Implement vm_fault_object_page(). This function returns a held VM page
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70  * $DragonFly: src/sys/vm/vm_fault.c,v 1.42 2007/06/07 23:00:39 dillon Exp $
71  */
72
73 /*
74  *      Page fault handling module.
75  */
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vkernel.h>
85 #include <sys/sfbuf.h>
86 #include <sys/lock.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99
100 #include <sys/thread2.h>
101 #include <vm/vm_page2.h>
102
103 #define VM_FAULT_READ_AHEAD 8
104 #define VM_FAULT_READ_BEHIND 7
105 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
106
107 struct faultstate {
108         vm_page_t m;
109         vm_object_t object;
110         vm_pindex_t pindex;
111         vm_prot_t prot;
112         vm_page_t first_m;
113         vm_object_t first_object;
114         vm_prot_t first_prot;
115         vm_map_t map;
116         vm_map_entry_t entry;
117         int lookup_still_valid;
118         int didlimit;
119         int hardfault;
120         int fault_flags;
121         int map_generation;
122         boolean_t wired;
123         struct vnode *vp;
124 };
125
126 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
127 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
128 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
129 static int vm_fault_ratelimit(struct vmspace *);
130
131 static __inline void
132 release_page(struct faultstate *fs)
133 {
134         vm_page_wakeup(fs->m);
135         vm_page_deactivate(fs->m);
136         fs->m = NULL;
137 }
138
139 static __inline void
140 unlock_map(struct faultstate *fs)
141 {
142         if (fs->lookup_still_valid && fs->map) {
143                 vm_map_lookup_done(fs->map, fs->entry, 0);
144                 fs->lookup_still_valid = FALSE;
145         }
146 }
147
148 /*
149  * Clean up after a successful call to vm_fault_object() so another call
150  * to vm_fault_object() can be made.
151  */
152 static void
153 _cleanup_successful_fault(struct faultstate *fs, int relock)
154 {
155         if (fs->object != fs->first_object) {
156                 vm_page_free(fs->first_m);
157                 vm_object_pip_wakeup(fs->object);
158                 fs->first_m = NULL;
159         }
160         fs->object = fs->first_object;
161         if (relock && fs->lookup_still_valid == FALSE) {
162                 if (fs->map)
163                         vm_map_lock_read(fs->map);
164                 fs->lookup_still_valid = TRUE;
165         }
166 }
167
168 static void
169 _unlock_things(struct faultstate *fs, int dealloc)
170 {
171         vm_object_pip_wakeup(fs->first_object);
172         _cleanup_successful_fault(fs, 0);
173         if (dealloc) {
174                 vm_object_deallocate(fs->first_object);
175         }
176         unlock_map(fs); 
177         if (fs->vp != NULL) { 
178                 vput(fs->vp);
179                 fs->vp = NULL;
180         }
181 }
182
183 #define unlock_things(fs) _unlock_things(fs, 0)
184 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
185 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
186
187 /*
188  * TRYPAGER 
189  *
190  * Determine if the pager for the current object *might* contain the page.
191  *
192  * We only need to try the pager if this is not a default object (default
193  * objects are zero-fill and have no real pager), and if we are not taking
194  * a wiring fault or if the FS entry is wired.
195  */
196 #define TRYPAGER(fs)    \
197                 (fs->object->type != OBJT_DEFAULT && \
198                 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
199
200 /*
201  * vm_fault:
202  *
203  * Handle a page fault occuring at the given address, requiring the given
204  * permissions, in the map specified.  If successful, the page is inserted
205  * into the associated physical map.
206  *
207  * NOTE: The given address should be truncated to the proper page address.
208  *
209  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
210  * a standard error specifying why the fault is fatal is returned.
211  *
212  * The map in question must be referenced, and remains so.
213  * The caller may hold no locks.
214  */
215 int
216 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
217 {
218         int result;
219         vm_pindex_t first_pindex;
220         struct faultstate fs;
221
222         mycpu->gd_cnt.v_vm_faults++;
223
224         fs.didlimit = 0;
225         fs.hardfault = 0;
226         fs.fault_flags = fault_flags;
227
228 RetryFault:
229         /*
230          * Find the vm_map_entry representing the backing store and resolve
231          * the top level object and page index.  This may have the side
232          * effect of executing a copy-on-write on the map entry and/or
233          * creating a shadow object, but will not COW any actual VM pages.
234          *
235          * On success fs.map is left read-locked and various other fields 
236          * are initialized but not otherwise referenced or locked.
237          *
238          * NOTE!  vm_map_lookup will try to upgrade the fault_type to
239          * VM_FAULT_WRITE if the map entry is a virtual page table and also
240          * writable, so we can set the 'A'accessed bit in the virtual page
241          * table entry.
242          */
243         fs.map = map;
244         result = vm_map_lookup(&fs.map, vaddr, fault_type,
245                                &fs.entry, &fs.first_object,
246                                &first_pindex, &fs.first_prot, &fs.wired);
247
248         /*
249          * If the lookup failed or the map protections are incompatible,
250          * the fault generally fails.  However, if the caller is trying
251          * to do a user wiring we have more work to do.
252          */
253         if (result != KERN_SUCCESS) {
254                 if (result != KERN_PROTECTION_FAILURE)
255                         return result;
256                 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
257                         return result;
258
259                 /*
260                  * If we are user-wiring a r/w segment, and it is COW, then
261                  * we need to do the COW operation.  Note that we don't
262                  * currently COW RO sections now, because it is NOT desirable
263                  * to COW .text.  We simply keep .text from ever being COW'ed
264                  * and take the heat that one cannot debug wired .text sections.
265                  */
266                 result = vm_map_lookup(&fs.map, vaddr,
267                                        VM_PROT_READ|VM_PROT_WRITE|
268                                         VM_PROT_OVERRIDE_WRITE,
269                                        &fs.entry, &fs.first_object,
270                                        &first_pindex, &fs.first_prot,
271                                        &fs.wired);
272                 if (result != KERN_SUCCESS)
273                         return result;
274
275                 /*
276                  * If we don't COW now, on a user wire, the user will never
277                  * be able to write to the mapping.  If we don't make this
278                  * restriction, the bookkeeping would be nearly impossible.
279                  */
280                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
281                         fs.entry->max_protection &= ~VM_PROT_WRITE;
282         }
283
284         /*
285          * fs.map is read-locked
286          *
287          * Misc checks.  Save the map generation number to detect races.
288          */
289         fs.map_generation = fs.map->timestamp;
290
291         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
292                 panic("vm_fault: fault on nofault entry, addr: %lx",
293                     (u_long)vaddr);
294         }
295
296         /*
297          * A system map entry may return a NULL object.  No object means
298          * no pager means an unrecoverable kernel fault.
299          */
300         if (fs.first_object == NULL) {
301                 panic("vm_fault: unrecoverable fault at %p in entry %p",
302                         (void *)vaddr, fs.entry);
303         }
304
305         /*
306          * Make a reference to this object to prevent its disposal while we
307          * are messing with it.  Once we have the reference, the map is free
308          * to be diddled.  Since objects reference their shadows (and copies),
309          * they will stay around as well.
310          *
311          * Bump the paging-in-progress count to prevent size changes (e.g.
312          * truncation operations) during I/O.  This must be done after
313          * obtaining the vnode lock in order to avoid possible deadlocks.
314          */
315         vm_object_reference(fs.first_object);
316         fs.vp = vnode_pager_lock(fs.first_object);
317         vm_object_pip_add(fs.first_object, 1);
318
319         fs.lookup_still_valid = TRUE;
320         fs.first_m = NULL;
321         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
322
323         /*
324          * If the entry is wired we cannot change the page protection.
325          */
326         if (fs.wired)
327                 fault_type = fs.first_prot;
328
329         /*
330          * The page we want is at (first_object, first_pindex), but if the
331          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
332          * page table to figure out the actual pindex.
333          *
334          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
335          * ONLY
336          */
337         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
338                 result = vm_fault_vpagetable(&fs, &first_pindex,
339                                              fs.entry->aux.master_pde,
340                                              fault_type);
341                 if (result == KERN_TRY_AGAIN)
342                         goto RetryFault;
343                 if (result != KERN_SUCCESS)
344                         return (result);
345         }
346
347         /*
348          * Now we have the actual (object, pindex), fault in the page.  If
349          * vm_fault_object() fails it will unlock and deallocate the FS
350          * data.   If it succeeds everything remains locked and fs->object
351          * will have an additinal PIP count if it is not equal to
352          * fs->first_object
353          *
354          * vm_fault_object will set fs->prot for the pmap operation.  It is
355          * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
356          * page can be safely written.  However, it will force a read-only
357          * mapping for a read fault if the memory is managed by a virtual
358          * page table.
359          */
360         result = vm_fault_object(&fs, first_pindex, fault_type);
361
362         if (result == KERN_TRY_AGAIN)
363                 goto RetryFault;
364         if (result != KERN_SUCCESS)
365                 return (result);
366
367         /*
368          * On success vm_fault_object() does not unlock or deallocate, and fs.m
369          * will contain a busied page.
370          *
371          * Enter the page into the pmap and do pmap-related adjustments.
372          */
373         unlock_things(&fs);
374         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
375
376         if (((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0) && (fs.wired == 0)) {
377                 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
378         }
379
380         vm_page_flag_clear(fs.m, PG_ZERO);
381         vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
382
383         /*
384          * If the page is not wired down, then put it where the pageout daemon
385          * can find it.
386          */
387         if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
388                 if (fs.wired)
389                         vm_page_wire(fs.m);
390                 else
391                         vm_page_unwire(fs.m, 1);
392         } else {
393                 vm_page_activate(fs.m);
394         }
395
396         if (curthread->td_lwp) {
397                 if (fs.hardfault) {
398                         curthread->td_lwp->lwp_ru.ru_majflt++;
399                 } else {
400                         curthread->td_lwp->lwp_ru.ru_minflt++;
401                 }
402         }
403
404         /*
405          * Unlock everything, and return
406          */
407         vm_page_wakeup(fs.m);
408         vm_object_deallocate(fs.first_object);
409
410         return (KERN_SUCCESS);
411 }
412
413 /*
414  * Fault in the specified virtual address in the current process map, 
415  * returning a held VM page or NULL.  See vm_fault_page() for more 
416  * information.
417  */
418 vm_page_t
419 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
420 {
421         vm_page_t m;
422
423         m = vm_fault_page(&curproc->p_vmspace->vm_map, va, 
424                           fault_type, VM_FAULT_NORMAL, errorp);
425         return(m);
426 }
427
428 /*
429  * Fault in the specified virtual address in the specified map, doing all
430  * necessary manipulation of the object store and all necessary I/O.  Return
431  * a held VM page or NULL, and set *errorp.  The related pmap is not
432  * updated.
433  *
434  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
435  * and marked PG_REFERENCED as well.
436  */
437 vm_page_t
438 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
439               int fault_flags, int *errorp)
440 {
441         int result;
442         vm_pindex_t first_pindex;
443         struct faultstate fs;
444
445         mycpu->gd_cnt.v_vm_faults++;
446
447         fs.didlimit = 0;
448         fs.hardfault = 0;
449         fs.fault_flags = fault_flags;
450         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
451
452 RetryFault:
453         /*
454          * Find the vm_map_entry representing the backing store and resolve
455          * the top level object and page index.  This may have the side
456          * effect of executing a copy-on-write on the map entry and/or
457          * creating a shadow object, but will not COW any actual VM pages.
458          *
459          * On success fs.map is left read-locked and various other fields 
460          * are initialized but not otherwise referenced or locked.
461          *
462          * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
463          * if the map entry is a virtual page table and also writable,
464          * so we can set the 'A'accessed bit in the virtual page table entry.
465          */
466         fs.map = map;
467         result = vm_map_lookup(&fs.map, vaddr, fault_type,
468                                &fs.entry, &fs.first_object,
469                                &first_pindex, &fs.first_prot, &fs.wired);
470
471         if (result != KERN_SUCCESS) {
472                 *errorp = result;
473                 return (NULL);
474         }
475
476         /*
477          * fs.map is read-locked
478          *
479          * Misc checks.  Save the map generation number to detect races.
480          */
481         fs.map_generation = fs.map->timestamp;
482
483         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
484                 panic("vm_fault: fault on nofault entry, addr: %lx",
485                     (u_long)vaddr);
486         }
487
488         /*
489          * A system map entry may return a NULL object.  No object means
490          * no pager means an unrecoverable kernel fault.
491          */
492         if (fs.first_object == NULL) {
493                 panic("vm_fault: unrecoverable fault at %p in entry %p",
494                         (void *)vaddr, fs.entry);
495         }
496
497         /*
498          * Make a reference to this object to prevent its disposal while we
499          * are messing with it.  Once we have the reference, the map is free
500          * to be diddled.  Since objects reference their shadows (and copies),
501          * they will stay around as well.
502          *
503          * Bump the paging-in-progress count to prevent size changes (e.g.
504          * truncation operations) during I/O.  This must be done after
505          * obtaining the vnode lock in order to avoid possible deadlocks.
506          */
507         vm_object_reference(fs.first_object);
508         fs.vp = vnode_pager_lock(fs.first_object);
509         vm_object_pip_add(fs.first_object, 1);
510
511         fs.lookup_still_valid = TRUE;
512         fs.first_m = NULL;
513         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
514
515         /*
516          * If the entry is wired we cannot change the page protection.
517          */
518         if (fs.wired)
519                 fault_type = fs.first_prot;
520
521         /*
522          * The page we want is at (first_object, first_pindex), but if the
523          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
524          * page table to figure out the actual pindex.
525          *
526          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
527          * ONLY
528          */
529         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
530                 result = vm_fault_vpagetable(&fs, &first_pindex,
531                                              fs.entry->aux.master_pde,
532                                              fault_type);
533                 if (result == KERN_TRY_AGAIN)
534                         goto RetryFault;
535                 if (result != KERN_SUCCESS) {
536                         *errorp = result;
537                         return (NULL);
538                 }
539         }
540
541         /*
542          * Now we have the actual (object, pindex), fault in the page.  If
543          * vm_fault_object() fails it will unlock and deallocate the FS
544          * data.   If it succeeds everything remains locked and fs->object
545          * will have an additinal PIP count if it is not equal to
546          * fs->first_object
547          */
548         result = vm_fault_object(&fs, first_pindex, fault_type);
549
550         if (result == KERN_TRY_AGAIN)
551                 goto RetryFault;
552         if (result != KERN_SUCCESS) {
553                 *errorp = result;
554                 return(NULL);
555         }
556
557         /*
558          * On success vm_fault_object() does not unlock or deallocate, and fs.m
559          * will contain a busied page.
560          */
561         unlock_things(&fs);
562
563         /*
564          * Return a held page.  We are not doing any pmap manipulation so do
565          * not set PG_MAPPED.  However, adjust the page flags according to
566          * the fault type because the caller may not use a managed pmapping
567          * (so we don't want to lose the fact that the page will be dirtied
568          * if a write fault was specified).
569          */
570         vm_page_hold(fs.m);
571         vm_page_flag_clear(fs.m, PG_ZERO);
572         if (fault_type & VM_PROT_WRITE)
573                 vm_page_dirty(fs.m);
574
575         /*
576          * Update the pmap.  We really only have to do this if a COW
577          * occured to replace the read-only page with the new page.  For
578          * now just do it unconditionally. XXX
579          */
580         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
581         vm_page_flag_set(fs.m, PG_REFERENCED|PG_MAPPED);
582
583         /*
584          * Unbusy the page by activating it.  It remains held and will not
585          * be reclaimed.
586          */
587         vm_page_activate(fs.m);
588
589         if (curthread->td_lwp) {
590                 if (fs.hardfault) {
591                         curthread->td_lwp->lwp_ru.ru_majflt++;
592                 } else {
593                         curthread->td_lwp->lwp_ru.ru_minflt++;
594                 }
595         }
596
597         /*
598          * Unlock everything, and return the held page.
599          */
600         vm_page_wakeup(fs.m);
601         vm_object_deallocate(fs.first_object);
602
603         *errorp = 0;
604         return(fs.m);
605 }
606
607 /*
608  * Fault in the specified
609  */
610 vm_page_t
611 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
612                      vm_prot_t fault_type, int fault_flags, int *errorp)
613 {
614         int result;
615         vm_pindex_t first_pindex;
616         struct faultstate fs;
617         struct vm_map_entry entry;
618
619         bzero(&entry, sizeof(entry));
620         entry.object.vm_object = object;
621         entry.maptype = VM_MAPTYPE_NORMAL;
622         entry.protection = entry.max_protection = fault_type;
623
624         fs.didlimit = 0;
625         fs.hardfault = 0;
626         fs.fault_flags = fault_flags;
627         fs.map = NULL;
628         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
629
630 RetryFault:
631         
632         fs.first_object = object;
633         first_pindex = OFF_TO_IDX(offset);
634         fs.entry = &entry;
635         fs.first_prot = fault_type;
636         fs.wired = 0;
637         /*fs.map_generation = 0; unused */
638
639         /*
640          * Make a reference to this object to prevent its disposal while we
641          * are messing with it.  Once we have the reference, the map is free
642          * to be diddled.  Since objects reference their shadows (and copies),
643          * they will stay around as well.
644          *
645          * Bump the paging-in-progress count to prevent size changes (e.g.
646          * truncation operations) during I/O.  This must be done after
647          * obtaining the vnode lock in order to avoid possible deadlocks.
648          */
649         vm_object_reference(fs.first_object);
650         fs.vp = vnode_pager_lock(fs.first_object);
651         vm_object_pip_add(fs.first_object, 1);
652
653         fs.lookup_still_valid = TRUE;
654         fs.first_m = NULL;
655         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
656
657 #if 0
658         /* XXX future - ability to operate on VM object using vpagetable */
659         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
660                 result = vm_fault_vpagetable(&fs, &first_pindex,
661                                              fs.entry->aux.master_pde,
662                                              fault_type);
663                 if (result == KERN_TRY_AGAIN)
664                         goto RetryFault;
665                 if (result != KERN_SUCCESS) {
666                         *errorp = result;
667                         return (NULL);
668                 }
669         }
670 #endif
671
672         /*
673          * Now we have the actual (object, pindex), fault in the page.  If
674          * vm_fault_object() fails it will unlock and deallocate the FS
675          * data.   If it succeeds everything remains locked and fs->object
676          * will have an additinal PIP count if it is not equal to
677          * fs->first_object
678          */
679         result = vm_fault_object(&fs, first_pindex, fault_type);
680
681         if (result == KERN_TRY_AGAIN)
682                 goto RetryFault;
683         if (result != KERN_SUCCESS) {
684                 *errorp = result;
685                 return(NULL);
686         }
687
688         /*
689          * On success vm_fault_object() does not unlock or deallocate, and fs.m
690          * will contain a busied page.
691          */
692         unlock_things(&fs);
693
694         /*
695          * Return a held page.  We are not doing any pmap manipulation so do
696          * not set PG_MAPPED.  However, adjust the page flags according to
697          * the fault type because the caller may not use a managed pmapping
698          * (so we don't want to lose the fact that the page will be dirtied
699          * if a write fault was specified).
700          */
701         vm_page_hold(fs.m);
702         vm_page_flag_clear(fs.m, PG_ZERO);
703         if (fault_type & VM_PROT_WRITE)
704                 vm_page_dirty(fs.m);
705
706         /*
707          * Indicate that the page was accessed.
708          */
709         vm_page_flag_set(fs.m, PG_REFERENCED);
710
711         /*
712          * Unbusy the page by activating it.  It remains held and will not
713          * be reclaimed.
714          */
715         vm_page_activate(fs.m);
716
717         if (curthread->td_lwp) {
718                 if (fs.hardfault) {
719                         mycpu->gd_cnt.v_vm_faults++;
720                         curthread->td_lwp->lwp_ru.ru_majflt++;
721                 } else {
722                         curthread->td_lwp->lwp_ru.ru_minflt++;
723                 }
724         }
725
726         /*
727          * Unlock everything, and return the held page.
728          */
729         vm_page_wakeup(fs.m);
730         vm_object_deallocate(fs.first_object);
731
732         *errorp = 0;
733         return(fs.m);
734 }
735
736 /*
737  * Translate the virtual page number (first_pindex) that is relative
738  * to the address space into a logical page number that is relative to the
739  * backing object.  Use the virtual page table pointed to by (vpte).
740  *
741  * This implements an N-level page table.  Any level can terminate the
742  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
743  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
744  */
745 static
746 int
747 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
748                     vpte_t vpte, int fault_type)
749 {
750         struct sf_buf *sf;
751         int vshift = 32 - PAGE_SHIFT;   /* page index bits remaining */
752         int result = KERN_SUCCESS;
753         vpte_t *ptep;
754
755         for (;;) {
756                 /*
757                  * We cannot proceed if the vpte is not valid, not readable
758                  * for a read fault, or not writable for a write fault.
759                  */
760                 if ((vpte & VPTE_V) == 0) {
761                         unlock_and_deallocate(fs);
762                         return (KERN_FAILURE);
763                 }
764                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
765                         unlock_and_deallocate(fs);
766                         return (KERN_FAILURE);
767                 }
768                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
769                         unlock_and_deallocate(fs);
770                         return (KERN_FAILURE);
771                 }
772                 if ((vpte & VPTE_PS) || vshift == 0)
773                         break;
774                 KKASSERT(vshift >= VPTE_PAGE_BITS);
775
776                 /*
777                  * Get the page table page.  Nominally we only read the page
778                  * table, but since we are actively setting VPTE_M and VPTE_A,
779                  * tell vm_fault_object() that we are writing it. 
780                  *
781                  * There is currently no real need to optimize this.
782                  */
783                 result = vm_fault_object(fs, vpte >> PAGE_SHIFT,
784                                          VM_PROT_READ|VM_PROT_WRITE);
785                 if (result != KERN_SUCCESS)
786                         return (result);
787
788                 /*
789                  * Process the returned fs.m and look up the page table
790                  * entry in the page table page.
791                  */
792                 vshift -= VPTE_PAGE_BITS;
793                 sf = sf_buf_alloc(fs->m, SFB_CPUPRIVATE);
794                 ptep = ((vpte_t *)sf_buf_kva(sf) +
795                         ((*pindex >> vshift) & VPTE_PAGE_MASK));
796                 vpte = *ptep;
797
798                 /*
799                  * Page table write-back.  If the vpte is valid for the
800                  * requested operation, do a write-back to the page table.
801                  *
802                  * XXX VPTE_M is not set properly for page directory pages.
803                  * It doesn't get set in the page directory if the page table
804                  * is modified during a read access.
805                  */
806                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
807                     (vpte & VPTE_W)) {
808                         if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
809                                 atomic_set_int(ptep, VPTE_M|VPTE_A);
810                                 vm_page_dirty(fs->m);
811                         }
812                 }
813                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
814                     (vpte & VPTE_R)) {
815                         if ((vpte & VPTE_A) == 0) {
816                                 atomic_set_int(ptep, VPTE_A);
817                                 vm_page_dirty(fs->m);
818                         }
819                 }
820                 sf_buf_free(sf);
821                 vm_page_flag_set(fs->m, PG_REFERENCED);
822                 vm_page_activate(fs->m);
823                 vm_page_wakeup(fs->m);
824                 cleanup_successful_fault(fs);
825         }
826         /*
827          * Combine remaining address bits with the vpte.
828          */
829         *pindex = (vpte >> PAGE_SHIFT) +
830                   (*pindex & ((1 << vshift) - 1));
831         return (KERN_SUCCESS);
832 }
833
834
835 /*
836  * Do all operations required to fault-in (fs.first_object, pindex).  Run
837  * through the shadow chain as necessary and do required COW or virtual
838  * copy operations.  The caller has already fully resolved the vm_map_entry
839  * and, if appropriate, has created a copy-on-write layer.  All we need to
840  * do is iterate the object chain.
841  *
842  * On failure (fs) is unlocked and deallocated and the caller may return or
843  * retry depending on the failure code.  On success (fs) is NOT unlocked or
844  * deallocated, fs.m will contained a resolved, busied page, and fs.object
845  * will have an additional PIP count if it is not equal to fs.first_object.
846  */
847 static
848 int
849 vm_fault_object(struct faultstate *fs,
850                 vm_pindex_t first_pindex, vm_prot_t fault_type)
851 {
852         vm_object_t next_object;
853         vm_page_t marray[VM_FAULT_READ];
854         vm_pindex_t pindex;
855         int faultcount;
856
857         fs->prot = fs->first_prot;
858         fs->object = fs->first_object;
859         pindex = first_pindex;
860
861         /* 
862          * If a read fault occurs we try to make the page writable if
863          * possible.  There are three cases where we cannot make the
864          * page mapping writable:
865          *
866          * (1) The mapping is read-only or the VM object is read-only,
867          *     fs->prot above will simply not have VM_PROT_WRITE set.
868          *
869          * (2) If the mapping is a virtual page table we need to be able
870          *     to detect writes so we can set VPTE_M in the virtual page
871          *     table.
872          *
873          * (3) If the VM page is read-only or copy-on-write, upgrading would
874          *     just result in an unnecessary COW fault.
875          *
876          * VM_PROT_VPAGED is set if faulting via a virtual page table and
877          * causes adjustments to the 'M'odify bit to also turn off write
878          * access to force a re-fault.
879          */
880         if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
881                 if ((fault_type & VM_PROT_WRITE) == 0)
882                         fs->prot &= ~VM_PROT_WRITE;
883         }
884
885         for (;;) {
886                 /*
887                  * If the object is dead, we stop here
888                  */
889                 if (fs->object->flags & OBJ_DEAD) {
890                         unlock_and_deallocate(fs);
891                         return (KERN_PROTECTION_FAILURE);
892                 }
893
894                 /*
895                  * See if page is resident.  spl protection is required
896                  * to avoid an interrupt unbusy/free race against our
897                  * lookup.  We must hold the protection through a page
898                  * allocation or busy.
899                  */
900                 crit_enter();
901                 fs->m = vm_page_lookup(fs->object, pindex);
902                 if (fs->m != NULL) {
903                         int queue;
904                         /*
905                          * Wait/Retry if the page is busy.  We have to do this
906                          * if the page is busy via either PG_BUSY or 
907                          * vm_page_t->busy because the vm_pager may be using
908                          * vm_page_t->busy for pageouts ( and even pageins if
909                          * it is the vnode pager ), and we could end up trying
910                          * to pagein and pageout the same page simultaneously.
911                          *
912                          * We can theoretically allow the busy case on a read
913                          * fault if the page is marked valid, but since such
914                          * pages are typically already pmap'd, putting that
915                          * special case in might be more effort then it is 
916                          * worth.  We cannot under any circumstances mess
917                          * around with a vm_page_t->busy page except, perhaps,
918                          * to pmap it.
919                          */
920                         if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
921                                 unlock_things(fs);
922                                 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
923                                 mycpu->gd_cnt.v_intrans++;
924                                 vm_object_deallocate(fs->first_object);
925                                 crit_exit();
926                                 return (KERN_TRY_AGAIN);
927                         }
928
929                         /*
930                          * If reactivating a page from PQ_CACHE we may have
931                          * to rate-limit.
932                          */
933                         queue = fs->m->queue;
934                         vm_page_unqueue_nowakeup(fs->m);
935
936                         if ((queue - fs->m->pc) == PQ_CACHE && 
937                             vm_page_count_severe()) {
938                                 vm_page_activate(fs->m);
939                                 unlock_and_deallocate(fs);
940                                 vm_waitpfault();
941                                 crit_exit();
942                                 return (KERN_TRY_AGAIN);
943                         }
944
945                         /*
946                          * Mark page busy for other processes, and the 
947                          * pagedaemon.  If it still isn't completely valid
948                          * (readable), jump to readrest, else we found the
949                          * page and can return.
950                          *
951                          * We can release the spl once we have marked the
952                          * page busy.
953                          */
954                         vm_page_busy(fs->m);
955                         crit_exit();
956
957                         if (((fs->m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
958                             fs->m->object != &kernel_object) {
959                                 goto readrest;
960                         }
961                         break; /* break to PAGE HAS BEEN FOUND */
962                 }
963
964                 /*
965                  * Page is not resident, If this is the search termination
966                  * or the pager might contain the page, allocate a new page.
967                  *
968                  * NOTE: We are still in a critical section.
969                  */
970                 if (TRYPAGER(fs) || fs->object == fs->first_object) {
971                         /*
972                          * If the page is beyond the object size we fail
973                          */
974                         if (pindex >= fs->object->size) {
975                                 crit_exit();
976                                 unlock_and_deallocate(fs);
977                                 return (KERN_PROTECTION_FAILURE);
978                         }
979
980                         /*
981                          * Ratelimit.
982                          */
983                         if (fs->didlimit == 0 && curproc != NULL) {
984                                 int limticks;
985
986                                 limticks = vm_fault_ratelimit(curproc->p_vmspace);
987                                 if (limticks) {
988                                         crit_exit();
989                                         unlock_and_deallocate(fs);
990                                         tsleep(curproc, 0, "vmrate", limticks);
991                                         fs->didlimit = 1;
992                                         return (KERN_TRY_AGAIN);
993                                 }
994                         }
995
996                         /*
997                          * Allocate a new page for this object/offset pair.
998                          */
999                         fs->m = NULL;
1000                         if (!vm_page_count_severe()) {
1001                                 fs->m = vm_page_alloc(fs->object, pindex,
1002                                     (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1003                         }
1004                         if (fs->m == NULL) {
1005                                 crit_exit();
1006                                 unlock_and_deallocate(fs);
1007                                 vm_waitpfault();
1008                                 return (KERN_TRY_AGAIN);
1009                         }
1010                 }
1011                 crit_exit();
1012
1013 readrest:
1014                 /*
1015                  * We have found a valid page or we have allocated a new page.
1016                  * The page thus may not be valid or may not be entirely 
1017                  * valid.
1018                  *
1019                  * Attempt to fault-in the page if there is a chance that the
1020                  * pager has it, and potentially fault in additional pages
1021                  * at the same time.
1022                  *
1023                  * We are NOT in splvm here and if TRYPAGER is true then
1024                  * fs.m will be non-NULL and will be PG_BUSY for us.
1025                  */
1026
1027                 if (TRYPAGER(fs)) {
1028                         int rv;
1029                         int reqpage;
1030                         int ahead, behind;
1031                         u_char behavior = vm_map_entry_behavior(fs->entry);
1032
1033                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
1034                                 ahead = 0;
1035                                 behind = 0;
1036                         } else {
1037                                 behind = pindex;
1038                                 if (behind > VM_FAULT_READ_BEHIND)
1039                                         behind = VM_FAULT_READ_BEHIND;
1040
1041                                 ahead = fs->object->size - pindex;
1042                                 if (ahead < 1)
1043                                         ahead = 1;
1044                                 if (ahead > VM_FAULT_READ_AHEAD)
1045                                         ahead = VM_FAULT_READ_AHEAD;
1046                         }
1047
1048                         if ((fs->first_object->type != OBJT_DEVICE) &&
1049                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1050                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1051                                 pindex >= fs->entry->lastr &&
1052                                 pindex < fs->entry->lastr + VM_FAULT_READ))
1053                         ) {
1054                                 vm_pindex_t firstpindex, tmppindex;
1055
1056                                 if (first_pindex < 2 * VM_FAULT_READ)
1057                                         firstpindex = 0;
1058                                 else
1059                                         firstpindex = first_pindex - 2 * VM_FAULT_READ;
1060
1061                                 /*
1062                                  * note: partially valid pages cannot be 
1063                                  * included in the lookahead - NFS piecemeal
1064                                  * writes will barf on it badly.
1065                                  *
1066                                  * spl protection is required to avoid races
1067                                  * between the lookup and an interrupt
1068                                  * unbusy/free sequence occuring prior to
1069                                  * our busy check.
1070                                  */
1071                                 crit_enter();
1072                                 for (tmppindex = first_pindex - 1;
1073                                     tmppindex >= firstpindex;
1074                                     --tmppindex
1075                                 ) {
1076                                         vm_page_t mt;
1077
1078                                         mt = vm_page_lookup(fs->first_object, tmppindex);
1079                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
1080                                                 break;
1081                                         if (mt->busy ||
1082                                                 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1083                                                 mt->hold_count ||
1084                                                 mt->wire_count) 
1085                                                 continue;
1086                                         if (mt->dirty == 0)
1087                                                 vm_page_test_dirty(mt);
1088                                         if (mt->dirty) {
1089                                                 vm_page_protect(mt, VM_PROT_NONE);
1090                                                 vm_page_deactivate(mt);
1091                                         } else {
1092                                                 vm_page_cache(mt);
1093                                         }
1094                                 }
1095                                 crit_exit();
1096
1097                                 ahead += behind;
1098                                 behind = 0;
1099                         }
1100
1101                         /*
1102                          * now we find out if any other pages should be paged
1103                          * in at this time this routine checks to see if the
1104                          * pages surrounding this fault reside in the same
1105                          * object as the page for this fault.  If they do,
1106                          * then they are faulted in also into the object.  The
1107                          * array "marray" returned contains an array of
1108                          * vm_page_t structs where one of them is the
1109                          * vm_page_t passed to the routine.  The reqpage
1110                          * return value is the index into the marray for the
1111                          * vm_page_t passed to the routine.
1112                          *
1113                          * fs.m plus the additional pages are PG_BUSY'd.
1114                          */
1115                         faultcount = vm_fault_additional_pages(
1116                             fs->m, behind, ahead, marray, &reqpage);
1117
1118                         /*
1119                          * update lastr imperfectly (we do not know how much
1120                          * getpages will actually read), but good enough.
1121                          */
1122                         fs->entry->lastr = pindex + faultcount - behind;
1123
1124                         /*
1125                          * Call the pager to retrieve the data, if any, after
1126                          * releasing the lock on the map.  We hold a ref on
1127                          * fs.object and the pages are PG_BUSY'd.
1128                          */
1129                         unlock_map(fs);
1130
1131                         if (faultcount) {
1132                                 rv = vm_pager_get_pages(fs->object, marray, 
1133                                                         faultcount, reqpage);
1134                         } else {
1135                                 rv = VM_PAGER_FAIL;
1136                         }
1137
1138                         if (rv == VM_PAGER_OK) {
1139                                 /*
1140                                  * Found the page. Leave it busy while we play
1141                                  * with it.
1142                                  */
1143
1144                                 /*
1145                                  * Relookup in case pager changed page. Pager
1146                                  * is responsible for disposition of old page
1147                                  * if moved.
1148                                  *
1149                                  * XXX other code segments do relookups too.
1150                                  * It's a bad abstraction that needs to be
1151                                  * fixed/removed.
1152                                  */
1153                                 fs->m = vm_page_lookup(fs->object, pindex);
1154                                 if (fs->m == NULL) {
1155                                         unlock_and_deallocate(fs);
1156                                         return (KERN_TRY_AGAIN);
1157                                 }
1158
1159                                 ++fs->hardfault;
1160                                 break; /* break to PAGE HAS BEEN FOUND */
1161                         }
1162
1163                         /*
1164                          * Remove the bogus page (which does not exist at this
1165                          * object/offset); before doing so, we must get back
1166                          * our object lock to preserve our invariant.
1167                          *
1168                          * Also wake up any other process that may want to bring
1169                          * in this page.
1170                          *
1171                          * If this is the top-level object, we must leave the
1172                          * busy page to prevent another process from rushing
1173                          * past us, and inserting the page in that object at
1174                          * the same time that we are.
1175                          */
1176                         if (rv == VM_PAGER_ERROR) {
1177                                 if (curproc)
1178                                         kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1179                                 else
1180                                         kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1181                         }
1182                         /*
1183                          * Data outside the range of the pager or an I/O error
1184                          */
1185                         /*
1186                          * XXX - the check for kernel_map is a kludge to work
1187                          * around having the machine panic on a kernel space
1188                          * fault w/ I/O error.
1189                          */
1190                         if (((fs->map != &kernel_map) && (rv == VM_PAGER_ERROR)) ||
1191                                 (rv == VM_PAGER_BAD)) {
1192                                 vm_page_free(fs->m);
1193                                 fs->m = NULL;
1194                                 unlock_and_deallocate(fs);
1195                                 if (rv == VM_PAGER_ERROR)
1196                                         return (KERN_FAILURE);
1197                                 else
1198                                         return (KERN_PROTECTION_FAILURE);
1199                                 /* NOT REACHED */
1200                         }
1201                         if (fs->object != fs->first_object) {
1202                                 vm_page_free(fs->m);
1203                                 fs->m = NULL;
1204                                 /*
1205                                  * XXX - we cannot just fall out at this
1206                                  * point, m has been freed and is invalid!
1207                                  */
1208                         }
1209                 }
1210
1211                 /*
1212                  * We get here if the object has a default pager (or unwiring) 
1213                  * or the pager doesn't have the page.
1214                  */
1215                 if (fs->object == fs->first_object)
1216                         fs->first_m = fs->m;
1217
1218                 /*
1219                  * Move on to the next object.  Lock the next object before
1220                  * unlocking the current one.
1221                  */
1222                 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1223                 next_object = fs->object->backing_object;
1224                 if (next_object == NULL) {
1225                         /*
1226                          * If there's no object left, fill the page in the top
1227                          * object with zeros.
1228                          */
1229                         if (fs->object != fs->first_object) {
1230                                 vm_object_pip_wakeup(fs->object);
1231
1232                                 fs->object = fs->first_object;
1233                                 pindex = first_pindex;
1234                                 fs->m = fs->first_m;
1235                         }
1236                         fs->first_m = NULL;
1237
1238                         /*
1239                          * Zero the page if necessary and mark it valid.
1240                          */
1241                         if ((fs->m->flags & PG_ZERO) == 0) {
1242                                 vm_page_zero_fill(fs->m);
1243                         } else {
1244                                 mycpu->gd_cnt.v_ozfod++;
1245                         }
1246                         mycpu->gd_cnt.v_zfod++;
1247                         fs->m->valid = VM_PAGE_BITS_ALL;
1248                         break;  /* break to PAGE HAS BEEN FOUND */
1249                 } else {
1250                         if (fs->object != fs->first_object) {
1251                                 vm_object_pip_wakeup(fs->object);
1252                         }
1253                         KASSERT(fs->object != next_object, ("object loop %p", next_object));
1254                         fs->object = next_object;
1255                         vm_object_pip_add(fs->object, 1);
1256                 }
1257         }
1258
1259         KASSERT((fs->m->flags & PG_BUSY) != 0,
1260                 ("vm_fault: not busy after main loop"));
1261
1262         /*
1263          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1264          * is held.]
1265          */
1266
1267         /*
1268          * If the page is being written, but isn't already owned by the
1269          * top-level object, we have to copy it into a new page owned by the
1270          * top-level object.
1271          */
1272         if (fs->object != fs->first_object) {
1273                 /*
1274                  * We only really need to copy if we want to write it.
1275                  */
1276                 if (fault_type & VM_PROT_WRITE) {
1277                         /*
1278                          * This allows pages to be virtually copied from a 
1279                          * backing_object into the first_object, where the 
1280                          * backing object has no other refs to it, and cannot
1281                          * gain any more refs.  Instead of a bcopy, we just 
1282                          * move the page from the backing object to the 
1283                          * first object.  Note that we must mark the page 
1284                          * dirty in the first object so that it will go out 
1285                          * to swap when needed.
1286                          */
1287                         if (
1288                                 /*
1289                                  * Map, if present, has not changed
1290                                  */
1291                                 (fs->map == NULL ||
1292                                 fs->map_generation == fs->map->timestamp) &&
1293                                 /*
1294                                  * Only one shadow object
1295                                  */
1296                                 (fs->object->shadow_count == 1) &&
1297                                 /*
1298                                  * No COW refs, except us
1299                                  */
1300                                 (fs->object->ref_count == 1) &&
1301                                 /*
1302                                  * No one else can look this object up
1303                                  */
1304                                 (fs->object->handle == NULL) &&
1305                                 /*
1306                                  * No other ways to look the object up
1307                                  */
1308                                 ((fs->object->type == OBJT_DEFAULT) ||
1309                                  (fs->object->type == OBJT_SWAP)) &&
1310                                 /*
1311                                  * We don't chase down the shadow chain
1312                                  */
1313                                 (fs->object == fs->first_object->backing_object) &&
1314
1315                                 /*
1316                                  * grab the lock if we need to
1317                                  */
1318                                 (fs->lookup_still_valid ||
1319                                  fs->map == NULL ||
1320                                  lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1321                             ) {
1322                                 
1323                                 fs->lookup_still_valid = 1;
1324                                 /*
1325                                  * get rid of the unnecessary page
1326                                  */
1327                                 vm_page_protect(fs->first_m, VM_PROT_NONE);
1328                                 vm_page_free(fs->first_m);
1329                                 fs->first_m = NULL;
1330
1331                                 /*
1332                                  * grab the page and put it into the 
1333                                  * process'es object.  The page is 
1334                                  * automatically made dirty.
1335                                  */
1336                                 vm_page_rename(fs->m, fs->first_object, first_pindex);
1337                                 fs->first_m = fs->m;
1338                                 vm_page_busy(fs->first_m);
1339                                 fs->m = NULL;
1340                                 mycpu->gd_cnt.v_cow_optim++;
1341                         } else {
1342                                 /*
1343                                  * Oh, well, lets copy it.
1344                                  */
1345                                 vm_page_copy(fs->m, fs->first_m);
1346                         }
1347
1348                         if (fs->m) {
1349                                 /*
1350                                  * We no longer need the old page or object.
1351                                  */
1352                                 release_page(fs);
1353                         }
1354
1355                         /*
1356                          * fs->object != fs->first_object due to above 
1357                          * conditional
1358                          */
1359                         vm_object_pip_wakeup(fs->object);
1360
1361                         /*
1362                          * Only use the new page below...
1363                          */
1364
1365                         mycpu->gd_cnt.v_cow_faults++;
1366                         fs->m = fs->first_m;
1367                         fs->object = fs->first_object;
1368                         pindex = first_pindex;
1369                 } else {
1370                         /*
1371                          * If it wasn't a write fault avoid having to copy
1372                          * the page by mapping it read-only.
1373                          */
1374                         fs->prot &= ~VM_PROT_WRITE;
1375                 }
1376         }
1377
1378         /*
1379          * We may have had to unlock a map to do I/O.  If we did then
1380          * lookup_still_valid will be FALSE.  If the map generation count
1381          * also changed then all sorts of things could have happened while
1382          * we were doing the I/O and we need to retry.
1383          */
1384
1385         if (!fs->lookup_still_valid &&
1386             fs->map != NULL &&
1387             (fs->map->timestamp != fs->map_generation)) {
1388                 release_page(fs);
1389                 unlock_and_deallocate(fs);
1390                 return (KERN_TRY_AGAIN);
1391         }
1392
1393         /*
1394          * Put this page into the physical map. We had to do the unlock above
1395          * because pmap_enter may cause other faults.   We don't put the page
1396          * back on the active queue until later so that the page-out daemon
1397          * won't find us (yet).
1398          */
1399         if (fs->prot & VM_PROT_WRITE) {
1400                 vm_page_flag_set(fs->m, PG_WRITEABLE);
1401                 vm_object_set_writeable_dirty(fs->m->object);
1402
1403                 /*
1404                  * If the fault is a write, we know that this page is being
1405                  * written NOW so dirty it explicitly to save on 
1406                  * pmap_is_modified() calls later.
1407                  *
1408                  * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1409                  * if the page is already dirty to prevent data written with
1410                  * the expectation of being synced from not being synced.
1411                  * Likewise if this entry does not request NOSYNC then make
1412                  * sure the page isn't marked NOSYNC.  Applications sharing
1413                  * data should use the same flags to avoid ping ponging.
1414                  *
1415                  * Also tell the backing pager, if any, that it should remove
1416                  * any swap backing since the page is now dirty.
1417                  */
1418                 if (fs->entry->eflags & MAP_ENTRY_NOSYNC) {
1419                         if (fs->m->dirty == 0)
1420                                 vm_page_flag_set(fs->m, PG_NOSYNC);
1421                 } else {
1422                         vm_page_flag_clear(fs->m, PG_NOSYNC);
1423                 }
1424                 if (fs->fault_flags & VM_FAULT_DIRTY) {
1425                         crit_enter();
1426                         vm_page_dirty(fs->m);
1427                         vm_pager_page_unswapped(fs->m);
1428                         crit_exit();
1429                 }
1430         }
1431
1432         /*
1433          * Page had better still be busy.  We are still locked up and 
1434          * fs->object will have another PIP reference if it is not equal
1435          * to fs->first_object.
1436          */
1437         KASSERT(fs->m->flags & PG_BUSY,
1438                 ("vm_fault: page %p not busy!", fs->m));
1439
1440         /*
1441          * Sanity check: page must be completely valid or it is not fit to
1442          * map into user space.  vm_pager_get_pages() ensures this.
1443          */
1444         if (fs->m->valid != VM_PAGE_BITS_ALL) {
1445                 vm_page_zero_invalid(fs->m, TRUE);
1446                 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1447         }
1448
1449         return (KERN_SUCCESS);
1450 }
1451
1452 /*
1453  * Wire down a range of virtual addresses in a map.  The entry in question
1454  * should be marked in-transition and the map must be locked.  We must
1455  * release the map temporarily while faulting-in the page to avoid a
1456  * deadlock.  Note that the entry may be clipped while we are blocked but
1457  * will never be freed.
1458  */
1459 int
1460 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1461 {
1462         boolean_t fictitious;
1463         vm_offset_t start;
1464         vm_offset_t end;
1465         vm_offset_t va;
1466         vm_paddr_t pa;
1467         pmap_t pmap;
1468         int rv;
1469
1470         pmap = vm_map_pmap(map);
1471         start = entry->start;
1472         end = entry->end;
1473         fictitious = entry->object.vm_object &&
1474                         (entry->object.vm_object->type == OBJT_DEVICE);
1475
1476         vm_map_unlock(map);
1477         map->timestamp++;
1478
1479         /*
1480          * We simulate a fault to get the page and enter it in the physical
1481          * map.
1482          */
1483         for (va = start; va < end; va += PAGE_SIZE) {
1484                 if (user_wire) {
1485                         rv = vm_fault(map, va, VM_PROT_READ, 
1486                                         VM_FAULT_USER_WIRE);
1487                 } else {
1488                         rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1489                                         VM_FAULT_CHANGE_WIRING);
1490                 }
1491                 if (rv) {
1492                         while (va > start) {
1493                                 va -= PAGE_SIZE;
1494                                 if ((pa = pmap_extract(pmap, va)) == 0)
1495                                         continue;
1496                                 pmap_change_wiring(pmap, va, FALSE);
1497                                 if (!fictitious)
1498                                         vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1499                         }
1500                         vm_map_lock(map);
1501                         return (rv);
1502                 }
1503         }
1504         vm_map_lock(map);
1505         return (KERN_SUCCESS);
1506 }
1507
1508 /*
1509  * Unwire a range of virtual addresses in a map.  The map should be
1510  * locked.
1511  */
1512 void
1513 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1514 {
1515         boolean_t fictitious;
1516         vm_offset_t start;
1517         vm_offset_t end;
1518         vm_offset_t va;
1519         vm_paddr_t pa;
1520         pmap_t pmap;
1521
1522         pmap = vm_map_pmap(map);
1523         start = entry->start;
1524         end = entry->end;
1525         fictitious = entry->object.vm_object &&
1526                         (entry->object.vm_object->type == OBJT_DEVICE);
1527
1528         /*
1529          * Since the pages are wired down, we must be able to get their
1530          * mappings from the physical map system.
1531          */
1532         for (va = start; va < end; va += PAGE_SIZE) {
1533                 pa = pmap_extract(pmap, va);
1534                 if (pa != 0) {
1535                         pmap_change_wiring(pmap, va, FALSE);
1536                         if (!fictitious)
1537                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1538                 }
1539         }
1540 }
1541
1542 /*
1543  * Reduce the rate at which memory is allocated to a process based
1544  * on the perceived load on the VM system. As the load increases
1545  * the allocation burst rate goes down and the delay increases. 
1546  *
1547  * Rate limiting does not apply when faulting active or inactive
1548  * pages.  When faulting 'cache' pages, rate limiting only applies
1549  * if the system currently has a severe page deficit.
1550  *
1551  * XXX vm_pagesupply should be increased when a page is freed.
1552  *
1553  * We sleep up to 1/10 of a second.
1554  */
1555 static int
1556 vm_fault_ratelimit(struct vmspace *vmspace)
1557 {
1558         if (vm_load_enable == 0)
1559                 return(0);
1560         if (vmspace->vm_pagesupply > 0) {
1561                 --vmspace->vm_pagesupply;
1562                 return(0);
1563         }
1564 #ifdef INVARIANTS
1565         if (vm_load_debug) {
1566                 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1567                         vm_load, 
1568                         (1000 - vm_load ) / 10, vm_load * hz / 10000,
1569                         curproc->p_pid, curproc->p_comm);
1570         }
1571 #endif
1572         vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1573         return(vm_load * hz / 10000);
1574 }
1575
1576 /*
1577  *      Routine:
1578  *              vm_fault_copy_entry
1579  *      Function:
1580  *              Copy all of the pages from a wired-down map entry to another.
1581  *
1582  *      In/out conditions:
1583  *              The source and destination maps must be locked for write.
1584  *              The source map entry must be wired down (or be a sharing map
1585  *              entry corresponding to a main map entry that is wired down).
1586  */
1587
1588 void
1589 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1590     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1591 {
1592         vm_object_t dst_object;
1593         vm_object_t src_object;
1594         vm_ooffset_t dst_offset;
1595         vm_ooffset_t src_offset;
1596         vm_prot_t prot;
1597         vm_offset_t vaddr;
1598         vm_page_t dst_m;
1599         vm_page_t src_m;
1600
1601 #ifdef  lint
1602         src_map++;
1603 #endif  /* lint */
1604
1605         src_object = src_entry->object.vm_object;
1606         src_offset = src_entry->offset;
1607
1608         /*
1609          * Create the top-level object for the destination entry. (Doesn't
1610          * actually shadow anything - we copy the pages directly.)
1611          */
1612         vm_map_entry_allocate_object(dst_entry);
1613         dst_object = dst_entry->object.vm_object;
1614
1615         prot = dst_entry->max_protection;
1616
1617         /*
1618          * Loop through all of the pages in the entry's range, copying each
1619          * one from the source object (it should be there) to the destination
1620          * object.
1621          */
1622         for (vaddr = dst_entry->start, dst_offset = 0;
1623             vaddr < dst_entry->end;
1624             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1625
1626                 /*
1627                  * Allocate a page in the destination object
1628                  */
1629                 do {
1630                         dst_m = vm_page_alloc(dst_object,
1631                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1632                         if (dst_m == NULL) {
1633                                 vm_wait();
1634                         }
1635                 } while (dst_m == NULL);
1636
1637                 /*
1638                  * Find the page in the source object, and copy it in.
1639                  * (Because the source is wired down, the page will be in
1640                  * memory.)
1641                  */
1642                 src_m = vm_page_lookup(src_object,
1643                         OFF_TO_IDX(dst_offset + src_offset));
1644                 if (src_m == NULL)
1645                         panic("vm_fault_copy_wired: page missing");
1646
1647                 vm_page_copy(src_m, dst_m);
1648
1649                 /*
1650                  * Enter it in the pmap...
1651                  */
1652
1653                 vm_page_flag_clear(dst_m, PG_ZERO);
1654                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1655                 vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1656
1657                 /*
1658                  * Mark it no longer busy, and put it on the active list.
1659                  */
1660                 vm_page_activate(dst_m);
1661                 vm_page_wakeup(dst_m);
1662         }
1663 }
1664
1665
1666 /*
1667  * This routine checks around the requested page for other pages that
1668  * might be able to be faulted in.  This routine brackets the viable
1669  * pages for the pages to be paged in.
1670  *
1671  * Inputs:
1672  *      m, rbehind, rahead
1673  *
1674  * Outputs:
1675  *  marray (array of vm_page_t), reqpage (index of requested page)
1676  *
1677  * Return value:
1678  *  number of pages in marray
1679  */
1680 static int
1681 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1682     vm_page_t *marray, int *reqpage)
1683 {
1684         int i,j;
1685         vm_object_t object;
1686         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1687         vm_page_t rtm;
1688         int cbehind, cahead;
1689
1690         object = m->object;
1691         pindex = m->pindex;
1692
1693         /*
1694          * we don't fault-ahead for device pager
1695          */
1696         if (object->type == OBJT_DEVICE) {
1697                 *reqpage = 0;
1698                 marray[0] = m;
1699                 return 1;
1700         }
1701
1702         /*
1703          * if the requested page is not available, then give up now
1704          */
1705
1706         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1707                 return 0;
1708         }
1709
1710         if ((cbehind == 0) && (cahead == 0)) {
1711                 *reqpage = 0;
1712                 marray[0] = m;
1713                 return 1;
1714         }
1715
1716         if (rahead > cahead) {
1717                 rahead = cahead;
1718         }
1719
1720         if (rbehind > cbehind) {
1721                 rbehind = cbehind;
1722         }
1723
1724         /*
1725          * try to do any readahead that we might have free pages for.
1726          */
1727         if ((rahead + rbehind) >
1728                 ((vmstats.v_free_count + vmstats.v_cache_count) - vmstats.v_free_reserved)) {
1729                 pagedaemon_wakeup();
1730                 marray[0] = m;
1731                 *reqpage = 0;
1732                 return 1;
1733         }
1734
1735         /*
1736          * scan backward for the read behind pages -- in memory 
1737          *
1738          * Assume that if the page is not found an interrupt will not
1739          * create it.  Theoretically interrupts can only remove (busy)
1740          * pages, not create new associations.
1741          */
1742         if (pindex > 0) {
1743                 if (rbehind > pindex) {
1744                         rbehind = pindex;
1745                         startpindex = 0;
1746                 } else {
1747                         startpindex = pindex - rbehind;
1748                 }
1749
1750                 crit_enter();
1751                 for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1752                         if (vm_page_lookup( object, tpindex)) {
1753                                 startpindex = tpindex + 1;
1754                                 break;
1755                         }
1756                         if (tpindex == 0)
1757                                 break;
1758                 }
1759
1760                 for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1761
1762                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1763                         if (rtm == NULL) {
1764                                 crit_exit();
1765                                 for (j = 0; j < i; j++) {
1766                                         vm_page_free(marray[j]);
1767                                 }
1768                                 marray[0] = m;
1769                                 *reqpage = 0;
1770                                 return 1;
1771                         }
1772
1773                         marray[i] = rtm;
1774                 }
1775                 crit_exit();
1776         } else {
1777                 startpindex = 0;
1778                 i = 0;
1779         }
1780
1781         marray[i] = m;
1782         /* page offset of the required page */
1783         *reqpage = i;
1784
1785         tpindex = pindex + 1;
1786         i++;
1787
1788         /*
1789          * scan forward for the read ahead pages
1790          */
1791         endpindex = tpindex + rahead;
1792         if (endpindex > object->size)
1793                 endpindex = object->size;
1794
1795         crit_enter();
1796         for( ; tpindex < endpindex; i++, tpindex++) {
1797
1798                 if (vm_page_lookup(object, tpindex)) {
1799                         break;
1800                 }
1801
1802                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1803                 if (rtm == NULL) {
1804                         break;
1805                 }
1806
1807                 marray[i] = rtm;
1808         }
1809         crit_exit();
1810
1811         /* return number of bytes of pages */
1812         return i;
1813 }