Merge branch 'vendor/BZIP'
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *      This product includes software developed by the University of
21  *      California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67  * $DragonFly: src/sys/vm/vm_object.c,v 1.33 2008/05/09 07:24:48 dillon Exp $
68  */
69
70 /*
71  *      Virtual memory object module.
72  */
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>           /* for curproc, pageproc */
77 #include <sys/vnode.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/mount.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/swap_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vm_zone.h>
96
97 #define EASY_SCAN_FACTOR        8
98
99 static void     vm_object_qcollapse(vm_object_t object);
100 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101                                              int pagerflags);
102
103 /*
104  *      Virtual memory objects maintain the actual data
105  *      associated with allocated virtual memory.  A given
106  *      page of memory exists within exactly one object.
107  *
108  *      An object is only deallocated when all "references"
109  *      are given up.  Only one "reference" to a given
110  *      region of an object should be writeable.
111  *
112  *      Associated with each object is a list of all resident
113  *      memory pages belonging to that object; this list is
114  *      maintained by the "vm_page" module, and locked by the object's
115  *      lock.
116  *
117  *      Each object also records a "pager" routine which is
118  *      used to retrieve (and store) pages to the proper backing
119  *      storage.  In addition, objects may be backed by other
120  *      objects from which they were virtual-copied.
121  *
122  *      The only items within the object structure which are
123  *      modified after time of creation are:
124  *              reference count         locked by object's lock
125  *              pager routine           locked by object's lock
126  *
127  */
128
129 struct object_q vm_object_list;         /* locked by vmobj_token */
130 struct vm_object kernel_object;
131
132 static long vm_object_count;            /* locked by vmobj_token */
133 extern int vm_pageout_page_count;
134
135 static long object_collapses;
136 static long object_bypasses;
137 static int next_index;
138 static vm_zone_t obj_zone;
139 static struct vm_zone obj_zone_store;
140 static int object_hash_rand;
141 #define VM_OBJECTS_INIT 256
142 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
143
144 /*
145  * Initialize a freshly allocated object
146  *
147  * Used only by vm_object_allocate() and zinitna().
148  *
149  * No requirements.
150  */
151 void
152 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
153 {
154         int incr;
155
156         RB_INIT(&object->rb_memq);
157         LIST_INIT(&object->shadow_head);
158
159         object->type = type;
160         object->size = size;
161         object->ref_count = 1;
162         object->flags = 0;
163         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
164                 vm_object_set_flag(object, OBJ_ONEMAPPING);
165         object->paging_in_progress = 0;
166         object->resident_page_count = 0;
167         object->shadow_count = 0;
168         object->pg_color = next_index;
169         if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
170                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
171         else
172                 incr = size;
173         next_index = (next_index + incr) & PQ_L2_MASK;
174         object->handle = NULL;
175         object->backing_object = NULL;
176         object->backing_object_offset = (vm_ooffset_t) 0;
177         /*
178          * Try to generate a number that will spread objects out in the
179          * hash table.  We 'wipe' new objects across the hash in 128 page
180          * increments plus 1 more to offset it a little more by the time
181          * it wraps around.
182          */
183         object->hash_rand = object_hash_rand - 129;
184
185         object->generation++;
186         object->swblock_count = 0;
187         RB_INIT(&object->swblock_root);
188
189         lwkt_gettoken(&vmobj_token);
190         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
191         vm_object_count++;
192         object_hash_rand = object->hash_rand;
193         lwkt_reltoken(&vmobj_token);
194 }
195
196 /*
197  * Initialize the VM objects module.
198  *
199  * Called from the low level boot code only.
200  */
201 void
202 vm_object_init(void)
203 {
204         TAILQ_INIT(&vm_object_list);
205         
206         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
207                             &kernel_object);
208
209         obj_zone = &obj_zone_store;
210         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
211                 vm_objects_init, VM_OBJECTS_INIT);
212 }
213
214 void
215 vm_object_init2(void)
216 {
217         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
218 }
219
220 /*
221  * Allocate and return a new object of the specified type and size.
222  *
223  * No requirements.
224  */
225 vm_object_t
226 vm_object_allocate(objtype_t type, vm_pindex_t size)
227 {
228         vm_object_t result;
229
230         result = (vm_object_t) zalloc(obj_zone);
231
232         _vm_object_allocate(type, size, result);
233
234         return (result);
235 }
236
237 /*
238  * Add an additional reference to a vm_object.
239  *
240  * Object passed by caller must be stable or caller must already
241  * hold vmobj_token to avoid races.
242  */
243 void
244 vm_object_reference(vm_object_t object)
245 {
246         if (object) {
247                 lwkt_gettoken(&vmobj_token);
248                 object->ref_count++;
249                 if (object->type == OBJT_VNODE) {
250                         vref(object->handle);
251                         /* XXX what if the vnode is being destroyed? */
252                 }
253                 lwkt_reltoken(&vmobj_token);
254         }
255 }
256
257 void
258 vm_object_reference_locked(vm_object_t object)
259 {
260         if (object) {
261                 ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
262                 object->ref_count++;
263                 if (object->type == OBJT_VNODE) {
264                         vref(object->handle);
265                         /* XXX what if the vnode is being destroyed? */
266                 }
267         }
268 }
269
270 /*
271  * Dereference an object and its underlying vnode.
272  *
273  * The caller must hold vmobj_token.
274  */
275 static void
276 vm_object_vndeallocate(vm_object_t object)
277 {
278         struct vnode *vp = (struct vnode *) object->handle;
279
280         KASSERT(object->type == OBJT_VNODE,
281             ("vm_object_vndeallocate: not a vnode object"));
282         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
283         ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
284 #ifdef INVARIANTS
285         if (object->ref_count == 0) {
286                 vprint("vm_object_vndeallocate", vp);
287                 panic("vm_object_vndeallocate: bad object reference count");
288         }
289 #endif
290
291         object->ref_count--;
292         if (object->ref_count == 0)
293                 vclrflags(vp, VTEXT);
294         vrele(vp);
295 }
296
297 /*
298  * Release a reference to the specified object, gained either through a
299  * vm_object_allocate or a vm_object_reference call.  When all references
300  * are gone, storage associated with this object may be relinquished.
301  */
302 void
303 vm_object_deallocate(vm_object_t object)
304 {
305         lwkt_gettoken(&vmobj_token);
306         vm_object_deallocate_locked(object);
307         lwkt_reltoken(&vmobj_token);
308 }
309
310 void
311 vm_object_deallocate_locked(vm_object_t object)
312 {
313         vm_object_t temp;
314
315         ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
316
317         while (object != NULL) {
318                 if (object->type == OBJT_VNODE) {
319                         vm_object_vndeallocate(object);
320                         break;
321                 }
322
323                 if (object->ref_count == 0) {
324                         panic("vm_object_deallocate: object deallocated "
325                               "too many times: %d", object->type);
326                 }
327                 if (object->ref_count > 2) {
328                         object->ref_count--;
329                         break;
330                 }
331
332                 /*
333                  * We currently need the vm_token from this point on, and
334                  * we must recheck ref_count after acquiring it.
335                  */
336                 lwkt_gettoken(&vm_token);
337
338                 if (object->ref_count > 2) {
339                         object->ref_count--;
340                         lwkt_reltoken(&vm_token);
341                         break;
342                 }
343
344                 /*
345                  * Here on ref_count of one or two, which are special cases for
346                  * objects.
347                  */
348                 if ((object->ref_count == 2) && (object->shadow_count == 0)) {
349                         vm_object_set_flag(object, OBJ_ONEMAPPING);
350                         object->ref_count--;
351                         lwkt_reltoken(&vm_token);
352                         break;
353                 }
354                 if ((object->ref_count == 2) && (object->shadow_count == 1)) {
355                         object->ref_count--;
356                         if ((object->handle == NULL) &&
357                             (object->type == OBJT_DEFAULT ||
358                              object->type == OBJT_SWAP)) {
359                                 vm_object_t robject;
360
361                                 robject = LIST_FIRST(&object->shadow_head);
362                                 KASSERT(robject != NULL,
363                                         ("vm_object_deallocate: ref_count: "
364                                         "%d, shadow_count: %d",
365                                         object->ref_count,
366                                         object->shadow_count));
367
368                                 if ((robject->handle == NULL) &&
369                                     (robject->type == OBJT_DEFAULT ||
370                                      robject->type == OBJT_SWAP)) {
371
372                                         robject->ref_count++;
373
374                                         while (
375                                                 robject->paging_in_progress ||
376                                                 object->paging_in_progress
377                                         ) {
378                                                 vm_object_pip_sleep(robject, "objde1");
379                                                 vm_object_pip_sleep(object, "objde2");
380                                         }
381
382                                         if (robject->ref_count == 1) {
383                                                 robject->ref_count--;
384                                                 object = robject;
385                                                 goto doterm;
386                                         }
387
388                                         object = robject;
389                                         vm_object_collapse(object);
390                                         lwkt_reltoken(&vm_token);
391                                         continue;
392                                 }
393                         }
394                         lwkt_reltoken(&vm_token);
395                         break;
396                 }
397
398                 /*
399                  * Normal dereferencing path
400                  */
401                 object->ref_count--;
402                 if (object->ref_count != 0) {
403                         lwkt_reltoken(&vm_token);
404                         break;
405                 }
406
407                 /*
408                  * Termination path
409                  */
410 doterm:
411                 temp = object->backing_object;
412                 if (temp) {
413                         LIST_REMOVE(object, shadow_list);
414                         temp->shadow_count--;
415                         temp->generation++;
416                         object->backing_object = NULL;
417                 }
418                 lwkt_reltoken(&vm_token);
419
420                 /*
421                  * Don't double-terminate, we could be in a termination
422                  * recursion due to the terminate having to sync data
423                  * to disk.
424                  */
425                 if ((object->flags & OBJ_DEAD) == 0)
426                         vm_object_terminate(object);
427                 object = temp;
428         }
429 }
430
431 /*
432  * Destroy the specified object, freeing up related resources.
433  *
434  * The object must have zero references.
435  *
436  * The caller must be holding vmobj_token and properly interlock with
437  * OBJ_DEAD.
438  */
439 static int vm_object_terminate_callback(vm_page_t p, void *data);
440
441 void
442 vm_object_terminate(vm_object_t object)
443 {
444         /*
445          * Make sure no one uses us.  Once we set OBJ_DEAD we should be
446          * able to safely block.
447          */
448         KKASSERT((object->flags & OBJ_DEAD) == 0);
449         ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
450         vm_object_set_flag(object, OBJ_DEAD);
451
452         /*
453          * Wait for the pageout daemon to be done with the object
454          */
455         vm_object_pip_wait(object, "objtrm");
456
457         KASSERT(!object->paging_in_progress,
458                 ("vm_object_terminate: pageout in progress"));
459
460         /*
461          * Clean and free the pages, as appropriate. All references to the
462          * object are gone, so we don't need to lock it.
463          */
464         if (object->type == OBJT_VNODE) {
465                 struct vnode *vp;
466
467                 /*
468                  * Clean pages and flush buffers.
469                  */
470                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
471
472                 vp = (struct vnode *) object->handle;
473                 vinvalbuf(vp, V_SAVE, 0, 0);
474         }
475
476         /*
477          * Wait for any I/O to complete, after which there had better not
478          * be any references left on the object.
479          */
480         vm_object_pip_wait(object, "objtrm");
481
482         if (object->ref_count != 0) {
483                 panic("vm_object_terminate: object with references, "
484                       "ref_count=%d", object->ref_count);
485         }
486
487         /*
488          * Now free any remaining pages. For internal objects, this also
489          * removes them from paging queues. Don't free wired pages, just
490          * remove them from the object. 
491          */
492         lwkt_gettoken(&vm_token);
493         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
494                                 vm_object_terminate_callback, NULL);
495         lwkt_reltoken(&vm_token);
496
497         /*
498          * Let the pager know object is dead.
499          */
500         vm_pager_deallocate(object);
501
502         /*
503          * Remove the object from the global object list.
504          *
505          * (we are holding vmobj_token)
506          */
507         TAILQ_REMOVE(&vm_object_list, object, object_list);
508         vm_object_count--;
509         vm_object_dead_wakeup(object);
510
511         if (object->ref_count != 0) {
512                 panic("vm_object_terminate2: object with references, "
513                       "ref_count=%d", object->ref_count);
514         }
515
516         /*
517          * Free the space for the object.
518          */
519         zfree(obj_zone, object);
520 }
521
522 /*
523  * The caller must hold vm_token.
524  */
525 static int
526 vm_object_terminate_callback(vm_page_t p, void *data __unused)
527 {
528         if (p->busy || (p->flags & PG_BUSY))
529                 panic("vm_object_terminate: freeing busy page %p", p);
530         if (p->wire_count == 0) {
531                 vm_page_busy(p);
532                 vm_page_free(p);
533                 mycpu->gd_cnt.v_pfree++;
534         } else {
535                 if (p->queue != PQ_NONE)
536                         kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p, p->queue);
537                 vm_page_busy(p);
538                 vm_page_remove(p);
539                 vm_page_wakeup(p);
540         }
541         return(0);
542 }
543
544 /*
545  * The object is dead but still has an object<->pager association.  Sleep
546  * and return.  The caller typically retests the association in a loop.
547  *
548  * Must be called with the vmobj_token held.
549  */
550 void
551 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
552 {
553         ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
554         if (object->handle) {
555                 vm_object_set_flag(object, OBJ_DEADWNT);
556                 tsleep(object, 0, wmesg, 0);
557                 /* object may be invalid after this point */
558         }
559 }
560
561 /*
562  * Wakeup anyone waiting for the object<->pager disassociation on
563  * a dead object.
564  *
565  * Must be called with the vmobj_token held.
566  */
567 void
568 vm_object_dead_wakeup(vm_object_t object)
569 {
570         ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
571         if (object->flags & OBJ_DEADWNT) {
572                 vm_object_clear_flag(object, OBJ_DEADWNT);
573                 wakeup(object);
574         }
575 }
576
577 /*
578  * Clean all dirty pages in the specified range of object.  Leaves page
579  * on whatever queue it is currently on.   If NOSYNC is set then do not
580  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
581  * leaving the object dirty.
582  *
583  * When stuffing pages asynchronously, allow clustering.  XXX we need a
584  * synchronous clustering mode implementation.
585  *
586  * Odd semantics: if start == end, we clean everything.
587  *
588  * The object must be locked? XXX
589  */
590 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
591 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
592
593 void
594 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
595                      int flags)
596 {
597         struct rb_vm_page_scan_info info;
598         struct vnode *vp;
599         int wholescan;
600         int pagerflags;
601         int curgeneration;
602
603         lwkt_gettoken(&vm_token);
604         if (object->type != OBJT_VNODE ||
605             (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
606                 lwkt_reltoken(&vm_token);
607                 return;
608         }
609
610         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 
611                         VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
612         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
613
614         vp = object->handle;
615
616         /*
617          * Interlock other major object operations.  This allows us to 
618          * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
619          */
620         crit_enter();
621         vm_object_set_flag(object, OBJ_CLEANING);
622
623         /*
624          * Handle 'entire object' case
625          */
626         info.start_pindex = start;
627         if (end == 0) {
628                 info.end_pindex = object->size - 1;
629         } else {
630                 info.end_pindex = end - 1;
631         }
632         wholescan = (start == 0 && info.end_pindex == object->size - 1);
633         info.limit = flags;
634         info.pagerflags = pagerflags;
635         info.object = object;
636
637         /*
638          * If cleaning the entire object do a pass to mark the pages read-only.
639          * If everything worked out ok, clear OBJ_WRITEABLE and
640          * OBJ_MIGHTBEDIRTY.
641          */
642         if (wholescan) {
643                 info.error = 0;
644                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
645                                         vm_object_page_clean_pass1, &info);
646                 if (info.error == 0) {
647                         vm_object_clear_flag(object,
648                                              OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
649                         if (object->type == OBJT_VNODE &&
650                             (vp = (struct vnode *)object->handle) != NULL) {
651                                 if (vp->v_flag & VOBJDIRTY) 
652                                         vclrflags(vp, VOBJDIRTY);
653                         }
654                 }
655         }
656
657         /*
658          * Do a pass to clean all the dirty pages we find.
659          */
660         do {
661                 info.error = 0;
662                 curgeneration = object->generation;
663                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
664                                         vm_object_page_clean_pass2, &info);
665         } while (info.error || curgeneration != object->generation);
666
667         vm_object_clear_flag(object, OBJ_CLEANING);
668         crit_exit();
669         lwkt_reltoken(&vm_token);
670 }
671
672 /*
673  * The caller must hold vm_token.
674  */
675 static 
676 int
677 vm_object_page_clean_pass1(struct vm_page *p, void *data)
678 {
679         struct rb_vm_page_scan_info *info = data;
680
681         vm_page_flag_set(p, PG_CLEANCHK);
682         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
683                 info->error = 1;
684         else
685                 vm_page_protect(p, VM_PROT_READ);       /* must not block */
686         return(0);
687 }
688
689 /*
690  * The caller must hold vm_token.
691  */
692 static 
693 int
694 vm_object_page_clean_pass2(struct vm_page *p, void *data)
695 {
696         struct rb_vm_page_scan_info *info = data;
697         int n;
698
699         /*
700          * Do not mess with pages that were inserted after we started
701          * the cleaning pass.
702          */
703         if ((p->flags & PG_CLEANCHK) == 0)
704                 return(0);
705
706         /*
707          * Before wasting time traversing the pmaps, check for trivial
708          * cases where the page cannot be dirty.
709          */
710         if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
711                 KKASSERT((p->dirty & p->valid) == 0);
712                 return(0);
713         }
714
715         /*
716          * Check whether the page is dirty or not.  The page has been set
717          * to be read-only so the check will not race a user dirtying the
718          * page.
719          */
720         vm_page_test_dirty(p);
721         if ((p->dirty & p->valid) == 0) {
722                 vm_page_flag_clear(p, PG_CLEANCHK);
723                 return(0);
724         }
725
726         /*
727          * If we have been asked to skip nosync pages and this is a
728          * nosync page, skip it.  Note that the object flags were
729          * not cleared in this case (because pass1 will have returned an
730          * error), so we do not have to set them.
731          */
732         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
733                 vm_page_flag_clear(p, PG_CLEANCHK);
734                 return(0);
735         }
736
737         /*
738          * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
739          * the pages that get successfully flushed.  Set info->error if
740          * we raced an object modification.
741          */
742         n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
743         if (n == 0)
744                 info->error = 1;
745         return(0);
746 }
747
748 /*
749  * Collect the specified page and nearby pages and flush them out.
750  * The number of pages flushed is returned.
751  *
752  * The caller must hold vm_token.
753  */
754 static int
755 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
756 {
757         int runlen;
758         int maxf;
759         int chkb;
760         int maxb;
761         int i;
762         int curgeneration;
763         vm_pindex_t pi;
764         vm_page_t maf[vm_pageout_page_count];
765         vm_page_t mab[vm_pageout_page_count];
766         vm_page_t ma[vm_pageout_page_count];
767
768         curgeneration = object->generation;
769
770         pi = p->pindex;
771         while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
772                 if (object->generation != curgeneration) {
773                         return(0);
774                 }
775         }
776         KKASSERT(p->object == object && p->pindex == pi);
777
778         maxf = 0;
779         for(i = 1; i < vm_pageout_page_count; i++) {
780                 vm_page_t tp;
781
782                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
783                         if ((tp->flags & PG_BUSY) ||
784                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
785                                  (tp->flags & PG_CLEANCHK) == 0) ||
786                                 (tp->busy != 0))
787                                 break;
788                         if((tp->queue - tp->pc) == PQ_CACHE) {
789                                 vm_page_flag_clear(tp, PG_CLEANCHK);
790                                 break;
791                         }
792                         vm_page_test_dirty(tp);
793                         if ((tp->dirty & tp->valid) == 0) {
794                                 vm_page_flag_clear(tp, PG_CLEANCHK);
795                                 break;
796                         }
797                         maf[ i - 1 ] = tp;
798                         maxf++;
799                         continue;
800                 }
801                 break;
802         }
803
804         maxb = 0;
805         chkb = vm_pageout_page_count -  maxf;
806         if (chkb) {
807                 for(i = 1; i < chkb;i++) {
808                         vm_page_t tp;
809
810                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
811                                 if ((tp->flags & PG_BUSY) ||
812                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
813                                          (tp->flags & PG_CLEANCHK) == 0) ||
814                                         (tp->busy != 0))
815                                         break;
816                                 if((tp->queue - tp->pc) == PQ_CACHE) {
817                                         vm_page_flag_clear(tp, PG_CLEANCHK);
818                                         break;
819                                 }
820                                 vm_page_test_dirty(tp);
821                                 if ((tp->dirty & tp->valid) == 0) {
822                                         vm_page_flag_clear(tp, PG_CLEANCHK);
823                                         break;
824                                 }
825                                 mab[ i - 1 ] = tp;
826                                 maxb++;
827                                 continue;
828                         }
829                         break;
830                 }
831         }
832
833         for(i = 0; i < maxb; i++) {
834                 int index = (maxb - i) - 1;
835                 ma[index] = mab[i];
836                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
837         }
838         vm_page_flag_clear(p, PG_CLEANCHK);
839         ma[maxb] = p;
840         for(i = 0; i < maxf; i++) {
841                 int index = (maxb + i) + 1;
842                 ma[index] = maf[i];
843                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
844         }
845         runlen = maxb + maxf + 1;
846
847         vm_pageout_flush(ma, runlen, pagerflags);
848         for (i = 0; i < runlen; i++) {
849                 if (ma[i]->valid & ma[i]->dirty) {
850                         vm_page_protect(ma[i], VM_PROT_READ);
851                         vm_page_flag_set(ma[i], PG_CLEANCHK);
852
853                         /*
854                          * maxf will end up being the actual number of pages
855                          * we wrote out contiguously, non-inclusive of the
856                          * first page.  We do not count look-behind pages.
857                          */
858                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
859                                 maxf = i - maxb - 1;
860                 }
861         }
862         return(maxf + 1);
863 }
864
865 /*
866  * Same as vm_object_pmap_copy, except range checking really
867  * works, and is meant for small sections of an object.
868  *
869  * This code protects resident pages by making them read-only
870  * and is typically called on a fork or split when a page
871  * is converted to copy-on-write.  
872  *
873  * NOTE: If the page is already at VM_PROT_NONE, calling
874  * vm_page_protect will have no effect.
875  */
876 void
877 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
878 {
879         vm_pindex_t idx;
880         vm_page_t p;
881
882         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
883                 return;
884
885         /*
886          * spl protection needed to prevent races between the lookup,
887          * an interrupt unbusy/free, and our protect call.
888          */
889         crit_enter();
890         lwkt_gettoken(&vm_token);
891         for (idx = start; idx < end; idx++) {
892                 p = vm_page_lookup(object, idx);
893                 if (p == NULL)
894                         continue;
895                 vm_page_protect(p, VM_PROT_READ);
896         }
897         lwkt_reltoken(&vm_token);
898         crit_exit();
899 }
900
901 /*
902  * Removes all physical pages in the specified object range from all
903  * physical maps.
904  *
905  * The object must *not* be locked.
906  */
907
908 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
909
910 void
911 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
912 {
913         struct rb_vm_page_scan_info info;
914
915         if (object == NULL)
916                 return;
917         info.start_pindex = start;
918         info.end_pindex = end - 1;
919
920         crit_enter();
921         lwkt_gettoken(&vm_token);
922         vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
923                                 vm_object_pmap_remove_callback, &info);
924         if (start == 0 && end == object->size)
925                 vm_object_clear_flag(object, OBJ_WRITEABLE);
926         lwkt_reltoken(&vm_token);
927         crit_exit();
928 }
929
930 /*
931  * The caller must hold vm_token.
932  */
933 static int
934 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
935 {
936         vm_page_protect(p, VM_PROT_NONE);
937         return(0);
938 }
939
940 /*
941  * Implements the madvise function at the object/page level.
942  *
943  * MADV_WILLNEED        (any object)
944  *
945  *      Activate the specified pages if they are resident.
946  *
947  * MADV_DONTNEED        (any object)
948  *
949  *      Deactivate the specified pages if they are resident.
950  *
951  * MADV_FREE    (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
952  *
953  *      Deactivate and clean the specified pages if they are
954  *      resident.  This permits the process to reuse the pages
955  *      without faulting or the kernel to reclaim the pages
956  *      without I/O.
957  *
958  * No requirements.
959  */
960 void
961 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
962 {
963         vm_pindex_t end, tpindex;
964         vm_object_t tobject;
965         vm_page_t m;
966
967         if (object == NULL)
968                 return;
969
970         end = pindex + count;
971
972         lwkt_gettoken(&vm_token);
973
974         /*
975          * Locate and adjust resident pages
976          */
977         for (; pindex < end; pindex += 1) {
978 relookup:
979                 tobject = object;
980                 tpindex = pindex;
981 shadowlookup:
982                 /*
983                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
984                  * and those pages must be OBJ_ONEMAPPING.
985                  */
986                 if (advise == MADV_FREE) {
987                         if ((tobject->type != OBJT_DEFAULT &&
988                              tobject->type != OBJT_SWAP) ||
989                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
990                                 continue;
991                         }
992                 }
993
994                 /*
995                  * spl protection is required to avoid a race between the
996                  * lookup, an interrupt unbusy/free, and our busy check.
997                  */
998
999                 crit_enter();
1000                 m = vm_page_lookup(tobject, tpindex);
1001
1002                 if (m == NULL) {
1003                         /*
1004                          * There may be swap even if there is no backing page
1005                          */
1006                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1007                                 swap_pager_freespace(tobject, tpindex, 1);
1008
1009                         /*
1010                          * next object
1011                          */
1012                         crit_exit();
1013                         if (tobject->backing_object == NULL)
1014                                 continue;
1015                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1016                         tobject = tobject->backing_object;
1017                         goto shadowlookup;
1018                 }
1019
1020                 /*
1021                  * If the page is busy or not in a normal active state,
1022                  * we skip it.  If the page is not managed there are no
1023                  * page queues to mess with.  Things can break if we mess
1024                  * with pages in any of the below states.
1025                  */
1026                 if (
1027                     m->hold_count ||
1028                     m->wire_count ||
1029                     (m->flags & PG_UNMANAGED) ||
1030                     m->valid != VM_PAGE_BITS_ALL
1031                 ) {
1032                         crit_exit();
1033                         continue;
1034                 }
1035
1036                 if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
1037                         crit_exit();
1038                         goto relookup;
1039                 }
1040                 crit_exit();
1041
1042                 /*
1043                  * Theoretically once a page is known not to be busy, an
1044                  * interrupt cannot come along and rip it out from under us.
1045                  */
1046
1047                 if (advise == MADV_WILLNEED) {
1048                         vm_page_activate(m);
1049                 } else if (advise == MADV_DONTNEED) {
1050                         vm_page_dontneed(m);
1051                 } else if (advise == MADV_FREE) {
1052                         /*
1053                          * Mark the page clean.  This will allow the page
1054                          * to be freed up by the system.  However, such pages
1055                          * are often reused quickly by malloc()/free()
1056                          * so we do not do anything that would cause
1057                          * a page fault if we can help it.
1058                          *
1059                          * Specifically, we do not try to actually free
1060                          * the page now nor do we try to put it in the
1061                          * cache (which would cause a page fault on reuse).
1062                          *
1063                          * But we do make the page is freeable as we
1064                          * can without actually taking the step of unmapping
1065                          * it.
1066                          */
1067                         pmap_clear_modify(m);
1068                         m->dirty = 0;
1069                         m->act_count = 0;
1070                         vm_page_dontneed(m);
1071                         if (tobject->type == OBJT_SWAP)
1072                                 swap_pager_freespace(tobject, tpindex, 1);
1073                 }
1074         }       
1075         lwkt_reltoken(&vm_token);
1076 }
1077
1078 /*
1079  * Create a new object which is backed by the specified existing object
1080  * range.  The source object reference is deallocated.
1081  *
1082  * The new object and offset into that object are returned in the source
1083  * parameters.
1084  *
1085  * No other requirements.
1086  */
1087 void
1088 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length)
1089 {
1090         vm_object_t source;
1091         vm_object_t result;
1092
1093         source = *object;
1094
1095         /*
1096          * Don't create the new object if the old object isn't shared.
1097          */
1098         lwkt_gettoken(&vm_token);
1099
1100         if (source != NULL &&
1101             source->ref_count == 1 &&
1102             source->handle == NULL &&
1103             (source->type == OBJT_DEFAULT ||
1104              source->type == OBJT_SWAP)) {
1105                 lwkt_reltoken(&vm_token);
1106                 return;
1107         }
1108
1109         /*
1110          * Allocate a new object with the given length
1111          */
1112
1113         if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1114                 panic("vm_object_shadow: no object for shadowing");
1115
1116         /*
1117          * The new object shadows the source object, adding a reference to it.
1118          * Our caller changes his reference to point to the new object,
1119          * removing a reference to the source object.  Net result: no change
1120          * of reference count.
1121          *
1122          * Try to optimize the result object's page color when shadowing
1123          * in order to maintain page coloring consistency in the combined 
1124          * shadowed object.
1125          */
1126         result->backing_object = source;
1127         if (source) {
1128                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1129                 source->shadow_count++;
1130                 source->generation++;
1131                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1132         }
1133
1134         /*
1135          * Store the offset into the source object, and fix up the offset into
1136          * the new object.
1137          */
1138         result->backing_object_offset = *offset;
1139         lwkt_reltoken(&vm_token);
1140
1141         /*
1142          * Return the new things
1143          */
1144         *offset = 0;
1145         *object = result;
1146 }
1147
1148 #define OBSC_TEST_ALL_SHADOWED  0x0001
1149 #define OBSC_COLLAPSE_NOWAIT    0x0002
1150 #define OBSC_COLLAPSE_WAIT      0x0004
1151
1152 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1153
1154 /*
1155  * The caller must hold vm_token.
1156  */
1157 static __inline int
1158 vm_object_backing_scan(vm_object_t object, int op)
1159 {
1160         struct rb_vm_page_scan_info info;
1161         vm_object_t backing_object;
1162
1163         crit_enter();
1164
1165         backing_object = object->backing_object;
1166         info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1167
1168         /*
1169          * Initial conditions
1170          */
1171
1172         if (op & OBSC_TEST_ALL_SHADOWED) {
1173                 /*
1174                  * We do not want to have to test for the existence of
1175                  * swap pages in the backing object.  XXX but with the
1176                  * new swapper this would be pretty easy to do.
1177                  *
1178                  * XXX what about anonymous MAP_SHARED memory that hasn't
1179                  * been ZFOD faulted yet?  If we do not test for this, the
1180                  * shadow test may succeed! XXX
1181                  */
1182                 if (backing_object->type != OBJT_DEFAULT) {
1183                         crit_exit();
1184                         return(0);
1185                 }
1186         }
1187         if (op & OBSC_COLLAPSE_WAIT) {
1188                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1189                 vm_object_set_flag(backing_object, OBJ_DEAD);
1190         }
1191
1192         /*
1193          * Our scan.   We have to retry if a negative error code is returned,
1194          * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1195          * the scan had to be stopped because the parent does not completely
1196          * shadow the child.
1197          */
1198         info.object = object;
1199         info.backing_object = backing_object;
1200         info.limit = op;
1201         do {
1202                 info.error = 1;
1203                 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1204                                         vm_object_backing_scan_callback,
1205                                         &info);
1206         } while (info.error < 0);
1207         crit_exit();
1208         return(info.error);
1209 }
1210
1211 /*
1212  * The caller must hold vm_token.
1213  */
1214 static int
1215 vm_object_backing_scan_callback(vm_page_t p, void *data)
1216 {
1217         struct rb_vm_page_scan_info *info = data;
1218         vm_object_t backing_object;
1219         vm_object_t object;
1220         vm_pindex_t new_pindex;
1221         vm_pindex_t backing_offset_index;
1222         int op;
1223
1224         new_pindex = p->pindex - info->backing_offset_index;
1225         op = info->limit;
1226         object = info->object;
1227         backing_object = info->backing_object;
1228         backing_offset_index = info->backing_offset_index;
1229
1230         if (op & OBSC_TEST_ALL_SHADOWED) {
1231                 vm_page_t pp;
1232
1233                 /*
1234                  * Ignore pages outside the parent object's range
1235                  * and outside the parent object's mapping of the 
1236                  * backing object.
1237                  *
1238                  * note that we do not busy the backing object's
1239                  * page.
1240                  */
1241                 if (
1242                     p->pindex < backing_offset_index ||
1243                     new_pindex >= object->size
1244                 ) {
1245                         return(0);
1246                 }
1247
1248                 /*
1249                  * See if the parent has the page or if the parent's
1250                  * object pager has the page.  If the parent has the
1251                  * page but the page is not valid, the parent's
1252                  * object pager must have the page.
1253                  *
1254                  * If this fails, the parent does not completely shadow
1255                  * the object and we might as well give up now.
1256                  */
1257
1258                 pp = vm_page_lookup(object, new_pindex);
1259                 if ((pp == NULL || pp->valid == 0) &&
1260                     !vm_pager_has_page(object, new_pindex)
1261                 ) {
1262                         info->error = 0;        /* problemo */
1263                         return(-1);             /* stop the scan */
1264                 }
1265         }
1266
1267         /*
1268          * Check for busy page
1269          */
1270
1271         if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1272                 vm_page_t pp;
1273
1274                 if (op & OBSC_COLLAPSE_NOWAIT) {
1275                         if (
1276                             (p->flags & PG_BUSY) ||
1277                             !p->valid || 
1278                             p->hold_count || 
1279                             p->wire_count ||
1280                             p->busy
1281                         ) {
1282                                 return(0);
1283                         }
1284                 } else if (op & OBSC_COLLAPSE_WAIT) {
1285                         if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1286                                 /*
1287                                  * If we slept, anything could have
1288                                  * happened.   Ask that the scan be restarted.
1289                                  *
1290                                  * Since the object is marked dead, the
1291                                  * backing offset should not have changed.  
1292                                  */
1293                                 info->error = -1;
1294                                 return(-1);
1295                         }
1296                 }
1297
1298                 /* 
1299                  * Busy the page
1300                  */
1301                 vm_page_busy(p);
1302
1303                 KASSERT(
1304                     p->object == backing_object,
1305                     ("vm_object_qcollapse(): object mismatch")
1306                 );
1307
1308                 /*
1309                  * Destroy any associated swap
1310                  */
1311                 if (backing_object->type == OBJT_SWAP)
1312                         swap_pager_freespace(backing_object, p->pindex, 1);
1313
1314                 if (
1315                     p->pindex < backing_offset_index ||
1316                     new_pindex >= object->size
1317                 ) {
1318                         /*
1319                          * Page is out of the parent object's range, we 
1320                          * can simply destroy it. 
1321                          */
1322                         vm_page_protect(p, VM_PROT_NONE);
1323                         vm_page_free(p);
1324                         return(0);
1325                 }
1326
1327                 pp = vm_page_lookup(object, new_pindex);
1328                 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1329                         /*
1330                          * page already exists in parent OR swap exists
1331                          * for this location in the parent.  Destroy 
1332                          * the original page from the backing object.
1333                          *
1334                          * Leave the parent's page alone
1335                          */
1336                         vm_page_protect(p, VM_PROT_NONE);
1337                         vm_page_free(p);
1338                         return(0);
1339                 }
1340
1341                 /*
1342                  * Page does not exist in parent, rename the
1343                  * page from the backing object to the main object. 
1344                  *
1345                  * If the page was mapped to a process, it can remain 
1346                  * mapped through the rename.
1347                  */
1348                 if ((p->queue - p->pc) == PQ_CACHE)
1349                         vm_page_deactivate(p);
1350
1351                 vm_page_rename(p, object, new_pindex);
1352                 /* page automatically made dirty by rename */
1353         }
1354         return(0);
1355 }
1356
1357 /*
1358  * This version of collapse allows the operation to occur earlier and
1359  * when paging_in_progress is true for an object...  This is not a complete
1360  * operation, but should plug 99.9% of the rest of the leaks.
1361  *
1362  * The caller must hold vm_token and vmobj_token.
1363  * (only called from vm_object_collapse)
1364  */
1365 static void
1366 vm_object_qcollapse(vm_object_t object)
1367 {
1368         vm_object_t backing_object = object->backing_object;
1369
1370         if (backing_object->ref_count != 1)
1371                 return;
1372
1373         backing_object->ref_count += 2;
1374
1375         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1376
1377         backing_object->ref_count -= 2;
1378 }
1379
1380 /*
1381  * Collapse an object with the object backing it.  Pages in the backing
1382  * object are moved into the parent, and the backing object is deallocated.
1383  */
1384 void
1385 vm_object_collapse(vm_object_t object)
1386 {
1387         ASSERT_LWKT_TOKEN_HELD(&vm_token);
1388         ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1389
1390         while (TRUE) {
1391                 vm_object_t backing_object;
1392
1393                 /*
1394                  * Verify that the conditions are right for collapse:
1395                  *
1396                  * The object exists and the backing object exists.
1397                  */
1398                 if (object == NULL)
1399                         break;
1400
1401                 if ((backing_object = object->backing_object) == NULL)
1402                         break;
1403
1404                 /*
1405                  * we check the backing object first, because it is most likely
1406                  * not collapsable.
1407                  */
1408                 if (backing_object->handle != NULL ||
1409                     (backing_object->type != OBJT_DEFAULT &&
1410                      backing_object->type != OBJT_SWAP) ||
1411                     (backing_object->flags & OBJ_DEAD) ||
1412                     object->handle != NULL ||
1413                     (object->type != OBJT_DEFAULT &&
1414                      object->type != OBJT_SWAP) ||
1415                     (object->flags & OBJ_DEAD)) {
1416                         break;
1417                 }
1418
1419                 if (
1420                     object->paging_in_progress != 0 ||
1421                     backing_object->paging_in_progress != 0
1422                 ) {
1423                         vm_object_qcollapse(object);
1424                         break;
1425                 }
1426
1427                 /*
1428                  * We know that we can either collapse the backing object (if
1429                  * the parent is the only reference to it) or (perhaps) have
1430                  * the parent bypass the object if the parent happens to shadow
1431                  * all the resident pages in the entire backing object.
1432                  *
1433                  * This is ignoring pager-backed pages such as swap pages.
1434                  * vm_object_backing_scan fails the shadowing test in this
1435                  * case.
1436                  */
1437
1438                 if (backing_object->ref_count == 1) {
1439                         /*
1440                          * If there is exactly one reference to the backing
1441                          * object, we can collapse it into the parent.  
1442                          */
1443                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1444
1445                         /*
1446                          * Move the pager from backing_object to object.
1447                          */
1448
1449                         if (backing_object->type == OBJT_SWAP) {
1450                                 vm_object_pip_add(backing_object, 1);
1451
1452                                 /*
1453                                  * scrap the paging_offset junk and do a 
1454                                  * discrete copy.  This also removes major 
1455                                  * assumptions about how the swap-pager 
1456                                  * works from where it doesn't belong.  The
1457                                  * new swapper is able to optimize the
1458                                  * destroy-source case.
1459                                  */
1460
1461                                 vm_object_pip_add(object, 1);
1462                                 swap_pager_copy(
1463                                     backing_object,
1464                                     object,
1465                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1466                                 vm_object_pip_wakeup(object);
1467
1468                                 vm_object_pip_wakeup(backing_object);
1469                         }
1470                         /*
1471                          * Object now shadows whatever backing_object did.
1472                          * Note that the reference to 
1473                          * backing_object->backing_object moves from within 
1474                          * backing_object to within object.
1475                          */
1476
1477                         LIST_REMOVE(object, shadow_list);
1478                         object->backing_object->shadow_count--;
1479                         object->backing_object->generation++;
1480                         if (backing_object->backing_object) {
1481                                 LIST_REMOVE(backing_object, shadow_list);
1482                                 backing_object->backing_object->shadow_count--;
1483                                 backing_object->backing_object->generation++;
1484                         }
1485                         object->backing_object = backing_object->backing_object;
1486                         if (object->backing_object) {
1487                                 LIST_INSERT_HEAD(
1488                                     &object->backing_object->shadow_head,
1489                                     object, 
1490                                     shadow_list
1491                                 );
1492                                 object->backing_object->shadow_count++;
1493                                 object->backing_object->generation++;
1494                         }
1495
1496                         object->backing_object_offset +=
1497                             backing_object->backing_object_offset;
1498
1499                         /*
1500                          * Discard backing_object.
1501                          *
1502                          * Since the backing object has no pages, no pager left,
1503                          * and no object references within it, all that is
1504                          * necessary is to dispose of it.
1505                          */
1506
1507                         KASSERT(backing_object->ref_count == 1,
1508                                 ("backing_object %p was somehow "
1509                                  "re-referenced during collapse!",
1510                                  backing_object));
1511                         KASSERT(RB_EMPTY(&backing_object->rb_memq),
1512                                 ("backing_object %p somehow has left "
1513                                  "over pages during collapse!",
1514                                  backing_object));
1515
1516                         /* (we are holding vmobj_token) */
1517                         TAILQ_REMOVE(&vm_object_list, backing_object,
1518                                      object_list);
1519                         vm_object_count--;
1520
1521                         zfree(obj_zone, backing_object);
1522
1523                         object_collapses++;
1524                 } else {
1525                         vm_object_t new_backing_object;
1526
1527                         /*
1528                          * If we do not entirely shadow the backing object,
1529                          * there is nothing we can do so we give up.
1530                          */
1531
1532                         if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1533                                 break;
1534                         }
1535
1536                         /*
1537                          * Make the parent shadow the next object in the
1538                          * chain.  Deallocating backing_object will not remove
1539                          * it, since its reference count is at least 2.
1540                          */
1541
1542                         LIST_REMOVE(object, shadow_list);
1543                         backing_object->shadow_count--;
1544                         backing_object->generation++;
1545
1546                         new_backing_object = backing_object->backing_object;
1547                         if ((object->backing_object = new_backing_object) != NULL) {
1548                                 vm_object_reference(new_backing_object);
1549                                 LIST_INSERT_HEAD(
1550                                     &new_backing_object->shadow_head,
1551                                     object,
1552                                     shadow_list
1553                                 );
1554                                 new_backing_object->shadow_count++;
1555                                 new_backing_object->generation++;
1556                                 object->backing_object_offset +=
1557                                         backing_object->backing_object_offset;
1558                         }
1559
1560                         /*
1561                          * Drop the reference count on backing_object. Since
1562                          * its ref_count was at least 2, it will not vanish;
1563                          * so we don't need to call vm_object_deallocate, but
1564                          * we do anyway.
1565                          */
1566                         vm_object_deallocate_locked(backing_object);
1567                         object_bypasses++;
1568                 }
1569
1570                 /*
1571                  * Try again with this object's new backing object.
1572                  */
1573         }
1574 }
1575
1576 /*
1577  * Removes all physical pages in the specified object range from the
1578  * object's list of pages.
1579  *
1580  * No requirements.
1581  */
1582 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1583
1584 void
1585 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1586                       boolean_t clean_only)
1587 {
1588         struct rb_vm_page_scan_info info;
1589         int all;
1590
1591         /*
1592          * Degenerate cases and assertions
1593          */
1594         lwkt_gettoken(&vm_token);
1595         if (object == NULL ||
1596             (object->resident_page_count == 0 && object->swblock_count == 0)) {
1597                 lwkt_reltoken(&vm_token);
1598                 return;
1599         }
1600         KASSERT(object->type != OBJT_PHYS, 
1601                 ("attempt to remove pages from a physical object"));
1602
1603         /*
1604          * Indicate that paging is occuring on the object
1605          */
1606         crit_enter();
1607         vm_object_pip_add(object, 1);
1608
1609         /*
1610          * Figure out the actual removal range and whether we are removing
1611          * the entire contents of the object or not.  If removing the entire
1612          * contents, be sure to get all pages, even those that might be 
1613          * beyond the end of the object.
1614          */
1615         info.start_pindex = start;
1616         if (end == 0)
1617                 info.end_pindex = (vm_pindex_t)-1;
1618         else
1619                 info.end_pindex = end - 1;
1620         info.limit = clean_only;
1621         all = (start == 0 && info.end_pindex >= object->size - 1);
1622
1623         /*
1624          * Loop until we are sure we have gotten them all.
1625          */
1626         do {
1627                 info.error = 0;
1628                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1629                                         vm_object_page_remove_callback, &info);
1630         } while (info.error);
1631
1632         /*
1633          * Remove any related swap if throwing away pages, or for
1634          * non-swap objects (the swap is a clean copy in that case).
1635          */
1636         if (object->type != OBJT_SWAP || clean_only == FALSE) {
1637                 if (all)
1638                         swap_pager_freespace_all(object);
1639                 else
1640                         swap_pager_freespace(object, info.start_pindex,
1641                              info.end_pindex - info.start_pindex + 1);
1642         }
1643
1644         /*
1645          * Cleanup
1646          */
1647         vm_object_pip_wakeup(object);
1648         crit_exit();
1649         lwkt_reltoken(&vm_token);
1650 }
1651
1652 /*
1653  * The caller must hold vm_token.
1654  */
1655 static int
1656 vm_object_page_remove_callback(vm_page_t p, void *data)
1657 {
1658         struct rb_vm_page_scan_info *info = data;
1659
1660         /*
1661          * Wired pages cannot be destroyed, but they can be invalidated
1662          * and we do so if clean_only (limit) is not set.
1663          *
1664          * WARNING!  The page may be wired due to being part of a buffer
1665          *           cache buffer, and the buffer might be marked B_CACHE.
1666          *           This is fine as part of a truncation but VFSs must be
1667          *           sure to fix the buffer up when re-extending the file.
1668          */
1669         if (p->wire_count != 0) {
1670                 vm_page_protect(p, VM_PROT_NONE);
1671                 if (info->limit == 0)
1672                         p->valid = 0;
1673                 return(0);
1674         }
1675
1676         /*
1677          * The busy flags are only cleared at
1678          * interrupt -- minimize the spl transitions
1679          */
1680
1681         if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1682                 info->error = 1;
1683                 return(0);
1684         }
1685
1686         /*
1687          * limit is our clean_only flag.  If set and the page is dirty, do
1688          * not free it.  If set and the page is being held by someone, do
1689          * not free it.
1690          */
1691         if (info->limit && p->valid) {
1692                 vm_page_test_dirty(p);
1693                 if (p->valid & p->dirty)
1694                         return(0);
1695                 if (p->hold_count)
1696                         return(0);
1697         }
1698
1699         /*
1700          * Destroy the page
1701          */
1702         vm_page_busy(p);
1703         vm_page_protect(p, VM_PROT_NONE);
1704         vm_page_free(p);
1705         return(0);
1706 }
1707
1708 /*
1709  * Coalesces two objects backing up adjoining regions of memory into a
1710  * single object.
1711  *
1712  * returns TRUE if objects were combined.
1713  *
1714  * NOTE: Only works at the moment if the second object is NULL -
1715  *       if it's not, which object do we lock first?
1716  *
1717  * Parameters:
1718  *      prev_object     First object to coalesce
1719  *      prev_offset     Offset into prev_object
1720  *      next_object     Second object into coalesce
1721  *      next_offset     Offset into next_object
1722  *
1723  *      prev_size       Size of reference to prev_object
1724  *      next_size       Size of reference to next_object
1725  *
1726  * The object must not be locked.
1727  * The caller must hold vm_token and vmobj_token.
1728  */
1729 boolean_t
1730 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1731                    vm_size_t prev_size, vm_size_t next_size)
1732 {
1733         vm_pindex_t next_pindex;
1734
1735         ASSERT_LWKT_TOKEN_HELD(&vm_token);
1736         ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1737
1738         if (prev_object == NULL) {
1739                 return (TRUE);
1740         }
1741
1742         if (prev_object->type != OBJT_DEFAULT &&
1743             prev_object->type != OBJT_SWAP) {
1744                 return (FALSE);
1745         }
1746
1747         /*
1748          * Try to collapse the object first
1749          */
1750         vm_object_collapse(prev_object);
1751
1752         /*
1753          * Can't coalesce if: . more than one reference . paged out . shadows
1754          * another object . has a copy elsewhere (any of which mean that the
1755          * pages not mapped to prev_entry may be in use anyway)
1756          */
1757
1758         if (prev_object->backing_object != NULL)
1759                 return (FALSE);
1760
1761         prev_size >>= PAGE_SHIFT;
1762         next_size >>= PAGE_SHIFT;
1763         next_pindex = prev_pindex + prev_size;
1764
1765         if ((prev_object->ref_count > 1) &&
1766             (prev_object->size != next_pindex)) {
1767                 return (FALSE);
1768         }
1769
1770         /*
1771          * Remove any pages that may still be in the object from a previous
1772          * deallocation.
1773          */
1774         if (next_pindex < prev_object->size) {
1775                 vm_object_page_remove(prev_object,
1776                                       next_pindex,
1777                                       next_pindex + next_size, FALSE);
1778                 if (prev_object->type == OBJT_SWAP)
1779                         swap_pager_freespace(prev_object,
1780                                              next_pindex, next_size);
1781         }
1782
1783         /*
1784          * Extend the object if necessary.
1785          */
1786         if (next_pindex + next_size > prev_object->size)
1787                 prev_object->size = next_pindex + next_size;
1788         return (TRUE);
1789 }
1790
1791 /*
1792  * Make the object writable and flag is being possibly dirty.
1793  *
1794  * No requirements.
1795  */
1796 void
1797 vm_object_set_writeable_dirty(vm_object_t object)
1798 {
1799         struct vnode *vp;
1800
1801         lwkt_gettoken(&vm_token);
1802         vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1803         if (object->type == OBJT_VNODE &&
1804             (vp = (struct vnode *)object->handle) != NULL) {
1805                 if ((vp->v_flag & VOBJDIRTY) == 0) {
1806                         vsetflags(vp, VOBJDIRTY);
1807                 }
1808         }
1809         lwkt_reltoken(&vm_token);
1810 }
1811
1812 #include "opt_ddb.h"
1813 #ifdef DDB
1814 #include <sys/kernel.h>
1815
1816 #include <sys/cons.h>
1817
1818 #include <ddb/ddb.h>
1819
1820 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
1821                                        vm_map_entry_t entry);
1822 static int      vm_object_in_map (vm_object_t object);
1823
1824 /*
1825  * The caller must hold vm_token.
1826  */
1827 static int
1828 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1829 {
1830         vm_map_t tmpm;
1831         vm_map_entry_t tmpe;
1832         vm_object_t obj;
1833         int entcount;
1834
1835         if (map == 0)
1836                 return 0;
1837         if (entry == 0) {
1838                 tmpe = map->header.next;
1839                 entcount = map->nentries;
1840                 while (entcount-- && (tmpe != &map->header)) {
1841                         if( _vm_object_in_map(map, object, tmpe)) {
1842                                 return 1;
1843                         }
1844                         tmpe = tmpe->next;
1845                 }
1846                 return (0);
1847         }
1848         switch(entry->maptype) {
1849         case VM_MAPTYPE_SUBMAP:
1850                 tmpm = entry->object.sub_map;
1851                 tmpe = tmpm->header.next;
1852                 entcount = tmpm->nentries;
1853                 while (entcount-- && tmpe != &tmpm->header) {
1854                         if( _vm_object_in_map(tmpm, object, tmpe)) {
1855                                 return 1;
1856                         }
1857                         tmpe = tmpe->next;
1858                 }
1859                 break;
1860         case VM_MAPTYPE_NORMAL:
1861         case VM_MAPTYPE_VPAGETABLE:
1862                 obj = entry->object.vm_object;
1863                 while (obj) {
1864                         if (obj == object)
1865                                 return 1;
1866                         obj = obj->backing_object;
1867                 }
1868                 break;
1869         default:
1870                 break;
1871         }
1872         return 0;
1873 }
1874
1875 static int vm_object_in_map_callback(struct proc *p, void *data);
1876
1877 struct vm_object_in_map_info {
1878         vm_object_t object;
1879         int rv;
1880 };
1881
1882 /*
1883  * Debugging only
1884  */
1885 static int
1886 vm_object_in_map(vm_object_t object)
1887 {
1888         struct vm_object_in_map_info info;
1889
1890         info.rv = 0;
1891         info.object = object;
1892
1893         allproc_scan(vm_object_in_map_callback, &info);
1894         if (info.rv)
1895                 return 1;
1896         if( _vm_object_in_map(&kernel_map, object, 0))
1897                 return 1;
1898         if( _vm_object_in_map(&pager_map, object, 0))
1899                 return 1;
1900         if( _vm_object_in_map(&buffer_map, object, 0))
1901                 return 1;
1902         return 0;
1903 }
1904
1905 /*
1906  * Debugging only
1907  */
1908 static int
1909 vm_object_in_map_callback(struct proc *p, void *data)
1910 {
1911         struct vm_object_in_map_info *info = data;
1912
1913         if (p->p_vmspace) {
1914                 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
1915                         info->rv = 1;
1916                         return -1;
1917                 }
1918         }
1919         return (0);
1920 }
1921
1922 DB_SHOW_COMMAND(vmochk, vm_object_check)
1923 {
1924         vm_object_t object;
1925
1926         /*
1927          * make sure that internal objs are in a map somewhere
1928          * and none have zero ref counts.
1929          */
1930         for (object = TAILQ_FIRST(&vm_object_list);
1931                         object != NULL;
1932                         object = TAILQ_NEXT(object, object_list)) {
1933                 if (object->type == OBJT_MARKER)
1934                         continue;
1935                 if (object->handle == NULL &&
1936                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1937                         if (object->ref_count == 0) {
1938                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1939                                         (long)object->size);
1940                         }
1941                         if (!vm_object_in_map(object)) {
1942                                 db_printf(
1943                         "vmochk: internal obj is not in a map: "
1944                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1945                                     object->ref_count, (u_long)object->size, 
1946                                     (u_long)object->size,
1947                                     (void *)object->backing_object);
1948                         }
1949                 }
1950         }
1951 }
1952
1953 /*
1954  * Debugging only
1955  */
1956 DB_SHOW_COMMAND(object, vm_object_print_static)
1957 {
1958         /* XXX convert args. */
1959         vm_object_t object = (vm_object_t)addr;
1960         boolean_t full = have_addr;
1961
1962         vm_page_t p;
1963
1964         /* XXX count is an (unused) arg.  Avoid shadowing it. */
1965 #define count   was_count
1966
1967         int count;
1968
1969         if (object == NULL)
1970                 return;
1971
1972         db_iprintf(
1973             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1974             object, (int)object->type, (u_long)object->size,
1975             object->resident_page_count, object->ref_count, object->flags);
1976         /*
1977          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1978          */
1979         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1980             object->shadow_count, 
1981             object->backing_object ? object->backing_object->ref_count : 0,
1982             object->backing_object, (long)object->backing_object_offset);
1983
1984         if (!full)
1985                 return;
1986
1987         db_indent += 2;
1988         count = 0;
1989         RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
1990                 if (count == 0)
1991                         db_iprintf("memory:=");
1992                 else if (count == 6) {
1993                         db_printf("\n");
1994                         db_iprintf(" ...");
1995                         count = 0;
1996                 } else
1997                         db_printf(",");
1998                 count++;
1999
2000                 db_printf("(off=0x%lx,page=0x%lx)",
2001                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2002         }
2003         if (count != 0)
2004                 db_printf("\n");
2005         db_indent -= 2;
2006 }
2007
2008 /* XXX. */
2009 #undef count
2010
2011 /*
2012  * XXX need this non-static entry for calling from vm_map_print.
2013  *
2014  * Debugging only
2015  */
2016 void
2017 vm_object_print(/* db_expr_t */ long addr,
2018                 boolean_t have_addr,
2019                 /* db_expr_t */ long count,
2020                 char *modif)
2021 {
2022         vm_object_print_static(addr, have_addr, count, modif);
2023 }
2024
2025 /*
2026  * Debugging only
2027  */
2028 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2029 {
2030         vm_object_t object;
2031         int nl = 0;
2032         int c;
2033         for (object = TAILQ_FIRST(&vm_object_list);
2034                         object != NULL;
2035                         object = TAILQ_NEXT(object, object_list)) {
2036                 vm_pindex_t idx, fidx;
2037                 vm_pindex_t osize;
2038                 vm_paddr_t pa = -1, padiff;
2039                 int rcount;
2040                 vm_page_t m;
2041
2042                 if (object->type == OBJT_MARKER)
2043                         continue;
2044                 db_printf("new object: %p\n", (void *)object);
2045                 if ( nl > 18) {
2046                         c = cngetc();
2047                         if (c != ' ')
2048                                 return;
2049                         nl = 0;
2050                 }
2051                 nl++;
2052                 rcount = 0;
2053                 fidx = 0;
2054                 osize = object->size;
2055                 if (osize > 128)
2056                         osize = 128;
2057                 for (idx = 0; idx < osize; idx++) {
2058                         m = vm_page_lookup(object, idx);
2059                         if (m == NULL) {
2060                                 if (rcount) {
2061                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2062                                                 (long)fidx, rcount, (long)pa);
2063                                         if ( nl > 18) {
2064                                                 c = cngetc();
2065                                                 if (c != ' ')
2066                                                         return;
2067                                                 nl = 0;
2068                                         }
2069                                         nl++;
2070                                         rcount = 0;
2071                                 }
2072                                 continue;
2073                         }
2074
2075                                 
2076                         if (rcount &&
2077                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2078                                 ++rcount;
2079                                 continue;
2080                         }
2081                         if (rcount) {
2082                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2083                                 padiff >>= PAGE_SHIFT;
2084                                 padiff &= PQ_L2_MASK;
2085                                 if (padiff == 0) {
2086                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2087                                         ++rcount;
2088                                         continue;
2089                                 }
2090                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
2091                                         (long)fidx, rcount, (long)pa);
2092                                 db_printf("pd(%ld)\n", (long)padiff);
2093                                 if ( nl > 18) {
2094                                         c = cngetc();
2095                                         if (c != ' ')
2096                                                 return;
2097                                         nl = 0;
2098                                 }
2099                                 nl++;
2100                         }
2101                         fidx = idx;
2102                         pa = VM_PAGE_TO_PHYS(m);
2103                         rcount = 1;
2104                 }
2105                 if (rcount) {
2106                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2107                                 (long)fidx, rcount, (long)pa);
2108                         if ( nl > 18) {
2109                                 c = cngetc();
2110                                 if (c != ' ')
2111                                         return;
2112                                 nl = 0;
2113                         }
2114                         nl++;
2115                 }
2116         }
2117 }
2118 #endif /* DDB */