211com *ic = ifp->if_l2com;
1784                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1785
1786                 device_printf(sc->sc_dev, "fatal firmware error\n");
1787                 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1788                                 "(Hardware Error)"));
1789                 if (vap != NULL)
1790                         ieee80211_cancel_scan(vap);
1791                 ieee80211_runtask(ic, &sc->sc_restarttask);
1792                 sc->flags &= ~WPI_FLAG_BUSY;
1793                 return;
1794         }
1795
1796         if (r & WPI_RX_INTR)
1797                 wpi_notif_intr(sc);
1798
1799         if (r & WPI_ALIVE_INTR) /* firmware initialized */
1800                 wakeup(sc);
1801
1802         /* re-enable interrupts */
1803         if (sc->sc_ifp->if_flags & IFF_UP)
1804                 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1805
1806 }
1807
1808 static uint8_t
1809 wpi_plcp_signal(int rate)
1810 {
1811         switch (rate) {
1812         /* CCK rates (returned values are device-dependent) */
1813         case 2:         return 10;
1814         case 4:         return 20;
1815         case 11:        return 55;
1816         case 22:        return 110;
1817
1818         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1819         /* R1-R4 (ral/ural is R4-R1) */
1820         case 12:        return 0xd;
1821         case 18:        return 0xf;
1822         case 24:        return 0x5;
1823         case 36:        return 0x7;
1824         case 48:        return 0x9;
1825         case 72:        return 0xb;
1826         case 96:        return 0x1;
1827         case 108:       return 0x3;
1828
1829         /* unsupported rates (should not get there) */
1830         default:        return 0;
1831         }
1832 }
1833
1834 /* quickly determine if a given rate is CCK or OFDM */
1835 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1836
1837 /*
1838  * Construct the data packet for a transmit buffer and acutally put
1839  * the buffer onto the transmit ring, kicking the card to process the
1840  * the buffer.
1841  */
1842 static int
1843 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1844         int ac)
1845 {
1846         struct ieee80211vap *vap = ni->ni_vap;
1847         struct ifnet *ifp = sc->sc_ifp;
1848         struct ieee80211com *ic = ifp->if_l2com;
1849         const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1850         struct wpi_tx_ring *ring = &sc->txq[ac];
1851         struct wpi_tx_desc *desc;
1852         struct wpi_tx_data *data;
1853         struct wpi_tx_cmd *cmd;
1854         struct wpi_cmd_data *tx;
1855         struct ieee80211_frame *wh;
1856         const struct ieee80211_txparam *tp;
1857         struct ieee80211_key *k;
1858         struct mbuf *mnew;
1859         int i, error, nsegs, rate, hdrlen, ismcast;
1860         bus_dma_segment_t segs[WPI_MAX_SCATTER];
1861
1862         desc = &ring->desc[ring->cur];
1863         data = &ring->data[ring->cur];
1864
1865         wh = mtod(m0, struct ieee80211_frame *);
1866
1867         hdrlen = ieee80211_hdrsize(wh);
1868         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1869
1870         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1871                 k = ieee80211_crypto_encap(ni, m0);
1872                 if (k == NULL) {
1873                         m_freem(m0);
1874                         return ENOBUFS;
1875                 }
1876                 /* packet header may have moved, reset our local pointer */
1877                 wh = mtod(m0, struct ieee80211_frame *);
1878         }
1879
1880         cmd = &ring->cmd[ring->cur];
1881         cmd->code = WPI_CMD_TX_DATA;
1882         cmd->flags = 0;
1883         cmd->qid = ring->qid;
1884         cmd->idx = ring->cur;
1885
1886         tx = (struct wpi_cmd_data *)cmd->data;
1887         tx->flags = htole32(WPI_TX_AUTO_SEQ);
1888         tx->timeout = htole16(0);
1889         tx->ofdm_mask = 0xff;
1890         tx->cck_mask = 0x0f;
1891         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1892         tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1893         tx->len = htole16(m0->m_pkthdr.len);
1894
1895         if (!ismcast) {
1896                 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1897                     !cap->cap_wmeParams[ac].wmep_noackPolicy)
1898                         tx->flags |= htole32(WPI_TX_NEED_ACK);
1899                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1900                         tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1901                         tx->rts_ntries = 7;
1902                 }
1903         }
1904         /* pick a rate */
1905         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1906         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1907                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1908                 /* tell h/w to set timestamp in probe responses */
1909                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1910                         tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1911                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1912                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1913                         tx->timeout = htole16(3);
1914                 else
1915                         tx->timeout = htole16(2);
1916                 rate = tp->mgmtrate;
1917         } else if (ismcast) {
1918                 rate = tp->mcastrate;
1919         } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1920                 rate = tp->ucastrate;
1921         } else {
1922                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
1923                 rate = ni->ni_txrate;
1924         }
1925         tx->rate = wpi_plcp_signal(rate);
1926
1927         /* be very persistant at sending frames out */
1928 #if 0
1929         tx->data_ntries = tp->maxretry;
1930 #else
1931         tx->data_ntries = 30;           /* XXX way too high */
1932 #endif
1933
1934         if (ieee80211_radiotap_active_vap(vap)) {
1935                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1936                 tap->wt_flags = 0;
1937                 tap->wt_rate = rate;
1938                 tap->wt_hwqueue = ac;
1939                 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1940                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1941
1942                 ieee80211_radiotap_tx(vap, m0);
1943         }
1944
1945         /* save and trim IEEE802.11 header */
1946         m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1947         m_adj(m0, hdrlen);
1948
1949         error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs,
1950             1, &nsegs, BUS_DMA_NOWAIT);
1951         if (error != 0 && error != EFBIG) {
1952                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1953                     error);
1954                 m_freem(m0);
1955                 return error;
1956         }
1957         if (error != 0) {
1958                 /* XXX use m_collapse */
1959                 mnew = m_defrag(m0, MB_DONTWAIT);
1960                 if (mnew == NULL) {
1961                         device_printf(sc->sc_dev,
1962                             "could not defragment mbuf\n");
1963                         m_freem(m0);
1964                         return ENOBUFS;
1965                 }
1966                 m0 = mnew;
1967
1968                 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
1969                     m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1970                 if (error != 0) {
1971                         device_printf(sc->sc_dev,
1972                             "could not map mbuf (error %d)\n", error);
1973                         m_freem(m0);
1974                         return error;
1975                 }
1976         }
1977
1978         data->m = m0;
1979         data->ni = ni;
1980
1981         DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1982             ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1983
1984         /* first scatter/gather segment is used by the tx data command */
1985         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1986             (1 + nsegs) << 24);
1987         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1988             ring->cur * sizeof (struct wpi_tx_cmd));
1989         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1990         for (i = 1; i <= nsegs; i++) {
1991                 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1992                 desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1993         }
1994
1995         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1996         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1997             BUS_DMASYNC_PREWRITE);
1998
1999         ring->queued++;
2000
2001         /* kick ring */
2002         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2003         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2004
2005         return 0;
2006 }
2007
2008 /**
2009  * Process data waiting to be sent on the IFNET output queue
2010  */
2011 static void
2012 wpi_start(struct ifnet *ifp)
2013 {
2014         wpi_start_locked(ifp);
2015 }
2016
2017 static void
2018 wpi_start_locked(struct ifnet *ifp)
2019 {
2020         struct wpi_softc *sc = ifp->if_softc;
2021         struct ieee80211_node *ni;
2022         struct mbuf *m;
2023         int ac;
2024
2025         if ((ifp->if_flags & IFF_RUNNING) == 0) {
2026                 ifq_purge(&ifp->if_snd);
2027                 return;
2028         }
2029
2030         for (;;) {
2031                 IF_DEQUEUE(&ifp->if_snd, m);
2032                 if (m == NULL)
2033                         break;
2034                 ac = M_WME_GETAC(m);
2035                 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2036                         /* there is no place left in this ring */
2037                         ifq_prepend(&ifp->if_snd, m);
2038                         ifp->if_flags |= IFF_OACTIVE;
2039                         break;
2040                 }
2041                 ni = ieee80211_ref_node((struct ieee80211_node *)m->m_pkthdr.rcvif);
2042                 if (wpi_tx_data(sc, m, ni, ac) != 0) {
2043                         ieee80211_free_node(ni);
2044                         ifp->if_oerrors++;
2045                         break;
2046                 }
2047                 sc->sc_tx_timer = 5;
2048         }
2049 }
2050
2051 static int
2052 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2053         const struct ieee80211_bpf_params *params)
2054 {
2055         struct ieee80211com *ic = ni->ni_ic;
2056         struct ifnet *ifp = ic->ic_ifp;
2057         struct wpi_softc *sc = ifp->if_softc;
2058
2059         /* prevent management frames from being sent if we're not ready */
2060         if (!(ifp->if_flags & IFF_RUNNING)) {
2061                 m_freem(m);
2062                 ieee80211_free_node(ni);
2063                 return ENETDOWN;
2064         }
2065
2066         /* management frames go into ring 0 */
2067         if (sc->txq[0].queued > sc->txq[0].count - 8) {
2068                 ifp->if_flags |= IFF_OACTIVE;
2069                 m_freem(m);
2070                 ieee80211_free_node(ni);
2071                 return ENOBUFS;         /* XXX */
2072         }
2073
2074         ifp->if_opackets++;
2075         if (wpi_tx_data(sc, m, ni, 0) != 0)
2076                 goto bad;
2077         sc->sc_tx_timer = 5;
2078         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
2079
2080         return 0;
2081 bad:
2082         ifp->if_oerrors++;
2083         ieee80211_free_node(ni);
2084         return EIO;             /* XXX */
2085 }
2086
2087 static int
2088 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred)
2089 {
2090         struct wpi_softc *sc = ifp->if_softc;
2091         struct ieee80211com *ic = ifp->if_l2com;
2092         struct ifreq *ifr = (struct ifreq *) data;
2093         int error = 0, startall = 0;
2094
2095         switch (cmd) {
2096         case SIOCSIFFLAGS:
2097                 if ((ifp->if_flags & IFF_UP)) {
2098                         if (!(ifp->if_flags & IFF_RUNNING)) {
2099                                 wpi_init_locked(sc, 0);
2100                                 startall = 1;
2101                         }
2102                 } else if ((ifp->if_flags & IFF_RUNNING) ||
2103                            (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2104                         wpi_stop_locked(sc);
2105                 if (startall)
2106                         ieee80211_start_all(ic);
2107                 break;
2108         case SIOCGIFMEDIA:
2109                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2110                 break;
2111         case SIOCGIFADDR:
2112                 error = ether_ioctl(ifp, cmd, data);
2113                 break;
2114         default:
2115                 error = EINVAL;
2116                 break;
2117         }
2118         return error;
2119 }
2120
2121 /*
2122  * Extract various information from EEPROM.
2123  */
2124 static void
2125 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2126 {
2127         int i;
2128
2129         /* read the hardware capabilities, revision and SKU type */
2130         wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2131         wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2132         wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2133
2134         /* read the regulatory domain */
2135         wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2136
2137         /* read in the hw MAC address */
2138         wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2139
2140         /* read the list of authorized channels */
2141         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2142                 wpi_read_eeprom_channels(sc,i);
2143
2144         /* read the power level calibration info for each group */
2145         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2146                 wpi_read_eeprom_group(sc,i);
2147 }
2148
2149 /*
2150  * Send a command to the firmware.
2151  */
2152 static int
2153 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2154 {
2155         struct wpi_tx_ring *ring = &sc->cmdq;
2156         struct wpi_tx_desc *desc;
2157         struct wpi_tx_cmd *cmd;
2158
2159 #ifdef WPI_DEBUG
2160         if (!async) {
2161                 wlan_assert_serialized();
2162         }
2163 #endif
2164
2165         DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2166                     async));
2167
2168         if (sc->flags & WPI_FLAG_BUSY) {
2169                 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2170                     __func__, code);
2171                 return EAGAIN;
2172         }
2173         sc->flags|= WPI_FLAG_BUSY;
2174
2175         KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2176             code, size));
2177
2178         desc = &ring->desc[ring->cur];
2179         cmd = &ring->cmd[ring->cur];
2180
2181         cmd->code = code;
2182         cmd->flags = 0;
2183         cmd->qid = ring->qid;
2184         cmd->idx = ring->cur;
2185         memcpy(cmd->data, buf, size);
2186
2187         desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2188         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2189                 ring->cur * sizeof (struct wpi_tx_cmd));
2190         desc->segs[0].len  = htole32(4 + size);
2191
2192         /* kick cmd ring */
2193         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2194         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2195
2196         if (async) {
2197                 sc->flags &= ~ WPI_FLAG_BUSY;
2198                 return 0;
2199         }
2200
2201         return zsleep(cmd, &wlan_global_serializer, 0, "wpicmd", hz);
2202 }
2203
2204 static int
2205 wpi_wme_update(struct ieee80211com *ic)
2206 {
2207 #define WPI_EXP2(v)     htole16((1 << (v)) - 1)
2208 #define WPI_USEC(v)     htole16(IEEE80211_TXOP_TO_US(v))
2209         struct wpi_softc *sc = ic->ic_ifp->if_softc;
2210         const struct wmeParams *wmep;
2211         struct wpi_wme_setup wme;
2212         int ac;
2213
2214         /* don't override default WME values if WME is not actually enabled */
2215         if (!(ic->ic_flags & IEEE80211_F_WME))
2216                 return 0;
2217
2218         wme.flags = 0;
2219         for (ac = 0; ac < WME_NUM_AC; ac++) {
2220                 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2221                 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2222                 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2223                 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2224                 wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2225
2226                 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2227                     "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2228                     wme.ac[ac].cwmax, wme.ac[ac].txop));
2229         }
2230         return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2231 #undef WPI_USEC
2232 #undef WPI_EXP2
2233 }
2234
2235 /*
2236  * Configure h/w multi-rate retries.
2237  */
2238 static int
2239 wpi_mrr_setup(struct wpi_softc *sc)
2240 {
2241         struct ifnet *ifp = sc->sc_ifp;
2242         struct ieee80211com *ic = ifp->if_l2com;
2243         struct wpi_mrr_setup mrr;
2244         int i, error;
2245
2246         memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2247
2248         /* CCK rates (not used with 802.11a) */
2249         for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2250                 mrr.rates[i].flags = 0;
2251                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2252                 /* fallback to the immediate lower CCK rate (if any) */
2253                 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2254                 /* try one time at this rate before falling back to "next" */
2255                 mrr.rates[i].ntries = 1;
2256         }
2257
2258         /* OFDM rates (not used with 802.11b) */
2259         for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2260                 mrr.rates[i].flags = 0;
2261                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2262                 /* fallback to the immediate lower OFDM rate (if any) */
2263                 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2264                 mrr.rates[i].next = (i == WPI_OFDM6) ?
2265                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2266                         WPI_OFDM6 : WPI_CCK2) :
2267                     i - 1;
2268                 /* try one time at this rate before falling back to "next" */
2269                 mrr.rates[i].ntries = 1;
2270         }
2271
2272         /* setup MRR for control frames */
2273         mrr.which = htole32(WPI_MRR_CTL);
2274         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2275         if (error != 0) {
2276                 device_printf(sc->sc_dev,
2277                     "could not setup MRR for control frames\n");
2278                 return error;
2279         }
2280
2281         /* setup MRR for data frames */
2282         mrr.which = htole32(WPI_MRR_DATA);
2283         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2284         if (error != 0) {
2285                 device_printf(sc->sc_dev,
2286                     "could not setup MRR for data frames\n");
2287                 return error;
2288         }
2289
2290         return 0;
2291 }
2292
2293 static void
2294 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2295 {
2296         struct wpi_cmd_led led;
2297
2298         led.which = which;
2299         led.unit = htole32(100000);     /* on/off in unit of 100ms */
2300         led.off = off;
2301         led.on = on;
2302
2303         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2304 }
2305
2306 static void
2307 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2308 {
2309         struct wpi_cmd_tsf tsf;
2310         uint64_t val, mod;
2311
2312         memset(&tsf, 0, sizeof tsf);
2313         memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2314         tsf.bintval = htole16(ni->ni_intval);
2315         tsf.lintval = htole16(10);
2316
2317         /* compute remaining time until next beacon */
2318         val = (uint64_t)ni->ni_intval  * 1024;  /* msec -> usec */
2319         mod = le64toh(tsf.tstamp) % val;
2320         tsf.binitval = htole32((uint32_t)(val - mod));
2321
2322         if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2323                 device_printf(sc->sc_dev, "could not enable TSF\n");
2324 }
2325
2326 #if 0
2327 /*
2328  * Build a beacon frame that the firmware will broadcast periodically in
2329  * IBSS or HostAP modes.
2330  */
2331 static int
2332 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2333 {
2334         struct ifnet *ifp = sc->sc_ifp;
2335         struct ieee80211com *ic = ifp->if_l2com;
2336         struct wpi_tx_ring *ring = &sc->cmdq;
2337         struct wpi_tx_desc *desc;
2338         struct wpi_tx_data *data;
2339         struct wpi_tx_cmd *cmd;
2340         struct wpi_cmd_beacon *bcn;
2341         struct ieee80211_beacon_offsets bo;
2342         struct mbuf *m0;
2343         bus_addr_t physaddr;
2344         int error;
2345
2346         desc = &ring->desc[ring->cur];
2347         data = &ring->data[ring->cur];
2348
2349         m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2350         if (m0 == NULL) {
2351                 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2352                 return ENOMEM;
2353         }
2354
2355         cmd = &ring->cmd[ring->cur];
2356         cmd->code = WPI_CMD_SET_BEACON;
2357         cmd->flags = 0;
2358         cmd->qid = ring->qid;
2359         cmd->idx = ring->cur;
2360
2361         bcn = (struct wpi_cmd_beacon *)cmd->data;
2362         memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2363         bcn->id = WPI_ID_BROADCAST;
2364         bcn->ofdm_mask = 0xff;
2365         bcn->cck_mask = 0x0f;
2366         bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2367         bcn->len = htole16(m0->m_pkthdr.len);
2368         bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2369                 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2370         bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2371
2372         /* save and trim IEEE802.11 header */
2373         m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2374         m_adj(m0, sizeof (struct ieee80211_frame));
2375
2376         /* assume beacon frame is contiguous */
2377         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2378             m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2379         if (error != 0) {
2380                 device_printf(sc->sc_dev, "could not map beacon\n");
2381                 m_freem(m0);
2382                 return error;
2383         }
2384
2385         data->m = m0;
2386
2387         /* first scatter/gather segment is used by the beacon command */
2388         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2389         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2390                 ring->cur * sizeof (struct wpi_tx_cmd));
2391         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2392         desc->segs[1].addr = htole32(physaddr);
2393         desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2394
2395         /* kick cmd ring */
2396         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2397         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2398
2399         return 0;
2400 }
2401 #endif
2402
2403 static int
2404 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2405 {
2406         struct ieee80211com *ic = vap->iv_ic;
2407         struct ieee80211_node *ni;
2408         struct wpi_node_info node;
2409         int error;
2410
2411
2412         /* update adapter's configuration */
2413         sc->config.associd = 0;
2414         sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2415         ni = ieee80211_ref_node(vap->iv_bss);
2416         IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2417         sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2418         if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2419                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2420                     WPI_CONFIG_24GHZ);
2421         }
2422         if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2423                 sc->config.cck_mask  = 0;
2424                 sc->config.ofdm_mask = 0x15;
2425         } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2426                 sc->config.cck_mask  = 0x03;
2427                 sc->config.ofdm_mask = 0;
2428         } else {
2429                 /* XXX assume 802.11b/g */
2430                 sc->config.cck_mask  = 0x0f;
2431                 sc->config.ofdm_mask = 0x15;
2432         }
2433
2434         DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2435                 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2436         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2437                 sizeof (struct wpi_config), 1);
2438         if (error != 0) {
2439                 device_printf(sc->sc_dev, "could not configure\n");
2440                 ieee80211_free_node(ni);
2441                 return error;
2442         }
2443
2444         /* configuration has changed, set Tx power accordingly */
2445         if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2446                 device_printf(sc->sc_dev, "could not set Tx power\n");
2447                 ieee80211_free_node(ni);
2448                 return error;
2449         }
2450
2451         /* add default node */
2452         memset(&node, 0, sizeof node);
2453         IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2454         ieee80211_free_node(ni);
2455         node.id = WPI_ID_BSS;
2456         node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2457             wpi_plcp_signal(12) : wpi_plcp_signal(2);
2458         node.action = htole32(WPI_ACTION_SET_RATE);
2459         node.antenna = WPI_ANTENNA_BOTH;
2460         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2461         if (error != 0)
2462                 device_printf(sc->sc_dev, "could not add BSS node\n");
2463
2464         return (error);
2465 }
2466
2467 static int
2468 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2469 {
2470         struct ieee80211com *ic = vap->iv_ic;
2471         struct ieee80211_node *ni;
2472         int error;
2473
2474         if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2475                 /* link LED blinks while monitoring */
2476                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2477                 return 0;
2478         }
2479
2480         ni = ieee80211_ref_node(vap->iv_bss);
2481         wpi_enable_tsf(sc, ni);
2482
2483         /* update adapter's configuration */
2484         sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2485         /* short preamble/slot time are negotiated when associating */
2486         sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2487             WPI_CONFIG_SHSLOT);
2488         if (ic->ic_flags & IEEE80211_F_SHSLOT)
2489                 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2490         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2491                 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2492         sc->config.filter |= htole32(WPI_FILTER_BSS);
2493
2494         /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2495
2496         DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2497                     sc->config.flags));
2498         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2499                     wpi_config), 1);
2500         if (error != 0) {
2501                 device_printf(sc->sc_dev, "could not update configuration\n");
2502                 ieee80211_free_node(ni);
2503                 return error;
2504         }
2505
2506         error = wpi_set_txpower(sc, ni->ni_chan, 1);
2507         ieee80211_free_node(ni);
2508         if (error != 0) {
2509                 device_printf(sc->sc_dev, "could set txpower\n");
2510                 return error;
2511         }
2512
2513         /* link LED always on while associated */
2514         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2515
2516         /* start automatic rate control timer */
2517         callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
2518
2519         return (error);
2520 }
2521
2522 /*
2523  * Send a scan request to the firmware.  Since this command is huge, we map it
2524  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2525  * much of this code is similar to that in wpi_cmd but because we must manually
2526  * construct the probe & channels, we duplicate what's needed here. XXX In the
2527  * future, this function should be modified to use wpi_cmd to help cleanup the
2528  * code base.
2529  */
2530 static int
2531 wpi_scan(struct wpi_softc *sc)
2532 {
2533         struct ifnet *ifp = sc->sc_ifp;
2534         struct ieee80211com *ic = ifp->if_l2com;
2535         struct ieee80211_scan_state *ss = ic->ic_scan;
2536         struct wpi_tx_ring *ring = &sc->cmdq;
2537         struct wpi_tx_desc *desc;
2538         struct wpi_tx_data *data;
2539         struct wpi_tx_cmd *cmd;
2540         struct wpi_scan_hdr *hdr;
2541         struct wpi_scan_chan *chan;
2542         struct ieee80211_frame *wh;
2543         struct ieee80211_rateset *rs;
2544         struct ieee80211_channel *c;
2545         enum ieee80211_phymode mode;
2546         uint8_t *frm;
2547         int nrates, pktlen, error, i, nssid;
2548         bus_addr_t physaddr;
2549
2550         desc = &ring->desc[ring->cur];
2551         data = &ring->data[ring->cur];
2552
2553         data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2554         if (data->m == NULL) {
2555                 device_printf(sc->sc_dev,
2556                     "could not allocate mbuf for scan command\n");
2557                 return ENOMEM;
2558         }
2559
2560         cmd = mtod(data->m, struct wpi_tx_cmd *);
2561         cmd->code = WPI_CMD_SCAN;
2562         cmd->flags = 0;
2563         cmd->qid = ring->qid;
2564         cmd->idx = ring->cur;
2565
2566         hdr = (struct wpi_scan_hdr *)cmd->data;
2567         memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2568
2569         /*
2570          * Move to the next channel if no packets are received within 5 msecs
2571          * after sending the probe request (this helps to reduce the duration
2572          * of active scans).
2573          */
2574         hdr->quiet = htole16(5);
2575         hdr->threshold = htole16(1);
2576
2577         if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2578                 /* send probe requests at 6Mbps */
2579                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2580
2581                 /* Enable crc checking */
2582                 hdr->promotion = htole16(1);
2583         } else {
2584                 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2585                 /* send probe requests at 1Mbps */
2586                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2587         }
2588         hdr->tx.id = WPI_ID_BROADCAST;
2589         hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2590         hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2591
2592         memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2593         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2594         for (i = 0; i < nssid; i++) {
2595                 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2596                 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2597                 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2598                     hdr->scan_essids[i].esslen);
2599 #ifdef WPI_DEBUG
2600                 if (wpi_debug & WPI_DEBUG_SCANNING) {
2601                         kprintf("Scanning Essid: ");
2602                         ieee80211_print_essid(hdr->scan_essids[i].essid,
2603                             hdr->scan_essids[i].esslen);
2604                         kprintf("\n");
2605                 }
2606 #endif
2607         }
2608
2609         /*
2610          * Build a probe request frame.  Most of the following code is a
2611          * copy & paste of what is done in net80211.
2612          */
2613         wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2614         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2615                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2616         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2617         IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2618         IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2619         IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2620         *(u_int16_t *)&wh->i_dur[0] = 0;        /* filled by h/w */
2621         *(u_int16_t *)&wh->i_seq[0] = 0;        /* filled by h/w */
2622
2623         frm = (uint8_t *)(wh + 1);
2624
2625         /* add essid IE, the hardware will fill this in for us */
2626         *frm++ = IEEE80211_ELEMID_SSID;
2627         *frm++ = 0;
2628
2629         mode = ieee80211_chan2mode(ic->ic_curchan);
2630         rs = &ic->ic_sup_rates[mode];
2631
2632         /* add supported rates IE */
2633         *frm++ = IEEE80211_ELEMID_RATES;
2634         nrates = rs->rs_nrates;
2635         if (nrates > IEEE80211_RATE_SIZE)
2636                 nrates = IEEE80211_RATE_SIZE;
2637         *frm++ = nrates;
2638         memcpy(frm, rs->rs_rates, nrates);
2639         frm += nrates;
2640
2641         /* add supported xrates IE */
2642         if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2643                 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2644                 *frm++ = IEEE80211_ELEMID_XRATES;
2645                 *frm++ = nrates;
2646                 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2647                 frm += nrates;
2648         }
2649
2650         /* setup length of probe request */
2651         hdr->tx.len = htole16(frm - (uint8_t *)wh);
2652
2653         /*
2654          * Construct information about the channel that we
2655          * want to scan. The firmware expects this to be directly
2656          * after the scan probe request
2657          */
2658         c = ic->ic_curchan;
2659         chan = (struct wpi_scan_chan *)frm;
2660         chan->chan = ieee80211_chan2ieee(ic, c);
2661         chan->flags = 0;
2662         if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2663                 chan->flags |= WPI_CHAN_ACTIVE;
2664                 if (nssid != 0)
2665                         chan->flags |= WPI_CHAN_DIRECT;
2666         }
2667         chan->gain_dsp = 0x6e; /* Default level */
2668         if (IEEE80211_IS_CHAN_5GHZ(c)) {
2669                 chan->active = htole16(10);
2670                 chan->passive = htole16(ss->ss_maxdwell);
2671                 chan->gain_radio = 0x3b;
2672         } else {
2673                 chan->active = htole16(20);
2674                 chan->passive = htole16(ss->ss_maxdwell);
2675                 chan->gain_radio = 0x28;
2676         }
2677
2678         DPRINTFN(WPI_DEBUG_SCANNING,
2679             ("Scanning %u Passive: %d\n",
2680              chan->chan,
2681              c->ic_flags & IEEE80211_CHAN_PASSIVE));
2682
2683         hdr->nchan++;
2684         chan++;
2685
2686         frm += sizeof (struct wpi_scan_chan);
2687 #if 0
2688         // XXX All Channels....
2689         for (c  = &ic->ic_channels[1];
2690              c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2691                 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2692                         continue;
2693
2694                 chan->chan = ieee80211_chan2ieee(ic, c);
2695                 chan->flags = 0;
2696                 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2697                     chan->flags |= WPI_CHAN_ACTIVE;
2698                     if (ic->ic_des_ssid[0].len != 0)
2699                         chan->flags |= WPI_CHAN_DIRECT;
2700                 }
2701                 chan->gain_dsp = 0x6e; /* Default level */
2702                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2703                         chan->active = htole16(10);
2704                         chan->passive = htole16(110);
2705                         chan->gain_radio = 0x3b;
2706                 } else {
2707                         chan->active = htole16(20);
2708                         chan->passive = htole16(120);
2709                         chan->gain_radio = 0x28;
2710                 }
2711
2712                 DPRINTFN(WPI_DEBUG_SCANNING,
2713                          ("Scanning %u Passive: %d\n",
2714                           chan->chan,
2715                           c->ic_flags & IEEE80211_CHAN_PASSIVE));
2716
2717                 hdr->nchan++;
2718                 chan++;
2719
2720                 frm += sizeof (struct wpi_scan_chan);
2721         }
2722 #endif
2723
2724         hdr->len = htole16(frm - (uint8_t *)hdr);
2725         pktlen = frm - (uint8_t *)cmd;
2726
2727         error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2728             wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2729         if (error != 0) {
2730                 device_printf(sc->sc_dev, "could not map scan command\n");
2731                 m_freem(data->m);
2732                 data->m = NULL;
2733                 return error;
2734         }
2735
2736         desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2737         desc->segs[0].addr = htole32(physaddr);
2738         desc->segs[0].len  = htole32(pktlen);
2739
2740         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2741             BUS_DMASYNC_PREWRITE);
2742         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2743
2744         /* kick cmd ring */
2745         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2746         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2747
2748         sc->sc_scan_timer = 5;
2749         return 0;       /* will be notified async. of failure/success */
2750 }
2751
2752 /**
2753  * Configure the card to listen to a particular channel, this transisions the
2754  * card in to being able to receive frames from remote devices.
2755  */
2756 static int
2757 wpi_config(struct wpi_softc *sc)
2758 {
2759         struct ifnet *ifp = sc->sc_ifp;
2760         struct ieee80211com *ic = ifp->if_l2com;
2761         struct wpi_power power;
2762         struct wpi_bluetooth bluetooth;
2763         struct wpi_node_info node;
2764         int error;
2765
2766         /* set power mode */
2767         memset(&power, 0, sizeof power);
2768         power.flags = htole32(WPI_POWER_CAM|0x8);
2769         error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2770         if (error != 0) {
2771                 device_printf(sc->sc_dev, "could not set power mode\n");
2772                 return error;
2773         }
2774
2775         /* configure bluetooth coexistence */
2776         memset(&bluetooth, 0, sizeof bluetooth);
2777         bluetooth.flags = 3;
2778         bluetooth.lead = 0xaa;
2779         bluetooth.kill = 1;
2780         error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2781             0);
2782         if (error != 0) {
2783                 device_printf(sc->sc_dev,
2784                     "could not configure bluetooth coexistence\n");
2785                 return error;
2786         }
2787
2788         /* configure adapter */
2789         memset(&sc->config, 0, sizeof (struct wpi_config));
2790         IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2791         /*set default channel*/
2792         sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2793         sc->config.flags = htole32(WPI_CONFIG_TSF);
2794         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2795                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2796                     WPI_CONFIG_24GHZ);
2797         }
2798         sc->config.filter = 0;
2799         switch (ic->ic_opmode) {
2800         case IEEE80211_M_STA:
2801         case IEEE80211_M_WDS:   /* No know setup, use STA for now */
2802                 sc->config.mode = WPI_MODE_STA;
2803                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2804                 break;
2805         case IEEE80211_M_IBSS:
2806         case IEEE80211_M_AHDEMO:
2807                 sc->config.mode = WPI_MODE_IBSS;
2808                 sc->config.filter |= htole32(WPI_FILTER_BEACON |
2809                                              WPI_FILTER_MULTICAST);
2810                 break;
2811         case IEEE80211_M_HOSTAP:
2812                 sc->config.mode = WPI_MODE_HOSTAP;
2813                 break;
2814         case IEEE80211_M_MONITOR:
2815                 sc->config.mode = WPI_MODE_MONITOR;
2816                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2817                         WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2818                 break;
2819         default:
2820                 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2821                 return EINVAL;
2822         }
2823         sc->config.cck_mask  = 0x0f;    /* not yet negotiated */
2824         sc->config.ofdm_mask = 0xff;    /* not yet negotiated */
2825         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2826                 sizeof (struct wpi_config), 0);
2827         if (error != 0) {
2828                 device_printf(sc->sc_dev, "configure command failed\n");
2829                 return error;
2830         }
2831
2832         /* configuration has changed, set Tx power accordingly */
2833         if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2834             device_printf(sc->sc_dev, "could not set Tx power\n");
2835             return error;
2836         }
2837
2838         /* add broadcast node */
2839         memset(&node, 0, sizeof node);
2840         IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2841         node.id = WPI_ID_BROADCAST;
2842         node.rate = wpi_plcp_signal(2);
2843         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2844         if (error != 0) {
2845                 device_printf(sc->sc_dev, "could not add broadcast node\n");
2846                 return error;
2847         }
2848
2849         /* Setup rate scalling */
2850         error = wpi_mrr_setup(sc);
2851         if (error != 0) {
2852                 device_printf(sc->sc_dev, "could not setup MRR\n");
2853                 return error;
2854         }
2855
2856         return 0;
2857 }
2858
2859 static void
2860 wpi_stop_master(struct wpi_softc *sc)
2861 {
2862         uint32_t tmp;
2863         int ntries;
2864
2865         DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2866
2867         tmp = WPI_READ(sc, WPI_RESET);
2868         WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2869
2870         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2871         if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2872                 return; /* already asleep */
2873
2874         for (ntries = 0; ntries < 100; ntries++) {
2875                 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2876                         break;
2877                 DELAY(10);
2878         }
2879         if (ntries == 100) {
2880                 device_printf(sc->sc_dev, "timeout waiting for master\n");
2881         }
2882 }
2883
2884 static int
2885 wpi_power_up(struct wpi_softc *sc)
2886 {
2887         uint32_t tmp;
2888         int ntries;
2889
2890         wpi_mem_lock(sc);
2891         tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2892         wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2893         wpi_mem_unlock(sc);
2894
2895         for (ntries = 0; ntries < 5000; ntries++) {
2896                 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2897                         break;
2898                 DELAY(10);
2899         }
2900         if (ntries == 5000) {
2901                 device_printf(sc->sc_dev,
2902                     "timeout waiting for NIC to power up\n");
2903                 return ETIMEDOUT;
2904         }
2905         return 0;
2906 }
2907
2908 static int
2909 wpi_reset(struct wpi_softc *sc)
2910 {
2911         uint32_t tmp;
2912         int ntries;
2913
2914         DPRINTFN(WPI_DEBUG_HW,
2915             ("Resetting the card - clearing any uploaded firmware\n"));
2916
2917         /* clear any pending interrupts */
2918         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2919
2920         tmp = WPI_READ(sc, WPI_PLL_CTL);
2921         WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2922
2923         tmp = WPI_READ(sc, WPI_CHICKEN);
2924         WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2925
2926         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2927         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2928
2929         /* wait for clock stabilization */
2930         for (ntries = 0; ntries < 25000; ntries++) {
2931                 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2932                         break;
2933                 DELAY(10);
2934         }
2935         if (ntries == 25000) {
2936                 device_printf(sc->sc_dev,
2937                     "timeout waiting for clock stabilization\n");
2938                 return ETIMEDOUT;
2939         }
2940
2941         /* initialize EEPROM */
2942         tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2943
2944         if ((tmp & WPI_EEPROM_VERSION) == 0) {
2945                 device_printf(sc->sc_dev, "EEPROM not found\n");
2946                 return EIO;
2947         }
2948         WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2949
2950         return 0;
2951 }
2952
2953 static void
2954 wpi_hw_config(struct wpi_softc *sc)
2955 {
2956         uint32_t rev, hw;
2957
2958         /* voodoo from the Linux "driver".. */
2959         hw = WPI_READ(sc, WPI_HWCONFIG);
2960
2961         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2962         if ((rev & 0xc0) == 0x40)
2963                 hw |= WPI_HW_ALM_MB;
2964         else if (!(rev & 0x80))
2965                 hw |= WPI_HW_ALM_MM;
2966
2967         if (sc->cap == 0x80)
2968                 hw |= WPI_HW_SKU_MRC;
2969
2970         hw &= ~WPI_HW_REV_D;
2971         if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2972                 hw |= WPI_HW_REV_D;
2973
2974         if (sc->type > 1)
2975                 hw |= WPI_HW_TYPE_B;
2976
2977         WPI_WRITE(sc, WPI_HWCONFIG, hw);
2978 }
2979
2980 static void
2981 wpi_rfkill_resume(struct wpi_softc *sc)
2982 {
2983         struct ifnet *ifp = sc->sc_ifp;
2984         struct ieee80211com *ic = ifp->if_l2com;
2985         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2986         int ntries;
2987
2988         /* enable firmware again */
2989         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2990         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2991
2992         /* wait for thermal sensors to calibrate */
2993         for (ntries = 0; ntries < 1000; ntries++) {
2994                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
2995                         break;
2996                 DELAY(10);
2997         }
2998
2999         if (ntries == 1000) {
3000                 device_printf(sc->sc_dev,
3001                     "timeout waiting for thermal calibration\n");
3002                 return;
3003         }
3004         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3005
3006         if (wpi_config(sc) != 0) {
3007                 device_printf(sc->sc_dev, "device config failed\n");
3008                 return;
3009         }
3010
3011         ifp->if_flags &= ~IFF_OACTIVE;
3012         ifp->if_flags |= IFF_RUNNING;
3013         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3014
3015         if (vap != NULL) {
3016                 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3017                         if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3018                                 ieee80211_beacon_miss(ic);
3019                                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3020                         } else
3021                                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3022                 } else {
3023                         ieee80211_scan_next(vap);
3024                         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3025                 }
3026         }
3027
3028         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3029 }
3030
3031 static void
3032 wpi_init_locked(struct wpi_softc *sc, int force)
3033 {
3034         struct ifnet *ifp = sc->sc_ifp;
3035         uint32_t tmp;
3036         int ntries, qid;
3037
3038         wpi_stop_locked(sc);
3039         (void)wpi_reset(sc);
3040
3041         wpi_mem_lock(sc);
3042         wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3043         DELAY(20);
3044         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3045         wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3046         wpi_mem_unlock(sc);
3047
3048         (void)wpi_power_up(sc);
3049         wpi_hw_config(sc);
3050
3051         /* init Rx ring */
3052         wpi_mem_lock(sc);
3053         WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3054         WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3055             offsetof(struct wpi_shared, next));
3056         WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3057         WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3058         wpi_mem_unlock(sc);
3059
3060         /* init Tx rings */
3061         wpi_mem_lock(sc);
3062         wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3063         wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3064         wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3065         wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3066         wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3067         wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3068         wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3069
3070         WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3071         WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3072
3073         for (qid = 0; qid < 6; qid++) {
3074                 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3075                 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3076                 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3077         }
3078         wpi_mem_unlock(sc);
3079
3080         /* clear "radio off" and "disable command" bits (reversed logic) */
3081         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3082         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3083         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3084
3085         /* clear any pending interrupts */
3086         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3087
3088         /* enable interrupts */
3089         WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3090
3091         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3092         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3093
3094         if ((wpi_load_firmware(sc)) != 0) {
3095             device_printf(sc->sc_dev,
3096                 "A problem occurred loading the firmware to the driver\n");
3097             return;
3098         }
3099
3100         /* At this point the firmware is up and running. If the hardware
3101          * RF switch is turned off thermal calibration will fail, though
3102          * the card is still happy to continue to accept commands, catch
3103          * this case and schedule a task to watch for it to be turned on.
3104          */
3105         wpi_mem_lock(sc);
3106         tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3107         wpi_mem_unlock(sc);
3108
3109         if (!(tmp & 0x1)) {
3110                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3111                 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3112                 goto out;
3113         }
3114
3115         /* wait for thermal sensors to calibrate */
3116         for (ntries = 0; ntries < 1000; ntries++) {
3117                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3118                         break;
3119                 DELAY(10);
3120         }
3121
3122         if (ntries == 1000) {
3123                 device_printf(sc->sc_dev,
3124                     "timeout waiting for thermal sensors calibration\n");
3125                 return;
3126         }
3127         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3128
3129         if (wpi_config(sc) != 0) {
3130                 device_printf(sc->sc_dev, "device config failed\n");
3131                 return;
3132         }
3133
3134         ifp->if_flags &= ~IFF_OACTIVE;
3135         ifp->if_flags |= IFF_RUNNING;
3136 out:
3137         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3138 }
3139
3140 static void
3141 wpi_init(void *arg)
3142 {
3143         struct wpi_softc *sc = arg;
3144         struct ifnet *ifp = sc->sc_ifp;
3145         struct ieee80211com *ic = ifp->if_l2com;
3146
3147         wpi_init_locked(sc, 0);
3148
3149         if (ifp->if_flags & IFF_RUNNING)
3150                 ieee80211_start_all(ic);                /* start all vaps */
3151 }
3152
3153 static void
3154 wpi_stop_locked(struct wpi_softc *sc)
3155 {
3156         struct ifnet *ifp = sc->sc_ifp;
3157         uint32_t tmp;
3158         int ac;
3159
3160         sc->sc_tx_timer = 0;
3161         sc->sc_scan_timer = 0;
3162         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3163         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3164         callout_stop(&sc->watchdog_to_callout);
3165         callout_stop(&sc->calib_to_callout);
3166
3167
3168         /* disable interrupts */
3169         WPI_WRITE(sc, WPI_MASK, 0);
3170         WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3171         WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3172         WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3173
3174         wpi_mem_lock(sc);
3175         wpi_mem_write(sc, WPI_MEM_MODE, 0);
3176         wpi_mem_unlock(sc);
3177
3178         /* reset all Tx rings */
3179         for (ac = 0; ac < 4; ac++)
3180                 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3181         wpi_reset_tx_ring(sc, &sc->cmdq);
3182
3183         /* reset Rx ring */
3184         wpi_reset_rx_ring(sc, &sc->rxq);
3185
3186         wpi_mem_lock(sc);
3187         wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3188         wpi_mem_unlock(sc);
3189
3190         DELAY(5);
3191
3192         wpi_stop_master(sc);
3193
3194         tmp = WPI_READ(sc, WPI_RESET);
3195         WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3196         sc->flags &= ~WPI_FLAG_BUSY;
3197 }
3198
3199 static void
3200 wpi_stop(struct wpi_softc *sc)
3201 {
3202         wpi_stop_locked(sc);
3203 }
3204
3205 static void
3206 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3207 {
3208         /* XXX move */
3209         ieee80211_ratectl_node_init(ni);
3210 }
3211
3212 static void
3213 wpi_calib_timeout_callout(void *arg)
3214 {
3215         struct wpi_softc *sc = arg;
3216         struct ifnet *ifp = sc->sc_ifp;
3217         struct ieee80211com *ic = ifp->if_l2com;
3218         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3219         int temp;
3220
3221         if (vap->iv_state != IEEE80211_S_RUN)
3222                 return;
3223
3224         /* update sensor data */
3225         temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3226         DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3227
3228         wpi_power_calibration(sc, temp);
3229
3230         callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
3231 }
3232
3233 /*
3234  * This function is called periodically (every 60 seconds) to adjust output
3235  * power to temperature changes.
3236  */
3237 static void
3238 wpi_power_calibration(struct wpi_softc *sc, int temp)
3239 {
3240         struct ifnet *ifp = sc->sc_ifp;
3241         struct ieee80211com *ic = ifp->if_l2com;
3242         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3243
3244         /* sanity-check read value */
3245         if (temp < -260 || temp > 25) {
3246                 /* this can't be correct, ignore */
3247                 DPRINTFN(WPI_DEBUG_TEMP,
3248                     ("out-of-range temperature reported: %d\n", temp));
3249                 return;
3250         }
3251
3252         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3253
3254         /* adjust Tx power if need be */
3255         if (abs(temp - sc->temp) <= 6)
3256                 return;
3257
3258         sc->temp = temp;
3259
3260         if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3261                 /* just warn, too bad for the automatic calibration... */
3262                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
3263         }
3264 }
3265
3266 /**
3267  * Read the eeprom to find out what channels are valid for the given
3268  * band and update net80211 with what we find.
3269  */
3270 static void
3271 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3272 {
3273         struct ifnet *ifp = sc->sc_ifp;
3274         struct ieee80211com *ic = ifp->if_l2com;
3275         const struct wpi_chan_band *band = &wpi_bands[n];
3276         struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3277         struct ieee80211_channel *c;
3278         int chan, i, passive;
3279
3280         wpi_read_prom_data(sc, band->addr, channels,
3281             band->nchan * sizeof (struct wpi_eeprom_chan));
3282
3283         for (i = 0; i < band->nchan; i++) {
3284                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3285                         DPRINTFN(WPI_DEBUG_HW,
3286                             ("Channel Not Valid: %d, band %d\n",
3287                              band->chan[i],n));
3288                         continue;
3289                 }
3290
3291                 passive = 0;
3292                 chan = band->chan[i];
3293                 c = &ic->ic_channels[ic->ic_nchans++];
3294
3295                 /* is active scan allowed on this channel? */
3296                 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3297                         passive = IEEE80211_CHAN_PASSIVE;
3298                 }
3299
3300                 if (n == 0) {   /* 2GHz band */
3301                         c->ic_ieee = chan;
3302                         c->ic_freq = ieee80211_ieee2mhz(chan,
3303                             IEEE80211_CHAN_2GHZ);
3304                         c->ic_flags = IEEE80211_CHAN_B | passive;
3305
3306                         c = &ic->ic_channels[ic->ic_nchans++];
3307                         c->ic_ieee = chan;
3308                         c->ic_freq = ieee80211_ieee2mhz(chan,
3309                             IEEE80211_CHAN_2GHZ);
3310                         c->ic_flags = IEEE80211_CHAN_G | passive;
3311
3312                 } else {        /* 5GHz band */
3313                         /*
3314                          * Some 3945ABG adapters support channels 7, 8, 11
3315                          * and 12 in the 2GHz *and* 5GHz bands.
3316                          * Because of limitations in our net80211(9) stack,
3317                          * we can't support these channels in 5GHz band.
3318                          * XXX not true; just need to map to proper frequency
3319                          */
3320                         if (chan <= 14)
3321                                 continue;
3322
3323                         c->ic_ieee = chan;
3324                         c->ic_freq = ieee80211_ieee2mhz(chan,
3325                             IEEE80211_CHAN_5GHZ);
3326                         c->ic_flags = IEEE80211_CHAN_A | passive;
3327                 }
3328
3329                 /* save maximum allowed power for this channel */
3330                 sc->maxpwr[chan] = channels[i].maxpwr;
3331
3332 #if 0
3333                 // XXX We can probably use this an get rid of maxpwr - ben 20070617
3334                 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3335                 //ic->ic_channels[chan].ic_minpower...
3336                 //ic->ic_channels[chan].ic_maxregtxpower...
3337 #endif
3338
3339                 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3340                     " passive=%d, offset %d\n", chan, c->ic_freq,
3341                     channels[i].flags, sc->maxpwr[chan],
3342                     (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3343                     ic->ic_nchans));
3344         }
3345 }
3346
3347 static void
3348 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3349 {
3350         struct wpi_power_group *group = &sc->groups[n];
3351         struct wpi_eeprom_group rgroup;
3352         int i;
3353
3354         wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3355             sizeof rgroup);
3356
3357         /* save power group information */
3358         group->chan   = rgroup.chan;
3359         group->maxpwr = rgroup.maxpwr;
3360         /* temperature at which the samples were taken */
3361         group->temp   = (int16_t)le16toh(rgroup.temp);
3362
3363         DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3364                     group->chan, group->maxpwr, group->temp));
3365
3366         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3367                 group->samples[i].index = rgroup.samples[i].index;
3368                 group->samples[i].power = rgroup.samples[i].power;
3369
3370                 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3371                             group->samples[i].index, group->samples[i].power));
3372         }
3373 }
3374
3375 /*
3376  * Update Tx power to match what is defined for channel `c'.
3377  */
3378 static int
3379 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3380 {
3381         struct ifnet *ifp = sc->sc_ifp;
3382         struct ieee80211com *ic = ifp->if_l2com;
3383         struct wpi_power_group *group;
3384         struct wpi_cmd_txpower txpower;
3385         u_int chan;
3386         int i;
3387
3388         /* get channel number */
3389         chan = ieee80211_chan2ieee(ic, c);
3390
3391         /* find the power group to which this channel belongs */
3392         if (IEEE80211_IS_CHAN_5GHZ(c)) {
3393                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3394                         if (chan <= group->chan)
3395                                 break;
3396         } else
3397                 group = &sc->groups[0];
3398
3399         memset(&txpower, 0, sizeof txpower);
3400         txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3401         txpower.channel = htole16(chan);
3402
3403         /* set Tx power for all OFDM and CCK rates */
3404         for (i = 0; i <= 11 ; i++) {
3405                 /* retrieve Tx power for this channel/rate combination */
3406                 int idx = wpi_get_power_index(sc, group, c,
3407                     wpi_ridx_to_rate[i]);
3408
3409                 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3410
3411                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3412                         txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3413                         txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3414                 } else {
3415                         txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3416                         txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3417                 }
3418                 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3419                             chan, wpi_ridx_to_rate[i], idx));
3420         }
3421
3422         return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3423 }
3424
3425 /*
3426  * Determine Tx power index for a given channel/rate combination.
3427  * This takes into account the regulatory information from EEPROM and the
3428  * current temperature.
3429  */
3430 static int
3431 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3432     struct ieee80211_channel *c, int rate)
3433 {
3434 /* fixed-point arithmetic division using a n-bit fractional part */
3435 #define fdivround(a, b, n)      \
3436         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3437
3438 /* linear interpolation */
3439 #define interpolate(x, x1, y1, x2, y2, n)       \
3440         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3441
3442         struct ifnet *ifp = sc->sc_ifp;
3443         struct ieee80211com *ic = ifp->if_l2com;
3444         struct wpi_power_sample *sample;
3445         int pwr, idx;
3446         u_int chan;
3447
3448         /* get channel number */
3449         chan = ieee80211_chan2ieee(ic, c);
3450
3451         /* default power is group's maximum power - 3dB */
3452         pwr = group->maxpwr / 2;
3453
3454         /* decrease power for highest OFDM rates to reduce distortion */
3455         switch (rate) {
3456                 case 72:        /* 36Mb/s */
3457                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3458                         break;
3459                 case 96:        /* 48Mb/s */
3460                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3461                         break;
3462                 case 108:       /* 54Mb/s */
3463                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3464                         break;
3465         }
3466
3467         /* never exceed channel's maximum allowed Tx power */
3468         pwr = min(pwr, sc->maxpwr[chan]);
3469
3470         /* retrieve power index into gain tables from samples */
3471         for (sample = group->samples; sample < &group->samples[3]; sample++)
3472                 if (pwr > sample[1].power)
3473                         break;
3474         /* fixed-point linear interpolation using a 19-bit fractional part */
3475         idx = interpolate(pwr, sample[0].power, sample[0].index,
3476             sample[1].power, sample[1].index, 19);
3477
3478         /*
3479          *  Adjust power index based on current temperature
3480          *      - if colder than factory-calibrated: decreate output power
3481          *      - if warmer than factory-calibrated: increase output power
3482          */
3483         idx -= (sc->temp - group->temp) * 11 / 100;
3484
3485         /* decrease power for CCK rates (-5dB) */
3486         if (!WPI_RATE_IS_OFDM(rate))
3487                 idx += 10;
3488
3489         /* keep power index in a valid range */
3490         if (idx < 0)
3491                 return 0;
3492         if (idx > WPI_MAX_PWR_INDEX)
3493                 return WPI_MAX_PWR_INDEX;
3494         return idx;
3495
3496 #undef interpolate
3497 #undef fdivround
3498 }
3499
3500 /**
3501  * Called by net80211 framework to indicate that a scan
3502  * is starting. This function doesn't actually do the scan,
3503  * wpi_scan_curchan starts things off. This function is more
3504  * of an early warning from the framework we should get ready
3505  * for the scan.
3506  */
3507 static void
3508 wpi_scan_start(struct ieee80211com *ic)
3509 {
3510         struct ifnet *ifp = ic->ic_ifp;
3511         struct wpi_softc *sc = ifp->if_softc;
3512
3513         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3514 }
3515
3516 /**
3517  * Called by the net80211 framework, indicates that the
3518  * scan has ended. If there is a scan in progress on the card
3519  * then it should be aborted.
3520  */
3521 static void
3522 wpi_scan_end(struct ieee80211com *ic)
3523 {
3524         /* XXX ignore */
3525 }
3526
3527 /**
3528  * Called by the net80211 framework to indicate to the driver
3529  * that the channel should be changed
3530  */
3531 static void
3532 wpi_set_channel(struct ieee80211com *ic)
3533 {
3534         struct ifnet *ifp = ic->ic_ifp;
3535         struct wpi_softc *sc = ifp->if_softc;
3536         int error;
3537
3538         /*
3539          * Only need to set the channel in Monitor mode. AP scanning and auth
3540          * are already taken care of by their respective firmware commands.
3541          */
3542         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3543                 error = wpi_config(sc);
3544                 if (error != 0)
3545                         device_printf(sc->sc_dev,
3546                             "error %d settting channel\n", error);
3547         }
3548 }
3549
3550 /**
3551  * Called by net80211 to indicate that we need to scan the current
3552  * channel. The channel is previously be set via the wpi_set_channel
3553  * callback.
3554  */
3555 static void
3556 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3557 {
3558         struct ieee80211vap *vap = ss->ss_vap;
3559         struct ifnet *ifp = vap->iv_ic->ic_ifp;
3560         struct wpi_softc *sc = ifp->if_softc;
3561
3562         if (wpi_scan(sc))
3563                 ieee80211_cancel_scan(vap);
3564 }
3565
3566 /**
3567  * Called by the net80211 framework to indicate
3568  * the minimum dwell time has been met, terminate the scan.
3569  * We don't actually terminate the scan as the firmware will notify
3570  * us when it's finished and we have no way to interrupt it.
3571  */
3572 static void
3573 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3574 {
3575         /* NB: don't try to abort scan; wait for firmware to finish */
3576 }
3577
3578 static void
3579 wpi_hwreset_task(void *arg, int pending)
3580 {
3581         struct wpi_softc *sc = arg;
3582
3583         wlan_serialize_enter();
3584         wpi_init_locked(sc, 0);
3585         wlan_serialize_exit();
3586 }
3587
3588 static void
3589 wpi_rfreset_task(void *arg, int pending)
3590 {
3591         struct wpi_softc *sc = arg;
3592
3593         wlan_serialize_enter();
3594         wpi_rfkill_resume(sc);
3595         wlan_serialize_exit();
3596 }
3597
3598 /*
3599  * Allocate DMA-safe memory for firmware transfer.
3600  */
3601 static int
3602 wpi_alloc_fwmem(struct wpi_softc *sc)
3603 {
3604         /* allocate enough contiguous space to store text and data */
3605         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3606             WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3607             BUS_DMA_NOWAIT);
3608 }
3609
3610 static void
3611 wpi_free_fwmem(struct wpi_softc *sc)
3612 {
3613         wpi_dma_contig_free(&sc->fw_dma);
3614 }
3615
3616 /**
3617  * Called every second, wpi_watchdog_callout used by the watch dog timer
3618  * to check that the card is still alive
3619  */
3620 static void
3621 wpi_watchdog_callout(void *arg)
3622 {
3623         struct wpi_softc *sc = arg;
3624         struct ifnet *ifp = sc->sc_ifp;
3625         struct ieee80211com *ic = ifp->if_l2com;
3626         uint32_t tmp;
3627
3628         wlan_serialize_enter();
3629         DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3630
3631         if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3632                 /* No need to lock firmware memory */
3633                 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3634
3635                 if ((tmp & 0x1) == 0) {
3636                         /* Radio kill switch is still off */
3637                         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3638                         wlan_serialize_exit();
3639                         return;
3640                 }
3641
3642                 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3643                 ieee80211_runtask(ic, &sc->sc_radiotask);
3644                 wlan_serialize_exit();
3645                 return;
3646         }
3647
3648         if (sc->sc_tx_timer > 0) {
3649                 if (--sc->sc_tx_timer == 0) {
3650                         device_printf(sc->sc_dev,"device timeout\n");
3651                         ifp->if_oerrors++;
3652                         wlan_serialize_exit();
3653                         ieee80211_runtask(ic, &sc->sc_restarttask);
3654                         wlan_serialize_enter();
3655                 }
3656         }
3657         if (sc->sc_scan_timer > 0) {
3658                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3659                 if (--sc->sc_scan_timer == 0 && vap != NULL) {
3660                         device_printf(sc->sc_dev,"scan timeout\n");
3661                         ieee80211_cancel_scan(vap);
3662                         wlan_serialize_exit();
3663                         ieee80211_runtask(ic, &sc->sc_restarttask);
3664                         wlan_serialize_enter();
3665                 }
3666         }
3667
3668         if (ifp->if_flags & IFF_RUNNING)
3669                 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3670
3671         wlan_serialize_exit();
3672 }
3673
3674 #ifdef WPI_DEBUG
3675 static const char *wpi_cmd_str(int cmd)
3676 {
3677         switch (cmd) {
3678         case WPI_DISABLE_CMD:   return "WPI_DISABLE_CMD";
3679         case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
3680         case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
3681         case WPI_CMD_SET_WME:   return "WPI_CMD_SET_WME";
3682         case WPI_CMD_TSF:       return "WPI_CMD_TSF";
3683         case WPI_CMD_ADD_NODE:  return "WPI_CMD_ADD_NODE";
3684         case WPI_CMD_TX_DATA:   return "WPI_CMD_TX_DATA";
3685         case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
3686         case WPI_CMD_SET_LED:   return "WPI_CMD_SET_LED";
3687         case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3688         case WPI_CMD_SCAN:      return "WPI_CMD_SCAN";
3689         case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3690         case WPI_CMD_TXPOWER:   return "WPI_CMD_TXPOWER";
3691         case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
3692
3693         default:
3694                 KASSERT(1, ("Unknown Command: %d\n", cmd));
3695                 return "UNKNOWN CMD";   /* Make the compiler happy */
3696         }
3697 }
3698 #endif
3699
3700 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3701 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3702 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3703 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);