af68e68e3b07b712eedc49f86486a67a45ffbe91
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.105 2008/08/17 04:32:32 sephe Exp $
35  *
36  */
37
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  * 
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  * 
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74
75 #include "opt_polling.h"
76 #include "opt_ethernet.h"
77
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/kernel.h>
82 #include <sys/ktr.h>
83 #include <sys/interrupt.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/queue.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92
93 #include <net/bpf.h>
94 #include <net/ethernet.h>
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_types.h>
100 #include <net/ifq_var.h>
101 #include <net/vlan/if_vlan_var.h>
102 #include <net/vlan/if_vlan_ether.h>
103
104 #include <dev/netif/mii_layer/mii.h>
105 #include <dev/netif/mii_layer/miivar.h>
106 #include <dev/netif/mii_layer/brgphyreg.h>
107
108 #include <bus/pci/pcidevs.h>
109 #include <bus/pci/pcireg.h>
110 #include <bus/pci/pcivar.h>
111
112 #include <dev/netif/bge/if_bgereg.h>
113
114 /* "device miibus" required.  See GENERIC if you get errors here. */
115 #include "miibus_if.h"
116
117 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
118 #define BGE_MIN_FRAME           60
119
120 static const struct bge_type bge_devs[] = {
121         { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
122                 "3COM 3C996 Gigabit Ethernet" },
123
124         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
125                 "Alteon BCM5700 Gigabit Ethernet" },
126         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
127                 "Alteon BCM5701 Gigabit Ethernet" },
128
129         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
130                 "Altima AC1000 Gigabit Ethernet" },
131         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
132                 "Altima AC1002 Gigabit Ethernet" },
133         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
134                 "Altima AC9100 Gigabit Ethernet" },
135
136         { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
137                 "Apple BCM5701 Gigabit Ethernet" },
138
139         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
140                 "Broadcom BCM5700 Gigabit Ethernet" },
141         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
142                 "Broadcom BCM5701 Gigabit Ethernet" },
143         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
144                 "Broadcom BCM5702 Gigabit Ethernet" },
145         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
146                 "Broadcom BCM5702X Gigabit Ethernet" },
147         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
148                 "Broadcom BCM5702 Gigabit Ethernet" },
149         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
150                 "Broadcom BCM5703 Gigabit Ethernet" },
151         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
152                 "Broadcom BCM5703X Gigabit Ethernet" },
153         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
154                 "Broadcom BCM5703 Gigabit Ethernet" },
155         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
156                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
157         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
158                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
159         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
160                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
161         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
162                 "Broadcom BCM5705 Gigabit Ethernet" },
163         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
164                 "Broadcom BCM5705F Gigabit Ethernet" },
165         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
166                 "Broadcom BCM5705K Gigabit Ethernet" },
167         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
168                 "Broadcom BCM5705M Gigabit Ethernet" },
169         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
170                 "Broadcom BCM5705M Gigabit Ethernet" },
171         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
172                 "Broadcom BCM5714C Gigabit Ethernet" },
173         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
174                 "Broadcom BCM5714S Gigabit Ethernet" },
175         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
176                 "Broadcom BCM5715 Gigabit Ethernet" },
177         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
178                 "Broadcom BCM5715S Gigabit Ethernet" },
179         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
180                 "Broadcom BCM5720 Gigabit Ethernet" },
181         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
182                 "Broadcom BCM5721 Gigabit Ethernet" },
183         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
184                 "Broadcom BCM5722 Gigabit Ethernet" },
185         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
186                 "Broadcom BCM5750 Gigabit Ethernet" },
187         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
188                 "Broadcom BCM5750M Gigabit Ethernet" },
189         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
190                 "Broadcom BCM5751 Gigabit Ethernet" },
191         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
192                 "Broadcom BCM5751F Gigabit Ethernet" },
193         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
194                 "Broadcom BCM5751M Gigabit Ethernet" },
195         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
196                 "Broadcom BCM5752 Gigabit Ethernet" },
197         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
198                 "Broadcom BCM5752M Gigabit Ethernet" },
199         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
200                 "Broadcom BCM5753 Gigabit Ethernet" },
201         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
202                 "Broadcom BCM5753F Gigabit Ethernet" },
203         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
204                 "Broadcom BCM5753M Gigabit Ethernet" },
205         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
206                 "Broadcom BCM5754 Gigabit Ethernet" },
207         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
208                 "Broadcom BCM5754M Gigabit Ethernet" },
209         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
210                 "Broadcom BCM5755 Gigabit Ethernet" },
211         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
212                 "Broadcom BCM5755M Gigabit Ethernet" },
213         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
214                 "Broadcom BCM5756 Gigabit Ethernet" },
215         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
216                 "Broadcom BCM5780 Gigabit Ethernet" },
217         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
218                 "Broadcom BCM5780S Gigabit Ethernet" },
219         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
220                 "Broadcom BCM5781 Gigabit Ethernet" },
221         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
222                 "Broadcom BCM5782 Gigabit Ethernet" },
223         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
224                 "Broadcom BCM5786 Gigabit Ethernet" },
225         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
226                 "Broadcom BCM5787 Gigabit Ethernet" },
227         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
228                 "Broadcom BCM5787F Gigabit Ethernet" },
229         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
230                 "Broadcom BCM5787M Gigabit Ethernet" },
231         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
232                 "Broadcom BCM5788 Gigabit Ethernet" },
233         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
234                 "Broadcom BCM5789 Gigabit Ethernet" },
235         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
236                 "Broadcom BCM5901 Fast Ethernet" },
237         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
238                 "Broadcom BCM5901A2 Fast Ethernet" },
239         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
240                 "Broadcom BCM5903M Fast Ethernet" },
241
242         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
243                 "SysKonnect Gigabit Ethernet" },
244
245         { 0, 0, NULL }
246 };
247
248 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
249 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
250 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
251 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
252 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
253
254 static int      bge_probe(device_t);
255 static int      bge_attach(device_t);
256 static int      bge_detach(device_t);
257 static void     bge_txeof(struct bge_softc *);
258 static void     bge_rxeof(struct bge_softc *);
259
260 static void     bge_tick(void *);
261 static void     bge_stats_update(struct bge_softc *);
262 static void     bge_stats_update_regs(struct bge_softc *);
263 static int      bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
264
265 #ifdef DEVICE_POLLING
266 static void     bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
267 #endif
268 static void     bge_intr(void *);
269 static void     bge_enable_intr(struct bge_softc *);
270 static void     bge_disable_intr(struct bge_softc *);
271 static void     bge_start(struct ifnet *);
272 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
273 static void     bge_init(void *);
274 static void     bge_stop(struct bge_softc *);
275 static void     bge_watchdog(struct ifnet *);
276 static void     bge_shutdown(device_t);
277 static int      bge_suspend(device_t);
278 static int      bge_resume(device_t);
279 static int      bge_ifmedia_upd(struct ifnet *);
280 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
281
282 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
283 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
284
285 static void     bge_setmulti(struct bge_softc *);
286 static void     bge_setpromisc(struct bge_softc *);
287
288 static int      bge_alloc_jumbo_mem(struct bge_softc *);
289 static void     bge_free_jumbo_mem(struct bge_softc *);
290 static struct bge_jslot
291                 *bge_jalloc(struct bge_softc *);
292 static void     bge_jfree(void *);
293 static void     bge_jref(void *);
294 static int      bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
295 static int      bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
296 static int      bge_init_rx_ring_std(struct bge_softc *);
297 static void     bge_free_rx_ring_std(struct bge_softc *);
298 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
299 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
300 static void     bge_free_tx_ring(struct bge_softc *);
301 static int      bge_init_tx_ring(struct bge_softc *);
302
303 static int      bge_chipinit(struct bge_softc *);
304 static int      bge_blockinit(struct bge_softc *);
305
306 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
307 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
308 #ifdef notdef
309 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
310 #endif
311 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
312 static void     bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
313 static void     bge_set_max_readrq(struct bge_softc *);
314
315 static int      bge_miibus_readreg(device_t, int, int);
316 static int      bge_miibus_writereg(device_t, int, int, int);
317 static void     bge_miibus_statchg(device_t);
318 static void     bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
319 static void     bge_tbi_link_upd(struct bge_softc *, uint32_t);
320 static void     bge_copper_link_upd(struct bge_softc *, uint32_t);
321
322 static void     bge_reset(struct bge_softc *);
323
324 static void     bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
325 static void     bge_dma_map_mbuf(void *, bus_dma_segment_t *, int,
326                                  bus_size_t, int);
327 static int      bge_dma_alloc(struct bge_softc *);
328 static void     bge_dma_free(struct bge_softc *);
329 static int      bge_dma_block_alloc(struct bge_softc *, bus_size_t,
330                                     bus_dma_tag_t *, bus_dmamap_t *,
331                                     void **, bus_addr_t *);
332 static void     bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
333
334 static void     bge_coal_change(struct bge_softc *);
335 static int      bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
336 static int      bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
337 static int      bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS);
338 static int      bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS);
339 static int      bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *, uint32_t);
340
341 /*
342  * Set following tunable to 1 for some IBM blade servers with the DNLK
343  * switch module. Auto negotiation is broken for those configurations.
344  */
345 static int      bge_fake_autoneg = 0;
346 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
347
348 /* Interrupt moderation control variables. */
349 static int      bge_rx_coal_ticks = 150;        /* usec */
350 static int      bge_tx_coal_ticks = 1023;       /* usec */
351 static int      bge_rx_max_coal_bds = 80;
352 static int      bge_tx_max_coal_bds = 128;
353
354 TUNABLE_INT("hw.bge.rx_coal_ticks", &bge_rx_coal_ticks);
355 TUNABLE_INT("hw.bge.tx_coal_ticks", &bge_tx_coal_ticks);
356 TUNABLE_INT("hw.bge.rx_max_coal_bds", &bge_rx_max_coal_bds);
357 TUNABLE_INT("hw.bge.tx_max_coal_bds", &bge_tx_max_coal_bds);
358
359 #if !defined(KTR_IF_BGE)
360 #define KTR_IF_BGE      KTR_ALL
361 #endif
362 KTR_INFO_MASTER(if_bge);
363 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr", 0);
364 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt", 0);
365 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt", 0);
366 #define logif(name)     KTR_LOG(if_bge_ ## name)
367
368 static device_method_t bge_methods[] = {
369         /* Device interface */
370         DEVMETHOD(device_probe,         bge_probe),
371         DEVMETHOD(device_attach,        bge_attach),
372         DEVMETHOD(device_detach,        bge_detach),
373         DEVMETHOD(device_shutdown,      bge_shutdown),
374         DEVMETHOD(device_suspend,       bge_suspend),
375         DEVMETHOD(device_resume,        bge_resume),
376
377         /* bus interface */
378         DEVMETHOD(bus_print_child,      bus_generic_print_child),
379         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
380
381         /* MII interface */
382         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
383         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
384         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
385
386         { 0, 0 }
387 };
388
389 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
390 static devclass_t bge_devclass;
391
392 DECLARE_DUMMY_MODULE(if_bge);
393 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
394 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
395
396 static uint32_t
397 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
398 {
399         device_t dev = sc->bge_dev;
400         uint32_t val;
401
402         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
403         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
404         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
405         return (val);
406 }
407
408 static void
409 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
410 {
411         device_t dev = sc->bge_dev;
412
413         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
414         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
415         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
416 }
417
418 /*
419  * PCI Express only
420  */
421 static void
422 bge_set_max_readrq(struct bge_softc *sc)
423 {
424         device_t dev = sc->bge_dev;
425         uint16_t val;
426         uint8_t expr_ptr;
427
428         KKASSERT((sc->bge_flags & BGE_FLAG_PCIE) && sc->bge_expr_ptr != 0);
429         expr_ptr = sc->bge_expr_ptr;
430
431         val = pci_read_config(dev, expr_ptr + PCIER_DEVCTRL, 2);
432         if ((val & PCIEM_DEVCTL_MAX_READRQ_MASK) !=
433             PCIEM_DEVCTL_MAX_READRQ_4096) {
434                 device_printf(dev, "adjust device control 0x%04x ", val);
435
436                 val &= ~PCIEM_DEVCTL_MAX_READRQ_MASK;
437                 val |= PCIEM_DEVCTL_MAX_READRQ_4096;
438                 pci_write_config(dev, expr_ptr + PCIER_DEVCTRL, val, 2);
439
440                 kprintf("-> 0x%04x\n", val);
441         }
442 }
443
444 #ifdef notdef
445 static uint32_t
446 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
447 {
448         device_t dev = sc->bge_dev;
449
450         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
451         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
452 }
453 #endif
454
455 static void
456 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
457 {
458         device_t dev = sc->bge_dev;
459
460         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
461         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
462 }
463
464 static void
465 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
466 {
467         CSR_WRITE_4(sc, off, val);
468 }
469
470 /*
471  * Read a byte of data stored in the EEPROM at address 'addr.' The
472  * BCM570x supports both the traditional bitbang interface and an
473  * auto access interface for reading the EEPROM. We use the auto
474  * access method.
475  */
476 static uint8_t
477 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
478 {
479         int i;
480         uint32_t byte = 0;
481
482         /*
483          * Enable use of auto EEPROM access so we can avoid
484          * having to use the bitbang method.
485          */
486         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
487
488         /* Reset the EEPROM, load the clock period. */
489         CSR_WRITE_4(sc, BGE_EE_ADDR,
490             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
491         DELAY(20);
492
493         /* Issue the read EEPROM command. */
494         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
495
496         /* Wait for completion */
497         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
498                 DELAY(10);
499                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
500                         break;
501         }
502
503         if (i == BGE_TIMEOUT) {
504                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
505                 return(1);
506         }
507
508         /* Get result. */
509         byte = CSR_READ_4(sc, BGE_EE_DATA);
510
511         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
512
513         return(0);
514 }
515
516 /*
517  * Read a sequence of bytes from the EEPROM.
518  */
519 static int
520 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
521 {
522         size_t i;
523         int err;
524         uint8_t byte;
525
526         for (byte = 0, err = 0, i = 0; i < len; i++) {
527                 err = bge_eeprom_getbyte(sc, off + i, &byte);
528                 if (err)
529                         break;
530                 *(dest + i) = byte;
531         }
532
533         return(err ? 1 : 0);
534 }
535
536 static int
537 bge_miibus_readreg(device_t dev, int phy, int reg)
538 {
539         struct bge_softc *sc = device_get_softc(dev);
540         struct ifnet *ifp = &sc->arpcom.ac_if;
541         uint32_t val, autopoll;
542         int i;
543
544         /*
545          * Broadcom's own driver always assumes the internal
546          * PHY is at GMII address 1. On some chips, the PHY responds
547          * to accesses at all addresses, which could cause us to
548          * bogusly attach the PHY 32 times at probe type. Always
549          * restricting the lookup to address 1 is simpler than
550          * trying to figure out which chips revisions should be
551          * special-cased.
552          */
553         if (phy != 1)
554                 return(0);
555
556         /* Reading with autopolling on may trigger PCI errors */
557         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
558         if (autopoll & BGE_MIMODE_AUTOPOLL) {
559                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
560                 DELAY(40);
561         }
562
563         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
564             BGE_MIPHY(phy)|BGE_MIREG(reg));
565
566         for (i = 0; i < BGE_TIMEOUT; i++) {
567                 DELAY(10);
568                 val = CSR_READ_4(sc, BGE_MI_COMM);
569                 if (!(val & BGE_MICOMM_BUSY))
570                         break;
571         }
572
573         if (i == BGE_TIMEOUT) {
574                 if_printf(ifp, "PHY read timed out "
575                           "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
576                 val = 0;
577                 goto done;
578         }
579
580         DELAY(5);
581         val = CSR_READ_4(sc, BGE_MI_COMM);
582
583 done:
584         if (autopoll & BGE_MIMODE_AUTOPOLL) {
585                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
586                 DELAY(40);
587         }
588
589         if (val & BGE_MICOMM_READFAIL)
590                 return(0);
591
592         return(val & 0xFFFF);
593 }
594
595 static int
596 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
597 {
598         struct bge_softc *sc = device_get_softc(dev);
599         uint32_t autopoll;
600         int i;
601
602         /*
603          * See the related comment in bge_miibus_readreg()
604          */
605         if (phy != 1)
606                 return(0);
607
608         /* Reading with autopolling on may trigger PCI errors */
609         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
610         if (autopoll & BGE_MIMODE_AUTOPOLL) {
611                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
612                 DELAY(40);
613         }
614
615         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
616             BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
617
618         for (i = 0; i < BGE_TIMEOUT; i++) {
619                 DELAY(10);
620                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
621                         DELAY(5);
622                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
623                         break;
624                 }
625         }
626
627         if (autopoll & BGE_MIMODE_AUTOPOLL) {
628                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
629                 DELAY(40);
630         }
631
632         if (i == BGE_TIMEOUT) {
633                 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
634                           "(phy %d, reg %d, val %d)\n", phy, reg, val);
635                 return(0);
636         }
637
638         return(0);
639 }
640
641 static void
642 bge_miibus_statchg(device_t dev)
643 {
644         struct bge_softc *sc;
645         struct mii_data *mii;
646
647         sc = device_get_softc(dev);
648         mii = device_get_softc(sc->bge_miibus);
649
650         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
651         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
652                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
653         } else {
654                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
655         }
656
657         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
658                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
659         } else {
660                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
661         }
662 }
663
664 /*
665  * Memory management for jumbo frames.
666  */
667 static int
668 bge_alloc_jumbo_mem(struct bge_softc *sc)
669 {
670         struct ifnet *ifp = &sc->arpcom.ac_if;
671         struct bge_jslot *entry;
672         uint8_t *ptr;
673         bus_addr_t paddr;
674         int i, error;
675
676         /*
677          * Create tag for jumbo mbufs.
678          * This is really a bit of a kludge. We allocate a special
679          * jumbo buffer pool which (thanks to the way our DMA
680          * memory allocation works) will consist of contiguous
681          * pages. This means that even though a jumbo buffer might
682          * be larger than a page size, we don't really need to
683          * map it into more than one DMA segment. However, the
684          * default mbuf tag will result in multi-segment mappings,
685          * so we have to create a special jumbo mbuf tag that
686          * lets us get away with mapping the jumbo buffers as
687          * a single segment. I think eventually the driver should
688          * be changed so that it uses ordinary mbufs and cluster
689          * buffers, i.e. jumbo frames can span multiple DMA
690          * descriptors. But that's a project for another day.
691          */
692
693         /*
694          * Create DMA stuffs for jumbo RX ring.
695          */
696         error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
697                                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
698                                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
699                                     (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
700                                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
701         if (error) {
702                 if_printf(ifp, "could not create jumbo RX ring\n");
703                 return error;
704         }
705
706         /*
707          * Create DMA stuffs for jumbo buffer block.
708          */
709         error = bge_dma_block_alloc(sc, BGE_JMEM,
710                                     &sc->bge_cdata.bge_jumbo_tag,
711                                     &sc->bge_cdata.bge_jumbo_map,
712                                     (void **)&sc->bge_ldata.bge_jumbo_buf,
713                                     &paddr);
714         if (error) {
715                 if_printf(ifp, "could not create jumbo buffer\n");
716                 return error;
717         }
718
719         SLIST_INIT(&sc->bge_jfree_listhead);
720
721         /*
722          * Now divide it up into 9K pieces and save the addresses
723          * in an array. Note that we play an evil trick here by using
724          * the first few bytes in the buffer to hold the the address
725          * of the softc structure for this interface. This is because
726          * bge_jfree() needs it, but it is called by the mbuf management
727          * code which will not pass it to us explicitly.
728          */
729         for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
730                 entry = &sc->bge_cdata.bge_jslots[i];
731                 entry->bge_sc = sc;
732                 entry->bge_buf = ptr;
733                 entry->bge_paddr = paddr;
734                 entry->bge_inuse = 0;
735                 entry->bge_slot = i;
736                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
737
738                 ptr += BGE_JLEN;
739                 paddr += BGE_JLEN;
740         }
741         return 0;
742 }
743
744 static void
745 bge_free_jumbo_mem(struct bge_softc *sc)
746 {
747         /* Destroy jumbo RX ring. */
748         bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
749                            sc->bge_cdata.bge_rx_jumbo_ring_map,
750                            sc->bge_ldata.bge_rx_jumbo_ring);
751
752         /* Destroy jumbo buffer block. */
753         bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
754                            sc->bge_cdata.bge_jumbo_map,
755                            sc->bge_ldata.bge_jumbo_buf);
756 }
757
758 /*
759  * Allocate a jumbo buffer.
760  */
761 static struct bge_jslot *
762 bge_jalloc(struct bge_softc *sc)
763 {
764         struct bge_jslot *entry;
765
766         lwkt_serialize_enter(&sc->bge_jslot_serializer);
767         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
768         if (entry) {
769                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
770                 entry->bge_inuse = 1;
771         } else {
772                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
773         }
774         lwkt_serialize_exit(&sc->bge_jslot_serializer);
775         return(entry);
776 }
777
778 /*
779  * Adjust usage count on a jumbo buffer.
780  */
781 static void
782 bge_jref(void *arg)
783 {
784         struct bge_jslot *entry = (struct bge_jslot *)arg;
785         struct bge_softc *sc = entry->bge_sc;
786
787         if (sc == NULL)
788                 panic("bge_jref: can't find softc pointer!");
789
790         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
791                 panic("bge_jref: asked to reference buffer "
792                     "that we don't manage!");
793         } else if (entry->bge_inuse == 0) {
794                 panic("bge_jref: buffer already free!");
795         } else {
796                 atomic_add_int(&entry->bge_inuse, 1);
797         }
798 }
799
800 /*
801  * Release a jumbo buffer.
802  */
803 static void
804 bge_jfree(void *arg)
805 {
806         struct bge_jslot *entry = (struct bge_jslot *)arg;
807         struct bge_softc *sc = entry->bge_sc;
808
809         if (sc == NULL)
810                 panic("bge_jfree: can't find softc pointer!");
811
812         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
813                 panic("bge_jfree: asked to free buffer that we don't manage!");
814         } else if (entry->bge_inuse == 0) {
815                 panic("bge_jfree: buffer already free!");
816         } else {
817                 /*
818                  * Possible MP race to 0, use the serializer.  The atomic insn
819                  * is still needed for races against bge_jref().
820                  */
821                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
822                 atomic_subtract_int(&entry->bge_inuse, 1);
823                 if (entry->bge_inuse == 0) {
824                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
825                                           entry, jslot_link);
826                 }
827                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
828         }
829 }
830
831
832 /*
833  * Intialize a standard receive ring descriptor.
834  */
835 static int
836 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
837 {
838         struct mbuf *m_new = NULL;
839         struct bge_dmamap_arg ctx;
840         bus_dma_segment_t seg;
841         struct bge_rx_bd *r;
842         int error;
843
844         if (m == NULL) {
845                 m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
846                 if (m_new == NULL)
847                         return ENOBUFS;
848         } else {
849                 m_new = m;
850                 m_new->m_data = m_new->m_ext.ext_buf;
851         }
852         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
853
854         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
855                 m_adj(m_new, ETHER_ALIGN);
856
857         ctx.bge_maxsegs = 1;
858         ctx.bge_segs = &seg;
859         error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag,
860                                      sc->bge_cdata.bge_rx_std_dmamap[i],
861                                      m_new, bge_dma_map_mbuf, &ctx,
862                                      BUS_DMA_NOWAIT);
863         if (error || ctx.bge_maxsegs == 0) {
864                 if (!error) {
865                         if_printf(&sc->arpcom.ac_if, "too many segments?!\n");
866                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
867                                           sc->bge_cdata.bge_rx_std_dmamap[i]);
868                 }
869                 if (m == NULL)
870                         m_freem(m_new);
871                 return ENOMEM;
872         }
873
874         sc->bge_cdata.bge_rx_std_chain[i] = m_new;
875
876         r = &sc->bge_ldata.bge_rx_std_ring[i];
877         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_segs[0].ds_addr);
878         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_segs[0].ds_addr);
879         r->bge_flags = BGE_RXBDFLAG_END;
880         r->bge_len = m_new->m_len;
881         r->bge_idx = i;
882
883         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
884                         sc->bge_cdata.bge_rx_std_dmamap[i],
885                         BUS_DMASYNC_PREREAD);
886         return 0;
887 }
888
889 /*
890  * Initialize a jumbo receive ring descriptor. This allocates
891  * a jumbo buffer from the pool managed internally by the driver.
892  */
893 static int
894 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
895 {
896         struct mbuf *m_new = NULL;
897         struct bge_jslot *buf;
898         struct bge_rx_bd *r;
899         bus_addr_t paddr;
900
901         if (m == NULL) {
902                 /* Allocate the mbuf. */
903                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
904                 if (m_new == NULL)
905                         return(ENOBUFS);
906
907                 /* Allocate the jumbo buffer */
908                 buf = bge_jalloc(sc);
909                 if (buf == NULL) {
910                         m_freem(m_new);
911                         if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
912                             "-- packet dropped!\n");
913                         return ENOBUFS;
914                 }
915
916                 /* Attach the buffer to the mbuf. */
917                 m_new->m_ext.ext_arg = buf;
918                 m_new->m_ext.ext_buf = buf->bge_buf;
919                 m_new->m_ext.ext_free = bge_jfree;
920                 m_new->m_ext.ext_ref = bge_jref;
921                 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
922
923                 m_new->m_flags |= M_EXT;
924         } else {
925                 KKASSERT(m->m_flags & M_EXT);
926                 m_new = m;
927                 buf = m_new->m_ext.ext_arg;
928         }
929         m_new->m_data = m_new->m_ext.ext_buf;
930         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
931
932         paddr = buf->bge_paddr;
933         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
934                 m_adj(m_new, ETHER_ALIGN);
935                 paddr += ETHER_ALIGN;
936         }
937
938         /* Set up the descriptor. */
939         sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
940
941         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
942         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(paddr);
943         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(paddr);
944         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
945         r->bge_len = m_new->m_len;
946         r->bge_idx = i;
947
948         return 0;
949 }
950
951 /*
952  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
953  * that's 1MB or memory, which is a lot. For now, we fill only the first
954  * 256 ring entries and hope that our CPU is fast enough to keep up with
955  * the NIC.
956  */
957 static int
958 bge_init_rx_ring_std(struct bge_softc *sc)
959 {
960         int i;
961
962         for (i = 0; i < BGE_SSLOTS; i++) {
963                 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
964                         return(ENOBUFS);
965         };
966
967         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
968                         sc->bge_cdata.bge_rx_std_ring_map,
969                         BUS_DMASYNC_PREWRITE);
970
971         sc->bge_std = i - 1;
972         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
973
974         return(0);
975 }
976
977 static void
978 bge_free_rx_ring_std(struct bge_softc *sc)
979 {
980         int i;
981
982         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
983                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
984                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
985                                           sc->bge_cdata.bge_rx_std_dmamap[i]);
986                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
987                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
988                 }
989                 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
990                     sizeof(struct bge_rx_bd));
991         }
992 }
993
994 static int
995 bge_init_rx_ring_jumbo(struct bge_softc *sc)
996 {
997         int i;
998         struct bge_rcb *rcb;
999
1000         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1001                 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1002                         return(ENOBUFS);
1003         };
1004
1005         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1006                         sc->bge_cdata.bge_rx_jumbo_ring_map,
1007                         BUS_DMASYNC_PREWRITE);
1008
1009         sc->bge_jumbo = i - 1;
1010
1011         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1012         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1013         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1014
1015         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1016
1017         return(0);
1018 }
1019
1020 static void
1021 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1022 {
1023         int i;
1024
1025         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1026                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1027                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1028                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1029                 }
1030                 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1031                     sizeof(struct bge_rx_bd));
1032         }
1033 }
1034
1035 static void
1036 bge_free_tx_ring(struct bge_softc *sc)
1037 {
1038         int i;
1039
1040         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1041                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1042                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
1043                                           sc->bge_cdata.bge_tx_dmamap[i]);
1044                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1045                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1046                 }
1047                 bzero(&sc->bge_ldata.bge_tx_ring[i],
1048                     sizeof(struct bge_tx_bd));
1049         }
1050 }
1051
1052 static int
1053 bge_init_tx_ring(struct bge_softc *sc)
1054 {
1055         sc->bge_txcnt = 0;
1056         sc->bge_tx_saved_considx = 0;
1057         sc->bge_tx_prodidx = 0;
1058
1059         /* Initialize transmit producer index for host-memory send ring. */
1060         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1061
1062         /* 5700 b2 errata */
1063         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1064                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1065
1066         CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1067         /* 5700 b2 errata */
1068         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1069                 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1070
1071         return(0);
1072 }
1073
1074 static void
1075 bge_setmulti(struct bge_softc *sc)
1076 {
1077         struct ifnet *ifp;
1078         struct ifmultiaddr *ifma;
1079         uint32_t hashes[4] = { 0, 0, 0, 0 };
1080         int h, i;
1081
1082         ifp = &sc->arpcom.ac_if;
1083
1084         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1085                 for (i = 0; i < 4; i++)
1086                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1087                 return;
1088         }
1089
1090         /* First, zot all the existing filters. */
1091         for (i = 0; i < 4; i++)
1092                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1093
1094         /* Now program new ones. */
1095         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1096                 if (ifma->ifma_addr->sa_family != AF_LINK)
1097                         continue;
1098                 h = ether_crc32_le(
1099                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1100                     ETHER_ADDR_LEN) & 0x7f;
1101                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1102         }
1103
1104         for (i = 0; i < 4; i++)
1105                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1106 }
1107
1108 /*
1109  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1110  * self-test results.
1111  */
1112 static int
1113 bge_chipinit(struct bge_softc *sc)
1114 {
1115         int i;
1116         uint32_t dma_rw_ctl;
1117
1118         /* Set endian type before we access any non-PCI registers. */
1119         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1120
1121         /*
1122          * Check the 'ROM failed' bit on the RX CPU to see if
1123          * self-tests passed.
1124          */
1125         if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1126                 if_printf(&sc->arpcom.ac_if,
1127                           "RX CPU self-diagnostics failed!\n");
1128                 return(ENODEV);
1129         }
1130
1131         /* Clear the MAC control register */
1132         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1133
1134         /*
1135          * Clear the MAC statistics block in the NIC's
1136          * internal memory.
1137          */
1138         for (i = BGE_STATS_BLOCK;
1139             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1140                 BGE_MEMWIN_WRITE(sc, i, 0);
1141
1142         for (i = BGE_STATUS_BLOCK;
1143             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1144                 BGE_MEMWIN_WRITE(sc, i, 0);
1145
1146         /* Set up the PCI DMA control register. */
1147         if (sc->bge_flags & BGE_FLAG_PCIE) {
1148                 /* PCI Express */
1149                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1150                     (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1151                     (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1152         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1153                 /* PCI-X bus */
1154                 if (BGE_IS_5714_FAMILY(sc)) {
1155                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1156                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1157                         /* XXX magic values, Broadcom-supplied Linux driver */
1158                         if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1159                                 dma_rw_ctl |= (1 << 20) | (1 << 18) | 
1160                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1161                         } else {
1162                                 dma_rw_ctl |= (1 << 20) | (1 << 18) | (1 << 15);
1163                         }
1164                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1165                         /*
1166                          * The 5704 uses a different encoding of read/write
1167                          * watermarks.
1168                          */
1169                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1170                             (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1171                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1172                 } else {
1173                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1174                             (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1175                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1176                             (0x0F);
1177                 }
1178
1179                 /*
1180                  * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1181                  * for hardware bugs.
1182                  */
1183                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1184                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1185                         uint32_t tmp;
1186
1187                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1188                         if (tmp == 0x6 || tmp == 0x7)
1189                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1190                 }
1191         } else {
1192                 /* Conventional PCI bus */
1193                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1194                     (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1195                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1196                     (0x0F);
1197         }
1198
1199         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1200             sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1201             sc->bge_asicrev == BGE_ASICREV_BCM5705)
1202                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1203         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1204
1205         /*
1206          * Set up general mode register.
1207          */
1208         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1209             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1210             BGE_MODECTL_TX_NO_PHDR_CSUM);
1211
1212         /*
1213          * Disable memory write invalidate.  Apparently it is not supported
1214          * properly by these devices.
1215          */
1216         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1217
1218         /* Set the timer prescaler (always 66Mhz) */
1219         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1220
1221         return(0);
1222 }
1223
1224 static int
1225 bge_blockinit(struct bge_softc *sc)
1226 {
1227         struct bge_rcb *rcb;
1228         bus_size_t vrcb;
1229         bge_hostaddr taddr;
1230         uint32_t val;
1231         int i;
1232
1233         /*
1234          * Initialize the memory window pointer register so that
1235          * we can access the first 32K of internal NIC RAM. This will
1236          * allow us to set up the TX send ring RCBs and the RX return
1237          * ring RCBs, plus other things which live in NIC memory.
1238          */
1239         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1240
1241         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1242
1243         if (!BGE_IS_5705_PLUS(sc)) {
1244                 /* Configure mbuf memory pool */
1245                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1246                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1247                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1248                 else
1249                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1250
1251                 /* Configure DMA resource pool */
1252                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1253                     BGE_DMA_DESCRIPTORS);
1254                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1255         }
1256
1257         /* Configure mbuf pool watermarks */
1258         if (BGE_IS_5705_PLUS(sc)) {
1259                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1260                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1261         } else {
1262                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1263                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1264         }
1265         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1266
1267         /* Configure DMA resource watermarks */
1268         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1269         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1270
1271         /* Enable buffer manager */
1272         if (!BGE_IS_5705_PLUS(sc)) {
1273                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1274                     BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1275
1276                 /* Poll for buffer manager start indication */
1277                 for (i = 0; i < BGE_TIMEOUT; i++) {
1278                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1279                                 break;
1280                         DELAY(10);
1281                 }
1282
1283                 if (i == BGE_TIMEOUT) {
1284                         if_printf(&sc->arpcom.ac_if,
1285                                   "buffer manager failed to start\n");
1286                         return(ENXIO);
1287                 }
1288         }
1289
1290         /* Enable flow-through queues */
1291         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1292         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1293
1294         /* Wait until queue initialization is complete */
1295         for (i = 0; i < BGE_TIMEOUT; i++) {
1296                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1297                         break;
1298                 DELAY(10);
1299         }
1300
1301         if (i == BGE_TIMEOUT) {
1302                 if_printf(&sc->arpcom.ac_if,
1303                           "flow-through queue init failed\n");
1304                 return(ENXIO);
1305         }
1306
1307         /* Initialize the standard RX ring control block */
1308         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1309         rcb->bge_hostaddr.bge_addr_lo =
1310             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1311         rcb->bge_hostaddr.bge_addr_hi =
1312             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1313         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1314             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1315         if (BGE_IS_5705_PLUS(sc))
1316                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1317         else
1318                 rcb->bge_maxlen_flags =
1319                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1320         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1321         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1322         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1323         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1324         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1325
1326         /*
1327          * Initialize the jumbo RX ring control block
1328          * We set the 'ring disabled' bit in the flags
1329          * field until we're actually ready to start
1330          * using this ring (i.e. once we set the MTU
1331          * high enough to require it).
1332          */
1333         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1334                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1335
1336                 rcb->bge_hostaddr.bge_addr_lo =
1337                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1338                 rcb->bge_hostaddr.bge_addr_hi =
1339                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1340                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1341                     sc->bge_cdata.bge_rx_jumbo_ring_map,
1342                     BUS_DMASYNC_PREREAD);
1343                 rcb->bge_maxlen_flags =
1344                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1345                     BGE_RCB_FLAG_RING_DISABLED);
1346                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1347                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1348                     rcb->bge_hostaddr.bge_addr_hi);
1349                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1350                     rcb->bge_hostaddr.bge_addr_lo);
1351                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1352                     rcb->bge_maxlen_flags);
1353                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1354
1355                 /* Set up dummy disabled mini ring RCB */
1356                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1357                 rcb->bge_maxlen_flags =
1358                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1359                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1360                     rcb->bge_maxlen_flags);
1361         }
1362
1363         /*
1364          * Set the BD ring replentish thresholds. The recommended
1365          * values are 1/8th the number of descriptors allocated to
1366          * each ring.
1367          */
1368         if (BGE_IS_5705_PLUS(sc))
1369                 val = 8;
1370         else
1371                 val = BGE_STD_RX_RING_CNT / 8;
1372         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1373         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1374
1375         /*
1376          * Disable all unused send rings by setting the 'ring disabled'
1377          * bit in the flags field of all the TX send ring control blocks.
1378          * These are located in NIC memory.
1379          */
1380         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1381         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1382                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1383                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1384                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1385                 vrcb += sizeof(struct bge_rcb);
1386         }
1387
1388         /* Configure TX RCB 0 (we use only the first ring) */
1389         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1390         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1391         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1392         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1393         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1394             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1395         if (!BGE_IS_5705_PLUS(sc)) {
1396                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1397                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1398         }
1399
1400         /* Disable all unused RX return rings */
1401         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1402         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1403                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1404                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1405                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1406                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1407                     BGE_RCB_FLAG_RING_DISABLED));
1408                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1409                 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1410                     (i * (sizeof(uint64_t))), 0);
1411                 vrcb += sizeof(struct bge_rcb);
1412         }
1413
1414         /* Initialize RX ring indexes */
1415         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1416         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1417         CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1418
1419         /*
1420          * Set up RX return ring 0
1421          * Note that the NIC address for RX return rings is 0x00000000.
1422          * The return rings live entirely within the host, so the
1423          * nicaddr field in the RCB isn't used.
1424          */
1425         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1426         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1427         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1428         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1429         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1430         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1431             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1432
1433         /* Set random backoff seed for TX */
1434         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1435             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1436             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1437             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1438             BGE_TX_BACKOFF_SEED_MASK);
1439
1440         /* Set inter-packet gap */
1441         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1442
1443         /*
1444          * Specify which ring to use for packets that don't match
1445          * any RX rules.
1446          */
1447         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1448
1449         /*
1450          * Configure number of RX lists. One interrupt distribution
1451          * list, sixteen active lists, one bad frames class.
1452          */
1453         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1454
1455         /* Inialize RX list placement stats mask. */
1456         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1457         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1458
1459         /* Disable host coalescing until we get it set up */
1460         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1461
1462         /* Poll to make sure it's shut down. */
1463         for (i = 0; i < BGE_TIMEOUT; i++) {
1464                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1465                         break;
1466                 DELAY(10);
1467         }
1468
1469         if (i == BGE_TIMEOUT) {
1470                 if_printf(&sc->arpcom.ac_if,
1471                           "host coalescing engine failed to idle\n");
1472                 return(ENXIO);
1473         }
1474
1475         /* Set up host coalescing defaults */
1476         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1477         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1478         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1479         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1480         if (!BGE_IS_5705_PLUS(sc)) {
1481                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1482                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1483         }
1484         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1485         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1486
1487         /* Set up address of statistics block */
1488         if (!BGE_IS_5705_PLUS(sc)) {
1489                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1490                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1491                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1492                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1493
1494                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1495                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1496                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1497         }
1498
1499         /* Set up address of status block */
1500         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1501             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1502         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1503             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1504         sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1505         sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1506
1507         /* Turn on host coalescing state machine */
1508         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1509
1510         /* Turn on RX BD completion state machine and enable attentions */
1511         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1512             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1513
1514         /* Turn on RX list placement state machine */
1515         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1516
1517         /* Turn on RX list selector state machine. */
1518         if (!BGE_IS_5705_PLUS(sc))
1519                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1520
1521         /* Turn on DMA, clear stats */
1522         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1523             BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1524             BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1525             BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1526             ((sc->bge_flags & BGE_FLAG_TBI) ?
1527              BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1528
1529         /* Set misc. local control, enable interrupts on attentions */
1530         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1531
1532 #ifdef notdef
1533         /* Assert GPIO pins for PHY reset */
1534         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1535             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1536         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1537             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1538 #endif
1539
1540         /* Turn on DMA completion state machine */
1541         if (!BGE_IS_5705_PLUS(sc))
1542                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1543
1544         /* Turn on write DMA state machine */
1545         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1546         if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1547             sc->bge_asicrev == BGE_ASICREV_BCM5787)
1548                 val |= (1 << 29);       /* Enable host coalescing bug fix. */
1549         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1550         DELAY(40);
1551
1552         /* Turn on read DMA state machine */
1553         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1554         if (sc->bge_flags & BGE_FLAG_PCIE)
1555                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1556         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1557         DELAY(40);
1558
1559         /* Turn on RX data completion state machine */
1560         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1561
1562         /* Turn on RX BD initiator state machine */
1563         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1564
1565         /* Turn on RX data and RX BD initiator state machine */
1566         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1567
1568         /* Turn on Mbuf cluster free state machine */
1569         if (!BGE_IS_5705_PLUS(sc))
1570                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1571
1572         /* Turn on send BD completion state machine */
1573         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1574
1575         /* Turn on send data completion state machine */
1576         CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1577
1578         /* Turn on send data initiator state machine */
1579         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1580
1581         /* Turn on send BD initiator state machine */
1582         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1583
1584         /* Turn on send BD selector state machine */
1585         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1586
1587         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1588         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1589             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1590
1591         /* ack/clear link change events */
1592         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1593             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1594             BGE_MACSTAT_LINK_CHANGED);
1595         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1596
1597         /* Enable PHY auto polling (for MII/GMII only) */
1598         if (sc->bge_flags & BGE_FLAG_TBI) {
1599                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1600         } else {
1601                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1602                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1603                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1604                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1605                             BGE_EVTENB_MI_INTERRUPT);
1606                 }
1607         }
1608
1609         /*
1610          * Clear any pending link state attention.
1611          * Otherwise some link state change events may be lost until attention
1612          * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1613          * It's not necessary on newer BCM chips - perhaps enabling link
1614          * state change attentions implies clearing pending attention.
1615          */
1616         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1617             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1618             BGE_MACSTAT_LINK_CHANGED);
1619
1620         /* Enable link state change attentions. */
1621         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1622
1623         return(0);
1624 }
1625
1626 /*
1627  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1628  * against our list and return its name if we find a match. Note
1629  * that since the Broadcom controller contains VPD support, we
1630  * can get the device name string from the controller itself instead
1631  * of the compiled-in string. This is a little slow, but it guarantees
1632  * we'll always announce the right product name.
1633  */
1634 static int
1635 bge_probe(device_t dev)
1636 {
1637         const struct bge_type *t;
1638         uint16_t product, vendor;
1639
1640         product = pci_get_device(dev);
1641         vendor = pci_get_vendor(dev);
1642
1643         for (t = bge_devs; t->bge_name != NULL; t++) {
1644                 if (vendor == t->bge_vid && product == t->bge_did)
1645                         break;
1646         }
1647         if (t->bge_name == NULL)
1648                 return(ENXIO);
1649
1650         device_set_desc(dev, t->bge_name);
1651         if (pci_get_subvendor(dev) == PCI_VENDOR_DELL) {
1652                 struct bge_softc *sc = device_get_softc(dev);
1653                 sc->bge_flags |= BGE_FLAG_NO_3LED;
1654         }
1655         return(0);
1656 }
1657
1658 static int
1659 bge_attach(device_t dev)
1660 {
1661         struct ifnet *ifp;
1662         struct bge_softc *sc;
1663         uint32_t hwcfg = 0;
1664         uint32_t mac_addr = 0;
1665         int error = 0, rid;
1666         uint8_t ether_addr[ETHER_ADDR_LEN];
1667
1668         sc = device_get_softc(dev);
1669         sc->bge_dev = dev;
1670         callout_init(&sc->bge_stat_timer);
1671         lwkt_serialize_init(&sc->bge_jslot_serializer);
1672
1673         /*
1674          * Map control/status registers.
1675          */
1676         pci_enable_busmaster(dev);
1677
1678         rid = BGE_PCI_BAR0;
1679         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1680             RF_ACTIVE);
1681
1682         if (sc->bge_res == NULL) {
1683                 device_printf(dev, "couldn't map memory\n");
1684                 return ENXIO;
1685         }
1686
1687         sc->bge_btag = rman_get_bustag(sc->bge_res);
1688         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1689
1690         /* Save various chip information */
1691         sc->bge_chipid =
1692             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1693             BGE_PCIMISCCTL_ASICREV;
1694         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1695         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1696
1697         /* Save chipset family. */
1698         switch (sc->bge_asicrev) {
1699         case BGE_ASICREV_BCM5700:
1700         case BGE_ASICREV_BCM5701:
1701         case BGE_ASICREV_BCM5703:
1702         case BGE_ASICREV_BCM5704:
1703                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
1704                 break;
1705
1706         case BGE_ASICREV_BCM5714_A0:
1707         case BGE_ASICREV_BCM5780:
1708         case BGE_ASICREV_BCM5714:
1709                 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
1710                 /* Fall through */
1711
1712         case BGE_ASICREV_BCM5750:
1713         case BGE_ASICREV_BCM5752:
1714         case BGE_ASICREV_BCM5755:
1715         case BGE_ASICREV_BCM5787:
1716                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
1717                 /* Fall through */
1718
1719         case BGE_ASICREV_BCM5705:
1720                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
1721                 break;
1722         }
1723
1724         /*
1725          * Set various quirk flags.
1726          */
1727
1728         sc->bge_flags |= BGE_FLAG_ETH_WIRESPEED;
1729         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1730             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
1731              (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
1732               sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
1733             sc->bge_asicrev == BGE_ASICREV_BCM5906)
1734                 sc->bge_flags &= ~BGE_FLAG_ETH_WIRESPEED;
1735
1736         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
1737             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
1738                 sc->bge_flags |= BGE_FLAG_CRC_BUG;
1739
1740         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
1741             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
1742                 sc->bge_flags |= BGE_FLAG_ADC_BUG;
1743
1744         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
1745                 sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
1746
1747         if (BGE_IS_5705_PLUS(sc)) {
1748                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1749                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
1750                         uint32_t product = pci_get_device(dev);
1751
1752                         if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
1753                             product != PCI_PRODUCT_BROADCOM_BCM5756)
1754                                 sc->bge_flags |= BGE_FLAG_JITTER_BUG;
1755                         if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
1756                                 sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
1757                 } else if (sc->bge_asicrev != BGE_ASICREV_BCM5906) {
1758                         sc->bge_flags |= BGE_FLAG_BER_BUG;
1759                 }
1760         }
1761
1762         /* Allocate interrupt */
1763         rid = 0;
1764
1765         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1766             RF_SHAREABLE | RF_ACTIVE);
1767
1768         if (sc->bge_irq == NULL) {
1769                 device_printf(dev, "couldn't map interrupt\n");
1770                 error = ENXIO;
1771                 goto fail;
1772         }
1773
1774         /*
1775          * Check if this is a PCI-X or PCI Express device.
1776          */
1777         if (BGE_IS_5705_PLUS(sc)) {
1778                 sc->bge_expr_ptr = pci_get_pciecap_ptr(dev);
1779
1780                 if (sc->bge_expr_ptr != 0) {
1781                         sc->bge_flags |= BGE_FLAG_PCIE;
1782                         bge_set_max_readrq(sc);
1783                 }
1784         } else {
1785                 /*
1786                  * Check if the device is in PCI-X Mode.
1787                  * (This bit is not valid on PCI Express controllers.)
1788                  */
1789                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1790                     BGE_PCISTATE_PCI_BUSMODE) == 0)
1791                         sc->bge_flags |= BGE_FLAG_PCIX;
1792         }
1793
1794         device_printf(dev, "CHIP ID 0x%08x; "
1795                       "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
1796                       sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
1797                       (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
1798                       : ((sc->bge_flags & BGE_FLAG_PCIE) ?
1799                         "PCI-E" : "PCI"));
1800
1801         ifp = &sc->arpcom.ac_if;
1802         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1803
1804         /* Try to reset the chip. */
1805         bge_reset(sc);
1806
1807         if (bge_chipinit(sc)) {
1808                 device_printf(dev, "chip initialization failed\n");
1809                 error = ENXIO;
1810                 goto fail;
1811         }
1812
1813         /*
1814          * Get station address from the EEPROM.
1815          */
1816         mac_addr = bge_readmem_ind(sc, 0x0c14);
1817         if ((mac_addr >> 16) == 0x484b) {
1818                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
1819                 ether_addr[1] = (uint8_t)mac_addr;
1820                 mac_addr = bge_readmem_ind(sc, 0x0c18);
1821                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
1822                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
1823                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
1824                 ether_addr[5] = (uint8_t)mac_addr;
1825         } else if (bge_read_eeprom(sc, ether_addr,
1826             BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1827                 device_printf(dev, "failed to read station address\n");
1828                 error = ENXIO;
1829                 goto fail;
1830         }
1831
1832         /* 5705/5750 limits RX return ring to 512 entries. */
1833         if (BGE_IS_5705_PLUS(sc))
1834                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1835         else
1836                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1837
1838         error = bge_dma_alloc(sc);
1839         if (error)
1840                 goto fail;
1841
1842         /* Set default tuneable values. */
1843         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1844         sc->bge_rx_coal_ticks = bge_rx_coal_ticks;
1845         sc->bge_tx_coal_ticks = bge_tx_coal_ticks;
1846         sc->bge_rx_max_coal_bds = bge_rx_max_coal_bds;
1847         sc->bge_tx_max_coal_bds = bge_tx_max_coal_bds;
1848
1849         /* Set up ifnet structure */
1850         ifp->if_softc = sc;
1851         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1852         ifp->if_ioctl = bge_ioctl;
1853         ifp->if_start = bge_start;
1854 #ifdef DEVICE_POLLING
1855         ifp->if_poll = bge_poll;
1856 #endif
1857         ifp->if_watchdog = bge_watchdog;
1858         ifp->if_init = bge_init;
1859         ifp->if_mtu = ETHERMTU;
1860         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1861         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1862         ifq_set_ready(&ifp->if_snd);
1863
1864         /*
1865          * 5700 B0 chips do not support checksumming correctly due
1866          * to hardware bugs.
1867          */
1868         if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
1869                 ifp->if_capabilities |= IFCAP_HWCSUM;
1870                 ifp->if_hwassist = BGE_CSUM_FEATURES;
1871         }
1872         ifp->if_capenable = ifp->if_capabilities;
1873
1874         /*
1875          * Figure out what sort of media we have by checking the
1876          * hardware config word in the first 32k of NIC internal memory,
1877          * or fall back to examining the EEPROM if necessary.
1878          * Note: on some BCM5700 cards, this value appears to be unset.
1879          * If that's the case, we have to rely on identifying the NIC
1880          * by its PCI subsystem ID, as we do below for the SysKonnect
1881          * SK-9D41.
1882          */
1883         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1884                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1885         else {
1886                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
1887                                     sizeof(hwcfg))) {
1888                         device_printf(dev, "failed to read EEPROM\n");
1889                         error = ENXIO;
1890                         goto fail;
1891                 }
1892                 hwcfg = ntohl(hwcfg);
1893         }
1894
1895         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1896                 sc->bge_flags |= BGE_FLAG_TBI;
1897
1898         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1899         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1900                 sc->bge_flags |= BGE_FLAG_TBI;
1901
1902         if (sc->bge_flags & BGE_FLAG_TBI) {
1903                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1904                     bge_ifmedia_upd, bge_ifmedia_sts);
1905                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1906                 ifmedia_add(&sc->bge_ifmedia,
1907                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1908                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1909                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1910                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
1911         } else {
1912                 /*
1913                  * Do transceiver setup.
1914                  */
1915                 if (mii_phy_probe(dev, &sc->bge_miibus,
1916                     bge_ifmedia_upd, bge_ifmedia_sts)) {
1917                         device_printf(dev, "MII without any PHY!\n");
1918                         error = ENXIO;
1919                         goto fail;
1920                 }
1921         }
1922
1923         /*
1924          * When using the BCM5701 in PCI-X mode, data corruption has
1925          * been observed in the first few bytes of some received packets.
1926          * Aligning the packet buffer in memory eliminates the corruption.
1927          * Unfortunately, this misaligns the packet payloads.  On platforms
1928          * which do not support unaligned accesses, we will realign the
1929          * payloads by copying the received packets.
1930          */
1931         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1932             (sc->bge_flags & BGE_FLAG_PCIX))
1933                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
1934
1935         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1936             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1937                 sc->bge_link_upd = bge_bcm5700_link_upd;
1938                 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
1939         } else if (sc->bge_flags & BGE_FLAG_TBI) {
1940                 sc->bge_link_upd = bge_tbi_link_upd;
1941                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
1942         } else {
1943                 sc->bge_link_upd = bge_copper_link_upd;
1944                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
1945         }
1946
1947         /*
1948          * Create sysctl nodes.
1949          */
1950         sysctl_ctx_init(&sc->bge_sysctl_ctx);
1951         sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
1952                                               SYSCTL_STATIC_CHILDREN(_hw),
1953                                               OID_AUTO,
1954                                               device_get_nameunit(dev),
1955                                               CTLFLAG_RD, 0, "");
1956         if (sc->bge_sysctl_tree == NULL) {
1957                 device_printf(dev, "can't add sysctl node\n");
1958                 error = ENXIO;
1959                 goto fail;
1960         }
1961
1962         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1963                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1964                         OID_AUTO, "rx_coal_ticks",
1965                         CTLTYPE_INT | CTLFLAG_RW,
1966                         sc, 0, bge_sysctl_rx_coal_ticks, "I",
1967                         "Receive coalescing ticks (usec).");
1968         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1969                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1970                         OID_AUTO, "tx_coal_ticks",
1971                         CTLTYPE_INT | CTLFLAG_RW,
1972                         sc, 0, bge_sysctl_tx_coal_ticks, "I",
1973                         "Transmit coalescing ticks (usec).");
1974         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1975                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1976                         OID_AUTO, "rx_max_coal_bds",
1977                         CTLTYPE_INT | CTLFLAG_RW,
1978                         sc, 0, bge_sysctl_rx_max_coal_bds, "I",
1979                         "Receive max coalesced BD count.");
1980         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1981                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1982                         OID_AUTO, "tx_max_coal_bds",
1983                         CTLTYPE_INT | CTLFLAG_RW,
1984                         sc, 0, bge_sysctl_tx_max_coal_bds, "I",
1985                         "Transmit max coalesced BD count.");
1986
1987         /*
1988          * Call MI attach routine.
1989          */
1990         ether_ifattach(ifp, ether_addr, NULL);
1991
1992         error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE,
1993                                bge_intr, sc, &sc->bge_intrhand, 
1994                                ifp->if_serializer);
1995         if (error) {
1996                 ether_ifdetach(ifp);
1997                 device_printf(dev, "couldn't set up irq\n");
1998                 goto fail;
1999         }
2000
2001         ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->bge_irq));
2002         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
2003
2004         return(0);
2005 fail:
2006         bge_detach(dev);
2007         return(error);
2008 }
2009
2010 static int
2011 bge_detach(device_t dev)
2012 {
2013         struct bge_softc *sc = device_get_softc(dev);
2014
2015         if (device_is_attached(dev)) {
2016                 struct ifnet *ifp = &sc->arpcom.ac_if;
2017
2018                 lwkt_serialize_enter(ifp->if_serializer);
2019                 bge_stop(sc);
2020                 bge_reset(sc);
2021                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2022                 lwkt_serialize_exit(ifp->if_serializer);
2023
2024                 ether_ifdetach(ifp);
2025         }
2026
2027         if (sc->bge_flags & BGE_FLAG_TBI)
2028                 ifmedia_removeall(&sc->bge_ifmedia);
2029         if (sc->bge_miibus)
2030                 device_delete_child(dev, sc->bge_miibus);
2031         bus_generic_detach(dev);
2032
2033         if (sc->bge_irq != NULL)
2034                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
2035
2036         if (sc->bge_res != NULL)
2037                 bus_release_resource(dev, SYS_RES_MEMORY,
2038                     BGE_PCI_BAR0, sc->bge_res);
2039
2040         if (sc->bge_sysctl_tree != NULL)
2041                 sysctl_ctx_free(&sc->bge_sysctl_ctx);
2042
2043         bge_dma_free(sc);
2044
2045         return 0;
2046 }
2047
2048 static void
2049 bge_reset(struct bge_softc *sc)
2050 {
2051         device_t dev;
2052         uint32_t cachesize, command, pcistate, reset;
2053         void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2054         int i, val = 0;
2055
2056         dev = sc->bge_dev;
2057
2058         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc)) {
2059                 if (sc->bge_flags & BGE_FLAG_PCIE)
2060                         write_op = bge_writemem_direct;
2061                 else
2062                         write_op = bge_writemem_ind;
2063         } else {
2064                 write_op = bge_writereg_ind;
2065         }
2066
2067         /* Save some important PCI state. */
2068         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2069         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2070         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2071
2072         pci_write_config(dev, BGE_PCI_MISC_CTL,
2073             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2074             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2075
2076         /* Disable fastboot on controllers that support it. */
2077         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2078             sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2079             sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2080                 if (bootverbose)
2081                         if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2082                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2083         }
2084
2085         /*
2086          * Write the magic number to SRAM at offset 0xB50.
2087          * When firmware finishes its initialization it will
2088          * write ~BGE_MAGIC_NUMBER to the same location.
2089          */
2090         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2091
2092         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2093
2094         /* XXX: Broadcom Linux driver. */
2095         if (sc->bge_flags & BGE_FLAG_PCIE) {
2096                 if (CSR_READ_4(sc, 0x7e2c) == 0x60)     /* PCIE 1.0 */
2097                         CSR_WRITE_4(sc, 0x7e2c, 0x20);
2098                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2099                         /* Prevent PCIE link training during global reset */
2100                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2101                         reset |= (1<<29);
2102                 }
2103         }
2104
2105         /* 
2106          * Set GPHY Power Down Override to leave GPHY
2107          * powered up in D0 uninitialized.
2108          */
2109         if (BGE_IS_5705_PLUS(sc))
2110                 reset |= 0x04000000;
2111
2112         /* Issue global reset */
2113         write_op(sc, BGE_MISC_CFG, reset);
2114
2115         DELAY(1000);
2116
2117         /* XXX: Broadcom Linux driver. */
2118         if (sc->bge_flags & BGE_FLAG_PCIE) {
2119                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2120                         uint32_t v;
2121
2122                         DELAY(500000); /* wait for link training to complete */
2123                         v = pci_read_config(dev, 0xc4, 4);
2124                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
2125                 }
2126                 /*
2127                  * Set PCIE max payload size to 128 bytes and
2128                  * clear error status.
2129                  */
2130                 pci_write_config(dev, 0xd8, 0xf5000, 4);
2131         }
2132
2133         /* Reset some of the PCI state that got zapped by reset */
2134         pci_write_config(dev, BGE_PCI_MISC_CTL,
2135             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2136             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2137         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2138         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2139         write_op(sc, BGE_MISC_CFG, (65 << 1));
2140
2141         /* Enable memory arbiter. */
2142         if (BGE_IS_5714_FAMILY(sc)) {
2143                 uint32_t val;
2144
2145                 val = CSR_READ_4(sc, BGE_MARB_MODE);
2146                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2147         } else {
2148                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2149         }
2150
2151         /*
2152          * Poll until we see the 1's complement of the magic number.
2153          * This indicates that the firmware initialization
2154          * is complete.
2155          */
2156         for (i = 0; i < BGE_TIMEOUT; i++) {
2157                 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2158                 if (val == ~BGE_MAGIC_NUMBER)
2159                         break;
2160                 DELAY(10);
2161         }
2162         
2163         if (i == BGE_TIMEOUT) {
2164                 if_printf(&sc->arpcom.ac_if, "firmware handshake timed out,"
2165                           "found 0x%08x\n", val);
2166                 return;
2167         }
2168
2169         /*
2170          * XXX Wait for the value of the PCISTATE register to
2171          * return to its original pre-reset state. This is a
2172          * fairly good indicator of reset completion. If we don't
2173          * wait for the reset to fully complete, trying to read
2174          * from the device's non-PCI registers may yield garbage
2175          * results.
2176          */
2177         for (i = 0; i < BGE_TIMEOUT; i++) {
2178                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2179                         break;
2180                 DELAY(10);
2181         }
2182
2183         if (sc->bge_flags & BGE_FLAG_PCIE) {
2184                 reset = bge_readmem_ind(sc, 0x7c00);
2185                 bge_writemem_ind(sc, 0x7c00, reset | (1 << 25));
2186         }
2187
2188         /* Fix up byte swapping */
2189         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2190             BGE_MODECTL_BYTESWAP_DATA);
2191
2192         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2193
2194         /*
2195          * The 5704 in TBI mode apparently needs some special
2196          * adjustment to insure the SERDES drive level is set
2197          * to 1.2V.
2198          */
2199         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2200             (sc->bge_flags & BGE_FLAG_TBI)) {
2201                 uint32_t serdescfg;
2202
2203                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2204                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2205                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2206         }
2207
2208         /* XXX: Broadcom Linux driver. */
2209         if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2210             sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2211                 uint32_t v;
2212
2213                 v = CSR_READ_4(sc, 0x7c00);
2214                 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
2215         }
2216
2217         DELAY(10000);
2218 }
2219
2220 /*
2221  * Frame reception handling. This is called if there's a frame
2222  * on the receive return list.
2223  *
2224  * Note: we have to be able to handle two possibilities here:
2225  * 1) the frame is from the jumbo recieve ring
2226  * 2) the frame is from the standard receive ring
2227  */
2228
2229 static void
2230 bge_rxeof(struct bge_softc *sc)
2231 {
2232         struct ifnet *ifp;
2233         int stdcnt = 0, jumbocnt = 0;
2234 #ifdef ETHER_INPUT_CHAIN
2235         struct mbuf_chain chain[MAXCPU];
2236 #endif
2237
2238         if (sc->bge_rx_saved_considx ==
2239             sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx)
2240                 return;
2241
2242 #ifdef ETHER_INPUT_CHAIN
2243         ether_input_chain_init(chain);
2244 #endif
2245
2246         ifp = &sc->arpcom.ac_if;
2247
2248         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
2249                         sc->bge_cdata.bge_rx_return_ring_map,
2250                         BUS_DMASYNC_POSTREAD);
2251         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2252                         sc->bge_cdata.bge_rx_std_ring_map,
2253                         BUS_DMASYNC_POSTREAD);
2254         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2255                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2256                                 sc->bge_cdata.bge_rx_jumbo_ring_map,
2257                                 BUS_DMASYNC_POSTREAD);
2258         }
2259
2260         while (sc->bge_rx_saved_considx !=
2261                sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
2262                 struct bge_rx_bd        *cur_rx;
2263                 uint32_t                rxidx;
2264                 struct mbuf             *m = NULL;
2265                 uint16_t                vlan_tag = 0;
2266                 int                     have_tag = 0;
2267
2268                 cur_rx =
2269             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2270
2271                 rxidx = cur_rx->bge_idx;
2272                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2273                 logif(rx_pkt);
2274
2275                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2276                         have_tag = 1;
2277                         vlan_tag = cur_rx->bge_vlan_tag;
2278                 }
2279
2280                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2281                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2282                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2283                         sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2284                         jumbocnt++;
2285                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2286                                 ifp->if_ierrors++;
2287                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2288                                 continue;
2289                         }
2290                         if (bge_newbuf_jumbo(sc,
2291                             sc->bge_jumbo, NULL) == ENOBUFS) {
2292                                 ifp->if_ierrors++;
2293                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2294                                 continue;
2295                         }
2296                 } else {
2297                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2298                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
2299                                         sc->bge_cdata.bge_rx_std_dmamap[rxidx],
2300                                         BUS_DMASYNC_POSTREAD);
2301                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
2302                                 sc->bge_cdata.bge_rx_std_dmamap[rxidx]);
2303                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2304                         sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2305                         stdcnt++;
2306                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2307                                 ifp->if_ierrors++;
2308                                 bge_newbuf_std(sc, sc->bge_std, m);
2309                                 continue;
2310                         }
2311                         if (bge_newbuf_std(sc, sc->bge_std,
2312                             NULL) == ENOBUFS) {
2313                                 ifp->if_ierrors++;
2314                                 bge_newbuf_std(sc, sc->bge_std, m);
2315                                 continue;
2316                         }
2317                 }
2318
2319                 ifp->if_ipackets++;
2320 #ifndef __i386__
2321                 /*
2322                  * The i386 allows unaligned accesses, but for other
2323                  * platforms we must make sure the payload is aligned.
2324                  */
2325                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
2326                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2327                             cur_rx->bge_len);
2328                         m->m_data += ETHER_ALIGN;
2329                 }
2330 #endif
2331                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2332                 m->m_pkthdr.rcvif = ifp;
2333
2334                 if (ifp->if_capenable & IFCAP_RXCSUM) {
2335                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2336                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2337                                 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2338                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2339                         }
2340                         if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
2341                             m->m_pkthdr.len >= BGE_MIN_FRAME) {
2342                                 m->m_pkthdr.csum_data =
2343                                         cur_rx->bge_tcp_udp_csum;
2344                                 m->m_pkthdr.csum_flags |=
2345                                         CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2346                         }
2347                 }
2348
2349                 /*
2350                  * If we received a packet with a vlan tag, pass it
2351                  * to vlan_input() instead of ether_input().
2352                  */
2353                 if (have_tag) {
2354                         m->m_flags |= M_VLANTAG;
2355                         m->m_pkthdr.ether_vlantag = vlan_tag;
2356                         have_tag = vlan_tag = 0;
2357                 }
2358 #ifdef ETHER_INPUT_CHAIN
2359                 ether_input_chain2(ifp, m, chain);
2360 #else
2361                 ifp->if_input(ifp, m);
2362 #endif
2363         }
2364
2365 #ifdef ETHER_INPUT_CHAIN
2366         ether_input_dispatch(chain);
2367 #endif
2368
2369         if (stdcnt > 0) {
2370                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2371                                 sc->bge_cdata.bge_rx_std_ring_map,
2372                                 BUS_DMASYNC_PREWRITE);
2373         }
2374
2375         if (BGE_IS_JUMBO_CAPABLE(sc) && jumbocnt > 0) {
2376                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2377                                 sc->bge_cdata.bge_rx_jumbo_ring_map,
2378                                 BUS_DMASYNC_PREWRITE);
2379         }
2380
2381         CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2382         if (stdcnt)
2383                 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2384         if (jumbocnt)
2385                 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2386 }
2387
2388 static void
2389 bge_txeof(struct bge_softc *sc)
2390 {
2391         struct bge_tx_bd *cur_tx = NULL;
2392         struct ifnet *ifp;
2393
2394         if (sc->bge_tx_saved_considx ==
2395             sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx)
2396                 return;
2397
2398         ifp = &sc->arpcom.ac_if;
2399
2400         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
2401                         sc->bge_cdata.bge_tx_ring_map,
2402                         BUS_DMASYNC_POSTREAD);
2403
2404         /*
2405          * Go through our tx ring and free mbufs for those
2406          * frames that have been sent.
2407          */
2408         while (sc->bge_tx_saved_considx !=
2409                sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
2410                 uint32_t idx = 0;
2411
2412                 idx = sc->bge_tx_saved_considx;
2413                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
2414                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2415                         ifp->if_opackets++;
2416                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2417                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
2418                                         sc->bge_cdata.bge_tx_dmamap[idx],
2419                                         BUS_DMASYNC_POSTWRITE);
2420                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
2421                             sc->bge_cdata.bge_tx_dmamap[idx]);
2422                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2423                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
2424                 }
2425                 sc->bge_txcnt--;
2426                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2427                 logif(tx_pkt);
2428         }
2429
2430         if (cur_tx != NULL &&
2431             (BGE_TX_RING_CNT - sc->bge_txcnt) >=
2432             (BGE_NSEG_RSVD + BGE_NSEG_SPARE))
2433                 ifp->if_flags &= ~IFF_OACTIVE;
2434
2435         if (sc->bge_txcnt == 0)
2436                 ifp->if_timer = 0;
2437
2438         if (!ifq_is_empty(&ifp->if_snd))
2439                 if_devstart(ifp);
2440 }
2441
2442 #ifdef DEVICE_POLLING
2443
2444 static void
2445 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2446 {
2447         struct bge_softc *sc = ifp->if_softc;
2448         uint32_t status;
2449
2450         switch(cmd) {
2451         case POLL_REGISTER:
2452                 bge_disable_intr(sc);
2453                 break;
2454         case POLL_DEREGISTER:
2455                 bge_enable_intr(sc);
2456                 break;
2457         case POLL_AND_CHECK_STATUS:
2458                 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2459                                 sc->bge_cdata.bge_status_map,
2460                                 BUS_DMASYNC_POSTREAD);
2461
2462                 /*
2463                  * Process link state changes.
2464                  */
2465                 status = CSR_READ_4(sc, BGE_MAC_STS);
2466                 if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2467                         sc->bge_link_evt = 0;
2468                         sc->bge_link_upd(sc, status);
2469                 }
2470                 /* fall through */
2471         case POLL_ONLY:
2472                 if (ifp->if_flags & IFF_RUNNING) {
2473                         bge_rxeof(sc);
2474                         bge_txeof(sc);
2475                 }
2476                 break;
2477         }
2478 }
2479
2480 #endif
2481
2482 static void
2483 bge_intr(void *xsc)
2484 {
2485         struct bge_softc *sc = xsc;
2486         struct ifnet *ifp = &sc->arpcom.ac_if;
2487         uint32_t status;
2488
2489         logif(intr);
2490
2491         /*
2492          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
2493          * disable interrupts by writing nonzero like we used to, since with
2494          * our current organization this just gives complications and
2495          * pessimizations for re-enabling interrupts.  We used to have races
2496          * instead of the necessary complications.  Disabling interrupts
2497          * would just reduce the chance of a status update while we are
2498          * running (by switching to the interrupt-mode coalescence
2499          * parameters), but this chance is already very low so it is more
2500          * efficient to get another interrupt than prevent it.
2501          *
2502          * We do the ack first to ensure another interrupt if there is a
2503          * status update after the ack.  We don't check for the status
2504          * changing later because it is more efficient to get another
2505          * interrupt than prevent it, not quite as above (not checking is
2506          * a smaller optimization than not toggling the interrupt enable,
2507          * since checking doesn't involve PCI accesses and toggling require
2508          * the status check).  So toggling would probably be a pessimization
2509          * even with MSI.  It would only be needed for using a task queue.
2510          */
2511         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2512
2513         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2514                         sc->bge_cdata.bge_status_map,
2515                         BUS_DMASYNC_POSTREAD);
2516
2517         /*
2518          * Process link state changes.
2519          */
2520         status = CSR_READ_4(sc, BGE_MAC_STS);
2521         if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2522                 sc->bge_link_evt = 0;
2523                 sc->bge_link_upd(sc, status);
2524         }
2525
2526         if (ifp->if_flags & IFF_RUNNING) {
2527                 /* Check RX return ring producer/consumer */
2528                 bge_rxeof(sc);
2529
2530                 /* Check TX ring producer/consumer */
2531                 bge_txeof(sc);
2532         }
2533
2534         if (sc->bge_coal_chg)
2535                 bge_coal_change(sc);
2536 }
2537
2538 static void
2539 bge_tick(void *xsc)
2540 {
2541         struct bge_softc *sc = xsc;
2542         struct ifnet *ifp = &sc->arpcom.ac_if;
2543
2544         lwkt_serialize_enter(ifp->if_serializer);
2545
2546         if (BGE_IS_5705_PLUS(sc))
2547                 bge_stats_update_regs(sc);
2548         else
2549                 bge_stats_update(sc);
2550
2551         if (sc->bge_flags & BGE_FLAG_TBI) {
2552                 /*
2553                  * Since in TBI mode auto-polling can't be used we should poll
2554                  * link status manually. Here we register pending link event
2555                  * and trigger interrupt.
2556                  */
2557                 sc->bge_link_evt++;
2558                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
2559         } else if (!sc->bge_link) {
2560                 mii_tick(device_get_softc(sc->bge_miibus));
2561         }
2562
2563         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2564
2565         lwkt_serialize_exit(ifp->if_serializer);
2566 }
2567
2568 static void
2569 bge_stats_update_regs(struct bge_softc *sc)
2570 {
2571         struct ifnet *ifp = &sc->arpcom.ac_if;
2572         struct bge_mac_stats_regs stats;
2573         uint32_t *s;
2574         int i;
2575
2576         s = (uint32_t *)&stats;
2577         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2578                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2579                 s++;
2580         }
2581
2582         ifp->if_collisions +=
2583            (stats.dot3StatsSingleCollisionFrames +
2584            stats.dot3StatsMultipleCollisionFrames +
2585            stats.dot3StatsExcessiveCollisions +
2586            stats.dot3StatsLateCollisions) -
2587            ifp->if_collisions;
2588 }
2589
2590 static void
2591 bge_stats_update(struct bge_softc *sc)
2592 {
2593         struct ifnet *ifp = &sc->arpcom.ac_if;
2594         bus_size_t stats;
2595
2596         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2597
2598 #define READ_STAT(sc, stats, stat)      \
2599         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2600
2601         ifp->if_collisions +=
2602            (READ_STAT(sc, stats,
2603                 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
2604             READ_STAT(sc, stats,
2605                 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2606             READ_STAT(sc, stats,
2607                 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
2608             READ_STAT(sc, stats,
2609                 txstats.dot3StatsLateCollisions.bge_addr_lo)) -
2610            ifp->if_collisions;
2611
2612 #undef READ_STAT
2613
2614 #ifdef notdef
2615         ifp->if_collisions +=
2616            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2617            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2618            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2619            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2620            ifp->if_collisions;
2621 #endif
2622 }
2623
2624 static __inline int
2625 bge_cksum_pad(struct mbuf *pkt)
2626 {
2627         struct mbuf *last = NULL;
2628         int padlen;
2629
2630         padlen = BGE_MIN_FRAME - pkt->m_pkthdr.len;
2631
2632         /* if there's only the packet-header and we can pad there, use it. */
2633         if (pkt->m_pkthdr.len == pkt->m_len &&
2634             M_TRAILINGSPACE(pkt) >= padlen) {
2635                 last = pkt;
2636         } else {
2637                 /*
2638                  * Walk packet chain to find last mbuf. We will either
2639                  * pad there, or append a new mbuf and pad it
2640                  * (thus perhaps avoiding the bcm5700 dma-min bug).
2641                  */
2642                 for (last = pkt; last->m_next != NULL; last = last->m_next)
2643                         ; /* EMPTY */
2644
2645                 /* `last' now points to last in chain. */
2646                 if (M_TRAILINGSPACE(last) < padlen) {
2647                         /* Allocate new empty mbuf, pad it.  Compact later. */
2648                         struct mbuf *n;
2649                         MGET(n, MB_DONTWAIT, MT_DATA);
2650                         if (n == NULL)
2651                                 return ENOBUFS;
2652                         n->m_len = 0;
2653                         last->m_next = n;
2654                         last = n;
2655                 }
2656         }
2657         KKASSERT(M_TRAILINGSPACE(last) >= padlen);
2658         KKASSERT(M_WRITABLE(last));
2659
2660         /* Now zero the pad area, to avoid the bge cksum-assist bug */
2661         bzero(mtod(last, char *) + last->m_len, padlen);
2662         last->m_len += padlen;
2663         pkt->m_pkthdr.len += padlen;
2664         return 0;
2665 }
2666
2667 /*
2668  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2669  * pointers to descriptors.
2670  */
2671 static int
2672 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx)
2673 {
2674         struct bge_tx_bd *d = NULL;
2675         uint16_t csum_flags = 0;
2676         struct bge_dmamap_arg ctx;
2677         bus_dma_segment_t segs[BGE_NSEG_NEW];
2678         bus_dmamap_t map;
2679         int error, maxsegs, idx, i;
2680         struct mbuf *m_head = *m_head0;
2681
2682         if (m_head->m_pkthdr.csum_flags) {
2683                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2684                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2685                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2686                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2687                 if (m_head->m_flags & M_LASTFRAG)
2688                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2689                 else if (m_head->m_flags & M_FRAG)
2690                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2691         }
2692
2693         idx = *txidx;
2694         map = sc->bge_cdata.bge_tx_dmamap[idx];
2695
2696         maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - BGE_NSEG_RSVD;
2697         KASSERT(maxsegs >= BGE_NSEG_SPARE,
2698                 ("not enough segments %d\n", maxsegs));
2699
2700         if (maxsegs > BGE_NSEG_NEW)
2701                 maxsegs = BGE_NSEG_NEW;
2702
2703         /*
2704          * Pad outbound frame to BGE_MIN_FRAME for an unusual reason.
2705          * The bge hardware will pad out Tx runts to BGE_MIN_FRAME,
2706          * but when such padded frames employ the bge IP/TCP checksum
2707          * offload, the hardware checksum assist gives incorrect results
2708          * (possibly from incorporating its own padding into the UDP/TCP
2709          * checksum; who knows).  If we pad such runts with zeros, the
2710          * onboard checksum comes out correct.
2711          */
2712         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2713             m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2714                 error = bge_cksum_pad(m_head);
2715                 if (error)
2716                         goto back;
2717         }
2718
2719         ctx.bge_segs = segs;
2720         ctx.bge_maxsegs = maxsegs;
2721         error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map, m_head,
2722                                      bge_dma_map_mbuf, &ctx, BUS_DMA_NOWAIT);
2723         if (error == EFBIG || ctx.bge_maxsegs == 0) {
2724                 struct mbuf *m_new;
2725
2726                 if (!error)
2727                         bus_dmamap_unload(sc->bge_cdata.bge_mtag, map);
2728
2729                 m_new = m_defrag(m_head, MB_DONTWAIT);
2730                 if (m_new == NULL) {
2731                         if_printf(&sc->arpcom.ac_if,
2732                                   "could not defrag TX mbuf\n");
2733                         error = ENOBUFS;
2734                         goto back;
2735                 } else {
2736                         m_head = m_new;
2737                         *m_head0 = m_head;
2738                 }
2739
2740                 ctx.bge_segs = segs;
2741                 ctx.bge_maxsegs = maxsegs;
2742                 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map,
2743                                              m_head, bge_dma_map_mbuf, &ctx,
2744                                              BUS_DMA_NOWAIT);
2745                 if (error || ctx.bge_maxsegs == 0) {
2746                         if_printf(&sc->arpcom.ac_if,
2747                                   "could not defrag TX mbuf\n");
2748                         if (!error) {
2749                                 bus_dmamap_unload(sc->bge_cdata.bge_mtag, map);
2750                                 error = EFBIG;
2751                         }
2752                         goto back;
2753                 }
2754         } else if (error) {
2755                 if_printf(&sc->arpcom.ac_if, "could not map TX mbuf\n");
2756                 goto back;
2757         }
2758
2759         bus_dmamap_sync(sc->bge_cdata.bge_mtag, map, BUS_DMASYNC_PREWRITE);
2760
2761         for (i = 0; ; i++) {
2762                 d = &sc->bge_ldata.bge_tx_ring[idx];
2763
2764                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_segs[i].ds_addr);
2765                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_segs[i].ds_addr);
2766                 d->bge_len = segs[i].ds_len;
2767                 d->bge_flags = csum_flags;
2768
2769                 if (i == ctx.bge_maxsegs - 1)
2770                         break;
2771                 BGE_INC(idx, BGE_TX_RING_CNT);
2772         }
2773         /* Mark the last segment as end of packet... */
2774         d->bge_flags |= BGE_TXBDFLAG_END;
2775
2776         /* Set vlan tag to the first segment of the packet. */
2777         d = &sc->bge_ldata.bge_tx_ring[*txidx];
2778         if (m_head->m_flags & M_VLANTAG) {
2779                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2780                 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
2781         } else {
2782                 d->bge_vlan_tag = 0;
2783         }
2784
2785         /*
2786          * Insure that the map for this transmission is placed at
2787          * the array index of the last descriptor in this chain.
2788          */
2789         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
2790         sc->bge_cdata.bge_tx_dmamap[idx] = map;
2791         sc->bge_cdata.bge_tx_chain[idx] = m_head;
2792         sc->bge_txcnt += ctx.bge_maxsegs;
2793
2794         BGE_INC(idx, BGE_TX_RING_CNT);
2795         *txidx = idx;
2796 back:
2797         if (error) {
2798                 m_freem(m_head);
2799                 *m_head0 = NULL;
2800         }
2801         return error;
2802 }
2803
2804 /*
2805  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2806  * to the mbuf data regions directly in the transmit descriptors.
2807  */
2808 static void
2809 bge_start(struct ifnet *ifp)
2810 {
2811         struct bge_softc *sc = ifp->if_softc;
2812         struct mbuf *m_head = NULL;
2813         uint32_t prodidx;
2814         int need_trans;
2815
2816         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2817                 return;
2818
2819         prodidx = sc->bge_tx_prodidx;
2820
2821         need_trans = 0;
2822         while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2823                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
2824                 if (m_head == NULL)
2825                         break;
2826
2827                 /*
2828                  * XXX
2829                  * The code inside the if() block is never reached since we
2830                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
2831                  * requests to checksum TCP/UDP in a fragmented packet.
2832                  * 
2833                  * XXX
2834                  * safety overkill.  If this is a fragmented packet chain
2835                  * with delayed TCP/UDP checksums, then only encapsulate
2836                  * it if we have enough descriptors to handle the entire
2837                  * chain at once.
2838                  * (paranoia -- may not actually be needed)
2839                  */
2840                 if ((m_head->m_flags & M_FIRSTFRAG) &&
2841                     (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
2842                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2843                             m_head->m_pkthdr.csum_data + BGE_NSEG_RSVD) {
2844                                 ifp->if_flags |= IFF_OACTIVE;
2845                                 ifq_prepend(&ifp->if_snd, m_head);
2846                                 break;
2847                         }
2848                 }
2849
2850                 /*
2851                  * Sanity check: avoid coming within BGE_NSEG_RSVD
2852                  * descriptors of the end of the ring.  Also make
2853                  * sure there are BGE_NSEG_SPARE descriptors for
2854                  * jumbo buffers' defragmentation.
2855                  */
2856                 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2857                     (BGE_NSEG_RSVD + BGE_NSEG_SPARE)) {
2858                         ifp->if_flags |= IFF_OACTIVE;
2859                         ifq_prepend(&ifp->if_snd, m_head);
2860                         break;
2861                 }
2862
2863                 /*
2864                  * Pack the data into the transmit ring. If we
2865                  * don't have room, set the OACTIVE flag and wait
2866                  * for the NIC to drain the ring.
2867                  */
2868                 if (bge_encap(sc, &m_head, &prodidx)) {
2869                         ifp->if_flags |= IFF_OACTIVE;
2870                         ifp->if_oerrors++;
2871                         break;
2872                 }
2873                 need_trans = 1;
2874
2875                 ETHER_BPF_MTAP(ifp, m_head);
2876         }
2877
2878         if (!need_trans)
2879                 return;
2880
2881         /* Transmit */
2882         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2883         /* 5700 b2 errata */
2884         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2885                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2886
2887         sc->bge_tx_prodidx = prodidx;
2888
2889         /*
2890          * Set a timeout in case the chip goes out to lunch.
2891          */
2892         ifp->if_timer = 5;
2893 }
2894
2895 static void
2896 bge_init(void *xsc)
2897 {
2898         struct bge_softc *sc = xsc;
2899         struct ifnet *ifp = &sc->arpcom.ac_if;
2900         uint16_t *m;
2901
2902         ASSERT_SERIALIZED(ifp->if_serializer);
2903
2904         if (ifp->if_flags & IFF_RUNNING)
2905                 return;
2906
2907         /* Cancel pending I/O and flush buffers. */
2908         bge_stop(sc);
2909         bge_reset(sc);
2910         bge_chipinit(sc);
2911
2912         /*
2913          * Init the various state machines, ring
2914          * control blocks and firmware.
2915          */
2916         if (bge_blockinit(sc)) {
2917                 if_printf(ifp, "initialization failure\n");
2918                 return;
2919         }
2920
2921         /* Specify MTU. */
2922         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2923             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
2924
2925         /* Load our MAC address. */
2926         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2927         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2928         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2929
2930         /* Enable or disable promiscuous mode as needed. */
2931         bge_setpromisc(sc);
2932
2933         /* Program multicast filter. */
2934         bge_setmulti(sc);
2935
2936         /* Init RX ring. */
2937         bge_init_rx_ring_std(sc);
2938
2939         /*
2940          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2941          * memory to insure that the chip has in fact read the first
2942          * entry of the ring.
2943          */
2944         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2945                 uint32_t                v, i;
2946                 for (i = 0; i < 10; i++) {
2947                         DELAY(20);
2948                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2949                         if (v == (MCLBYTES - ETHER_ALIGN))
2950                                 break;
2951                 }
2952                 if (i == 10)
2953                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2954         }
2955
2956         /* Init jumbo RX ring. */
2957         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2958                 bge_init_rx_ring_jumbo(sc);
2959
2960         /* Init our RX return ring index */
2961         sc->bge_rx_saved_considx = 0;
2962
2963         /* Init TX ring. */
2964         bge_init_tx_ring(sc);
2965
2966         /* Turn on transmitter */
2967         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2968
2969         /* Turn on receiver */
2970         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2971
2972         /* Tell firmware we're alive. */
2973         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2974
2975         /* Enable host interrupts if polling(4) is not enabled. */
2976         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2977 #ifdef DEVICE_POLLING
2978         if (ifp->if_flags & IFF_POLLING)
2979                 bge_disable_intr(sc);
2980         else
2981 #endif
2982         bge_enable_intr(sc);
2983
2984         bge_ifmedia_upd(ifp);
2985
2986         ifp->if_flags |= IFF_RUNNING;
2987         ifp->if_flags &= ~IFF_OACTIVE;
2988
2989         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2990 }
2991
2992 /*
2993  * Set media options.
2994  */
2995 static int
2996 bge_ifmedia_upd(struct ifnet *ifp)
2997 {
2998         struct bge_softc *sc = ifp->if_softc;
2999
3000         /* If this is a 1000baseX NIC, enable the TBI port. */
3001         if (sc->bge_flags & BGE_FLAG_TBI) {
3002                 struct ifmedia *ifm = &sc->bge_ifmedia;
3003
3004                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3005                         return(EINVAL);
3006
3007                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3008                 case IFM_AUTO:
3009                         /*
3010                          * The BCM5704 ASIC appears to have a special
3011                          * mechanism for programming the autoneg
3012                          * advertisement registers in TBI mode.
3013                          */
3014                         if (!bge_fake_autoneg &&
3015                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3016                                 uint32_t sgdig;
3017
3018                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3019                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3020                                 sgdig |= BGE_SGDIGCFG_AUTO |
3021                                          BGE_SGDIGCFG_PAUSE_CAP |
3022                                          BGE_SGDIGCFG_ASYM_PAUSE;
3023                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3024                                             sgdig | BGE_SGDIGCFG_SEND);
3025                                 DELAY(5);
3026                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3027                         }
3028                         break;
3029                 case IFM_1000_SX:
3030                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3031                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3032                                     BGE_MACMODE_HALF_DUPLEX);
3033                         } else {
3034                                 BGE_SETBIT(sc, BGE_MAC_MODE,
3035                                     BGE_MACMODE_HALF_DUPLEX);
3036                         }
3037                         break;
3038                 default:
3039                         return(EINVAL);
3040                 }
3041         } else {
3042                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3043
3044                 sc->bge_link_evt++;
3045                 sc->bge_link = 0;
3046                 if (mii->mii_instance) {
3047                         struct mii_softc *miisc;
3048
3049                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3050                                 mii_phy_reset(miisc);
3051                 }
3052                 mii_mediachg(mii);
3053         }
3054         return(0);
3055 }
3056
3057 /*
3058  * Report current media status.
3059  */
3060 static void
3061 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3062 {
3063         struct bge_softc *sc = ifp->if_softc;
3064
3065         if (sc->bge_flags & BGE_FLAG_TBI) {
3066                 ifmr->ifm_status = IFM_AVALID;
3067                 ifmr->ifm_active = IFM_ETHER;
3068                 if (CSR_READ_4(sc, BGE_MAC_STS) &
3069                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
3070                         ifmr->ifm_status |= IFM_ACTIVE;
3071                 } else {
3072                         ifmr->ifm_active |= IFM_NONE;
3073                         return;
3074                 }
3075
3076                 ifmr->ifm_active |= IFM_1000_SX;
3077                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3078                         ifmr->ifm_active |= IFM_HDX;    
3079                 else
3080                         ifmr->ifm_active |= IFM_FDX;
3081         } else {
3082                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3083
3084                 mii_pollstat(mii);
3085                 ifmr->ifm_active = mii->mii_media_active;
3086                 ifmr->ifm_status = mii->mii_media_status;
3087         }
3088 }
3089
3090 static int
3091 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3092 {
3093         struct bge_softc *sc = ifp->if_softc;
3094         struct ifreq *ifr = (struct ifreq *)data;
3095         int mask, error = 0;
3096
3097         ASSERT_SERIALIZED(ifp->if_serializer);
3098
3099         switch (command) {
3100         case SIOCSIFMTU:
3101                 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3102                     (BGE_IS_JUMBO_CAPABLE(sc) &&
3103                      ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3104                         error = EINVAL;
3105                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3106                         ifp->if_mtu = ifr->ifr_mtu;
3107                         ifp->if_flags &= ~IFF_RUNNING;
3108                         bge_init(sc);
3109                 }
3110                 break;
3111         case SIOCSIFFLAGS:
3112                 if (ifp->if_flags & IFF_UP) {
3113                         if (ifp->if_flags & IFF_RUNNING) {
3114                                 mask = ifp->if_flags ^ sc->bge_if_flags;
3115
3116                                 /*
3117                                  * If only the state of the PROMISC flag
3118                                  * changed, then just use the 'set promisc
3119                                  * mode' command instead of reinitializing
3120                                  * the entire NIC. Doing a full re-init
3121                                  * means reloading the firmware and waiting
3122                                  * for it to start up, which may take a
3123                                  * second or two.  Similarly for ALLMULTI.
3124                                  */
3125                                 if (mask & IFF_PROMISC)
3126                                         bge_setpromisc(sc);
3127                                 if (mask & IFF_ALLMULTI)
3128                                         bge_setmulti(sc);
3129                         } else {
3130                                 bge_init(sc);
3131                         }
3132                 } else {
3133                         if (ifp->if_flags & IFF_RUNNING)
3134                                 bge_stop(sc);
3135                 }
3136                 sc->bge_if_flags = ifp->if_flags;
3137                 break;
3138         case SIOCADDMULTI:
3139         case SIOCDELMULTI:
3140                 if (ifp->if_flags & IFF_RUNNING)
3141                         bge_setmulti(sc);
3142                 break;
3143         case SIOCSIFMEDIA:
3144         case SIOCGIFMEDIA:
3145                 if (sc->bge_flags & BGE_FLAG_TBI) {
3146                         error = ifmedia_ioctl(ifp, ifr,
3147                             &sc->bge_ifmedia, command);
3148                 } else {
3149                         struct mii_data *mii;
3150
3151                         mii = device_get_softc(sc->bge_miibus);
3152                         error = ifmedia_ioctl(ifp, ifr,
3153                                               &mii->mii_media, command);
3154                 }
3155                 break;
3156         case SIOCSIFCAP:
3157                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3158                 if (mask & IFCAP_HWCSUM) {
3159                         ifp->if_capenable ^= IFCAP_HWCSUM;
3160                         if (IFCAP_HWCSUM & ifp->if_capenable)
3161                                 ifp->if_hwassist = BGE_CSUM_FEATURES;
3162                         else
3163                                 ifp->if_hwassist = 0;
3164                 }
3165                 break;
3166         default:
3167                 error = ether_ioctl(ifp, command, data);
3168                 break;
3169         }
3170         return error;
3171 }
3172
3173 static void
3174 bge_watchdog(struct ifnet *ifp)
3175 {
3176         struct bge_softc *sc = ifp->if_softc;
3177
3178         if_printf(ifp, "watchdog timeout -- resetting\n");
3179
3180         ifp->if_flags &= ~IFF_RUNNING;
3181         bge_init(sc);
3182
3183         ifp->if_oerrors++;
3184
3185         if (!ifq_is_empty(&ifp->if_snd))
3186                 if_devstart(ifp);
3187 }
3188
3189 /*
3190  * Stop the adapter and free any mbufs allocated to the
3191  * RX and TX lists.
3192  */
3193 static void
3194 bge_stop(struct bge_softc *sc)
3195 {
3196         struct ifnet *ifp = &sc->arpcom.ac_if;
3197         struct ifmedia_entry *ifm;
3198         struct mii_data *mii = NULL;
3199         int mtmp, itmp;
3200
3201         ASSERT_SERIALIZED(ifp->if_serializer);
3202
3203         if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
3204                 mii = device_get_softc(sc->bge_miibus);
3205
3206         callout_stop(&sc->bge_stat_timer);
3207
3208         /*
3209          * Disable all of the receiver blocks
3210          */
3211         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3212         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3213         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3214         if (!BGE_IS_5705_PLUS(sc))
3215                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3216         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3217         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3218         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3219
3220         /*
3221          * Disable all of the transmit blocks
3222          */
3223         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3224         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3225         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3226         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3227         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3228         if (!BGE_IS_5705_PLUS(sc))
3229                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3230         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3231
3232         /*
3233          * Shut down all of the memory managers and related
3234          * state machines.
3235          */
3236         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3237         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3238         if (!BGE_IS_5705_PLUS(sc))
3239                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3240         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3241         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3242         if (!BGE_IS_5705_PLUS(sc)) {
3243                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3244                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3245         }
3246
3247         /* Disable host interrupts. */
3248         bge_disable_intr(sc);
3249
3250         /*
3251          * Tell firmware we're shutting down.
3252          */
3253         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3254
3255         /* Free the RX lists. */
3256         bge_free_rx_ring_std(sc);
3257
3258         /* Free jumbo RX list. */
3259         if (BGE_IS_JUMBO_CAPABLE(sc))
3260                 bge_free_rx_ring_jumbo(sc);
3261
3262         /* Free TX buffers. */
3263         bge_free_tx_ring(sc);
3264
3265         /*
3266          * Isolate/power down the PHY, but leave the media selection
3267          * unchanged so that things will be put back to normal when
3268          * we bring the interface back up.
3269          *
3270          * 'mii' may be NULL in the following cases:
3271          * - The device uses TBI.
3272          * - bge_stop() is called by bge_detach().
3273          */
3274         if (mii != NULL) {
3275                 itmp = ifp->if_flags;
3276                 ifp->if_flags |= IFF_UP;
3277                 ifm = mii->mii_media.ifm_cur;
3278                 mtmp = ifm->ifm_media;
3279                 ifm->ifm_media = IFM_ETHER|IFM_NONE;
3280                 mii_mediachg(mii);
3281                 ifm->ifm_media = mtmp;
3282                 ifp->if_flags = itmp;
3283         }
3284
3285         sc->bge_link = 0;
3286         sc->bge_coal_chg = 0;
3287
3288         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3289
3290         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3291         ifp->if_timer = 0;
3292 }
3293
3294 /*
3295  * Stop all chip I/O so that the kernel's probe routines don't
3296  * get confused by errant DMAs when rebooting.
3297  */
3298 static void
3299 bge_shutdown(device_t dev)
3300 {
3301         struct bge_softc *sc = device_get_softc(dev);
3302         struct ifnet *ifp = &sc->arpcom.ac_if;
3303
3304         lwkt_serialize_enter(ifp->if_serializer);
3305         bge_stop(sc);
3306         bge_reset(sc);
3307         lwkt_serialize_exit(ifp->if_serializer);
3308 }
3309
3310 static int
3311 bge_suspend(device_t dev)
3312 {
3313         struct bge_softc *sc = device_get_softc(dev);
3314         struct ifnet *ifp = &sc->arpcom.ac_if;
3315
3316         lwkt_serialize_enter(ifp->if_serializer);
3317         bge_stop(sc);
3318         lwkt_serialize_exit(ifp->if_serializer);
3319
3320         return 0;
3321 }
3322
3323 static int
3324 bge_resume(device_t dev)
3325 {
3326         struct bge_softc *sc = device_get_softc(dev);
3327         struct ifnet *ifp = &sc->arpcom.ac_if;
3328
3329         lwkt_serialize_enter(ifp->if_serializer);
3330
3331         if (ifp->if_flags & IFF_UP) {
3332                 bge_init(sc);
3333
3334                 if (!ifq_is_empty(&ifp->if_snd))
3335                         if_devstart(ifp);
3336         }
3337
3338         lwkt_serialize_exit(ifp->if_serializer);
3339
3340         return 0;
3341 }
3342
3343 static void
3344 bge_setpromisc(struct bge_softc *sc)
3345 {
3346         struct ifnet *ifp = &sc->arpcom.ac_if;
3347
3348         if (ifp->if_flags & IFF_PROMISC)
3349                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3350         else
3351                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3352 }
3353
3354 static void
3355 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3356 {
3357         struct bge_dmamap_arg *ctx = arg;
3358
3359         if (error)
3360                 return;
3361
3362         KASSERT(nsegs == 1 && ctx->bge_maxsegs == 1,
3363                 ("only one segment is allowed\n"));
3364
3365         ctx->bge_segs[0] = *segs;
3366 }
3367
3368 static void
3369 bge_dma_map_mbuf(void *arg, bus_dma_segment_t *segs, int nsegs,
3370                  bus_size_t mapsz __unused, int error)
3371 {
3372         struct bge_dmamap_arg *ctx = arg;
3373         int i;
3374
3375         if (error)
3376                 return;
3377
3378         if (nsegs > ctx->bge_maxsegs) {
3379                 ctx->bge_maxsegs = 0;
3380                 return;
3381         }
3382
3383         ctx->bge_maxsegs = nsegs;
3384         for (i = 0; i < nsegs; ++i)
3385                 ctx->bge_segs[i] = segs[i];
3386 }
3387
3388 static void
3389 bge_dma_free(struct bge_softc *sc)
3390 {
3391         int i;
3392
3393         /* Destroy RX/TX mbuf DMA stuffs. */
3394         if (sc->bge_cdata.bge_mtag != NULL) {
3395                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3396                         if (sc->bge_cdata.bge_rx_std_dmamap[i]) {
3397                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3398                                     sc->bge_cdata.bge_rx_std_dmamap[i]);
3399                         }
3400                 }
3401
3402                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
3403                         if (sc->bge_cdata.bge_tx_dmamap[i]) {
3404                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3405                                     sc->bge_cdata.bge_tx_dmamap[i]);
3406                         }
3407                 }
3408                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3409         }
3410
3411         /* Destroy standard RX ring */
3412         bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
3413                            sc->bge_cdata.bge_rx_std_ring_map,
3414                            sc->bge_ldata.bge_rx_std_ring);
3415
3416         if (BGE_IS_JUMBO_CAPABLE(sc))
3417                 bge_free_jumbo_mem(sc);
3418
3419         /* Destroy RX return ring */
3420         bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
3421                            sc->bge_cdata.bge_rx_return_ring_map,
3422                            sc->bge_ldata.bge_rx_return_ring);
3423
3424         /* Destroy TX ring */
3425         bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
3426                            sc->bge_cdata.bge_tx_ring_map,
3427                            sc->bge_ldata.bge_tx_ring);
3428
3429         /* Destroy status block */
3430         bge_dma_block_free(sc->bge_cdata.bge_status_tag,
3431                            sc->bge_cdata.bge_status_map,
3432                            sc->bge_ldata.bge_status_block);
3433
3434         /* Destroy statistics block */
3435         bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
3436                            sc->bge_cdata.bge_stats_map,
3437                            sc->bge_ldata.bge_stats);
3438
3439         /* Destroy the parent tag */
3440         if (sc->bge_cdata.bge_parent_tag != NULL)
3441                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
3442 }
3443
3444 static int
3445 bge_dma_alloc(struct bge_softc *sc)
3446 {
3447         struct ifnet *ifp = &sc->arpcom.ac_if;
3448         int nseg, i, error;
3449
3450         /*
3451          * Allocate the parent bus DMA tag appropriate for PCI.
3452          */
3453         error = bus_dma_tag_create(NULL, 1, 0,
3454                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3455                                    NULL, NULL,
3456                                    MAXBSIZE, BGE_NSEG_NEW,
3457                                    BUS_SPACE_MAXSIZE_32BIT,
3458                                    0, &sc->bge_cdata.bge_parent_tag);
3459         if (error) {
3460                 if_printf(ifp, "could not allocate parent dma tag\n");
3461                 return error;
3462         }
3463
3464         /*
3465          * Create DMA tag for mbufs.
3466          */
3467         nseg = BGE_NSEG_NEW;
3468         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
3469                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3470                                    NULL, NULL,
3471                                    MCLBYTES * nseg, nseg, MCLBYTES,
3472                                    BUS_DMA_ALLOCNOW, &sc->bge_cdata.bge_mtag);
3473         if (error) {
3474                 if_printf(ifp, "could not allocate mbuf dma tag\n");
3475                 return error;
3476         }
3477
3478         /*
3479          * Create DMA maps for TX/RX mbufs.
3480          */
3481         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3482                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
3483                                           &sc->bge_cdata.bge_rx_std_dmamap[i]);
3484                 if (error) {
3485                         int j;
3486
3487                         for (j = 0; j < i; ++j) {
3488                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3489                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
3490                         }
3491                         bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3492                         sc->bge_cdata.bge_mtag = NULL;
3493
3494                         if_printf(ifp, "could not create DMA map for RX\n");
3495                         return error;
3496                 }
3497         }
3498
3499         for (i = 0; i < BGE_TX_RING_CNT; i++) {
3500                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
3501                                           &sc->bge_cdata.bge_tx_dmamap[i]);
3502                 if (error) {
3503                         int j;
3504
3505                         for (j = 0; j < BGE_STD_RX_RING_CNT; ++j) {
3506                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3507                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
3508                         }
3509                         for (j = 0; j < i; ++j) {
3510                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3511                                         sc->bge_cdata.bge_tx_dmamap[j]);
3512                         }
3513                         bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3514                         sc->bge_cdata.bge_mtag = NULL;
3515
3516                         if_printf(ifp, "could not create DMA map for TX\n");
3517                         return error;
3518                 }
3519         }
3520
3521         /*
3522          * Create DMA stuffs for standard RX ring.
3523          */
3524         error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
3525                                     &sc->bge_cdata.bge_rx_std_ring_tag,
3526                                     &sc->bge_cdata.bge_rx_std_ring_map,
3527                                     (void **)&sc->bge_ldata.bge_rx_std_ring,
3528                                     &sc->bge_ldata.bge_rx_std_ring_paddr);
3529         if (error) {
3530                 if_printf(ifp, "could not create std RX ring\n");
3531                 return error;
3532         }
3533
3534         /*
3535          * Create jumbo buffer pool.
3536          */
3537         if (BGE_IS_JUMBO_CAPABLE(sc)) {
3538                 error = bge_alloc_jumbo_mem(sc);
3539                 if (error) {
3540                         if_printf(ifp, "could not create jumbo buffer pool\n");
3541                         return error;
3542                 }
3543         }
3544
3545         /*
3546          * Create DMA stuffs for RX return ring.
3547          */
3548         error = bge_dma_block_alloc(sc, BGE_RX_RTN_RING_SZ(sc),
3549                                     &sc->bge_cdata.bge_rx_return_ring_tag,
3550                                     &sc->bge_cdata.bge_rx_return_ring_map,
3551                                     (void **)&sc->bge_ldata.bge_rx_return_ring,
3552                                     &sc->bge_ldata.bge_rx_return_ring_paddr);
3553         if (error) {
3554                 if_printf(ifp, "could not create RX ret ring\n");
3555                 return error;
3556         }
3557
3558         /*
3559          * Create DMA stuffs for TX ring.
3560          */
3561         error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
3562                                     &sc->bge_cdata.bge_tx_ring_tag,
3563                                     &sc->bge_cdata.bge_tx_ring_map,
3564                                     (void **)&sc->bge_ldata.bge_tx_ring,
3565                                     &sc->bge_ldata.bge_tx_ring_paddr);
3566         if (error) {
3567                 if_printf(ifp, "could not create TX ring\n");
3568                 return error;
3569         }
3570
3571         /*
3572          * Create DMA stuffs for status block.
3573          */
3574         error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
3575                                     &sc->bge_cdata.bge_status_tag,
3576                                     &sc->bge_cdata.bge_status_map,
3577                                     (void **)&sc->bge_ldata.bge_status_block,
3578                                     &sc->bge_ldata.bge_status_block_paddr);
3579         if (error) {
3580                 if_printf(ifp, "could not create status block\n");
3581                 return error;
3582         }
3583
3584         /*
3585          * Create DMA stuffs for statistics block.
3586          */
3587         error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
3588                                     &sc->bge_cdata.bge_stats_tag,
3589                                     &sc->bge_cdata.bge_stats_map,
3590                                     (void **)&sc->bge_ldata.bge_stats,
3591                                     &sc->bge_ldata.bge_stats_paddr);
3592         if (error) {
3593                 if_printf(ifp, "could not create stats block\n");
3594                 return error;
3595         }
3596         return 0;
3597 }
3598
3599 static int
3600 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
3601                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
3602 {
3603         struct ifnet *ifp = &sc->arpcom.ac_if;
3604         struct bge_dmamap_arg ctx;
3605         bus_dma_segment_t seg;
3606         int error;
3607
3608         /*
3609          * Create DMA tag
3610          */
3611         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
3612                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3613                                    NULL, NULL, size, 1, size, 0, tag);
3614         if (error) {
3615                 if_printf(ifp, "could not allocate dma tag\n");
3616                 return error;
3617         }
3618
3619         /*
3620          * Allocate DMA'able memory
3621          */
3622         error = bus_dmamem_alloc(*tag, addr, BUS_DMA_WAITOK | BUS_DMA_ZERO,
3623                                  map);
3624         if (error) {
3625                 if_printf(ifp, "could not allocate dma memory\n");
3626                 bus_dma_tag_destroy(*tag);
3627                 *tag = NULL;
3628                 return error;
3629         }
3630
3631         /*
3632          * Load the DMA'able memory
3633          */
3634         ctx.bge_maxsegs = 1;
3635         ctx.bge_segs = &seg;
3636         error = bus_dmamap_load(*tag, *map, *addr, size, bge_dma_map_addr, &ctx,
3637                                 BUS_DMA_WAITOK);
3638         if (error) {
3639                 if_printf(ifp, "could not load dma memory\n");
3640                 bus_dmamem_free(*tag, *addr, *map);
3641                 bus_dma_tag_destroy(*tag);
3642                 *tag = NULL;
3643                 return error;
3644         }
3645         *paddr = ctx.bge_segs[0].ds_addr;
3646
3647         return 0;
3648 }
3649
3650 static void
3651 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
3652 {
3653         if (tag != NULL) {
3654                 bus_dmamap_unload(tag, map);
3655                 bus_dmamem_free(tag, addr, map);
3656                 bus_dma_tag_destroy(tag);
3657         }
3658 }
3659
3660 /*
3661  * Grrr. The link status word in the status block does
3662  * not work correctly on the BCM5700 rev AX and BX chips,
3663  * according to all available information. Hence, we have
3664  * to enable MII interrupts in order to properly obtain
3665  * async link changes. Unfortunately, this also means that
3666  * we have to read the MAC status register to detect link
3667  * changes, thereby adding an additional register access to
3668  * the interrupt handler.
3669  *
3670  * XXX: perhaps link state detection procedure used for
3671  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
3672  */
3673 static void
3674 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
3675 {
3676         struct ifnet *ifp = &sc->arpcom.ac_if;
3677         struct mii_data *mii = device_get_softc(sc->bge_miibus);
3678
3679         mii_pollstat(mii);
3680
3681         if (!sc->bge_link &&
3682             (mii->mii_media_status & IFM_ACTIVE) &&
3683             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3684                 sc->bge_link++;
3685                 if (bootverbose)
3686                         if_printf(ifp, "link UP\n");
3687         } else if (sc->bge_link &&
3688             (!(mii->mii_media_status & IFM_ACTIVE) ||
3689             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3690                 sc->bge_link = 0;
3691                 if (bootverbose)
3692                         if_printf(ifp, "link DOWN\n");
3693         }
3694
3695         /* Clear the interrupt. */
3696         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
3697         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3698         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
3699 }
3700
3701 static void
3702 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
3703 {
3704         struct ifnet *ifp = &sc->arpcom.ac_if;
3705
3706 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
3707
3708         /*
3709          * Sometimes PCS encoding errors are detected in
3710          * TBI mode (on fiber NICs), and for some reason
3711          * the chip will signal them as link changes.
3712          * If we get a link change event, but the 'PCS
3713          * encoding error' bit in the MAC status register
3714          * is set, don't bother doing a link check.
3715          * This avoids spurious "gigabit link up" messages
3716          * that sometimes appear on fiber NICs during
3717          * periods of heavy traffic.
3718          */
3719         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
3720                 if (!sc->bge_link) {
3721                         sc->bge_link++;
3722                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3723                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3724                                     BGE_MACMODE_TBI_SEND_CFGS);
3725                         }
3726                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3727
3728                         if (bootverbose)
3729                                 if_printf(ifp, "link UP\n");
3730
3731                         ifp->if_link_state = LINK_STATE_UP;
3732                         if_link_state_change(ifp);
3733                 }
3734         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
3735                 if (sc->bge_link) {
3736                         sc->bge_link = 0;
3737
3738                         if (bootverbose)
3739                                 if_printf(ifp, "link DOWN\n");
3740
3741                         ifp->if_link_state = LINK_STATE_DOWN;
3742                         if_link_state_change(ifp);
3743                 }
3744         }
3745
3746 #undef PCS_ENCODE_ERR
3747
3748         /* Clear the attention. */
3749         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3750             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3751             BGE_MACSTAT_LINK_CHANGED);
3752 }
3753
3754 static void
3755 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
3756 {
3757         /*
3758          * Check that the AUTOPOLL bit is set before
3759          * processing the event as a real link change.
3760          * Turning AUTOPOLL on and off in the MII read/write
3761          * functions will often trigger a link status
3762          * interrupt for no reason.
3763          */
3764         if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
3765                 struct ifnet *ifp = &sc->arpcom.ac_if;
3766                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3767
3768                 mii_pollstat(mii);
3769
3770                 if (!sc->bge_link &&
3771                     (mii->mii_media_status & IFM_ACTIVE) &&
3772                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3773                         sc->bge_link++;
3774                         if (bootverbose)
3775                                 if_printf(ifp, "link UP\n");
3776                 } else if (sc->bge_link &&
3777                     (!(mii->mii_media_status & IFM_ACTIVE) ||
3778                     IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3779                         sc->bge_link = 0;
3780                         if (bootverbose)
3781                                 if_printf(ifp, "link DOWN\n");
3782                 }
3783         }
3784
3785         /* Clear the attention. */
3786         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3787             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3788             BGE_MACSTAT_LINK_CHANGED);
3789 }
3790
3791 static int
3792 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
3793 {
3794         struct bge_softc *sc = arg1;
3795
3796         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3797                                    &sc->bge_rx_coal_ticks,
3798                                    BGE_RX_COAL_TICKS_CHG);
3799 }
3800
3801 static int
3802 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
3803 {
3804         struct bge_softc *sc = arg1;
3805
3806         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3807                                    &sc->bge_tx_coal_ticks,
3808                                    BGE_TX_COAL_TICKS_CHG);
3809 }
3810
3811 static int
3812 bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3813 {
3814         struct bge_softc *sc = arg1;
3815
3816         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3817                                    &sc->bge_rx_max_coal_bds,
3818                                    BGE_RX_MAX_COAL_BDS_CHG);
3819 }
3820
3821 static int
3822 bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3823 {
3824         struct bge_softc *sc = arg1;
3825
3826         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3827                                    &sc->bge_tx_max_coal_bds,
3828                                    BGE_TX_MAX_COAL_BDS_CHG);
3829 }
3830
3831 static int
3832 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
3833                     uint32_t coal_chg_mask)
3834 {
3835         struct bge_softc *sc = arg1;
3836         struct ifnet *ifp = &sc->arpcom.ac_if;
3837         int error = 0, v;
3838
3839         lwkt_serialize_enter(ifp->if_serializer);
3840
3841         v = *coal;
3842         error = sysctl_handle_int(oidp, &v, 0, req);
3843         if (!error && req->newptr != NULL) {
3844                 if (v < 0) {
3845                         error = EINVAL;
3846                 } else {
3847                         *coal = v;
3848                         sc->bge_coal_chg |= coal_chg_mask;
3849                 }
3850         }
3851
3852         lwkt_serialize_exit(ifp->if_serializer);
3853         return error;
3854 }
3855
3856 static void
3857 bge_coal_change(struct bge_softc *sc)
3858 {
3859         struct ifnet *ifp = &sc->arpcom.ac_if;
3860         uint32_t val;
3861
3862         ASSERT_SERIALIZED(ifp->if_serializer);
3863
3864         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
3865                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
3866                             sc->bge_rx_coal_ticks);
3867                 DELAY(10);
3868                 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3869
3870                 if (bootverbose) {
3871                         if_printf(ifp, "rx_coal_ticks -> %u\n",
3872                                   sc->bge_rx_coal_ticks);
3873                 }
3874         }
3875
3876         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
3877                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
3878                             sc->bge_tx_coal_ticks);
3879                 DELAY(10);
3880                 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
3881
3882                 if (bootverbose) {
3883                         if_printf(ifp, "tx_coal_ticks -> %u\n",
3884                                   sc->bge_tx_coal_ticks);
3885                 }
3886         }
3887
3888         if (sc->bge_coal_chg & BGE_RX_MAX_COAL_BDS_CHG) {
3889                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
3890                             sc->bge_rx_max_coal_bds);
3891                 DELAY(10);
3892                 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3893
3894                 if (bootverbose) {
3895                         if_printf(ifp, "rx_max_coal_bds -> %u\n",
3896                                   sc->bge_rx_max_coal_bds);
3897                 }
3898         }
3899
3900         if (sc->bge_coal_chg & BGE_TX_MAX_COAL_BDS_CHG) {
3901                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
3902                             sc->bge_tx_max_coal_bds);
3903                 DELAY(10);
3904                 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
3905
3906                 if (bootverbose) {
3907                         if_printf(ifp, "tx_max_coal_bds -> %u\n",
3908                                   sc->bge_tx_max_coal_bds);
3909                 }
3910         }
3911
3912         sc->bge_coal_chg = 0;
3913 }
3914
3915 static void
3916 bge_enable_intr(struct bge_softc *sc)
3917 {
3918         struct ifnet *ifp = &sc->arpcom.ac_if;
3919
3920         lwkt_serialize_handler_enable(ifp->if_serializer);
3921
3922         /*
3923          * Enable interrupt.
3924          */
3925         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3926
3927         /*
3928          * Unmask the interrupt when we stop polling.
3929          */
3930         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3931
3932         /*
3933          * Trigger another interrupt, since above writing
3934          * to interrupt mailbox0 may acknowledge pending
3935          * interrupt.
3936          */
3937         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3938 }
3939
3940 static void
3941 bge_disable_intr(struct bge_softc *sc)
3942 {
3943         struct ifnet *ifp = &sc->arpcom.ac_if;
3944
3945         /*
3946          * Mask the interrupt when we start polling.
3947          */
3948         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3949
3950         /*
3951          * Acknowledge possible asserted interrupt.
3952          */
3953         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3954
3955         lwkt_serialize_handler_disable(ifp->if_serializer);
3956 }