Merge from vendor branch OPENSSH:
[dragonfly.git] / contrib / binutils-2.15 / bfd / hash.c
1 /* hash.c -- hash table routines for BFD
2    Copyright 1993, 1994, 1995, 1997, 1999, 2001, 2002, 2003
3    Free Software Foundation, Inc.
4    Written by Steve Chamberlain <sac@cygnus.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "objalloc.h"
26
27 /*
28 SECTION
29         Hash Tables
30
31 @cindex Hash tables
32         BFD provides a simple set of hash table functions.  Routines
33         are provided to initialize a hash table, to free a hash table,
34         to look up a string in a hash table and optionally create an
35         entry for it, and to traverse a hash table.  There is
36         currently no routine to delete an string from a hash table.
37
38         The basic hash table does not permit any data to be stored
39         with a string.  However, a hash table is designed to present a
40         base class from which other types of hash tables may be
41         derived.  These derived types may store additional information
42         with the string.  Hash tables were implemented in this way,
43         rather than simply providing a data pointer in a hash table
44         entry, because they were designed for use by the linker back
45         ends.  The linker may create thousands of hash table entries,
46         and the overhead of allocating private data and storing and
47         following pointers becomes noticeable.
48
49         The basic hash table code is in <<hash.c>>.
50
51 @menu
52 @* Creating and Freeing a Hash Table::
53 @* Looking Up or Entering a String::
54 @* Traversing a Hash Table::
55 @* Deriving a New Hash Table Type::
56 @end menu
57
58 INODE
59 Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
60 SUBSECTION
61         Creating and freeing a hash table
62
63 @findex bfd_hash_table_init
64 @findex bfd_hash_table_init_n
65         To create a hash table, create an instance of a <<struct
66         bfd_hash_table>> (defined in <<bfd.h>>) and call
67         <<bfd_hash_table_init>> (if you know approximately how many
68         entries you will need, the function <<bfd_hash_table_init_n>>,
69         which takes a @var{size} argument, may be used).
70         <<bfd_hash_table_init>> returns <<FALSE>> if some sort of
71         error occurs.
72
73 @findex bfd_hash_newfunc
74         The function <<bfd_hash_table_init>> take as an argument a
75         function to use to create new entries.  For a basic hash
76         table, use the function <<bfd_hash_newfunc>>.  @xref{Deriving
77         a New Hash Table Type}, for why you would want to use a
78         different value for this argument.
79
80 @findex bfd_hash_allocate
81         <<bfd_hash_table_init>> will create an objalloc which will be
82         used to allocate new entries.  You may allocate memory on this
83         objalloc using <<bfd_hash_allocate>>.
84
85 @findex bfd_hash_table_free
86         Use <<bfd_hash_table_free>> to free up all the memory that has
87         been allocated for a hash table.  This will not free up the
88         <<struct bfd_hash_table>> itself, which you must provide.
89
90 INODE
91 Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
92 SUBSECTION
93         Looking up or entering a string
94
95 @findex bfd_hash_lookup
96         The function <<bfd_hash_lookup>> is used both to look up a
97         string in the hash table and to create a new entry.
98
99         If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
100         will look up a string.  If the string is found, it will
101         returns a pointer to a <<struct bfd_hash_entry>>.  If the
102         string is not found in the table <<bfd_hash_lookup>> will
103         return <<NULL>>.  You should not modify any of the fields in
104         the returns <<struct bfd_hash_entry>>.
105
106         If the @var{create} argument is <<TRUE>>, the string will be
107         entered into the hash table if it is not already there.
108         Either way a pointer to a <<struct bfd_hash_entry>> will be
109         returned, either to the existing structure or to a newly
110         created one.  In this case, a <<NULL>> return means that an
111         error occurred.
112
113         If the @var{create} argument is <<TRUE>>, and a new entry is
114         created, the @var{copy} argument is used to decide whether to
115         copy the string onto the hash table objalloc or not.  If
116         @var{copy} is passed as <<FALSE>>, you must be careful not to
117         deallocate or modify the string as long as the hash table
118         exists.
119
120 INODE
121 Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
122 SUBSECTION
123         Traversing a hash table
124
125 @findex bfd_hash_traverse
126         The function <<bfd_hash_traverse>> may be used to traverse a
127         hash table, calling a function on each element.  The traversal
128         is done in a random order.
129
130         <<bfd_hash_traverse>> takes as arguments a function and a
131         generic <<void *>> pointer.  The function is called with a
132         hash table entry (a <<struct bfd_hash_entry *>>) and the
133         generic pointer passed to <<bfd_hash_traverse>>.  The function
134         must return a <<boolean>> value, which indicates whether to
135         continue traversing the hash table.  If the function returns
136         <<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
137         return immediately.
138
139 INODE
140 Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
141 SUBSECTION
142         Deriving a new hash table type
143
144         Many uses of hash tables want to store additional information
145         which each entry in the hash table.  Some also find it
146         convenient to store additional information with the hash table
147         itself.  This may be done using a derived hash table.
148
149         Since C is not an object oriented language, creating a derived
150         hash table requires sticking together some boilerplate
151         routines with a few differences specific to the type of hash
152         table you want to create.
153
154         An example of a derived hash table is the linker hash table.
155         The structures for this are defined in <<bfdlink.h>>.  The
156         functions are in <<linker.c>>.
157
158         You may also derive a hash table from an already derived hash
159         table.  For example, the a.out linker backend code uses a hash
160         table derived from the linker hash table.
161
162 @menu
163 @* Define the Derived Structures::
164 @* Write the Derived Creation Routine::
165 @* Write Other Derived Routines::
166 @end menu
167
168 INODE
169 Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
170 SUBSUBSECTION
171         Define the derived structures
172
173         You must define a structure for an entry in the hash table,
174         and a structure for the hash table itself.
175
176         The first field in the structure for an entry in the hash
177         table must be of the type used for an entry in the hash table
178         you are deriving from.  If you are deriving from a basic hash
179         table this is <<struct bfd_hash_entry>>, which is defined in
180         <<bfd.h>>.  The first field in the structure for the hash
181         table itself must be of the type of the hash table you are
182         deriving from itself.  If you are deriving from a basic hash
183         table, this is <<struct bfd_hash_table>>.
184
185         For example, the linker hash table defines <<struct
186         bfd_link_hash_entry>> (in <<bfdlink.h>>).  The first field,
187         <<root>>, is of type <<struct bfd_hash_entry>>.  Similarly,
188         the first field in <<struct bfd_link_hash_table>>, <<table>>,
189         is of type <<struct bfd_hash_table>>.
190
191 INODE
192 Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
193 SUBSUBSECTION
194         Write the derived creation routine
195
196         You must write a routine which will create and initialize an
197         entry in the hash table.  This routine is passed as the
198         function argument to <<bfd_hash_table_init>>.
199
200         In order to permit other hash tables to be derived from the
201         hash table you are creating, this routine must be written in a
202         standard way.
203
204         The first argument to the creation routine is a pointer to a
205         hash table entry.  This may be <<NULL>>, in which case the
206         routine should allocate the right amount of space.  Otherwise
207         the space has already been allocated by a hash table type
208         derived from this one.
209
210         After allocating space, the creation routine must call the
211         creation routine of the hash table type it is derived from,
212         passing in a pointer to the space it just allocated.  This
213         will initialize any fields used by the base hash table.
214
215         Finally the creation routine must initialize any local fields
216         for the new hash table type.
217
218         Here is a boilerplate example of a creation routine.
219         @var{function_name} is the name of the routine.
220         @var{entry_type} is the type of an entry in the hash table you
221         are creating.  @var{base_newfunc} is the name of the creation
222         routine of the hash table type your hash table is derived
223         from.
224
225 EXAMPLE
226
227 .struct bfd_hash_entry *
228 .@var{function_name} (entry, table, string)
229 .     struct bfd_hash_entry *entry;
230 .     struct bfd_hash_table *table;
231 .     const char *string;
232 .{
233 .  struct @var{entry_type} *ret = (@var{entry_type} *) entry;
234 .
235 . {* Allocate the structure if it has not already been allocated by a
236 .    derived class.  *}
237 .  if (ret == (@var{entry_type} *) NULL)
238 .    {
239 .      ret = ((@var{entry_type} *)
240 .             bfd_hash_allocate (table, sizeof (@var{entry_type})));
241 .      if (ret == (@var{entry_type} *) NULL)
242 .        return NULL;
243 .    }
244 .
245 . {* Call the allocation method of the base class.  *}
246 .  ret = ((@var{entry_type} *)
247 .        @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
248 .
249 . {* Initialize the local fields here.  *}
250 .
251 .  return (struct bfd_hash_entry *) ret;
252 .}
253
254 DESCRIPTION
255         The creation routine for the linker hash table, which is in
256         <<linker.c>>, looks just like this example.
257         @var{function_name} is <<_bfd_link_hash_newfunc>>.
258         @var{entry_type} is <<struct bfd_link_hash_entry>>.
259         @var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
260         routine for a basic hash table.
261
262         <<_bfd_link_hash_newfunc>> also initializes the local fields
263         in a linker hash table entry: <<type>>, <<written>> and
264         <<next>>.
265
266 INODE
267 Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
268 SUBSUBSECTION
269         Write other derived routines
270
271         You will want to write other routines for your new hash table,
272         as well.
273
274         You will want an initialization routine which calls the
275         initialization routine of the hash table you are deriving from
276         and initializes any other local fields.  For the linker hash
277         table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
278
279         You will want a lookup routine which calls the lookup routine
280         of the hash table you are deriving from and casts the result.
281         The linker hash table uses <<bfd_link_hash_lookup>> in
282         <<linker.c>> (this actually takes an additional argument which
283         it uses to decide how to return the looked up value).
284
285         You may want a traversal routine.  This should just call the
286         traversal routine of the hash table you are deriving from with
287         appropriate casts.  The linker hash table uses
288         <<bfd_link_hash_traverse>> in <<linker.c>>.
289
290         These routines may simply be defined as macros.  For example,
291         the a.out backend linker hash table, which is derived from the
292         linker hash table, uses macros for the lookup and traversal
293         routines.  These are <<aout_link_hash_lookup>> and
294         <<aout_link_hash_traverse>> in aoutx.h.
295 */
296
297 /* The default number of entries to use when creating a hash table.  */
298 #define DEFAULT_SIZE (4051)
299
300 /* Create a new hash table, given a number of entries.  */
301
302 bfd_boolean
303 bfd_hash_table_init_n (table, newfunc, size)
304      struct bfd_hash_table *table;
305      struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
306                                                 struct bfd_hash_table *,
307                                                 const char *));
308      unsigned int size;
309 {
310   unsigned int alloc;
311
312   alloc = size * sizeof (struct bfd_hash_entry *);
313
314   table->memory = (PTR) objalloc_create ();
315   if (table->memory == NULL)
316     {
317       bfd_set_error (bfd_error_no_memory);
318       return FALSE;
319     }
320   table->table = ((struct bfd_hash_entry **)
321                   objalloc_alloc ((struct objalloc *) table->memory, alloc));
322   if (table->table == NULL)
323     {
324       bfd_set_error (bfd_error_no_memory);
325       return FALSE;
326     }
327   memset ((PTR) table->table, 0, alloc);
328   table->size = size;
329   table->newfunc = newfunc;
330   return TRUE;
331 }
332
333 /* Create a new hash table with the default number of entries.  */
334
335 bfd_boolean
336 bfd_hash_table_init (table, newfunc)
337      struct bfd_hash_table *table;
338      struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
339                                                 struct bfd_hash_table *,
340                                                 const char *));
341 {
342   return bfd_hash_table_init_n (table, newfunc, DEFAULT_SIZE);
343 }
344
345 /* Free a hash table.  */
346
347 void
348 bfd_hash_table_free (table)
349      struct bfd_hash_table *table;
350 {
351   objalloc_free ((struct objalloc *) table->memory);
352   table->memory = NULL;
353 }
354
355 /* Look up a string in a hash table.  */
356
357 struct bfd_hash_entry *
358 bfd_hash_lookup (table, string, create, copy)
359      struct bfd_hash_table *table;
360      const char *string;
361      bfd_boolean create;
362      bfd_boolean copy;
363 {
364   register const unsigned char *s;
365   register unsigned long hash;
366   register unsigned int c;
367   struct bfd_hash_entry *hashp;
368   unsigned int len;
369   unsigned int index;
370
371   hash = 0;
372   len = 0;
373   s = (const unsigned char *) string;
374   while ((c = *s++) != '\0')
375     {
376       hash += c + (c << 17);
377       hash ^= hash >> 2;
378     }
379   len = (s - (const unsigned char *) string) - 1;
380   hash += len + (len << 17);
381   hash ^= hash >> 2;
382
383   index = hash % table->size;
384   for (hashp = table->table[index];
385        hashp != (struct bfd_hash_entry *) NULL;
386        hashp = hashp->next)
387     {
388       if (hashp->hash == hash
389           && strcmp (hashp->string, string) == 0)
390         return hashp;
391     }
392
393   if (! create)
394     return (struct bfd_hash_entry *) NULL;
395
396   hashp = (*table->newfunc) ((struct bfd_hash_entry *) NULL, table, string);
397   if (hashp == (struct bfd_hash_entry *) NULL)
398     return (struct bfd_hash_entry *) NULL;
399   if (copy)
400     {
401       char *new;
402
403       new = (char *) objalloc_alloc ((struct objalloc *) table->memory,
404                                      len + 1);
405       if (!new)
406         {
407           bfd_set_error (bfd_error_no_memory);
408           return (struct bfd_hash_entry *) NULL;
409         }
410       memcpy (new, string, len + 1);
411       string = new;
412     }
413   hashp->string = string;
414   hashp->hash = hash;
415   hashp->next = table->table[index];
416   table->table[index] = hashp;
417
418   return hashp;
419 }
420
421 /* Replace an entry in a hash table.  */
422
423 void
424 bfd_hash_replace (table, old, nw)
425      struct bfd_hash_table *table;
426      struct bfd_hash_entry *old;
427      struct bfd_hash_entry *nw;
428 {
429   unsigned int index;
430   struct bfd_hash_entry **pph;
431
432   index = old->hash % table->size;
433   for (pph = &table->table[index];
434        (*pph) != (struct bfd_hash_entry *) NULL;
435        pph = &(*pph)->next)
436     {
437       if (*pph == old)
438         {
439           *pph = nw;
440           return;
441         }
442     }
443
444   abort ();
445 }
446
447 /* Base method for creating a new hash table entry.  */
448
449 struct bfd_hash_entry *
450 bfd_hash_newfunc (entry, table, string)
451      struct bfd_hash_entry *entry;
452      struct bfd_hash_table *table;
453      const char *string ATTRIBUTE_UNUSED;
454 {
455   if (entry == (struct bfd_hash_entry *) NULL)
456     entry = ((struct bfd_hash_entry *)
457              bfd_hash_allocate (table, sizeof (struct bfd_hash_entry)));
458   return entry;
459 }
460
461 /* Allocate space in a hash table.  */
462
463 PTR
464 bfd_hash_allocate (table, size)
465      struct bfd_hash_table *table;
466      unsigned int size;
467 {
468   PTR ret;
469
470   ret = objalloc_alloc ((struct objalloc *) table->memory, size);
471   if (ret == NULL && size != 0)
472     bfd_set_error (bfd_error_no_memory);
473   return ret;
474 }
475
476 /* Traverse a hash table.  */
477
478 void
479 bfd_hash_traverse (table, func, info)
480      struct bfd_hash_table *table;
481      bfd_boolean (*func) PARAMS ((struct bfd_hash_entry *, PTR));
482      PTR info;
483 {
484   unsigned int i;
485
486   for (i = 0; i < table->size; i++)
487     {
488       struct bfd_hash_entry *p;
489
490       for (p = table->table[i]; p != NULL; p = p->next)
491         {
492           if (! (*func) (p, info))
493             return;
494         }
495     }
496 }
497 \f
498 /* A few different object file formats (a.out, COFF, ELF) use a string
499    table.  These functions support adding strings to a string table,
500    returning the byte offset, and writing out the table.
501
502    Possible improvements:
503    + look for strings matching trailing substrings of other strings
504    + better data structures?  balanced trees?
505    + look at reducing memory use elsewhere -- maybe if we didn't have
506      to construct the entire symbol table at once, we could get by
507      with smaller amounts of VM?  (What effect does that have on the
508      string table reductions?)  */
509
510 /* An entry in the strtab hash table.  */
511
512 struct strtab_hash_entry
513 {
514   struct bfd_hash_entry root;
515   /* Index in string table.  */
516   bfd_size_type index;
517   /* Next string in strtab.  */
518   struct strtab_hash_entry *next;
519 };
520
521 /* The strtab hash table.  */
522
523 struct bfd_strtab_hash
524 {
525   struct bfd_hash_table table;
526   /* Size of strtab--also next available index.  */
527   bfd_size_type size;
528   /* First string in strtab.  */
529   struct strtab_hash_entry *first;
530   /* Last string in strtab.  */
531   struct strtab_hash_entry *last;
532   /* Whether to precede strings with a two byte length, as in the
533      XCOFF .debug section.  */
534   bfd_boolean xcoff;
535 };
536
537 static struct bfd_hash_entry *strtab_hash_newfunc
538   PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
539
540 /* Routine to create an entry in a strtab.  */
541
542 static struct bfd_hash_entry *
543 strtab_hash_newfunc (entry, table, string)
544      struct bfd_hash_entry *entry;
545      struct bfd_hash_table *table;
546      const char *string;
547 {
548   struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
549
550   /* Allocate the structure if it has not already been allocated by a
551      subclass.  */
552   if (ret == (struct strtab_hash_entry *) NULL)
553     ret = ((struct strtab_hash_entry *)
554            bfd_hash_allocate (table, sizeof (struct strtab_hash_entry)));
555   if (ret == (struct strtab_hash_entry *) NULL)
556     return NULL;
557
558   /* Call the allocation method of the superclass.  */
559   ret = ((struct strtab_hash_entry *)
560          bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
561
562   if (ret)
563     {
564       /* Initialize the local fields.  */
565       ret->index = (bfd_size_type) -1;
566       ret->next = NULL;
567     }
568
569   return (struct bfd_hash_entry *) ret;
570 }
571
572 /* Look up an entry in an strtab.  */
573
574 #define strtab_hash_lookup(t, string, create, copy) \
575   ((struct strtab_hash_entry *) \
576    bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
577
578 /* Create a new strtab.  */
579
580 struct bfd_strtab_hash *
581 _bfd_stringtab_init ()
582 {
583   struct bfd_strtab_hash *table;
584   bfd_size_type amt = sizeof (struct bfd_strtab_hash);
585
586   table = (struct bfd_strtab_hash *) bfd_malloc (amt);
587   if (table == NULL)
588     return NULL;
589
590   if (! bfd_hash_table_init (&table->table, strtab_hash_newfunc))
591     {
592       free (table);
593       return NULL;
594     }
595
596   table->size = 0;
597   table->first = NULL;
598   table->last = NULL;
599   table->xcoff = FALSE;
600
601   return table;
602 }
603
604 /* Create a new strtab in which the strings are output in the format
605    used in the XCOFF .debug section: a two byte length precedes each
606    string.  */
607
608 struct bfd_strtab_hash *
609 _bfd_xcoff_stringtab_init ()
610 {
611   struct bfd_strtab_hash *ret;
612
613   ret = _bfd_stringtab_init ();
614   if (ret != NULL)
615     ret->xcoff = TRUE;
616   return ret;
617 }
618
619 /* Free a strtab.  */
620
621 void
622 _bfd_stringtab_free (table)
623      struct bfd_strtab_hash *table;
624 {
625   bfd_hash_table_free (&table->table);
626   free (table);
627 }
628
629 /* Get the index of a string in a strtab, adding it if it is not
630    already present.  If HASH is FALSE, we don't really use the hash
631    table, and we don't eliminate duplicate strings.  */
632
633 bfd_size_type
634 _bfd_stringtab_add (tab, str, hash, copy)
635      struct bfd_strtab_hash *tab;
636      const char *str;
637      bfd_boolean hash;
638      bfd_boolean copy;
639 {
640   register struct strtab_hash_entry *entry;
641
642   if (hash)
643     {
644       entry = strtab_hash_lookup (tab, str, TRUE, copy);
645       if (entry == NULL)
646         return (bfd_size_type) -1;
647     }
648   else
649     {
650       entry = ((struct strtab_hash_entry *)
651                bfd_hash_allocate (&tab->table,
652                                   sizeof (struct strtab_hash_entry)));
653       if (entry == NULL)
654         return (bfd_size_type) -1;
655       if (! copy)
656         entry->root.string = str;
657       else
658         {
659           char *n;
660
661           n = (char *) bfd_hash_allocate (&tab->table, strlen (str) + 1);
662           if (n == NULL)
663             return (bfd_size_type) -1;
664           entry->root.string = n;
665         }
666       entry->index = (bfd_size_type) -1;
667       entry->next = NULL;
668     }
669
670   if (entry->index == (bfd_size_type) -1)
671     {
672       entry->index = tab->size;
673       tab->size += strlen (str) + 1;
674       if (tab->xcoff)
675         {
676           entry->index += 2;
677           tab->size += 2;
678         }
679       if (tab->first == NULL)
680         tab->first = entry;
681       else
682         tab->last->next = entry;
683       tab->last = entry;
684     }
685
686   return entry->index;
687 }
688
689 /* Get the number of bytes in a strtab.  */
690
691 bfd_size_type
692 _bfd_stringtab_size (tab)
693      struct bfd_strtab_hash *tab;
694 {
695   return tab->size;
696 }
697
698 /* Write out a strtab.  ABFD must already be at the right location in
699    the file.  */
700
701 bfd_boolean
702 _bfd_stringtab_emit (abfd, tab)
703      register bfd *abfd;
704      struct bfd_strtab_hash *tab;
705 {
706   register bfd_boolean xcoff;
707   register struct strtab_hash_entry *entry;
708
709   xcoff = tab->xcoff;
710
711   for (entry = tab->first; entry != NULL; entry = entry->next)
712     {
713       const char *str;
714       size_t len;
715
716       str = entry->root.string;
717       len = strlen (str) + 1;
718
719       if (xcoff)
720         {
721           bfd_byte buf[2];
722
723           /* The output length includes the null byte.  */
724           bfd_put_16 (abfd, (bfd_vma) len, buf);
725           if (bfd_bwrite ((PTR) buf, (bfd_size_type) 2, abfd) != 2)
726             return FALSE;
727         }
728
729       if (bfd_bwrite ((PTR) str, (bfd_size_type) len, abfd) != len)
730         return FALSE;
731     }
732
733   return TRUE;
734 }