91691bf9f6200f00bffa18447d1b57d365706e54
[dragonfly.git] / sys / dev / netif / sk / if_sk.c
1 /*
2  * Copyright (c) 1997, 1998, 1999, 2000
3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $OpenBSD: if_sk.c,v 1.129 2006/10/16 12:30:08 tom Exp $
33  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
34  * $DragonFly: src/sys/dev/netif/sk/if_sk.c,v 1.57 2008/08/17 04:32:34 sephe Exp $
35  */
36
37 /*
38  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
39  *
40  * Permission to use, copy, modify, and distribute this software for any
41  * purpose with or without fee is hereby granted, provided that the above
42  * copyright notice and this permission notice appear in all copies.
43  *
44  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
45  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
46  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
47  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
48  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
49  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
50  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
51  */
52
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  *      The XaQti XMAC II datasheet,
58  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *      The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71
72 /*
73  * The SysKonnect gigabit ethernet adapters consist of two main
74  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
75  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
76  * components and a PHY while the GEnesis controller provides a PCI
77  * interface with DMA support. Each card may have between 512K and
78  * 2MB of SRAM on board depending on the configuration.
79  *
80  * The SysKonnect GEnesis controller can have either one or two XMAC
81  * chips connected to it, allowing single or dual port NIC configurations.
82  * SysKonnect has the distinction of being the only vendor on the market
83  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
84  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
85  * XMAC registers. This driver takes advantage of these features to allow
86  * both XMACs to operate as independent interfaces.
87  */
88  
89 #include <sys/param.h>
90 #include <sys/bus.h>
91 #include <sys/endian.h>
92 #include <sys/in_cksum.h>
93 #include <sys/kernel.h>
94 #include <sys/interrupt.h>
95 #include <sys/mbuf.h>
96 #include <sys/malloc.h>
97 #include <sys/queue.h>
98 #include <sys/rman.h>
99 #include <sys/serialize.h>
100 #include <sys/socket.h>
101 #include <sys/sockio.h>
102 #include <sys/sysctl.h>
103
104 #include <net/bpf.h>
105 #include <net/ethernet.h>
106 #include <net/if.h>
107 #include <net/if_arp.h>
108 #include <net/if_dl.h>
109 #include <net/if_media.h>
110 #include <net/ifq_var.h>
111 #include <net/vlan/if_vlan_var.h>
112
113 #include <netinet/ip.h>
114 #include <netinet/udp.h>
115
116 #include <dev/netif/mii_layer/mii.h>
117 #include <dev/netif/mii_layer/miivar.h>
118 #include <dev/netif/mii_layer/brgphyreg.h>
119
120 #include <bus/pci/pcireg.h>
121 #include <bus/pci/pcivar.h>
122 #include <bus/pci/pcidevs.h>
123
124 #include <dev/netif/sk/if_skreg.h>
125 #include <dev/netif/sk/yukonreg.h>
126 #include <dev/netif/sk/xmaciireg.h>
127 #include <dev/netif/sk/if_skvar.h>
128
129 #include "miibus_if.h"
130
131 #if 0
132 #define SK_DEBUG
133 #endif
134
135 #if 0
136 #define SK_RXCSUM
137 #endif
138
139 /* supported device vendors */
140 static const struct skc_type {
141         uint16_t        skc_vid;
142         uint16_t        skc_did;
143         const char      *skc_name;
144 } skc_devs[] = {
145         { PCI_VENDOR_3COM,              PCI_PRODUCT_3COM_3C940,
146           "3Com 3C940" },
147         { PCI_VENDOR_3COM,              PCI_PRODUCT_3COM_3C940B,
148           "3Com 3C940B" },
149
150         { PCI_VENDOR_CNET,              PCI_PRODUCT_CNET_GIGACARD,
151           "CNet GigaCard" },
152
153         { PCI_VENDOR_DLINK,             PCI_PRODUCT_DLINK_DGE530T_A1,
154           "D-Link DGE-530T A1" },
155         { PCI_VENDOR_DLINK,             PCI_PRODUCT_DLINK_DGE530T_B1,
156           "D-Link DGE-530T B1" },
157
158         { PCI_VENDOR_LINKSYS,           PCI_PRODUCT_LINKSYS_EG1032,
159           "Linksys EG1032 v2" },
160         { PCI_VENDOR_LINKSYS,           PCI_PRODUCT_LINKSYS_EG1064,
161           "Linksys EG1064" },
162
163         { PCI_VENDOR_MARVELL,           PCI_PRODUCT_MARVELL_YUKON,
164           "Marvell Yukon 88E8001/8003/8010" },
165         { PCI_VENDOR_MARVELL,           PCI_PRODUCT_MARVELL_YUKON_BELKIN,
166           "Belkin F5D5005" },
167
168         { PCI_VENDOR_SCHNEIDERKOCH,     PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE,
169           "SysKonnect SK-NET" },
170         { PCI_VENDOR_SCHNEIDERKOCH,     PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2,
171           "SysKonnect SK9821 v2" },
172
173         { 0, 0, NULL }
174 };
175
176 static int      skc_probe(device_t);
177 static int      skc_attach(device_t);
178 static int      skc_detach(device_t);
179 static void     skc_shutdown(device_t);
180 static int      skc_sysctl_imtime(SYSCTL_HANDLER_ARGS);
181
182 static int      sk_probe(device_t);
183 static int      sk_attach(device_t);
184 static int      sk_detach(device_t);
185 static void     sk_tick(void *);
186 static void     sk_yukon_tick(void *);
187 static void     sk_intr(void *);
188 static void     sk_intr_bcom(struct sk_if_softc *);
189 static void     sk_intr_xmac(struct sk_if_softc *);
190 static void     sk_intr_yukon(struct sk_if_softc *);
191 static void     sk_rxeof(struct sk_if_softc *);
192 static void     sk_txeof(struct sk_if_softc *);
193 static int      sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
194 static void     sk_start(struct ifnet *);
195 static int      sk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
196 static void     sk_init(void *);
197 static void     sk_init_xmac(struct sk_if_softc *);
198 static void     sk_init_yukon(struct sk_if_softc *);
199 static void     sk_stop(struct sk_if_softc *);
200 static void     sk_watchdog(struct ifnet *);
201 static int      sk_ifmedia_upd(struct ifnet *);
202 static void     sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
203 static void     sk_reset(struct sk_softc *);
204 static int      sk_newbuf_jumbo(struct sk_if_softc *, int, int);
205 static int      sk_newbuf_std(struct sk_if_softc *, int, int);
206 static int      sk_jpool_alloc(device_t);
207 static void     sk_jpool_free(struct sk_if_softc *);
208 static struct sk_jpool_entry
209                 *sk_jalloc(struct sk_if_softc *);
210 static void     sk_jfree(void *);
211 static void     sk_jref(void *);
212 static int      sk_init_rx_ring(struct sk_if_softc *);
213 static int      sk_init_tx_ring(struct sk_if_softc *);
214
215 static int      sk_miibus_readreg(device_t, int, int);
216 static int      sk_miibus_writereg(device_t, int, int, int);
217 static void     sk_miibus_statchg(device_t);
218
219 static int      sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
220 static int      sk_xmac_miibus_writereg(struct sk_if_softc *, int, int, int);
221 static void     sk_xmac_miibus_statchg(struct sk_if_softc *);
222
223 static int      sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
224 static int      sk_marv_miibus_writereg(struct sk_if_softc *, int, int, int);
225 static void     sk_marv_miibus_statchg(struct sk_if_softc *);
226
227 static void     sk_setfilt(struct sk_if_softc *, caddr_t, int);
228 static void     sk_setmulti(struct sk_if_softc *);
229 static void     sk_setpromisc(struct sk_if_softc *);
230
231 #ifdef SK_RXCSUM
232 static void     sk_rxcsum(struct ifnet *, struct mbuf *, const uint16_t,
233                           const uint16_t);
234 #endif
235 static int      sk_dma_alloc(device_t);
236 static void     sk_dma_free(device_t);
237
238 static void     sk_buf_dma_addr(void *, bus_dma_segment_t *, int, bus_size_t,
239                                 int);
240 static void     sk_dmamem_addr(void *, bus_dma_segment_t *, int, int);
241
242 #ifdef SK_DEBUG
243 #define DPRINTF(x)      if (skdebug) kprintf x
244 #define DPRINTFN(n,x)   if (skdebug >= (n)) kprintf x
245 static int      skdebug = 2;
246
247 static void     sk_dump_txdesc(struct sk_tx_desc *, int);
248 static void     sk_dump_mbuf(struct mbuf *);
249 static void     sk_dump_bytes(const char *, int);
250 #else
251 #define DPRINTF(x)
252 #define DPRINTFN(n,x)
253 #endif
254
255 /* Interrupt moderation time. */
256 static int      skc_imtime = SK_IMTIME_DEFAULT;
257 TUNABLE_INT("hw.skc.imtime", &skc_imtime);
258
259 /*
260  * Note that we have newbus methods for both the GEnesis controller
261  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
262  * the miibus code is a child of the XMACs. We need to do it this way
263  * so that the miibus drivers can access the PHY registers on the
264  * right PHY. It's not quite what I had in mind, but it's the only
265  * design that achieves the desired effect.
266  */
267 static device_method_t skc_methods[] = {
268         /* Device interface */
269         DEVMETHOD(device_probe,         skc_probe),
270         DEVMETHOD(device_attach,        skc_attach),
271         DEVMETHOD(device_detach,        skc_detach),
272         DEVMETHOD(device_shutdown,      skc_shutdown),
273
274         /* bus interface */
275         DEVMETHOD(bus_print_child,      bus_generic_print_child),
276         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
277
278         { 0, 0 }
279 };
280
281 static DEFINE_CLASS_0(skc, skc_driver, skc_methods, sizeof(struct sk_softc));
282 static devclass_t skc_devclass;
283
284 static device_method_t sk_methods[] = {
285         /* Device interface */
286         DEVMETHOD(device_probe,         sk_probe),
287         DEVMETHOD(device_attach,        sk_attach),
288         DEVMETHOD(device_detach,        sk_detach),
289         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
290
291         /* bus interface */
292         DEVMETHOD(bus_print_child,      bus_generic_print_child),
293         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
294
295         /* MII interface */
296         DEVMETHOD(miibus_readreg,       sk_miibus_readreg),
297         DEVMETHOD(miibus_writereg,      sk_miibus_writereg),
298         DEVMETHOD(miibus_statchg,       sk_miibus_statchg),
299
300         { 0, 0 }
301 };
302
303 static DEFINE_CLASS_0(sk, sk_driver, sk_methods, sizeof(struct sk_if_softc));
304 static devclass_t sk_devclass;
305
306 DECLARE_DUMMY_MODULE(if_sk);
307 DRIVER_MODULE(if_sk, pci, skc_driver, skc_devclass, 0, 0);
308 DRIVER_MODULE(if_sk, skc, sk_driver, sk_devclass, 0, 0);
309 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
310
311 static __inline uint32_t
312 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
313 {
314         return CSR_READ_4(sc, reg);
315 }
316
317 static __inline uint16_t
318 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
319 {
320         return CSR_READ_2(sc, reg);
321 }
322
323 static __inline uint8_t
324 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
325 {
326         return CSR_READ_1(sc, reg);
327 }
328
329 static __inline void
330 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
331 {
332         CSR_WRITE_4(sc, reg, x);
333 }
334
335 static __inline void
336 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
337 {
338         CSR_WRITE_2(sc, reg, x);
339 }
340
341 static __inline void
342 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
343 {
344         CSR_WRITE_1(sc, reg, x);
345 }
346
347 static __inline int
348 sk_newbuf(struct sk_if_softc *sc_if, int idx, int wait)
349 {
350         int ret;
351
352         if (sc_if->sk_use_jumbo)
353                 ret = sk_newbuf_jumbo(sc_if, idx, wait);
354         else
355                 ret = sk_newbuf_std(sc_if, idx, wait);
356         return ret;
357 }
358
359 static int
360 sk_miibus_readreg(device_t dev, int phy, int reg)
361 {
362         struct sk_if_softc *sc_if = device_get_softc(dev);
363
364         if (SK_IS_GENESIS(sc_if->sk_softc))
365                 return sk_xmac_miibus_readreg(sc_if, phy, reg);
366         else
367                 return sk_marv_miibus_readreg(sc_if, phy, reg);
368 }
369
370 static int
371 sk_miibus_writereg(device_t dev, int phy, int reg, int val)
372 {
373         struct sk_if_softc *sc_if = device_get_softc(dev);
374
375         if (SK_IS_GENESIS(sc_if->sk_softc))
376                 return sk_xmac_miibus_writereg(sc_if, phy, reg, val);
377         else
378                 return sk_marv_miibus_writereg(sc_if, phy, reg, val);
379 }
380
381 static void
382 sk_miibus_statchg(device_t dev)
383 {
384         struct sk_if_softc *sc_if = device_get_softc(dev);
385
386         if (SK_IS_GENESIS(sc_if->sk_softc))
387                 sk_xmac_miibus_statchg(sc_if);
388         else
389                 sk_marv_miibus_statchg(sc_if);
390 }
391
392 static int
393 sk_xmac_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
394 {
395         int i;
396
397         DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
398
399         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
400                 return(0);
401
402         SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
403         SK_XM_READ_2(sc_if, XM_PHY_DATA);
404         if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
405                 for (i = 0; i < SK_TIMEOUT; i++) {
406                         DELAY(1);
407                         if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
408                             XM_MMUCMD_PHYDATARDY)
409                                 break;
410                 }
411
412                 if (i == SK_TIMEOUT) {
413                         if_printf(&sc_if->arpcom.ac_if,
414                                   "phy failed to come ready\n");
415                         return(0);
416                 }
417         }
418         DELAY(1);
419         return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
420 }
421
422 static int
423 sk_xmac_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
424 {
425         int i;
426
427         DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
428
429         SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
430         for (i = 0; i < SK_TIMEOUT; i++) {
431                 if ((SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY) == 0)
432                         break;
433         }
434
435         if (i == SK_TIMEOUT) {
436                 if_printf(&sc_if->arpcom.ac_if, "phy failed to come ready\n");
437                 return(ETIMEDOUT);
438         }
439
440         SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
441         for (i = 0; i < SK_TIMEOUT; i++) {
442                 DELAY(1);
443                 if ((SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY) == 0)
444                         break;
445         }
446
447         if (i == SK_TIMEOUT)
448                 if_printf(&sc_if->arpcom.ac_if, "phy write timed out\n");
449         return(0);
450 }
451
452 static void
453 sk_xmac_miibus_statchg(struct sk_if_softc *sc_if)
454 {
455         struct mii_data *mii;
456
457         mii = device_get_softc(sc_if->sk_miibus);
458         DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
459
460         /*
461          * If this is a GMII PHY, manually set the XMAC's
462          * duplex mode accordingly.
463          */
464         if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
465                 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
466                         SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
467                 else
468                         SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
469         }
470 }
471
472 static int
473 sk_marv_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
474 {
475         uint16_t val;
476         int i;
477
478         if (phy != 0 ||
479             (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
480              sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
481                 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
482                              phy, reg));
483                 return(0);
484         }
485
486         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
487                       YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
488         
489         for (i = 0; i < SK_TIMEOUT; i++) {
490                 DELAY(1);
491                 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
492                 if (val & YU_SMICR_READ_VALID)
493                         break;
494         }
495
496         if (i == SK_TIMEOUT) {
497                 if_printf(&sc_if->arpcom.ac_if, "phy failed to come ready\n");
498                 return(0);
499         }
500         
501         DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
502                      SK_TIMEOUT));
503
504         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
505
506         DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
507                      phy, reg, val));
508
509         return(val);
510 }
511
512 static int
513 sk_marv_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
514 {
515         int i;
516
517         DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
518                      phy, reg, val));
519
520         SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
521         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
522                       YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
523
524         for (i = 0; i < SK_TIMEOUT; i++) {
525                 DELAY(1);
526                 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
527                         break;
528         }
529
530         if (i == SK_TIMEOUT)
531                 if_printf(&sc_if->arpcom.ac_if, "phy write timed out\n");
532
533         return(0);
534 }
535
536 static void
537 sk_marv_miibus_statchg(struct sk_if_softc *sc_if)
538 {
539         DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
540                      SK_YU_READ_2(sc_if, YUKON_GPCR)));
541 }
542
543 #define HASH_BITS       6
544   
545 static uint32_t
546 sk_xmac_hash(caddr_t addr)
547 {
548         uint32_t crc;
549
550         crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
551         return (~crc & ((1 << HASH_BITS) - 1));
552 }
553
554 static uint32_t
555 sk_yukon_hash(caddr_t addr)
556 {
557         uint32_t crc;
558
559         crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
560         return (crc & ((1 << HASH_BITS) - 1));
561 }
562
563 static void
564 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
565 {
566         int base;
567
568         base = XM_RXFILT_ENTRY(slot);
569
570         SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
571         SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
572         SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
573 }
574
575 static void
576 sk_setmulti(struct sk_if_softc *sc_if)
577 {
578         struct sk_softc *sc = sc_if->sk_softc;
579         struct ifnet *ifp = &sc_if->arpcom.ac_if;
580         uint32_t hashes[2] = { 0, 0 };
581         int h = 0, i;
582         struct ifmultiaddr *ifma;
583         uint8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
584
585         /* First, zot all the existing filters. */
586         switch(sc->sk_type) {
587         case SK_GENESIS:
588                 for (i = 1; i < XM_RXFILT_MAX; i++)
589                         sk_setfilt(sc_if, (caddr_t)&dummy, i);
590
591                 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
592                 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
593                 break;
594         case SK_YUKON:
595         case SK_YUKON_LITE:
596         case SK_YUKON_LP:
597                 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
598                 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
599                 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
600                 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
601                 break;
602         }
603
604         /* Now program new ones. */
605         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
606                 hashes[0] = 0xFFFFFFFF;
607                 hashes[1] = 0xFFFFFFFF;
608         } else {
609                 i = 1;
610                 /* First find the tail of the list. */
611                 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
612                         if (ifma->ifma_link.le_next == NULL)
613                                 break;
614                 }
615                 /* Now traverse the list backwards. */
616                 for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
617                         ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
618                         caddr_t maddr;
619
620                         if (ifma->ifma_addr->sa_family != AF_LINK)
621                                 continue;
622
623                         maddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
624
625                         /*
626                          * Program the first XM_RXFILT_MAX multicast groups
627                          * into the perfect filter. For all others,
628                          * use the hash table.
629                          */
630                         if (SK_IS_GENESIS(sc) && i < XM_RXFILT_MAX) {
631                                 sk_setfilt(sc_if, maddr, i);
632                                 i++;
633                                 continue;
634                         }
635
636                         switch(sc->sk_type) {
637                         case SK_GENESIS:
638                                 h = sk_xmac_hash(maddr);
639                                 break;
640                                 
641                         case SK_YUKON:
642                         case SK_YUKON_LITE:
643                         case SK_YUKON_LP:
644                                 h = sk_yukon_hash(maddr);
645                                 break;
646                         }
647                         if (h < 32)
648                                 hashes[0] |= (1 << h);
649                         else
650                                 hashes[1] |= (1 << (h - 32));
651                 }
652         }
653
654         switch(sc->sk_type) {
655         case SK_GENESIS:
656                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
657                                XM_MODE_RX_USE_PERFECT);
658                 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
659                 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
660                 break;
661         case SK_YUKON:
662         case SK_YUKON_LITE:
663         case SK_YUKON_LP:
664                 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
665                 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
666                 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
667                 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
668                 break;
669         }
670 }
671
672 static void
673 sk_setpromisc(struct sk_if_softc *sc_if)
674 {
675         struct sk_softc *sc = sc_if->sk_softc;
676         struct ifnet *ifp = &sc_if->arpcom.ac_if;
677
678         switch(sc->sk_type) {
679         case SK_GENESIS:
680                 if (ifp->if_flags & IFF_PROMISC)
681                         SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
682                 else
683                         SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
684                 break;
685         case SK_YUKON:
686         case SK_YUKON_LITE:
687         case SK_YUKON_LP:
688                 if (ifp->if_flags & IFF_PROMISC) {
689                         SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
690                             YU_RCR_UFLEN | YU_RCR_MUFLEN);
691                 } else {
692                         SK_YU_SETBIT_2(sc_if, YUKON_RCR,
693                             YU_RCR_UFLEN | YU_RCR_MUFLEN);
694                 }
695                 break;
696         }
697 }
698
699 static int
700 sk_init_rx_ring(struct sk_if_softc *sc_if)
701 {
702         struct sk_chain_data *cd = &sc_if->sk_cdata;
703         struct sk_ring_data *rd = sc_if->sk_rdata;
704         int i, nexti, error;
705
706         bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
707
708         for (i = 0; i < SK_RX_RING_CNT; i++) {
709                 if (i == (SK_RX_RING_CNT - 1))
710                         nexti = 0;
711                 else
712                         nexti = i + 1;
713                 rd->sk_rx_ring[i].sk_next =
714                         htole32(SK_RX_RING_ADDR(sc_if, nexti));
715                 rd->sk_rx_ring[i].sk_csum1_start = htole16(ETHER_HDR_LEN);
716                 rd->sk_rx_ring[i].sk_csum2_start =
717                         htole16(ETHER_HDR_LEN + sizeof(struct ip));
718
719                 error = sk_newbuf(sc_if, i, 1);
720                 if (error) {
721                         if_printf(&sc_if->arpcom.ac_if,
722                                   "failed alloc of %dth mbuf\n", i);
723                         return error;
724                 }
725         }
726
727         cd->sk_rx_prod = 0;
728         cd->sk_rx_cons = 0;
729
730         bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
731                         BUS_DMASYNC_PREWRITE);
732
733         return (0);
734 }
735
736 static int
737 sk_init_tx_ring(struct sk_if_softc *sc_if)
738 {
739         struct sk_ring_data *rd = sc_if->sk_rdata;
740         int i, nexti;
741
742         bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
743
744         for (i = 0; i < SK_TX_RING_CNT; i++) {
745                 if (i == (SK_TX_RING_CNT - 1))
746                         nexti = 0;
747                 else
748                         nexti = i + 1;
749                 rd->sk_tx_ring[i].sk_next = htole32(SK_TX_RING_ADDR(sc_if, nexti));
750         }
751
752         sc_if->sk_cdata.sk_tx_prod = 0;
753         sc_if->sk_cdata.sk_tx_cons = 0;
754         sc_if->sk_cdata.sk_tx_cnt = 0;
755
756         bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
757                         BUS_DMASYNC_PREWRITE);
758
759         return (0);
760 }
761
762 static int
763 sk_newbuf_jumbo(struct sk_if_softc *sc_if, int idx, int wait)
764 {
765         struct sk_jpool_entry *entry;
766         struct mbuf *m_new = NULL;
767         struct sk_rx_desc *r;
768
769         KKASSERT(idx < SK_RX_RING_CNT && idx >= 0);
770
771         MGETHDR(m_new, wait ? MB_WAIT : MB_DONTWAIT, MT_DATA);
772         if (m_new == NULL)
773                 return ENOBUFS;
774
775         /* Allocate the jumbo buffer */
776         entry = sk_jalloc(sc_if);
777         if (entry == NULL) {
778                 m_freem(m_new);
779                 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
780                     "dropped!\n", sc_if->arpcom.ac_if.if_xname));
781                 return ENOBUFS;
782         }
783
784         m_new->m_ext.ext_arg = entry;
785         m_new->m_ext.ext_buf = entry->buf;
786         m_new->m_ext.ext_free = sk_jfree;
787         m_new->m_ext.ext_ref = sk_jref;
788         m_new->m_ext.ext_size = SK_JLEN;
789
790         m_new->m_flags |= M_EXT;
791
792         m_new->m_data = m_new->m_ext.ext_buf;
793         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
794
795         /*
796          * Adjust alignment so packet payload begins on a
797          * longword boundary. Mandatory for Alpha, useful on
798          * x86 too.
799          */
800         m_adj(m_new, ETHER_ALIGN);
801
802         sc_if->sk_cdata.sk_rx_mbuf[idx] = m_new;
803
804         r = &sc_if->sk_rdata->sk_rx_ring[idx];
805         r->sk_data_lo = htole32(entry->paddr + ETHER_ALIGN);
806         r->sk_ctl = htole32(m_new->m_pkthdr.len | SK_RXSTAT);
807
808         return 0;
809 }
810
811 static int
812 sk_newbuf_std(struct sk_if_softc *sc_if, int idx, int wait)
813 {
814         struct mbuf *m_new = NULL;
815         struct sk_chain_data *cd = &sc_if->sk_cdata;
816         struct sk_rx_desc *r;
817         struct sk_dma_ctx ctx;
818         bus_dma_segment_t seg;
819         bus_dmamap_t map;
820         int error;
821
822         KKASSERT(idx < SK_RX_RING_CNT && idx >= 0);
823
824         m_new = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
825         if (m_new == NULL)
826                 return ENOBUFS;
827
828         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
829
830         /*
831          * Adjust alignment so packet payload begins on a
832          * longword boundary. Mandatory for Alpha, useful on
833          * x86 too.
834          */
835         m_adj(m_new, ETHER_ALIGN);
836
837         bzero(&ctx, sizeof(ctx));
838         ctx.nsegs = 1;
839         ctx.segs = &seg;
840         error = bus_dmamap_load_mbuf(cd->sk_rx_dtag, cd->sk_rx_dmap_tmp,
841                                      m_new, sk_buf_dma_addr, &ctx,
842                                      wait ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
843         if (error) {
844                 if_printf(&sc_if->arpcom.ac_if, "could not map RX mbuf\n");
845                 m_freem(m_new);
846                 return error;
847         }
848
849         /* Unload originally mapped mbuf */
850         if (cd->sk_rx_mbuf[idx] != NULL)
851                 bus_dmamap_unload(cd->sk_rx_dtag, cd->sk_rx_dmap[idx]);
852
853         /* Switch DMA map with tmp DMA map */
854         map = cd->sk_rx_dmap_tmp;
855         cd->sk_rx_dmap_tmp = cd->sk_rx_dmap[idx];
856         cd->sk_rx_dmap[idx] = map;
857
858         cd->sk_rx_mbuf[idx] = m_new;
859
860         r = &sc_if->sk_rdata->sk_rx_ring[idx];
861         r->sk_data_lo = htole32(seg.ds_addr);
862         r->sk_ctl = htole32(m_new->m_pkthdr.len | SK_RXSTAT);
863
864         return 0;
865 }
866
867 /*
868  * Allocate a jumbo buffer.
869  */
870 struct sk_jpool_entry *
871 sk_jalloc(struct sk_if_softc *sc_if)
872 {
873         struct sk_chain_data *cd = &sc_if->sk_cdata;
874         struct sk_jpool_entry *entry;
875
876         lwkt_serialize_enter(&cd->sk_jpool_serializer);
877
878         entry = SLIST_FIRST(&cd->sk_jpool_free_ent);
879         if (entry != NULL) {
880                 SLIST_REMOVE_HEAD(&cd->sk_jpool_free_ent, entry_next);
881                 entry->inuse = 1;
882         } else {
883                 DPRINTF(("no free jumbo buffer\n"));
884         }
885
886         lwkt_serialize_exit(&cd->sk_jpool_serializer);
887         return entry;
888 }
889
890 /*
891  * Release a jumbo buffer.
892  */
893 void
894 sk_jfree(void *arg)
895 {
896         struct sk_jpool_entry *entry = arg;
897         struct sk_chain_data *cd = &entry->sc_if->sk_cdata;
898
899         if (&cd->sk_jpool_ent[entry->slot] != entry)
900                 panic("%s: free wrong jumbo buffer\n", __func__);
901         else if (entry->inuse == 0)
902                 panic("%s: jumbo buffer already freed\n", __func__);
903
904         lwkt_serialize_enter(&cd->sk_jpool_serializer);
905
906         atomic_subtract_int(&entry->inuse, 1);
907         if (entry->inuse == 0)
908                 SLIST_INSERT_HEAD(&cd->sk_jpool_free_ent, entry, entry_next);
909
910         lwkt_serialize_exit(&cd->sk_jpool_serializer);
911 }
912
913 static void
914 sk_jref(void *arg)
915 {
916         struct sk_jpool_entry *entry = arg;
917         struct sk_chain_data *cd = &entry->sc_if->sk_cdata;
918
919         if (&cd->sk_jpool_ent[entry->slot] != entry)
920                 panic("%s: free wrong jumbo buffer\n", __func__);
921         else if (entry->inuse == 0)
922                 panic("%s: jumbo buffer already freed\n", __func__);
923
924         atomic_add_int(&entry->inuse, 1);
925 }
926
927 /*
928  * Set media options.
929  */
930 static int
931 sk_ifmedia_upd(struct ifnet *ifp)
932 {
933         struct sk_if_softc *sc_if = ifp->if_softc;
934         struct mii_data *mii;
935
936         mii = device_get_softc(sc_if->sk_miibus);
937         sk_init(sc_if);
938         mii_mediachg(mii);
939
940         return(0);
941 }
942
943 /*
944  * Report current media status.
945  */
946 static void
947 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
948 {
949         struct sk_if_softc *sc_if;
950         struct mii_data *mii;
951
952         sc_if = ifp->if_softc;
953         mii = device_get_softc(sc_if->sk_miibus);
954
955         mii_pollstat(mii);
956         ifmr->ifm_active = mii->mii_media_active;
957         ifmr->ifm_status = mii->mii_media_status;
958 }
959
960 static int
961 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
962 {
963         struct sk_if_softc *sc_if = ifp->if_softc;
964         struct ifreq *ifr = (struct ifreq *)data;
965         struct mii_data *mii;
966         int error = 0;
967
968         ASSERT_SERIALIZED(ifp->if_serializer);
969
970         switch(command) {
971         case SIOCSIFMTU:
972                 if (ifr->ifr_mtu > SK_JUMBO_MTU)
973                         error = EINVAL;
974                 else {
975                         ifp->if_mtu = ifr->ifr_mtu;
976                         ifp->if_flags &= ~IFF_RUNNING;
977                         sk_init(sc_if);
978                 }
979                 break;
980         case SIOCSIFFLAGS:
981                 if (ifp->if_flags & IFF_UP) {
982                         if (ifp->if_flags & IFF_RUNNING) {
983                                 if ((ifp->if_flags ^ sc_if->sk_if_flags)
984                                     & IFF_PROMISC) {
985                                         sk_setpromisc(sc_if);
986                                         sk_setmulti(sc_if);
987                                 }
988                         } else
989                                 sk_init(sc_if);
990                 } else {
991                         if (ifp->if_flags & IFF_RUNNING)
992                                 sk_stop(sc_if);
993                 }
994                 sc_if->sk_if_flags = ifp->if_flags;
995                 break;
996         case SIOCADDMULTI:
997         case SIOCDELMULTI:
998                 sk_setmulti(sc_if);
999                 break;
1000         case SIOCGIFMEDIA:
1001         case SIOCSIFMEDIA:
1002                 mii = device_get_softc(sc_if->sk_miibus);
1003                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1004                 break;
1005         default:
1006                 error = ether_ioctl(ifp, command, data);
1007                 break;
1008         }
1009
1010         return(error);
1011 }
1012
1013 /*
1014  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1015  * IDs against our list and return a device name if we find a match.
1016  */
1017 static int
1018 skc_probe(device_t dev)
1019 {
1020         const struct skc_type *t;
1021         uint16_t vid, did;
1022
1023         vid = pci_get_vendor(dev);
1024         did = pci_get_device(dev);
1025
1026         /*
1027          * Only attach to rev.2 of the Linksys EG1032 adapter.
1028          * Rev.3 is supported by re(4).
1029          */
1030         if (vid == PCI_VENDOR_LINKSYS &&
1031             did == PCI_PRODUCT_LINKSYS_EG1032 &&
1032             pci_get_subdevice(dev) != SUBDEVICEID_LINKSYS_EG1032_REV2)
1033                 return ENXIO;
1034
1035         for (t = skc_devs; t->skc_name != NULL; t++) {
1036                 if (vid == t->skc_vid && did == t->skc_did) {
1037                         device_set_desc(dev, t->skc_name);
1038                         return 0;
1039                 }
1040         }
1041         return ENXIO;
1042 }
1043
1044 /*
1045  * Force the GEnesis into reset, then bring it out of reset.
1046  */
1047 static void
1048 sk_reset(struct sk_softc *sc)
1049 {
1050         DPRINTFN(2, ("sk_reset\n"));
1051
1052         CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1053         CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1054         if (SK_IS_YUKON(sc))
1055                 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1056
1057         DELAY(1000);
1058         CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1059         DELAY(2);
1060         CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1061         if (SK_IS_YUKON(sc))
1062                 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1063
1064         DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1065         DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1066                      CSR_READ_2(sc, SK_LINK_CTRL)));
1067
1068         if (SK_IS_GENESIS(sc)) {
1069                 /* Configure packet arbiter */
1070                 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1071                 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1072                 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1073                 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1074                 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1075         }
1076
1077         /* Enable RAM interface */
1078         sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1079
1080         /*
1081          * Configure interrupt moderation. The moderation timer
1082          * defers interrupts specified in the interrupt moderation
1083          * timer mask based on the timeout specified in the interrupt
1084          * moderation timer init register. Each bit in the timer
1085          * register represents one tick, so to specify a timeout in
1086          * microseconds, we have to multiply by the correct number of
1087          * ticks-per-microsecond.
1088          */
1089         KKASSERT(sc->sk_imtimer_ticks != 0 && sc->sk_imtime != 0);
1090         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc, sc->sk_imtime));
1091         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1092             SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1093         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1094 }
1095
1096 static int
1097 sk_probe(device_t dev)
1098 {
1099         struct sk_softc *sc = device_get_softc(device_get_parent(dev));
1100         const char *revstr = "", *name = NULL;
1101         char devname[80];
1102
1103         switch (sc->sk_type) {
1104         case SK_GENESIS:
1105                 name = "SysKonnect GEnesis";
1106                 break;
1107         case SK_YUKON:
1108                 name = "Marvell Yukon";
1109                 break;
1110         case SK_YUKON_LITE:
1111                 name = "Marvell Yukon Lite";
1112                 switch (sc->sk_rev) {
1113                 case SK_YUKON_LITE_REV_A0:
1114                         revstr = " rev.A0";
1115                         break;
1116                 case SK_YUKON_LITE_REV_A1:
1117                         revstr = " rev.A1";
1118                         break;
1119                 case SK_YUKON_LITE_REV_A3:
1120                         revstr = " rev.A3";
1121                         break;
1122                 }
1123                 break;
1124         case SK_YUKON_LP:
1125                 name = "Marvell Yukon LP";
1126                 break;
1127         default:
1128                 return ENXIO;
1129         }
1130
1131         ksnprintf(devname, sizeof(devname), "%s%s (0x%x)",
1132                  name, revstr, sc->sk_rev);
1133         device_set_desc_copy(dev, devname);
1134         return 0;
1135 }
1136
1137 /*
1138  * Each XMAC chip is attached as a separate logical IP interface.
1139  * Single port cards will have only one logical interface of course.
1140  */
1141 static int
1142 sk_attach(device_t dev)
1143 {
1144         struct sk_softc *sc = device_get_softc(device_get_parent(dev));
1145         struct sk_if_softc *sc_if = device_get_softc(dev);
1146         struct ifnet *ifp = &sc_if->arpcom.ac_if;
1147         int i, error;
1148
1149         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1150
1151         sc_if->sk_port = *(int *)device_get_ivars(dev);
1152         KKASSERT(sc_if->sk_port == SK_PORT_A || sc_if->sk_port == SK_PORT_B);
1153
1154         sc_if->sk_softc = sc;
1155         sc->sk_if[sc_if->sk_port] = sc_if;
1156
1157         kfree(device_get_ivars(dev), M_DEVBUF);
1158         device_set_ivars(dev, NULL);
1159
1160         if (sc_if->sk_port == SK_PORT_A)
1161                 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1162         if (sc_if->sk_port == SK_PORT_B)
1163                 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1164
1165         DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1166
1167         /*
1168          * Get station address for this interface. Note that
1169          * dual port cards actually come with three station
1170          * addresses: one for each port, plus an extra. The
1171          * extra one is used by the SysKonnect driver software
1172          * as a 'virtual' station address for when both ports
1173          * are operating in failover mode. Currently we don't
1174          * use this extra address.
1175          */
1176         for (i = 0; i < ETHER_ADDR_LEN; i++) {
1177                 /* XXX */
1178                 sc_if->arpcom.ac_enaddr[i] =
1179                     sk_win_read_1(sc, SK_MAC0_0 + (sc_if->sk_port * 8) + i);
1180         }
1181
1182         /*
1183          * Set up RAM buffer addresses. The NIC will have a certain
1184          * amount of SRAM on it, somewhere between 512K and 2MB. We
1185          * need to divide this up a) between the transmitter and
1186          * receiver and b) between the two XMACs, if this is a
1187          * dual port NIC. Our algorithm is to divide up the memory
1188          * evenly so that everyone gets a fair share.
1189          */
1190         if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1191                 uint32_t chunk, val;
1192
1193                 chunk = sc->sk_ramsize / 2;
1194                 val = sc->sk_rboff / sizeof(uint64_t);
1195                 sc_if->sk_rx_ramstart = val;
1196                 val += (chunk / sizeof(uint64_t));
1197                 sc_if->sk_rx_ramend = val - 1;
1198                 sc_if->sk_tx_ramstart = val;
1199                 val += (chunk / sizeof(uint64_t));
1200                 sc_if->sk_tx_ramend = val - 1;
1201         } else {
1202                 uint32_t chunk, val;
1203
1204                 chunk = sc->sk_ramsize / 4;
1205                 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1206                     sizeof(uint64_t);
1207                 sc_if->sk_rx_ramstart = val;
1208                 val += (chunk / sizeof(uint64_t));
1209                 sc_if->sk_rx_ramend = val - 1;
1210                 sc_if->sk_tx_ramstart = val;
1211                 val += (chunk / sizeof(uint64_t));
1212                 sc_if->sk_tx_ramend = val - 1;
1213         }
1214
1215         DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1216                      "           tx_ramstart=%#x tx_ramend=%#x\n",
1217                      sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1218                      sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1219
1220         /* Read and save PHY type */
1221         sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1222
1223         /* Set PHY address */
1224         if (SK_IS_GENESIS(sc)) {
1225                 switch (sc_if->sk_phytype) {
1226                 case SK_PHYTYPE_XMAC:
1227                         sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1228                         break;
1229                 case SK_PHYTYPE_BCOM:
1230                         sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1231                         break;
1232                 default:
1233                         device_printf(dev, "unsupported PHY type: %d\n",
1234                             sc_if->sk_phytype);
1235                         error = ENXIO;
1236                         goto fail;
1237                 }
1238         }
1239
1240         if (SK_IS_YUKON(sc)) {
1241                 if ((sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1242                     sc->sk_pmd != 'L' && sc->sk_pmd != 'S')) {
1243                         /* not initialized, punt */
1244                         sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1245                         sc->sk_coppertype = 1;
1246                 }
1247
1248                 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1249
1250                 if (!(sc->sk_coppertype))
1251                         sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1252         }
1253
1254         error = sk_dma_alloc(dev);
1255         if (error)
1256                 goto fail;
1257
1258         ifp->if_softc = sc_if;
1259         ifp->if_mtu = ETHERMTU;
1260         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1261         ifp->if_ioctl = sk_ioctl;
1262         ifp->if_start = sk_start;
1263         ifp->if_watchdog = sk_watchdog;
1264         ifp->if_init = sk_init;
1265         ifp->if_baudrate = 1000000000;
1266         ifq_set_maxlen(&ifp->if_snd, SK_TX_RING_CNT - 1);
1267         ifq_set_ready(&ifp->if_snd);
1268
1269         ifp->if_capabilities = IFCAP_VLAN_MTU;
1270
1271         /* Don't use jumbo buffers by default */
1272         sc_if->sk_use_jumbo = 0;
1273
1274         /*
1275          * Do miibus setup.
1276          */
1277         switch (sc->sk_type) {
1278         case SK_GENESIS:
1279                 sk_init_xmac(sc_if);
1280                 break;
1281         case SK_YUKON:
1282         case SK_YUKON_LITE:
1283         case SK_YUKON_LP:
1284                 sk_init_yukon(sc_if);
1285                 break;
1286         default:
1287                 device_printf(dev, "unknown device type %d\n", sc->sk_type);
1288                 error = ENXIO;
1289                 goto fail;
1290         }
1291
1292         DPRINTFN(2, ("sk_attach: 1\n"));
1293
1294         error = mii_phy_probe(dev, &sc_if->sk_miibus,
1295                               sk_ifmedia_upd, sk_ifmedia_sts);
1296         if (error) {
1297                 device_printf(dev, "no PHY found!\n");
1298                 goto fail;
1299         }
1300
1301         callout_init(&sc_if->sk_tick_timer);
1302
1303         /*
1304          * Call MI attach routines.
1305          */
1306         ether_ifattach(ifp, sc_if->arpcom.ac_enaddr, &sc->sk_serializer);
1307
1308         DPRINTFN(2, ("sk_attach: end\n"));
1309         return 0;
1310 fail:
1311         sk_detach(dev);
1312         sc->sk_if[sc_if->sk_port] = NULL;
1313         return error;
1314 }
1315
1316 /*
1317  * Attach the interface. Allocate softc structures, do ifmedia
1318  * setup and ethernet/BPF attach.
1319  */
1320 static int
1321 skc_attach(device_t dev)
1322 {
1323         struct sk_softc *sc = device_get_softc(dev);
1324         uint8_t skrs;
1325         int *port;
1326         int error, cpuid;
1327
1328         DPRINTFN(2, ("begin skc_attach\n"));
1329
1330         sc->sk_dev = dev;
1331         lwkt_serialize_init(&sc->sk_serializer);
1332
1333 #ifndef BURN_BRIDGES
1334         /*
1335          * Handle power management nonsense.
1336          */
1337         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1338                 uint32_t iobase, membase, irq;
1339
1340                 /* Save important PCI config data. */
1341                 iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1342                 membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1343                 irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1344
1345                 /* Reset the power state. */
1346                 device_printf(dev, "chip is in D%d power mode "
1347                               "-- setting to D0\n", pci_get_powerstate(dev));
1348
1349                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1350
1351                 /* Restore PCI config data. */
1352                 pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1353                 pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1354                 pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1355         }
1356 #endif  /* BURN_BRIDGES */
1357
1358         /*
1359          * Map control/status registers.
1360          */
1361         pci_enable_busmaster(dev);
1362
1363         sc->sk_res_rid = SK_PCI_LOMEM;
1364         sc->sk_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1365                                             &sc->sk_res_rid, RF_ACTIVE);
1366         if (sc->sk_res == NULL) {
1367                 device_printf(dev, "couldn't map memory\n");
1368                 error = ENXIO;
1369                 goto fail;
1370         }
1371         sc->sk_btag = rman_get_bustag(sc->sk_res);
1372         sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1373
1374         sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1375         sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1376
1377         /* Bail out here if chip is not recognized */
1378         if (!SK_IS_GENESIS(sc) && !SK_IS_YUKON(sc)) {
1379                 device_printf(dev, "unknown chip type: %d\n", sc->sk_type);
1380                 error = ENXIO;
1381                 goto fail;
1382         }
1383
1384         DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1385
1386         /* Allocate interrupt */
1387         sc->sk_irq_rid = 0;
1388         sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sk_irq_rid,
1389                                             RF_SHAREABLE | RF_ACTIVE);
1390         if (sc->sk_irq == NULL) {
1391                 device_printf(dev, "couldn't map interrupt\n");
1392                 error = ENXIO;
1393                 goto fail;
1394         }
1395
1396         switch (sc->sk_type) {
1397         case SK_GENESIS:
1398                 sc->sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1399                 break;
1400         default:
1401                 sc->sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1402                 break;
1403         }
1404         sc->sk_imtime = skc_imtime;
1405
1406         /* Reset the adapter. */
1407         sk_reset(sc);
1408
1409         skrs = sk_win_read_1(sc, SK_EPROM0);
1410         if (SK_IS_GENESIS(sc)) {
1411                 /* Read and save RAM size and RAMbuffer offset */
1412                 switch(skrs) {
1413                 case SK_RAMSIZE_512K_64:
1414                         sc->sk_ramsize = 0x80000;
1415                         sc->sk_rboff = SK_RBOFF_0;
1416                         break;
1417                 case SK_RAMSIZE_1024K_64:
1418                         sc->sk_ramsize = 0x100000;
1419                         sc->sk_rboff = SK_RBOFF_80000;
1420                         break;
1421                 case SK_RAMSIZE_1024K_128:
1422                         sc->sk_ramsize = 0x100000;
1423                         sc->sk_rboff = SK_RBOFF_0;
1424                         break;
1425                 case SK_RAMSIZE_2048K_128:
1426                         sc->sk_ramsize = 0x200000;
1427                         sc->sk_rboff = SK_RBOFF_0;
1428                         break;
1429                 default:
1430                         device_printf(dev, "unknown ram size: %d\n", skrs);
1431                         error = ENXIO;
1432                         goto fail;
1433                 }
1434         } else {
1435                 if (skrs == 0x00)
1436                         sc->sk_ramsize = 0x20000;
1437                 else
1438                         sc->sk_ramsize = skrs * (1<<12);
1439                 sc->sk_rboff = SK_RBOFF_0;
1440         }
1441
1442         DPRINTFN(2, ("skc_attach: ramsize=%d (%dk), rboff=%d\n",
1443                      sc->sk_ramsize, sc->sk_ramsize / 1024,
1444                      sc->sk_rboff));
1445
1446         /* Read and save physical media type */
1447         sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1448
1449         if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1450                 sc->sk_coppertype = 1;
1451         else
1452                 sc->sk_coppertype = 0;
1453
1454         /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1455         if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1456                 uint32_t flashaddr;
1457                 uint8_t testbyte;
1458
1459                 flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
1460
1461                 /* Test Flash-Address Register */
1462                 sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
1463                 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1464
1465                 if (testbyte != 0) {
1466                         /* This is a Yukon Lite Rev A0 */
1467                         sc->sk_type = SK_YUKON_LITE;
1468                         sc->sk_rev = SK_YUKON_LITE_REV_A0;
1469                         /* Restore Flash-Address Register */
1470                         sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
1471                 }
1472         }
1473
1474         /*
1475          * Create sysctl nodes.
1476          */
1477         sysctl_ctx_init(&sc->sk_sysctl_ctx);
1478         sc->sk_sysctl_tree = SYSCTL_ADD_NODE(&sc->sk_sysctl_ctx,
1479                                              SYSCTL_STATIC_CHILDREN(_hw),
1480                                              OID_AUTO,
1481                                              device_get_nameunit(dev),
1482                                              CTLFLAG_RD, 0, "");
1483         if (sc->sk_sysctl_tree == NULL) {
1484                 device_printf(dev, "can't add sysctl node\n");
1485                 error = ENXIO;
1486                 goto fail;
1487         }
1488         SYSCTL_ADD_PROC(&sc->sk_sysctl_ctx,
1489                         SYSCTL_CHILDREN(sc->sk_sysctl_tree),
1490                         OID_AUTO, "imtime", CTLTYPE_INT | CTLFLAG_RW,
1491                         sc, 0, skc_sysctl_imtime, "I",
1492                         "Interrupt moderation time (usec).");
1493
1494         sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1495         port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1496         *port = SK_PORT_A;
1497         device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1498
1499         if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1500                 sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1501                 port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1502                 *port = SK_PORT_B;
1503                 device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1504         }
1505
1506         /* Turn on the 'driver is loaded' LED. */
1507         CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1508
1509         bus_generic_attach(dev);
1510
1511         error = bus_setup_intr(dev, sc->sk_irq, INTR_MPSAFE, sk_intr, sc,
1512                                &sc->sk_intrhand, &sc->sk_serializer);
1513         if (error) {
1514                 device_printf(dev, "couldn't set up irq\n");
1515                 goto fail;
1516         }
1517
1518         cpuid = ithread_cpuid(rman_get_start(sc->sk_irq));
1519         KKASSERT(cpuid >= 0 && cpuid < ncpus);
1520
1521         if (sc->sk_if[0] != NULL)
1522                 sc->sk_if[0]->arpcom.ac_if.if_cpuid = cpuid;
1523         if (sc->sk_if[1] != NULL)
1524                 sc->sk_if[1]->arpcom.ac_if.if_cpuid = cpuid;
1525
1526         return 0;
1527 fail:
1528         skc_detach(dev);
1529         return error;
1530 }
1531
1532 static int
1533 sk_detach(device_t dev)
1534 {
1535         struct sk_if_softc *sc_if = device_get_softc(dev);
1536
1537         if (device_is_attached(dev)) {
1538                 struct sk_softc *sc = sc_if->sk_softc;
1539                 struct ifnet *ifp = &sc_if->arpcom.ac_if;
1540
1541                 lwkt_serialize_enter(ifp->if_serializer);
1542
1543                 if (sc->sk_intrhand != NULL) {
1544                         if (sc->sk_if[SK_PORT_A] != NULL)
1545                                 sk_stop(sc->sk_if[SK_PORT_A]);
1546                         if (sc->sk_if[SK_PORT_B] != NULL)
1547                                 sk_stop(sc->sk_if[SK_PORT_B]);
1548
1549                         bus_teardown_intr(sc->sk_dev, sc->sk_irq,
1550                                           sc->sk_intrhand);
1551                         sc->sk_intrhand = NULL;
1552                 }
1553
1554                 lwkt_serialize_exit(ifp->if_serializer);
1555
1556                 ether_ifdetach(ifp);
1557         }
1558
1559         if (sc_if->sk_miibus != NULL)
1560                 device_delete_child(dev, sc_if->sk_miibus);
1561
1562         sk_dma_free(dev);
1563         return 0;
1564 }
1565
1566 static int
1567 skc_detach(device_t dev)
1568 {
1569         struct sk_softc *sc = device_get_softc(dev);
1570         int *port;
1571
1572 #ifdef INVARIANTS
1573         if (device_is_attached(dev)) {
1574                 KASSERT(sc->sk_intrhand == NULL,
1575                         ("intr has not been torn down yet"));
1576         }
1577 #endif
1578
1579         if (sc->sk_devs[SK_PORT_A] != NULL) {
1580                 port = device_get_ivars(sc->sk_devs[SK_PORT_A]);
1581                 if (port != NULL) {
1582                         kfree(port, M_DEVBUF);
1583                         device_set_ivars(sc->sk_devs[SK_PORT_A], NULL);
1584                 }
1585                 device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1586         }
1587         if (sc->sk_devs[SK_PORT_B] != NULL) {
1588                 port = device_get_ivars(sc->sk_devs[SK_PORT_B]);
1589                 if (port != NULL) {
1590                         kfree(port, M_DEVBUF);
1591                         device_set_ivars(sc->sk_devs[SK_PORT_B], NULL);
1592                 }
1593                 device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1594         }
1595
1596         if (sc->sk_irq != NULL) {
1597                 bus_release_resource(dev, SYS_RES_IRQ, sc->sk_irq_rid,
1598                                      sc->sk_irq);
1599         }
1600         if (sc->sk_res != NULL) {
1601                 bus_release_resource(dev, SYS_RES_MEMORY, sc->sk_res_rid,
1602                                      sc->sk_res);
1603         }
1604
1605         if (sc->sk_sysctl_tree != NULL)
1606                 sysctl_ctx_free(&sc->sk_sysctl_ctx);
1607
1608         return 0;
1609 }
1610
1611 static int
1612 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1613 {
1614         struct sk_chain_data *cd = &sc_if->sk_cdata;
1615         struct sk_ring_data *rd = sc_if->sk_rdata;
1616         struct sk_tx_desc *f = NULL;
1617         uint32_t frag, cur, sk_ctl;
1618         struct sk_dma_ctx ctx;
1619         bus_dma_segment_t segs[SK_NTXSEG];
1620         bus_dmamap_t map;
1621         int i, error;
1622
1623         DPRINTFN(2, ("sk_encap\n"));
1624
1625         cur = frag = *txidx;
1626
1627 #ifdef SK_DEBUG
1628         if (skdebug >= 2)
1629                 sk_dump_mbuf(m_head);
1630 #endif
1631
1632         map = cd->sk_tx_dmap[*txidx];
1633
1634         /*
1635          * Start packing the mbufs in this chain into
1636          * the fragment pointers. Stop when we run out
1637          * of fragments or hit the end of the mbuf chain.
1638          */
1639         ctx.nsegs = SK_NTXSEG;
1640         ctx.segs = segs;
1641         error = bus_dmamap_load_mbuf(cd->sk_tx_dtag, map, m_head,
1642                                      sk_buf_dma_addr, &ctx, BUS_DMA_NOWAIT);
1643         if (error) {
1644                 if_printf(&sc_if->arpcom.ac_if, "could not map TX mbuf\n");
1645                 return ENOBUFS;
1646         }
1647
1648         if ((SK_TX_RING_CNT - (cd->sk_tx_cnt + ctx.nsegs)) < 2) {
1649                 bus_dmamap_unload(cd->sk_tx_dtag, map);
1650                 DPRINTFN(2, ("sk_encap: too few descriptors free\n"));
1651                 return ENOBUFS;
1652         }
1653
1654         DPRINTFN(2, ("sk_encap: nsegs=%d\n", ctx.nsegs));
1655
1656         /* Sync the DMA map. */
1657         bus_dmamap_sync(cd->sk_tx_dtag, map, BUS_DMASYNC_PREWRITE);
1658
1659         for (i = 0; i < ctx.nsegs; i++) {
1660                 f = &rd->sk_tx_ring[frag];
1661                 f->sk_data_lo = htole32(segs[i].ds_addr);
1662                 sk_ctl = segs[i].ds_len | SK_OPCODE_DEFAULT;
1663                 if (i == 0)
1664                         sk_ctl |= SK_TXCTL_FIRSTFRAG;
1665                 else
1666                         sk_ctl |= SK_TXCTL_OWN;
1667                 f->sk_ctl = htole32(sk_ctl);
1668                 cur = frag;
1669                 SK_INC(frag, SK_TX_RING_CNT);
1670         }
1671
1672         cd->sk_tx_mbuf[cur] = m_head;
1673         /* Switch DMA map */
1674         cd->sk_tx_dmap[*txidx] = cd->sk_tx_dmap[cur];
1675         cd->sk_tx_dmap[cur] = map;
1676
1677         rd->sk_tx_ring[cur].sk_ctl |=
1678                 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1679         rd->sk_tx_ring[*txidx].sk_ctl |= htole32(SK_TXCTL_OWN);
1680
1681         /* Sync first descriptor to hand it off */
1682         bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
1683                         BUS_DMASYNC_PREWRITE);
1684
1685         sc_if->sk_cdata.sk_tx_cnt += ctx.nsegs;
1686
1687 #ifdef SK_DEBUG
1688         if (skdebug >= 2) {
1689                 struct sk_tx_desc *desc;
1690                 uint32_t idx;
1691
1692                 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1693                         desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1694                         sk_dump_txdesc(desc, idx);
1695                 }
1696         }
1697 #endif
1698
1699         *txidx = frag;
1700
1701         DPRINTFN(2, ("sk_encap: completed successfully\n"));
1702
1703         return (0);
1704 }
1705
1706 static void
1707 sk_start(struct ifnet *ifp)
1708 {
1709         struct sk_if_softc *sc_if = ifp->if_softc;
1710         struct sk_softc *sc = sc_if->sk_softc;
1711         struct mbuf *m_head = NULL;
1712         uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1713         int pkts = 0;
1714
1715         DPRINTFN(2, ("sk_start\n"));
1716
1717         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1718                 return;
1719
1720         while (sc_if->sk_cdata.sk_tx_mbuf[idx] == NULL) {
1721                 if ((SK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt) <= 2) {
1722                         ifp->if_flags |= IFF_OACTIVE;
1723                         break;
1724                 }
1725
1726                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
1727                 if (m_head == NULL)
1728                         break;
1729
1730                 /*
1731                  * Pack the data into the transmit ring. If we
1732                  * don't have room, set the OACTIVE flag and wait
1733                  * for the NIC to drain the ring.
1734                  */
1735                 if (sk_encap(sc_if, m_head, &idx)) {
1736                         ifp->if_flags |= IFF_OACTIVE;
1737                         ifq_prepend(&ifp->if_snd, m_head);
1738                         break;
1739                 }
1740
1741                 pkts++;
1742                 BPF_MTAP(ifp, m_head);
1743         }
1744         if (pkts == 0)
1745                 return;
1746
1747         /* Transmit */
1748         if (idx != sc_if->sk_cdata.sk_tx_prod) {
1749                 sc_if->sk_cdata.sk_tx_prod = idx;
1750                 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1751
1752                 /* Set a timeout in case the chip goes out to lunch. */
1753                 ifp->if_timer = 5;
1754         }
1755 }
1756
1757 static void
1758 sk_watchdog(struct ifnet *ifp)
1759 {
1760         struct sk_if_softc *sc_if = ifp->if_softc;
1761
1762         ASSERT_SERIALIZED(ifp->if_serializer);
1763         /*
1764          * Reclaim first as there is a possibility of losing Tx completion
1765          * interrupts.
1766          */
1767         sk_txeof(sc_if);
1768         if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1769                 if_printf(&sc_if->arpcom.ac_if, "watchdog timeout\n");
1770                 ifp->if_oerrors++;
1771                 ifp->if_flags &= ~IFF_RUNNING;
1772                 sk_init(sc_if);
1773         }
1774 }
1775
1776 static void
1777 skc_shutdown(device_t dev)
1778 {
1779         struct sk_softc *sc = device_get_softc(dev);
1780
1781         DPRINTFN(2, ("sk_shutdown\n"));
1782
1783         lwkt_serialize_enter(&sc->sk_serializer);
1784
1785         /* Turn off the 'driver is loaded' LED. */
1786         CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1787
1788         /*
1789          * Reset the GEnesis controller. Doing this should also
1790          * assert the resets on the attached XMAC(s).
1791          */
1792         sk_reset(sc);
1793
1794         lwkt_serialize_exit(&sc->sk_serializer);
1795 }
1796
1797 static __inline int
1798 sk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
1799 {
1800         if (sc->sk_type == SK_GENESIS) {
1801                 if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
1802                     XM_RXSTAT_BYTES(stat) != len)
1803                         return (0);
1804         } else {
1805                 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1806                     YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1807                     YU_RXSTAT_JABBER)) != 0 ||
1808                     (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1809                     YU_RXSTAT_BYTES(stat) != len)
1810                         return (0);
1811         }
1812
1813         return (1);
1814 }
1815
1816 static void
1817 sk_rxeof(struct sk_if_softc *sc_if)
1818 {
1819         struct sk_softc *sc = sc_if->sk_softc;
1820         struct ifnet *ifp = &sc_if->arpcom.ac_if;
1821         struct sk_chain_data *cd = &sc_if->sk_cdata;
1822         struct sk_ring_data *rd = sc_if->sk_rdata;
1823         int i, reap, max_frmlen;
1824
1825         DPRINTFN(2, ("sk_rxeof\n"));
1826
1827         i = cd->sk_rx_prod;
1828
1829         bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
1830                         BUS_DMASYNC_POSTREAD);
1831         if (sc_if->sk_use_jumbo) {
1832                 bus_dmamap_sync(cd->sk_jpool_dtag, cd->sk_jpool_dmap,
1833                                 BUS_DMASYNC_POSTREAD);
1834                 max_frmlen = SK_JUMBO_FRAMELEN;
1835         } else {
1836                 max_frmlen = ETHER_MAX_LEN;
1837         }
1838
1839         reap = 0;
1840         for (;;) {
1841                 struct sk_rx_desc *cur_desc;
1842                 uint32_t rxstat, sk_ctl;
1843 #ifdef SK_RXCSUM
1844                 uint16_t csum1, csum2;
1845 #endif
1846                 int cur, total_len;
1847                 struct mbuf *m;
1848
1849                 cur = i;
1850                 cur_desc = &rd->sk_rx_ring[cur];
1851
1852                 sk_ctl = le32toh(cur_desc->sk_ctl);
1853                 if (sk_ctl & SK_RXCTL_OWN) {
1854                         /* Invalidate the descriptor -- it's not ready yet */
1855                         cd->sk_rx_prod = cur;
1856                         break;
1857                 }
1858
1859                 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
1860                 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
1861
1862 #ifdef SK_RXCSUM
1863                 csum1 = le16toh(cur_desc->sk_csum1);
1864                 csum2 = le16toh(cur_desc->sk_csum2);
1865 #endif
1866
1867                 m = cd->sk_rx_mbuf[cur];
1868
1869                 /*
1870                  * Bump 'i' here, so we can keep going, even if the current
1871                  * RX descriptor reaping fails later.  'i' shoult NOT be used
1872                  * in the following processing any more.
1873                  */
1874                 SK_INC(i, SK_RX_RING_CNT);
1875                 reap = 1;
1876
1877                 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
1878                     SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
1879                     SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
1880                     total_len < SK_MIN_FRAMELEN || total_len > max_frmlen ||
1881                     sk_rxvalid(sc, rxstat, total_len) == 0) {
1882                         ifp->if_ierrors++;
1883                         cur_desc->sk_ctl = htole32(m->m_pkthdr.len | SK_RXSTAT);
1884                         continue;
1885                 }
1886
1887                 if (!sc_if->sk_use_jumbo) {
1888                         bus_dmamap_sync(cd->sk_rx_dtag, cd->sk_rx_dmap[cur],
1889                                         BUS_DMASYNC_POSTREAD);
1890                 }
1891
1892                 /*
1893                  * Try to allocate a new RX buffer. If that fails,
1894                  * copy the packet to mbufs and put the RX buffer
1895                  * back in the ring so it can be re-used. If
1896                  * allocating mbufs fails, then we have to drop
1897                  * the packet.
1898                  */
1899                 if (sk_newbuf(sc_if, cur, 0)) {
1900                         struct mbuf *m0;
1901
1902                         cur_desc->sk_ctl = htole32(m->m_pkthdr.len | SK_RXSTAT);
1903
1904                         m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1905                             total_len + ETHER_ALIGN, 0, ifp, NULL);
1906                         if (m0 == NULL) {
1907                                 ifp->if_ierrors++;
1908                                 continue;
1909                         }
1910                         m_adj(m0, ETHER_ALIGN);
1911                         m = m0;
1912                 } else {
1913                         m->m_pkthdr.rcvif = ifp;
1914                         m->m_pkthdr.len = m->m_len = total_len;
1915                 }
1916
1917 #ifdef SK_RXCSUM
1918                 sk_rxcsum(ifp, m, csum1, csum2);
1919 #endif
1920
1921                 ifp->if_ipackets++;
1922                 ifp->if_input(ifp, m);
1923         }
1924
1925         if (reap) {
1926                 bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
1927                                 BUS_DMASYNC_PREWRITE);
1928         }
1929 }
1930
1931 #ifdef SK_RXCSUM
1932 static void
1933 sk_rxcsum(struct ifnet *ifp, struct mbuf *m,
1934           const uint16_t csum1, const uint16_t csum2)
1935 {
1936         struct ether_header *eh;
1937         struct ip *ip;
1938         uint8_t *pp;
1939         int hlen, len, plen;
1940         uint16_t iph_csum, ipo_csum, ipd_csum, csum;
1941
1942         pp = mtod(m, uint8_t *);
1943         plen = m->m_pkthdr.len;
1944         if (plen < sizeof(*eh))
1945                 return;
1946         eh = (struct ether_header *)pp;
1947         iph_csum = in_addword(csum1, (~csum2 & 0xffff));
1948
1949         if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1950                 uint16_t *xp = (uint16_t *)pp;
1951
1952                 xp = (uint16_t *)pp;
1953                 if (xp[1] != htons(ETHERTYPE_IP))
1954                         return;
1955                 iph_csum = in_addword(iph_csum, (~xp[0] & 0xffff));
1956                 iph_csum = in_addword(iph_csum, (~xp[1] & 0xffff));
1957                 xp = (uint16_t *)(pp + sizeof(struct ip));
1958                 iph_csum = in_addword(iph_csum, xp[0]);
1959                 iph_csum = in_addword(iph_csum, xp[1]);
1960                 pp += EVL_ENCAPLEN;
1961         } else if (eh->ether_type != htons(ETHERTYPE_IP)) {
1962                 return;
1963         }
1964
1965         pp += sizeof(*eh);
1966         plen -= sizeof(*eh);
1967
1968         ip = (struct ip *)pp;
1969
1970         if (ip->ip_v != IPVERSION)
1971                 return;
1972
1973         hlen = ip->ip_hl << 2;
1974         if (hlen < sizeof(struct ip))
1975                 return;
1976         if (hlen > ntohs(ip->ip_len))
1977                 return;
1978
1979         /* Don't deal with truncated or padded packets. */
1980         if (plen != ntohs(ip->ip_len))
1981                 return;
1982
1983         len = hlen - sizeof(struct ip);
1984         if (len > 0) {
1985                 uint16_t *p;
1986
1987                 p = (uint16_t *)(ip + 1);
1988                 ipo_csum = 0;
1989                 for (ipo_csum = 0; len > 0; len -= sizeof(*p), p++)
1990                         ipo_csum = in_addword(ipo_csum, *p);
1991                 iph_csum = in_addword(iph_csum, ipo_csum);
1992                 ipd_csum = in_addword(csum2, (~ipo_csum & 0xffff));
1993         } else {
1994                 ipd_csum = csum2;
1995         }
1996
1997         if (iph_csum != 0xffff)
1998                 return;
1999         m->m_pkthdr.csum_flags = CSUM_IP_CHECKED | CSUM_IP_VALID;
2000
2001         if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
2002                 return;                 /* ip frag, we're done for now */
2003
2004         pp += hlen;
2005
2006         /* Only know checksum protocol for udp/tcp */
2007         if (ip->ip_p == IPPROTO_UDP) {
2008                 struct udphdr *uh = (struct udphdr *)pp;
2009
2010                 if (uh->uh_sum == 0)    /* udp with no checksum */
2011                         return;
2012         } else if (ip->ip_p != IPPROTO_TCP) {
2013                 return;
2014         }
2015
2016         csum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2017             htonl(ntohs(ip->ip_len) - hlen + ip->ip_p) + ipd_csum);
2018         if (csum == 0xffff) {
2019                 m->m_pkthdr.csum_data = csum;
2020                 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
2021         }
2022 }
2023 #endif
2024
2025 static void
2026 sk_txeof(struct sk_if_softc *sc_if)
2027 {
2028         struct sk_chain_data *cd = &sc_if->sk_cdata;
2029         struct ifnet *ifp = &sc_if->arpcom.ac_if;
2030         uint32_t idx;
2031         int reap = 0;
2032
2033         DPRINTFN(2, ("sk_txeof\n"));
2034
2035         bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
2036                         BUS_DMASYNC_POSTREAD);
2037
2038         /*
2039          * Go through our tx ring and free mbufs for those
2040          * frames that have been sent.
2041          */
2042         idx = cd->sk_tx_cons;
2043         while (idx != cd->sk_tx_prod) {
2044                 struct sk_tx_desc *cur_tx;
2045                 uint32_t sk_ctl;
2046
2047                 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2048                 sk_ctl = le32toh(cur_tx->sk_ctl);
2049 #ifdef SK_DEBUG
2050                 if (skdebug >= 2)
2051                         sk_dump_txdesc(cur_tx, idx);
2052 #endif
2053                 if (sk_ctl & SK_TXCTL_OWN)
2054                         break;
2055                 if (sk_ctl & SK_TXCTL_LASTFRAG)
2056                         ifp->if_opackets++;
2057                 if (cd->sk_tx_mbuf[idx] != NULL) {
2058                         bus_dmamap_unload(cd->sk_tx_dtag, cd->sk_tx_dmap[idx]);
2059                         m_freem(cd->sk_tx_mbuf[idx]);
2060                         cd->sk_tx_mbuf[idx] = NULL;
2061                 }
2062                 sc_if->sk_cdata.sk_tx_cnt--;
2063                 reap = 1;
2064                 SK_INC(idx, SK_TX_RING_CNT);
2065         }
2066         ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2067
2068         if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2069                 ifp->if_flags &= ~IFF_OACTIVE;
2070
2071         sc_if->sk_cdata.sk_tx_cons = idx;
2072
2073         if (reap) {
2074                 bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
2075                                 BUS_DMASYNC_PREWRITE);
2076         }
2077 }
2078
2079 static void
2080 sk_tick(void *xsc_if)
2081 {
2082         struct sk_if_softc *sc_if = xsc_if;
2083         struct ifnet *ifp = &sc_if->arpcom.ac_if;
2084         struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2085         int i;
2086
2087         DPRINTFN(2, ("sk_tick\n"));
2088
2089         lwkt_serialize_enter(ifp->if_serializer);
2090
2091         if ((ifp->if_flags & IFF_UP) == 0) {
2092                 lwkt_serialize_exit(ifp->if_serializer);
2093                 return;
2094         }
2095
2096         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2097                 sk_intr_bcom(sc_if);
2098                 lwkt_serialize_exit(ifp->if_serializer);
2099                 return;
2100         }
2101
2102         /*
2103          * According to SysKonnect, the correct way to verify that
2104          * the link has come back up is to poll bit 0 of the GPIO
2105          * register three times. This pin has the signal from the
2106          * link sync pin connected to it; if we read the same link
2107          * state 3 times in a row, we know the link is up.
2108          */
2109         for (i = 0; i < 3; i++) {
2110                 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2111                         break;
2112         }
2113
2114         if (i != 3) {
2115                 callout_reset(&sc_if->sk_tick_timer, hz, sk_tick, sc_if);
2116                 lwkt_serialize_exit(ifp->if_serializer);
2117                 return;
2118         }
2119
2120         /* Turn the GP0 interrupt back on. */
2121         SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2122         SK_XM_READ_2(sc_if, XM_ISR);
2123         mii_tick(mii);
2124         callout_stop(&sc_if->sk_tick_timer);
2125         lwkt_serialize_exit(ifp->if_serializer);
2126 }
2127
2128 static void
2129 sk_yukon_tick(void *xsc_if)
2130 {
2131         struct sk_if_softc *sc_if = xsc_if;  
2132         struct ifnet *ifp = &sc_if->arpcom.ac_if;
2133         struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2134
2135         lwkt_serialize_enter(ifp->if_serializer);
2136         mii_tick(mii);
2137         callout_reset(&sc_if->sk_tick_timer, hz, sk_yukon_tick, sc_if);
2138         lwkt_serialize_exit(ifp->if_serializer);
2139 }
2140
2141 static void
2142 sk_intr_bcom(struct sk_if_softc *sc_if)
2143 {
2144         struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2145         struct ifnet *ifp = &sc_if->arpcom.ac_if;
2146         int status;
2147
2148         DPRINTFN(2, ("sk_intr_bcom\n"));
2149
2150         SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2151
2152         /*
2153          * Read the PHY interrupt register to make sure
2154          * we clear any pending interrupts.
2155          */
2156         status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2157
2158         if ((ifp->if_flags & IFF_RUNNING) == 0) {
2159                 sk_init_xmac(sc_if);
2160                 return;
2161         }
2162
2163         if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2164                 int lstat;
2165
2166                 lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2167                     BRGPHY_MII_AUXSTS);
2168
2169                 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2170                         mii_mediachg(mii);
2171                         /* Turn off the link LED. */
2172                         SK_IF_WRITE_1(sc_if, 0,
2173                             SK_LINKLED1_CTL, SK_LINKLED_OFF);
2174                         sc_if->sk_link = 0;
2175                 } else if (status & BRGPHY_ISR_LNK_CHG) {
2176                         sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2177                             BRGPHY_MII_IMR, 0xFF00);
2178                         mii_tick(mii);
2179                         sc_if->sk_link = 1;
2180                         /* Turn on the link LED. */
2181                         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2182                             SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2183                             SK_LINKLED_BLINK_OFF);
2184                 } else {
2185                         mii_tick(mii);
2186                         callout_reset(&sc_if->sk_tick_timer, hz,
2187                                       sk_tick, sc_if);
2188                 }
2189         }
2190
2191         SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2192 }
2193
2194 static void
2195 sk_intr_xmac(struct sk_if_softc *sc_if)
2196 {
2197         uint16_t status;
2198
2199         status = SK_XM_READ_2(sc_if, XM_ISR);
2200         DPRINTFN(2, ("sk_intr_xmac\n"));
2201
2202         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC &&
2203             (status & (XM_ISR_GP0_SET | XM_ISR_AUTONEG_DONE))) {
2204                 if (status & XM_ISR_GP0_SET)
2205                         SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2206
2207                 callout_reset(&sc_if->sk_tick_timer, hz,
2208                               sk_tick, sc_if);
2209         }
2210
2211         if (status & XM_IMR_TX_UNDERRUN)
2212                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2213
2214         if (status & XM_IMR_RX_OVERRUN)
2215                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2216 }
2217
2218 static void
2219 sk_intr_yukon(struct sk_if_softc *sc_if)
2220 {
2221         uint8_t status;
2222
2223         status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2224         /* RX overrun */
2225         if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2226                 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2227                     SK_RFCTL_RX_FIFO_OVER);
2228         }
2229         /* TX underrun */
2230         if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2231                 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2232                     SK_TFCTL_TX_FIFO_UNDER);
2233         }
2234
2235         DPRINTFN(2, ("sk_intr_yukon status=%#x\n", status));
2236 }
2237
2238 static void
2239 sk_intr(void *xsc)
2240 {
2241         struct sk_softc *sc = xsc;
2242         struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2243         struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2244         struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2245         uint32_t status;
2246
2247         ASSERT_SERIALIZED(&sc->sk_serializer);
2248
2249         status = CSR_READ_4(sc, SK_ISSR);
2250         if (status == 0 || status == 0xffffffff)
2251                 return;
2252
2253         if (sc_if0 != NULL)
2254                 ifp0 = &sc_if0->arpcom.ac_if;
2255         if (sc_if1 != NULL)
2256                 ifp1 = &sc_if1->arpcom.ac_if;
2257
2258         for (; (status &= sc->sk_intrmask) != 0;) {
2259                 /* Handle receive interrupts first. */
2260                 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2261                         sk_rxeof(sc_if0);
2262                         CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2263                             SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2264                 }
2265                 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2266                         sk_rxeof(sc_if1);
2267                         CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2268                             SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2269                 }
2270
2271                 /* Then transmit interrupts. */
2272                 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2273                         sk_txeof(sc_if0);
2274                         CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2275                             SK_TXBMU_CLR_IRQ_EOF);
2276                 }
2277                 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2278                         sk_txeof(sc_if1);
2279                         CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2280                             SK_TXBMU_CLR_IRQ_EOF);
2281                 }
2282
2283                 /* Then MAC interrupts. */
2284                 if (sc_if0 && (status & SK_ISR_MAC1) &&
2285                     (ifp0->if_flags & IFF_RUNNING)) {
2286                         if (SK_IS_GENESIS(sc))
2287                                 sk_intr_xmac(sc_if0);
2288                         else
2289                                 sk_intr_yukon(sc_if0);
2290                 }
2291
2292                 if (sc_if1 && (status & SK_ISR_MAC2) &&
2293                     (ifp1->if_flags & IFF_RUNNING)) {
2294                         if (SK_IS_GENESIS(sc))
2295                                 sk_intr_xmac(sc_if1);
2296                         else
2297                                 sk_intr_yukon(sc_if1);
2298                 }
2299
2300                 if (status & SK_ISR_EXTERNAL_REG) {
2301                         if (sc_if0 != NULL &&
2302                             sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2303                                 sk_intr_bcom(sc_if0);
2304
2305                         if (sc_if1 != NULL &&
2306                             sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2307                                 sk_intr_bcom(sc_if1);
2308                 }
2309                 status = CSR_READ_4(sc, SK_ISSR);
2310         }
2311
2312         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2313
2314         if (ifp0 != NULL && !ifq_is_empty(&ifp0->if_snd))
2315                 if_devstart(ifp0);
2316         if (ifp1 != NULL && !ifq_is_empty(&ifp1->if_snd))
2317                 if_devstart(ifp1);
2318 }
2319
2320 static void
2321 sk_init_xmac(struct sk_if_softc *sc_if)
2322 {
2323         struct sk_softc *sc = sc_if->sk_softc;
2324         struct ifnet *ifp = &sc_if->arpcom.ac_if;
2325         static const struct sk_bcom_hack bhack[] = {
2326         { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2327         { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2328         { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2329         { 0, 0 } };
2330
2331         DPRINTFN(2, ("sk_init_xmac\n"));
2332
2333         /* Unreset the XMAC. */
2334         SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2335         DELAY(1000);
2336
2337         /* Reset the XMAC's internal state. */
2338         SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2339
2340         /* Save the XMAC II revision */
2341         sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2342
2343         /*
2344          * Perform additional initialization for external PHYs,
2345          * namely for the 1000baseT cards that use the XMAC's
2346          * GMII mode.
2347          */
2348         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2349                 int i = 0;
2350                 uint32_t val;
2351
2352                 /* Take PHY out of reset. */
2353                 val = sk_win_read_4(sc, SK_GPIO);
2354                 if (sc_if->sk_port == SK_PORT_A)
2355                         val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2356                 else
2357                         val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2358                 sk_win_write_4(sc, SK_GPIO, val);
2359
2360                 /* Enable GMII mode on the XMAC. */
2361                 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2362
2363                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2364                     BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2365                 DELAY(10000);
2366                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2367                     BRGPHY_MII_IMR, 0xFFF0);
2368
2369                 /*
2370                  * Early versions of the BCM5400 apparently have
2371                  * a bug that requires them to have their reserved
2372                  * registers initialized to some magic values. I don't
2373                  * know what the numbers do, I'm just the messenger.
2374                  */
2375                 if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2376                     == 0x6041) {
2377                         while(bhack[i].reg) {
2378                                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2379                                     bhack[i].reg, bhack[i].val);
2380                                 i++;
2381                         }
2382                 }
2383         }
2384
2385         /* Set station address */
2386         SK_XM_WRITE_2(sc_if, XM_PAR0,
2387             *(uint16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2388         SK_XM_WRITE_2(sc_if, XM_PAR1,
2389             *(uint16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2390         SK_XM_WRITE_2(sc_if, XM_PAR2,
2391             *(uint16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2392         SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2393
2394         if (ifp->if_flags & IFF_BROADCAST)
2395                 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2396         else
2397                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2398
2399         /* We don't need the FCS appended to the packet. */
2400         SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2401
2402         /* We want short frames padded to 60 bytes. */
2403         SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2404
2405         /*
2406          * Enable the reception of all error frames. This is
2407          * a necessary evil due to the design of the XMAC. The
2408          * XMAC's receive FIFO is only 8K in size, however jumbo
2409          * frames can be up to 9000 bytes in length. When bad
2410          * frame filtering is enabled, the XMAC's RX FIFO operates
2411          * in 'store and forward' mode. For this to work, the
2412          * entire frame has to fit into the FIFO, but that means
2413          * that jumbo frames larger than 8192 bytes will be
2414          * truncated. Disabling all bad frame filtering causes
2415          * the RX FIFO to operate in streaming mode, in which
2416          * case the XMAC will start transfering frames out of the
2417          * RX FIFO as soon as the FIFO threshold is reached.
2418          */
2419         if (sc_if->sk_use_jumbo) {
2420                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2421                     XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2422                     XM_MODE_RX_INRANGELEN);
2423         }
2424
2425         SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2426
2427         /*
2428          * Bump up the transmit threshold. This helps hold off transmit
2429          * underruns when we're blasting traffic from both ports at once.
2430          */
2431         SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2432
2433         /* Set promiscuous mode */
2434         sk_setpromisc(sc_if);
2435
2436         /* Set multicast filter */
2437         sk_setmulti(sc_if);
2438
2439         /* Clear and enable interrupts */
2440         SK_XM_READ_2(sc_if, XM_ISR);
2441         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2442                 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2443         else
2444                 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2445
2446         /* Configure MAC arbiter */
2447         switch(sc_if->sk_xmac_rev) {
2448         case XM_XMAC_REV_B2:
2449                 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2450                 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2451                 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2452                 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2453                 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2454                 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2455                 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2456                 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2457                 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2458                 break;
2459         case XM_XMAC_REV_C1:
2460                 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2461                 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2462                 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2463                 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2464                 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2465                 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2466                 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2467                 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2468                 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2469                 break;
2470         default:
2471                 break;
2472         }
2473         sk_win_write_2(sc, SK_MACARB_CTL,
2474             SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2475
2476         sc_if->sk_link = 1;
2477 }
2478
2479 static void
2480 sk_init_yukon(struct sk_if_softc *sc_if)
2481 {
2482         uint32_t phy, v;
2483         uint16_t reg;
2484         struct sk_softc *sc;
2485         int i;
2486
2487         sc = sc_if->sk_softc;
2488
2489         DPRINTFN(2, ("sk_init_yukon: start: sk_csr=%#x\n",
2490                      CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2491
2492         if (sc->sk_type == SK_YUKON_LITE &&
2493             sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2494                 /*
2495                  * Workaround code for COMA mode, set PHY reset.
2496                  * Otherwise it will not correctly take chip out of
2497                  * powerdown (coma)
2498                  */
2499                 v = sk_win_read_4(sc, SK_GPIO);
2500                 v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
2501                 sk_win_write_4(sc, SK_GPIO, v);
2502         }
2503
2504         DPRINTFN(6, ("sk_init_yukon: 1\n"));
2505
2506         /* GMAC and GPHY Reset */
2507         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2508         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2509         DELAY(1000);
2510
2511         DPRINTFN(6, ("sk_init_yukon: 2\n"));
2512
2513         if (sc->sk_type == SK_YUKON_LITE &&
2514             sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2515                 /*
2516                  * Workaround code for COMA mode, clear PHY reset
2517                  */
2518                 v = sk_win_read_4(sc, SK_GPIO);
2519                 v |= SK_GPIO_DIR9;
2520                 v &= ~SK_GPIO_DAT9;
2521                 sk_win_write_4(sc, SK_GPIO, v);
2522         }
2523
2524         phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2525                 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2526
2527         if (sc->sk_coppertype)
2528                 phy |= SK_GPHY_COPPER;
2529         else
2530                 phy |= SK_GPHY_FIBER;
2531
2532         DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2533
2534         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2535         DELAY(1000);
2536         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2537         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2538                       SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2539
2540         DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2541                      SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2542
2543         DPRINTFN(6, ("sk_init_yukon: 3\n"));
2544
2545         /* unused read of the interrupt source register */
2546         DPRINTFN(6, ("sk_init_yukon: 4\n"));
2547         SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2548
2549         DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2550         reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2551         DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2552
2553         /* MIB Counter Clear Mode set */
2554         reg |= YU_PAR_MIB_CLR;
2555         DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2556         DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2557         SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2558
2559         /* MIB Counter Clear Mode clear */
2560         DPRINTFN(6, ("sk_init_yukon: 5\n"));
2561         reg &= ~YU_PAR_MIB_CLR;
2562         SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2563
2564         /* receive control reg */
2565         DPRINTFN(6, ("sk_init_yukon: 7\n"));
2566         SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2567
2568         /* transmit parameter register */
2569         DPRINTFN(6, ("sk_init_yukon: 8\n"));
2570         SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2571                       YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2572
2573         /* serial mode register */
2574         DPRINTFN(6, ("sk_init_yukon: 9\n"));
2575         reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
2576         if (sc_if->sk_use_jumbo)
2577                 reg |= YU_SMR_MFL_JUMBO;
2578         SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2579
2580         DPRINTFN(6, ("sk_init_yukon: 10\n"));
2581         /* Setup Yukon's address */
2582         for (i = 0; i < 3; i++) {
2583                 /* Write Source Address 1 (unicast filter) */
2584                 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4, 
2585                               sc_if->arpcom.ac_enaddr[i * 2] |
2586                               sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2587         }
2588
2589         for (i = 0; i < 3; i++) {
2590                 reg = sk_win_read_2(sc_if->sk_softc,
2591                                     SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2592                 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2593         }
2594
2595         /* Set promiscuous mode */
2596         sk_setpromisc(sc_if);
2597
2598         /* Set multicast filter */
2599         DPRINTFN(6, ("sk_init_yukon: 11\n"));
2600         sk_setmulti(sc_if);
2601
2602         /* enable interrupt mask for counter overflows */
2603         DPRINTFN(6, ("sk_init_yukon: 12\n"));
2604         SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2605         SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2606         SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2607
2608         /* Configure RX MAC FIFO Flush Mask */
2609         v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2610             YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2611             YU_RXSTAT_JABBER;
2612         SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2613
2614         /* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
2615         if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
2616                 v = SK_TFCTL_OPERATION_ON;
2617         else
2618                 v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
2619         /* Configure RX MAC FIFO */
2620         SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2621         SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
2622
2623         /* Increase flush threshould to 64 bytes */
2624         SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2625             SK_RFCTL_FIFO_THRESHOLD + 1);
2626
2627         /* Configure TX MAC FIFO */
2628         SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2629         SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2630
2631         DPRINTFN(6, ("sk_init_yukon: end\n"));
2632 }
2633
2634 /*
2635  * Note that to properly initialize any part of the GEnesis chip,
2636  * you first have to take it out of reset mode.
2637  */
2638 static void
2639 sk_init(void *xsc_if)
2640 {
2641         struct sk_if_softc *sc_if = xsc_if;
2642         struct sk_softc *sc = sc_if->sk_softc;
2643         struct ifnet *ifp = &sc_if->arpcom.ac_if;
2644         struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2645
2646         DPRINTFN(2, ("sk_init\n"));
2647
2648         ASSERT_SERIALIZED(ifp->if_serializer);
2649
2650         if (ifp->if_flags & IFF_RUNNING)
2651                 return;
2652
2653         /* Cancel pending I/O and free all RX/TX buffers. */
2654         sk_stop(sc_if);
2655
2656         /*
2657          * NOTE: Change sk_use_jumbo after sk_stop(),
2658          *       but before real initialization.
2659          */
2660         if (ifp->if_mtu > ETHER_MAX_LEN)
2661                 sc_if->sk_use_jumbo = 1;
2662         else
2663                 sc_if->sk_use_jumbo = 0;
2664         DPRINTF(("use jumbo buffer: %s\n", sc_if->sk_use_jumbo ? "YES" : "NO"));
2665
2666         if (SK_IS_GENESIS(sc)) {
2667                 /* Configure LINK_SYNC LED */
2668                 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2669                 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2670                         SK_LINKLED_LINKSYNC_ON);
2671
2672                 /* Configure RX LED */
2673                 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2674                         SK_RXLEDCTL_COUNTER_START);
2675                 
2676                 /* Configure TX LED */
2677                 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2678                         SK_TXLEDCTL_COUNTER_START);
2679         }
2680
2681         /*
2682          * Configure descriptor poll timer
2683          *
2684          * SK-NET GENESIS data sheet says that possibility of losing Start
2685          * transmit command due to CPU/cache related interim storage problems
2686          * under certain conditions. The document recommends a polling
2687          * mechanism to send a Start transmit command to initiate transfer
2688          * of ready descriptors regulary. To cope with this issue sk(4) now
2689          * enables descriptor poll timer to initiate descriptor processing
2690          * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
2691          * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
2692          * command instead of waiting for next descriptor polling time.
2693          * The same rule may apply to Rx side too but it seems that is not
2694          * needed at the moment.
2695          * Since sk(4) uses descriptor polling as a last resort there is no
2696          * need to set smaller polling time than maximum allowable one.
2697          */
2698         SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
2699
2700         /* Configure I2C registers */
2701
2702         /* Configure XMAC(s) */
2703         switch (sc->sk_type) {
2704         case SK_GENESIS:
2705                 sk_init_xmac(sc_if);
2706                 break;
2707         case SK_YUKON:
2708         case SK_YUKON_LITE:
2709         case SK_YUKON_LP:
2710                 sk_init_yukon(sc_if);
2711                 break;
2712         }
2713         mii_mediachg(mii);
2714
2715         if (SK_IS_GENESIS(sc)) {
2716                 /* Configure MAC FIFOs */
2717                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2718                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2719                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2720
2721                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2722                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2723                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2724         }
2725
2726         /* Configure transmit arbiter(s) */
2727         SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2728             SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2729
2730         /* Configure RAMbuffers */
2731         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2732         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2733         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2734         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2735         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2736         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2737
2738         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2739         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2740         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2741         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2742         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2743         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2744         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2745
2746         /* Configure BMUs */
2747         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2748         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2749             SK_RX_RING_ADDR(sc_if, 0));
2750         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2751
2752         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2753         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2754             SK_TX_RING_ADDR(sc_if, 0));
2755         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2756
2757         /* Init descriptors */
2758         if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2759                 if_printf(ifp, "initialization failed: "
2760                           "no memory for rx buffers\n");
2761                 sk_stop(sc_if);
2762                 return;
2763         }
2764
2765         if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2766                 if_printf(ifp, "initialization failed: "
2767                           "no memory for tx buffers\n");
2768                 sk_stop(sc_if);
2769                 return;
2770         }
2771
2772         /* Configure interrupt handling */
2773         CSR_READ_4(sc, SK_ISSR);
2774         if (sc_if->sk_port == SK_PORT_A)
2775                 sc->sk_intrmask |= SK_INTRS1;
2776         else
2777                 sc->sk_intrmask |= SK_INTRS2;
2778
2779         sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2780
2781         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2782
2783         /* Start BMUs. */
2784         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2785
2786         if (SK_IS_GENESIS(sc)) {
2787                 /* Enable XMACs TX and RX state machines */
2788                 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2789                 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2790                                XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2791         }
2792
2793         if (SK_IS_YUKON(sc)) {
2794                 uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2795                 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2796 #if 0
2797                 /* XXX disable 100Mbps and full duplex mode? */
2798                 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
2799 #endif
2800                 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2801         }
2802
2803         /* Activate descriptor polling timer */
2804         SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
2805         /* Start transfer of Tx descriptors */
2806         CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2807
2808         ifp->if_flags |= IFF_RUNNING;
2809         ifp->if_flags &= ~IFF_OACTIVE;
2810
2811         if (SK_IS_YUKON(sc))
2812                 callout_reset(&sc_if->sk_tick_timer, hz, sk_yukon_tick, sc_if);
2813 }
2814
2815 static void
2816 sk_stop(struct sk_if_softc *sc_if)
2817 {
2818         struct sk_softc *sc = sc_if->sk_softc;
2819         struct ifnet *ifp = &sc_if->arpcom.ac_if;
2820         struct sk_chain_data *cd = &sc_if->sk_cdata;
2821         uint32_t val;
2822         int i;
2823
2824         ASSERT_SERIALIZED(ifp->if_serializer);
2825
2826         DPRINTFN(2, ("sk_stop\n"));
2827
2828         callout_stop(&sc_if->sk_tick_timer);
2829
2830         ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2831
2832         /* Stop Tx descriptor polling timer */
2833         SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
2834
2835         /* Stop transfer of Tx descriptors */
2836         CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
2837         for (i = 0; i < SK_TIMEOUT; i++) {
2838                 val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
2839                 if (!(val & SK_TXBMU_TX_STOP))
2840                         break;
2841                 DELAY(1);
2842         }
2843         if (i == SK_TIMEOUT)
2844                 if_printf(ifp, "cannot stop transfer of Tx descriptors\n");
2845
2846         /* Stop transfer of Rx descriptors */
2847         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
2848         for (i = 0; i < SK_TIMEOUT; i++) {
2849                 val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
2850                 if (!(val & SK_RXBMU_RX_STOP))
2851                         break;
2852                 DELAY(1);
2853         }
2854         if (i == SK_TIMEOUT)
2855                 if_printf(ifp, "cannot stop transfer of Rx descriptors\n");
2856
2857         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2858                 /* Put PHY back into reset. */
2859                 val = sk_win_read_4(sc, SK_GPIO);
2860                 if (sc_if->sk_port == SK_PORT_A) {
2861                         val |= SK_GPIO_DIR0;
2862                         val &= ~SK_GPIO_DAT0;
2863                 } else {
2864                         val |= SK_GPIO_DIR2;
2865                         val &= ~SK_GPIO_DAT2;
2866                 }
2867                 sk_win_write_4(sc, SK_GPIO, val);
2868         }
2869
2870         /* Turn off various components of this interface. */
2871         SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2872         switch (sc->sk_type) {
2873         case SK_GENESIS:
2874                 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2875                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2876                 break;
2877         case SK_YUKON:
2878         case SK_YUKON_LITE:
2879         case SK_YUKON_LP:
2880                 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2881                 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2882                 break;
2883         }
2884         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2885         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2886         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2887         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST,
2888             SK_RBCTL_RESET | SK_RBCTL_OFF);
2889         SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2890         SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2891         SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2892         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2893         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2894
2895         /* Disable interrupts */
2896         if (sc_if->sk_port == SK_PORT_A)
2897                 sc->sk_intrmask &= ~SK_INTRS1;
2898         else
2899                 sc->sk_intrmask &= ~SK_INTRS2;
2900         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2901
2902         SK_XM_READ_2(sc_if, XM_ISR);
2903         SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2904
2905         /* Free RX and TX mbufs still in the queues. */
2906         for (i = 0; i < SK_RX_RING_CNT; i++) {
2907                 if (cd->sk_rx_mbuf[i] != NULL) {
2908                         if (!sc_if->sk_use_jumbo) {
2909                                 bus_dmamap_unload(cd->sk_rx_dtag,
2910                                                   cd->sk_rx_dmap[i]);
2911                         }
2912                         m_freem(cd->sk_rx_mbuf[i]);
2913                         cd->sk_rx_mbuf[i] = NULL;
2914                 }
2915         }
2916         for (i = 0; i < SK_TX_RING_CNT; i++) {
2917                 if (cd->sk_tx_mbuf[i] != NULL) {
2918                         bus_dmamap_unload(cd->sk_tx_dtag, cd->sk_tx_dmap[i]);
2919                         m_freem(cd->sk_tx_mbuf[i]);
2920                         cd->sk_tx_mbuf[i] = NULL;
2921                 }
2922         }
2923 }
2924
2925 #ifdef SK_DEBUG
2926 static void
2927 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2928 {
2929 #define DESC_PRINT(X)                                   \
2930         if (X)                                  \
2931                 kprintf("txdesc[%d]." #X "=%#x\n",      \
2932                        idx, X);
2933
2934         DESC_PRINT(le32toh(desc->sk_ctl));
2935         DESC_PRINT(le32toh(desc->sk_next));
2936         DESC_PRINT(le32toh(desc->sk_data_lo));
2937         DESC_PRINT(le32toh(desc->sk_data_hi));
2938         DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2939         DESC_PRINT(le16toh(desc->sk_rsvd0));
2940         DESC_PRINT(le16toh(desc->sk_csum_startval));
2941         DESC_PRINT(le16toh(desc->sk_csum_startpos));
2942         DESC_PRINT(le16toh(desc->sk_csum_writepos));
2943         DESC_PRINT(le16toh(desc->sk_rsvd1));
2944 #undef PRINT
2945 }
2946
2947 static void
2948 sk_dump_bytes(const char *data, int len)
2949 {
2950         int c, i, j;
2951
2952         for (i = 0; i < len; i += 16) {
2953                 kprintf("%08x  ", i);
2954                 c = len - i;
2955                 if (c > 16) c = 16;
2956
2957                 for (j = 0; j < c; j++) {
2958                         kprintf("%02x ", data[i + j] & 0xff);
2959                         if ((j & 0xf) == 7 && j > 0)
2960                                 kprintf(" ");
2961                 }
2962                 
2963                 for (; j < 16; j++)
2964                         kprintf("   ");
2965                 kprintf("  ");
2966
2967                 for (j = 0; j < c; j++) {
2968                         int ch = data[i + j] & 0xff;
2969                         kprintf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2970                 }
2971                 
2972                 kprintf("\n");
2973                 
2974                 if (c < 16)
2975                         break;
2976         }
2977 }
2978
2979 static void
2980 sk_dump_mbuf(struct mbuf *m)
2981 {
2982         int count = m->m_pkthdr.len;
2983
2984         kprintf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2985
2986         while (count > 0 && m) {
2987                 kprintf("m=%p, m->m_data=%p, m->m_len=%d\n",
2988                        m, m->m_data, m->m_len);
2989                 sk_dump_bytes(mtod(m, char *), m->m_len);
2990
2991                 count -= m->m_len;
2992                 m = m->m_next;
2993         }
2994 }
2995 #endif
2996
2997 /*
2998  * Allocate jumbo buffer storage. The SysKonnect adapters support
2999  * "jumbograms" (9K frames), although SysKonnect doesn't currently
3000  * use them in their drivers. In order for us to use them, we need
3001  * large 9K receive buffers, however standard mbuf clusters are only
3002  * 2048 bytes in size. Consequently, we need to allocate and manage
3003  * our own jumbo buffer pool. Fortunately, this does not require an
3004  * excessive amount of additional code.
3005  */
3006 static int
3007 sk_jpool_alloc(device_t dev)
3008 {
3009         struct sk_if_softc *sc_if = device_get_softc(dev);
3010         struct sk_chain_data *cd = &sc_if->sk_cdata;
3011         bus_addr_t paddr;
3012         caddr_t buf;
3013         int error, i;
3014
3015         lwkt_serialize_init(&cd->sk_jpool_serializer);
3016
3017         error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
3018                                    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
3019                                    NULL, NULL, SK_JMEM, 1, SK_JMEM,
3020                                    0, &cd->sk_jpool_dtag);
3021         if (error) {
3022                 device_printf(dev, "can't create jpool DMA tag\n");
3023                 return error;
3024         }
3025
3026         error = bus_dmamem_alloc(cd->sk_jpool_dtag, &cd->sk_jpool,
3027                                  BUS_DMA_WAITOK, &cd->sk_jpool_dmap);
3028         if (error) {
3029                 device_printf(dev, "can't alloc jpool DMA mem\n");
3030                 bus_dma_tag_destroy(cd->sk_jpool_dtag);
3031                 cd->sk_jpool_dtag = NULL;
3032                 return error;
3033         }
3034
3035         error = bus_dmamap_load(cd->sk_jpool_dtag, cd->sk_jpool_dmap,
3036                                 cd->sk_jpool, SK_JMEM,
3037                                 sk_dmamem_addr, &paddr, BUS_DMA_WAITOK);
3038         if (error) {
3039                 device_printf(dev, "can't load DMA mem\n");
3040                 bus_dmamem_free(cd->sk_jpool_dtag, cd->sk_jpool,
3041                                 cd->sk_jpool_dmap);
3042                 bus_dma_tag_destroy(cd->sk_jpool_dtag);
3043                 cd->sk_jpool_dtag = NULL;
3044                 return error;
3045         }
3046
3047         SLIST_INIT(&cd->sk_jpool_free_ent);
3048         buf = cd->sk_jpool;
3049
3050         /*
3051          * Now divide it up into SK_JLEN pieces.
3052          */
3053         for (i = 0; i < SK_JSLOTS; i++) {
3054                 struct sk_jpool_entry *entry = &cd->sk_jpool_ent[i];
3055
3056                 entry->sc_if = sc_if;
3057                 entry->inuse = 0;
3058                 entry->slot = i;
3059                 entry->buf = buf;
3060                 entry->paddr = paddr;
3061
3062                 SLIST_INSERT_HEAD(&cd->sk_jpool_free_ent, entry, entry_next);
3063
3064                 buf += SK_JLEN;
3065                 paddr += SK_JLEN;
3066         }
3067         return 0;
3068 }
3069
3070 static void
3071 sk_jpool_free(struct sk_if_softc *sc_if)
3072 {
3073         struct sk_chain_data *cd = &sc_if->sk_cdata;
3074
3075         if (cd->sk_jpool_dtag != NULL) {
3076                 bus_dmamap_unload(cd->sk_jpool_dtag, cd->sk_jpool_dmap);
3077                 bus_dmamem_free(cd->sk_jpool_dtag, cd->sk_jpool,
3078                                 cd->sk_jpool_dmap);
3079                 bus_dma_tag_destroy(cd->sk_jpool_dtag);
3080                 cd->sk_jpool_dtag = NULL;
3081         }
3082 }
3083
3084 static int
3085 sk_dma_alloc(device_t dev)
3086 {
3087         struct sk_if_softc *sc_if = device_get_softc(dev);
3088         struct sk_chain_data *cd = &sc_if->sk_cdata;
3089         int i, j, error;
3090
3091         /*
3092          * Allocate the descriptor queues.
3093          * TODO: split into RX/TX rings
3094          */
3095         error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
3096                                    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
3097                                    NULL, NULL,
3098                                    sizeof(struct sk_ring_data), 1,
3099                                    sizeof(struct sk_ring_data), 0,
3100                                    &sc_if->sk_rdata_dtag);
3101         if (error) {
3102                 device_printf(dev, "can't create desc DMA tag\n");
3103                 return error;
3104         }
3105
3106         error = bus_dmamem_alloc(sc_if->sk_rdata_dtag,
3107                                  (void **)&sc_if->sk_rdata,
3108                                  BUS_DMA_WAITOK | BUS_DMA_ZERO,
3109                                  &sc_if->sk_rdata_dmap);
3110         if (error) {
3111                 device_printf(dev, "can't alloc desc DMA mem\n");
3112                 bus_dma_tag_destroy(sc_if->sk_rdata_dtag);
3113                 sc_if->sk_rdata_dtag = NULL;
3114                 return error;
3115         }
3116
3117         error = bus_dmamap_load(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
3118                                 sc_if->sk_rdata, sizeof(struct sk_ring_data),
3119                                 sk_dmamem_addr, &sc_if->sk_rdata_paddr,
3120                                 BUS_DMA_WAITOK);
3121         if (error) {
3122                 device_printf(dev, "can't load desc DMA mem\n");
3123                 bus_dmamem_free(sc_if->sk_rdata_dtag, sc_if->sk_rdata,
3124                                 sc_if->sk_rdata_dmap);
3125                 bus_dma_tag_destroy(sc_if->sk_rdata_dtag);
3126                 sc_if->sk_rdata_dtag = NULL;
3127                 return error;
3128         }
3129
3130         /* Try to allocate memory for jumbo buffers. */
3131         error = sk_jpool_alloc(dev);
3132         if (error) {
3133                 device_printf(dev, "jumbo buffer allocation failed\n");
3134                 return error;
3135         }
3136
3137         /* Create DMA tag for TX. */
3138         error = bus_dma_tag_create(NULL, 1, 0,
3139                                    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
3140                                    NULL, NULL,
3141                                    SK_JLEN, SK_NTXSEG, SK_JLEN,
3142                                    0, &cd->sk_tx_dtag);
3143         if (error) {
3144                 device_printf(dev, "can't create TX DMA tag\n");
3145                 return error;
3146         }
3147
3148         /* Create DMA maps for TX. */
3149         for (i = 0; i < SK_TX_RING_CNT; i++) {
3150                 error = bus_dmamap_create(cd->sk_tx_dtag, 0,
3151                                           &cd->sk_tx_dmap[i]);
3152                 if (error) {
3153                         device_printf(dev, "can't create %dth TX DMA map\n", i);
3154
3155                         for (j = 0; j < i; ++j) {
3156                                 bus_dmamap_destroy(cd->sk_tx_dtag,
3157                                                    cd->sk_tx_dmap[i]);
3158                         }
3159                         bus_dma_tag_destroy(cd->sk_tx_dtag);
3160                         cd->sk_tx_dtag = NULL;
3161                         return error;
3162                 }
3163         }
3164
3165         /* Create DMA tag for RX. */
3166         error = bus_dma_tag_create(NULL, 1, 0,
3167                                    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
3168                                    NULL, NULL, MCLBYTES, 1, MCLBYTES,
3169                                    0, &cd->sk_rx_dtag);
3170         if (error) {
3171                 device_printf(dev, "can't create RX DMA tag\n");
3172                 return error;
3173         }
3174
3175         /* Create a spare RX DMA map. */
3176         error = bus_dmamap_create(cd->sk_rx_dtag, 0, &cd->sk_rx_dmap_tmp);
3177         if (error) {
3178                 device_printf(dev, "can't create spare RX DMA map\n");
3179                 bus_dma_tag_destroy(cd->sk_rx_dtag);
3180                 cd->sk_rx_dtag = NULL;
3181                 return error;
3182         }
3183
3184         /* Create DMA maps for RX. */
3185         for (i = 0; i < SK_RX_RING_CNT; ++i) {
3186                 error = bus_dmamap_create(cd->sk_rx_dtag, 0,
3187                                           &cd->sk_rx_dmap[i]);
3188                 if (error) {
3189                         device_printf(dev, "can't create %dth RX DMA map\n", i);
3190
3191                         for (j = 0; j < i; ++j) {
3192                                 bus_dmamap_destroy(cd->sk_rx_dtag,
3193                                                    cd->sk_rx_dmap[i]);
3194                         }
3195                         bus_dmamap_destroy(cd->sk_rx_dtag, cd->sk_rx_dmap_tmp);
3196                         bus_dma_tag_destroy(cd->sk_rx_dtag);
3197                         cd->sk_rx_dtag = NULL;
3198                         return error;
3199                 }
3200         }
3201         return 0;
3202 }
3203
3204 static void
3205 sk_dma_free(device_t dev)
3206 {
3207         struct sk_if_softc *sc_if = device_get_softc(dev);
3208         struct sk_chain_data *cd = &sc_if->sk_cdata;
3209         int i;
3210
3211         if (cd->sk_tx_dtag != NULL) {
3212                 for (i = 0; i < SK_TX_RING_CNT; ++i) {
3213                         KASSERT(cd->sk_tx_mbuf[i] == NULL,
3214                                 ("sk_stop() is not called before %s()",
3215                                  __func__));
3216                         bus_dmamap_destroy(cd->sk_tx_dtag, cd->sk_tx_dmap[i]);
3217                 }
3218                 bus_dma_tag_destroy(cd->sk_tx_dtag);
3219                 cd->sk_tx_dtag = NULL;
3220         }
3221
3222         if (cd->sk_rx_dtag != NULL) {
3223                 for (i = 0; i < SK_RX_RING_CNT; ++i) {
3224                         KASSERT(cd->sk_rx_mbuf[i] == NULL,
3225                                 ("sk_stop() is not called before %s()",
3226                                  __func__));
3227                         bus_dmamap_destroy(cd->sk_rx_dtag, cd->sk_rx_dmap[i]);
3228                 }
3229                 bus_dmamap_destroy(cd->sk_rx_dtag, cd->sk_rx_dmap_tmp);
3230                 bus_dma_tag_destroy(cd->sk_rx_dtag);
3231                 cd->sk_rx_dtag = NULL;
3232         }
3233
3234         sk_jpool_free(sc_if);
3235
3236         if (sc_if->sk_rdata_dtag != NULL) {
3237                 bus_dmamap_unload(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap);
3238                 bus_dmamem_free(sc_if->sk_rdata_dtag, sc_if->sk_rdata,
3239                                 sc_if->sk_rdata_dmap);
3240                 bus_dma_tag_destroy(sc_if->sk_rdata_dtag);
3241                 sc_if->sk_rdata_dtag = NULL;
3242         }
3243 }
3244
3245 static void
3246 sk_buf_dma_addr(void *arg, bus_dma_segment_t *segs, int nsegs,
3247                 bus_size_t mapsz __unused, int error)
3248 {
3249         struct sk_dma_ctx *ctx = arg;
3250         int i;
3251
3252         if (error)
3253                 return;
3254
3255         KASSERT(nsegs <= ctx->nsegs,
3256                 ("too many segments(%d), should be <= %d\n",
3257                  nsegs, ctx->nsegs));
3258
3259         ctx->nsegs = nsegs;
3260         for (i = 0; i < nsegs; ++i)
3261                 ctx->segs[i] = segs[i];
3262 }
3263
3264 static void
3265 sk_dmamem_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
3266 {
3267         KASSERT(nseg == 1, ("too many segments %d", nseg));
3268         *((bus_addr_t *)arg) = seg->ds_addr;
3269 }
3270
3271 static int
3272 skc_sysctl_imtime(SYSCTL_HANDLER_ARGS)
3273 {
3274         struct sk_softc *sc = arg1;
3275         struct lwkt_serialize *slize = &sc->sk_serializer;
3276         int error = 0, v;
3277
3278         lwkt_serialize_enter(slize);
3279
3280         v = sc->sk_imtime;
3281         error = sysctl_handle_int(oidp, &v, 0, req);
3282         if (error || req->newptr == NULL)
3283                 goto back;
3284         if (v <= 0) {
3285                 error = EINVAL;
3286                 goto back;
3287         }
3288
3289         if (sc->sk_imtime != v) {
3290                 sc->sk_imtime = v;
3291                 sk_win_write_4(sc, SK_IMTIMERINIT,
3292                                SK_IM_USECS(sc, sc->sk_imtime));
3293
3294                 /*
3295                  * Force interrupt moderation timer to
3296                  * reload new value.
3297                  */
3298                 sk_win_write_4(sc, SK_IMTIMER, 0);
3299         }
3300 back:
3301         lwkt_serialize_exit(slize);
3302         return error;
3303 }