Unify vlan_input() and vlan_input_tag():
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.92 2008/05/16 13:19:11 sephe Exp $
35  *
36  */
37
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  * 
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  * 
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74
75 #include "opt_polling.h"
76 #include <sys/param.h>
77 #include <sys/bus.h>
78 #include <sys/endian.h>
79 #include <sys/kernel.h>
80 #include <sys/ktr.h>
81 #include <sys/interrupt.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/queue.h>
85 #include <sys/rman.h>
86 #include <sys/serialize.h>
87 #include <sys/socket.h>
88 #include <sys/sockio.h>
89 #include <sys/sysctl.h>
90
91 #include <net/bpf.h>
92 #include <net/ethernet.h>
93 #include <net/if.h>
94 #include <net/if_arp.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_types.h>
98 #include <net/ifq_var.h>
99 #include <net/vlan/if_vlan_var.h>
100 #include <net/vlan/if_vlan_ether.h>
101
102 #include <dev/netif/mii_layer/mii.h>
103 #include <dev/netif/mii_layer/miivar.h>
104 #include <dev/netif/mii_layer/brgphyreg.h>
105
106 #include <bus/pci/pcidevs.h>
107 #include <bus/pci/pcireg.h>
108 #include <bus/pci/pcivar.h>
109
110 #include <dev/netif/bge/if_bgereg.h>
111
112 /* "device miibus" required.  See GENERIC if you get errors here. */
113 #include "miibus_if.h"
114
115 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
116 #define BGE_MIN_FRAME           60
117
118 /*
119  * Various supported device vendors/types and their names. Note: the
120  * spec seems to indicate that the hardware still has Alteon's vendor
121  * ID burned into it, though it will always be overriden by the vendor
122  * ID in the EEPROM. Just to be safe, we cover all possibilities.
123  */
124 #define BGE_DEVDESC_MAX         64      /* Maximum device description length */
125
126 static struct bge_type bge_devs[] = {
127         { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
128                 "3COM 3C996 Gigabit Ethernet" },
129
130         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
131                 "Alteon BCM5700 Gigabit Ethernet" },
132         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
133                 "Alteon BCM5701 Gigabit Ethernet" },
134
135         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
136                 "Altima AC1000 Gigabit Ethernet" },
137         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
138                 "Altima AC1002 Gigabit Ethernet" },
139         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
140                 "Altima AC9100 Gigabit Ethernet" },
141
142         { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
143                 "Apple BCM5701 Gigabit Ethernet" },
144
145         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
146                 "Broadcom BCM5700 Gigabit Ethernet" },
147         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
148                 "Broadcom BCM5701 Gigabit Ethernet" },
149         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
150                 "Broadcom BCM5702 Gigabit Ethernet" },
151         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
152                 "Broadcom BCM5702X Gigabit Ethernet" },
153         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
154                 "Broadcom BCM5702 Gigabit Ethernet" },
155         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
156                 "Broadcom BCM5703 Gigabit Ethernet" },
157         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
158                 "Broadcom BCM5703X Gigabit Ethernet" },
159         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
160                 "Broadcom BCM5703 Gigabit Ethernet" },
161         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
162                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
163         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
164                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
165         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
166                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
167         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
168                 "Broadcom BCM5705 Gigabit Ethernet" },
169         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
170                 "Broadcom BCM5705F Gigabit Ethernet" },
171         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
172                 "Broadcom BCM5705K Gigabit Ethernet" },
173         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
174                 "Broadcom BCM5705M Gigabit Ethernet" },
175         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
176                 "Broadcom BCM5705M Gigabit Ethernet" },
177         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
178                 "Broadcom BCM5714C Gigabit Ethernet" },
179         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
180                 "Broadcom BCM5714S Gigabit Ethernet" },
181         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
182                 "Broadcom BCM5715 Gigabit Ethernet" },
183         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
184                 "Broadcom BCM5715S Gigabit Ethernet" },
185         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
186                 "Broadcom BCM5720 Gigabit Ethernet" },
187         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
188                 "Broadcom BCM5721 Gigabit Ethernet" },
189         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
190                 "Broadcom BCM5722 Gigabit Ethernet" },
191         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
192                 "Broadcom BCM5750 Gigabit Ethernet" },
193         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
194                 "Broadcom BCM5750M Gigabit Ethernet" },
195         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
196                 "Broadcom BCM5751 Gigabit Ethernet" },
197         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
198                 "Broadcom BCM5751F Gigabit Ethernet" },
199         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
200                 "Broadcom BCM5751M Gigabit Ethernet" },
201         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
202                 "Broadcom BCM5752 Gigabit Ethernet" },
203         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
204                 "Broadcom BCM5752M Gigabit Ethernet" },
205         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
206                 "Broadcom BCM5753 Gigabit Ethernet" },
207         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
208                 "Broadcom BCM5753F Gigabit Ethernet" },
209         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
210                 "Broadcom BCM5753M Gigabit Ethernet" },
211         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
212                 "Broadcom BCM5754 Gigabit Ethernet" },
213         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
214                 "Broadcom BCM5754M Gigabit Ethernet" },
215         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
216                 "Broadcom BCM5755 Gigabit Ethernet" },
217         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
218                 "Broadcom BCM5755M Gigabit Ethernet" },
219         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
220                 "Broadcom BCM5756 Gigabit Ethernet" },
221         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
222                 "Broadcom BCM5780 Gigabit Ethernet" },
223         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
224                 "Broadcom BCM5780S Gigabit Ethernet" },
225         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
226                 "Broadcom BCM5781 Gigabit Ethernet" },
227         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
228                 "Broadcom BCM5782 Gigabit Ethernet" },
229         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
230                 "Broadcom BCM5786 Gigabit Ethernet" },
231         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
232                 "Broadcom BCM5787 Gigabit Ethernet" },
233         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
234                 "Broadcom BCM5787F Gigabit Ethernet" },
235         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
236                 "Broadcom BCM5787M Gigabit Ethernet" },
237         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
238                 "Broadcom BCM5788 Gigabit Ethernet" },
239         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
240                 "Broadcom BCM5789 Gigabit Ethernet" },
241         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
242                 "Broadcom BCM5901 Fast Ethernet" },
243         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
244                 "Broadcom BCM5901A2 Fast Ethernet" },
245         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
246                 "Broadcom BCM5903M Fast Ethernet" },
247
248         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
249                 "SysKonnect Gigabit Ethernet" },
250
251         { 0, 0, NULL }
252 };
253
254 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
255 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
256 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
257 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
258 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
259
260 static int      bge_probe(device_t);
261 static int      bge_attach(device_t);
262 static int      bge_detach(device_t);
263 static void     bge_txeof(struct bge_softc *);
264 static void     bge_rxeof(struct bge_softc *);
265
266 static void     bge_tick(void *);
267 static void     bge_stats_update(struct bge_softc *);
268 static void     bge_stats_update_regs(struct bge_softc *);
269 static int      bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
270
271 #ifdef DEVICE_POLLING
272 static void     bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
273 #endif
274 static void     bge_intr(void *);
275 static void     bge_enable_intr(struct bge_softc *);
276 static void     bge_disable_intr(struct bge_softc *);
277 static void     bge_start(struct ifnet *);
278 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
279 static void     bge_init(void *);
280 static void     bge_stop(struct bge_softc *);
281 static void     bge_watchdog(struct ifnet *);
282 static void     bge_shutdown(device_t);
283 static int      bge_suspend(device_t);
284 static int      bge_resume(device_t);
285 static int      bge_ifmedia_upd(struct ifnet *);
286 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
287
288 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
289 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
290
291 static void     bge_setmulti(struct bge_softc *);
292 static void     bge_setpromisc(struct bge_softc *);
293
294 static int      bge_alloc_jumbo_mem(struct bge_softc *);
295 static void     bge_free_jumbo_mem(struct bge_softc *);
296 static struct bge_jslot
297                 *bge_jalloc(struct bge_softc *);
298 static void     bge_jfree(void *);
299 static void     bge_jref(void *);
300 static int      bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
301 static int      bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
302 static int      bge_init_rx_ring_std(struct bge_softc *);
303 static void     bge_free_rx_ring_std(struct bge_softc *);
304 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
305 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
306 static void     bge_free_tx_ring(struct bge_softc *);
307 static int      bge_init_tx_ring(struct bge_softc *);
308
309 static int      bge_chipinit(struct bge_softc *);
310 static int      bge_blockinit(struct bge_softc *);
311
312 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
313 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
314 #ifdef notdef
315 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
316 #endif
317 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
318 static void     bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
319
320 static int      bge_miibus_readreg(device_t, int, int);
321 static int      bge_miibus_writereg(device_t, int, int, int);
322 static void     bge_miibus_statchg(device_t);
323 static void     bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
324 static void     bge_tbi_link_upd(struct bge_softc *, uint32_t);
325 static void     bge_copper_link_upd(struct bge_softc *, uint32_t);
326
327 static void     bge_reset(struct bge_softc *);
328
329 static void     bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
330 static void     bge_dma_map_mbuf(void *, bus_dma_segment_t *, int,
331                                  bus_size_t, int);
332 static int      bge_dma_alloc(struct bge_softc *);
333 static void     bge_dma_free(struct bge_softc *);
334 static int      bge_dma_block_alloc(struct bge_softc *, bus_size_t,
335                                     bus_dma_tag_t *, bus_dmamap_t *,
336                                     void **, bus_addr_t *);
337 static void     bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
338
339 static void     bge_coal_change(struct bge_softc *);
340 static int      bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
341 static int      bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
342 static int      bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS);
343 static int      bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS);
344 static int      bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *, uint32_t);
345
346 /*
347  * Set following tunable to 1 for some IBM blade servers with the DNLK
348  * switch module. Auto negotiation is broken for those configurations.
349  */
350 static int      bge_fake_autoneg = 0;
351 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
352
353 /* Interrupt moderation control variables. */
354 static int      bge_rx_coal_ticks = 150;        /* usec */
355 static int      bge_tx_coal_ticks = 1000000;    /* usec */
356 static int      bge_rx_max_coal_bds = 16;
357 static int      bge_tx_max_coal_bds = 32;
358
359 TUNABLE_INT("hw.bge.rx_coal_ticks", &bge_rx_coal_ticks);
360 TUNABLE_INT("hw.bge.tx_coal_ticks", &bge_tx_coal_ticks);
361 TUNABLE_INT("hw.bge.rx_max_coal_bds", &bge_rx_max_coal_bds);
362 TUNABLE_INT("hw.bge.tx_max_coal_bds", &bge_tx_max_coal_bds);
363
364 #if !defined(KTR_IF_BGE)
365 #define KTR_IF_BGE      KTR_ALL
366 #endif
367 KTR_INFO_MASTER(if_bge);
368 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr", 0);
369 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt", 0);
370 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt", 0);
371 #define logif(name)     KTR_LOG(if_bge_ ## name)
372
373 static device_method_t bge_methods[] = {
374         /* Device interface */
375         DEVMETHOD(device_probe,         bge_probe),
376         DEVMETHOD(device_attach,        bge_attach),
377         DEVMETHOD(device_detach,        bge_detach),
378         DEVMETHOD(device_shutdown,      bge_shutdown),
379         DEVMETHOD(device_suspend,       bge_suspend),
380         DEVMETHOD(device_resume,        bge_resume),
381
382         /* bus interface */
383         DEVMETHOD(bus_print_child,      bus_generic_print_child),
384         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
385
386         /* MII interface */
387         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
388         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
389         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
390
391         { 0, 0 }
392 };
393
394 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
395 static devclass_t bge_devclass;
396
397 DECLARE_DUMMY_MODULE(if_bge);
398 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
399 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
400
401 static uint32_t
402 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
403 {
404         device_t dev = sc->bge_dev;
405         uint32_t val;
406
407         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
408         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
409         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
410         return (val);
411 }
412
413 static void
414 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
415 {
416         device_t dev = sc->bge_dev;
417
418         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
419         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
420         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
421 }
422
423 #ifdef notdef
424 static uint32_t
425 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
426 {
427         device_t dev = sc->bge_dev;
428
429         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
430         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
431 }
432 #endif
433
434 static void
435 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
436 {
437         device_t dev = sc->bge_dev;
438
439         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
440         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
441 }
442
443 static void
444 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
445 {
446         CSR_WRITE_4(sc, off, val);
447 }
448
449 /*
450  * Read a byte of data stored in the EEPROM at address 'addr.' The
451  * BCM570x supports both the traditional bitbang interface and an
452  * auto access interface for reading the EEPROM. We use the auto
453  * access method.
454  */
455 static uint8_t
456 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
457 {
458         int i;
459         uint32_t byte = 0;
460
461         /*
462          * Enable use of auto EEPROM access so we can avoid
463          * having to use the bitbang method.
464          */
465         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
466
467         /* Reset the EEPROM, load the clock period. */
468         CSR_WRITE_4(sc, BGE_EE_ADDR,
469             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
470         DELAY(20);
471
472         /* Issue the read EEPROM command. */
473         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
474
475         /* Wait for completion */
476         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
477                 DELAY(10);
478                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
479                         break;
480         }
481
482         if (i == BGE_TIMEOUT) {
483                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
484                 return(1);
485         }
486
487         /* Get result. */
488         byte = CSR_READ_4(sc, BGE_EE_DATA);
489
490         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
491
492         return(0);
493 }
494
495 /*
496  * Read a sequence of bytes from the EEPROM.
497  */
498 static int
499 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
500 {
501         size_t i;
502         int err;
503         uint8_t byte;
504
505         for (byte = 0, err = 0, i = 0; i < len; i++) {
506                 err = bge_eeprom_getbyte(sc, off + i, &byte);
507                 if (err)
508                         break;
509                 *(dest + i) = byte;
510         }
511
512         return(err ? 1 : 0);
513 }
514
515 static int
516 bge_miibus_readreg(device_t dev, int phy, int reg)
517 {
518         struct bge_softc *sc;
519         struct ifnet *ifp;
520         uint32_t val, autopoll;
521         int i;
522
523         sc = device_get_softc(dev);
524         ifp = &sc->arpcom.ac_if;
525
526         /*
527          * Broadcom's own driver always assumes the internal
528          * PHY is at GMII address 1. On some chips, the PHY responds
529          * to accesses at all addresses, which could cause us to
530          * bogusly attach the PHY 32 times at probe type. Always
531          * restricting the lookup to address 1 is simpler than
532          * trying to figure out which chips revisions should be
533          * special-cased.
534          */
535         if (phy != 1)
536                 return(0);
537
538         /* Reading with autopolling on may trigger PCI errors */
539         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
540         if (autopoll & BGE_MIMODE_AUTOPOLL) {
541                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
542                 DELAY(40);
543         }
544
545         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
546             BGE_MIPHY(phy)|BGE_MIREG(reg));
547
548         for (i = 0; i < BGE_TIMEOUT; i++) {
549                 val = CSR_READ_4(sc, BGE_MI_COMM);
550                 if (!(val & BGE_MICOMM_BUSY))
551                         break;
552         }
553
554         if (i == BGE_TIMEOUT) {
555                 if_printf(ifp, "PHY read timed out\n");
556                 val = 0;
557                 goto done;
558         }
559
560         val = CSR_READ_4(sc, BGE_MI_COMM);
561
562 done:
563         if (autopoll & BGE_MIMODE_AUTOPOLL) {
564                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
565                 DELAY(40);
566         }
567
568         if (val & BGE_MICOMM_READFAIL)
569                 return(0);
570
571         return(val & 0xFFFF);
572 }
573
574 static int
575 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
576 {
577         struct bge_softc *sc;
578         uint32_t autopoll;
579         int i;
580
581         sc = device_get_softc(dev);
582
583         /* Reading with autopolling on may trigger PCI errors */
584         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
585         if (autopoll & BGE_MIMODE_AUTOPOLL) {
586                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
587                 DELAY(40);
588         }
589
590         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
591             BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
592
593         for (i = 0; i < BGE_TIMEOUT; i++) {
594                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
595                         break;
596         }
597
598         if (autopoll & BGE_MIMODE_AUTOPOLL) {
599                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
600                 DELAY(40);
601         }
602
603         if (i == BGE_TIMEOUT) {
604                 if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
605                 return(0);
606         }
607
608         return(0);
609 }
610
611 static void
612 bge_miibus_statchg(device_t dev)
613 {
614         struct bge_softc *sc;
615         struct mii_data *mii;
616
617         sc = device_get_softc(dev);
618         mii = device_get_softc(sc->bge_miibus);
619
620         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
621         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
622                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
623         } else {
624                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
625         }
626
627         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
628                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
629         } else {
630                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
631         }
632 }
633
634 /*
635  * Memory management for jumbo frames.
636  */
637 static int
638 bge_alloc_jumbo_mem(struct bge_softc *sc)
639 {
640         struct ifnet *ifp = &sc->arpcom.ac_if;
641         struct bge_jslot *entry;
642         uint8_t *ptr;
643         bus_addr_t paddr;
644         int i, error;
645
646         /*
647          * Create tag for jumbo mbufs.
648          * This is really a bit of a kludge. We allocate a special
649          * jumbo buffer pool which (thanks to the way our DMA
650          * memory allocation works) will consist of contiguous
651          * pages. This means that even though a jumbo buffer might
652          * be larger than a page size, we don't really need to
653          * map it into more than one DMA segment. However, the
654          * default mbuf tag will result in multi-segment mappings,
655          * so we have to create a special jumbo mbuf tag that
656          * lets us get away with mapping the jumbo buffers as
657          * a single segment. I think eventually the driver should
658          * be changed so that it uses ordinary mbufs and cluster
659          * buffers, i.e. jumbo frames can span multiple DMA
660          * descriptors. But that's a project for another day.
661          */
662
663         /*
664          * Create DMA stuffs for jumbo RX ring.
665          */
666         error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
667                                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
668                                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
669                                     (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
670                                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
671         if (error) {
672                 if_printf(ifp, "could not create jumbo RX ring\n");
673                 return error;
674         }
675
676         /*
677          * Create DMA stuffs for jumbo buffer block.
678          */
679         error = bge_dma_block_alloc(sc, BGE_JMEM,
680                                     &sc->bge_cdata.bge_jumbo_tag,
681                                     &sc->bge_cdata.bge_jumbo_map,
682                                     (void **)&sc->bge_ldata.bge_jumbo_buf,
683                                     &paddr);
684         if (error) {
685                 if_printf(ifp, "could not create jumbo buffer\n");
686                 return error;
687         }
688
689         SLIST_INIT(&sc->bge_jfree_listhead);
690
691         /*
692          * Now divide it up into 9K pieces and save the addresses
693          * in an array. Note that we play an evil trick here by using
694          * the first few bytes in the buffer to hold the the address
695          * of the softc structure for this interface. This is because
696          * bge_jfree() needs it, but it is called by the mbuf management
697          * code which will not pass it to us explicitly.
698          */
699         for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
700                 entry = &sc->bge_cdata.bge_jslots[i];
701                 entry->bge_sc = sc;
702                 entry->bge_buf = ptr;
703                 entry->bge_paddr = paddr;
704                 entry->bge_inuse = 0;
705                 entry->bge_slot = i;
706                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
707
708                 ptr += BGE_JLEN;
709                 paddr += BGE_JLEN;
710         }
711         return 0;
712 }
713
714 static void
715 bge_free_jumbo_mem(struct bge_softc *sc)
716 {
717         /* Destroy jumbo RX ring. */
718         bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
719                            sc->bge_cdata.bge_rx_jumbo_ring_map,
720                            sc->bge_ldata.bge_rx_jumbo_ring);
721
722         /* Destroy jumbo buffer block. */
723         bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
724                            sc->bge_cdata.bge_jumbo_map,
725                            sc->bge_ldata.bge_jumbo_buf);
726 }
727
728 /*
729  * Allocate a jumbo buffer.
730  */
731 static struct bge_jslot *
732 bge_jalloc(struct bge_softc *sc)
733 {
734         struct bge_jslot *entry;
735
736         lwkt_serialize_enter(&sc->bge_jslot_serializer);
737         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
738         if (entry) {
739                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
740                 entry->bge_inuse = 1;
741         } else {
742                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
743         }
744         lwkt_serialize_exit(&sc->bge_jslot_serializer);
745         return(entry);
746 }
747
748 /*
749  * Adjust usage count on a jumbo buffer.
750  */
751 static void
752 bge_jref(void *arg)
753 {
754         struct bge_jslot *entry = (struct bge_jslot *)arg;
755         struct bge_softc *sc = entry->bge_sc;
756
757         if (sc == NULL)
758                 panic("bge_jref: can't find softc pointer!");
759
760         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
761                 panic("bge_jref: asked to reference buffer "
762                     "that we don't manage!");
763         } else if (entry->bge_inuse == 0) {
764                 panic("bge_jref: buffer already free!");
765         } else {
766                 atomic_add_int(&entry->bge_inuse, 1);
767         }
768 }
769
770 /*
771  * Release a jumbo buffer.
772  */
773 static void
774 bge_jfree(void *arg)
775 {
776         struct bge_jslot *entry = (struct bge_jslot *)arg;
777         struct bge_softc *sc = entry->bge_sc;
778
779         if (sc == NULL)
780                 panic("bge_jfree: can't find softc pointer!");
781
782         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
783                 panic("bge_jfree: asked to free buffer that we don't manage!");
784         } else if (entry->bge_inuse == 0) {
785                 panic("bge_jfree: buffer already free!");
786         } else {
787                 /*
788                  * Possible MP race to 0, use the serializer.  The atomic insn
789                  * is still needed for races against bge_jref().
790                  */
791                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
792                 atomic_subtract_int(&entry->bge_inuse, 1);
793                 if (entry->bge_inuse == 0) {
794                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
795                                           entry, jslot_link);
796                 }
797                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
798         }
799 }
800
801
802 /*
803  * Intialize a standard receive ring descriptor.
804  */
805 static int
806 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
807 {
808         struct mbuf *m_new = NULL;
809         struct bge_dmamap_arg ctx;
810         bus_dma_segment_t seg;
811         struct bge_rx_bd *r;
812         int error;
813
814         if (m == NULL) {
815                 m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
816                 if (m_new == NULL)
817                         return ENOBUFS;
818         } else {
819                 m_new = m;
820                 m_new->m_data = m_new->m_ext.ext_buf;
821         }
822         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
823
824         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
825                 m_adj(m_new, ETHER_ALIGN);
826
827         ctx.bge_maxsegs = 1;
828         ctx.bge_segs = &seg;
829         error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag,
830                                      sc->bge_cdata.bge_rx_std_dmamap[i],
831                                      m_new, bge_dma_map_mbuf, &ctx,
832                                      BUS_DMA_NOWAIT);
833         if (error || ctx.bge_maxsegs == 0) {
834                 if (m == NULL)
835                         m_freem(m_new);
836                 return ENOMEM;
837         }
838
839         sc->bge_cdata.bge_rx_std_chain[i] = m_new;
840
841         r = &sc->bge_ldata.bge_rx_std_ring[i];
842         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_segs[0].ds_addr);
843         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_segs[0].ds_addr);
844         r->bge_flags = BGE_RXBDFLAG_END;
845         r->bge_len = m_new->m_len;
846         r->bge_idx = i;
847
848         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
849                         sc->bge_cdata.bge_rx_std_dmamap[i],
850                         BUS_DMASYNC_PREREAD);
851         return 0;
852 }
853
854 /*
855  * Initialize a jumbo receive ring descriptor. This allocates
856  * a jumbo buffer from the pool managed internally by the driver.
857  */
858 static int
859 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
860 {
861         struct mbuf *m_new = NULL;
862         struct bge_jslot *buf;
863         struct bge_rx_bd *r;
864         bus_addr_t paddr;
865
866         if (m == NULL) {
867                 /* Allocate the mbuf. */
868                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
869                 if (m_new == NULL)
870                         return(ENOBUFS);
871
872                 /* Allocate the jumbo buffer */
873                 buf = bge_jalloc(sc);
874                 if (buf == NULL) {
875                         m_freem(m_new);
876                         if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
877                             "-- packet dropped!\n");
878                         return ENOBUFS;
879                 }
880
881                 /* Attach the buffer to the mbuf. */
882                 m_new->m_ext.ext_arg = buf;
883                 m_new->m_ext.ext_buf = buf->bge_buf;
884                 m_new->m_ext.ext_free = bge_jfree;
885                 m_new->m_ext.ext_ref = bge_jref;
886                 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
887
888                 m_new->m_flags |= M_EXT;
889         } else {
890                 KKASSERT(m->m_flags & M_EXT);
891                 m_new = m;
892                 buf = m_new->m_ext.ext_arg;
893         }
894         m_new->m_data = m_new->m_ext.ext_buf;
895         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
896
897         paddr = buf->bge_paddr;
898         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
899                 m_adj(m_new, ETHER_ALIGN);
900                 paddr += ETHER_ALIGN;
901         }
902
903         /* Set up the descriptor. */
904         sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
905
906         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
907         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(paddr);
908         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(paddr);
909         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
910         r->bge_len = m_new->m_len;
911         r->bge_idx = i;
912
913         return 0;
914 }
915
916 /*
917  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
918  * that's 1MB or memory, which is a lot. For now, we fill only the first
919  * 256 ring entries and hope that our CPU is fast enough to keep up with
920  * the NIC.
921  */
922 static int
923 bge_init_rx_ring_std(struct bge_softc *sc)
924 {
925         int i;
926
927         for (i = 0; i < BGE_SSLOTS; i++) {
928                 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
929                         return(ENOBUFS);
930         };
931
932         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
933                         sc->bge_cdata.bge_rx_std_ring_map,
934                         BUS_DMASYNC_PREWRITE);
935
936         sc->bge_std = i - 1;
937         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
938
939         return(0);
940 }
941
942 static void
943 bge_free_rx_ring_std(struct bge_softc *sc)
944 {
945         int i;
946
947         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
948                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
949                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
950                                           sc->bge_cdata.bge_rx_std_dmamap[i]);
951                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
952                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
953                 }
954                 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
955                     sizeof(struct bge_rx_bd));
956         }
957 }
958
959 static int
960 bge_init_rx_ring_jumbo(struct bge_softc *sc)
961 {
962         int i;
963         struct bge_rcb *rcb;
964
965         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
966                 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
967                         return(ENOBUFS);
968         };
969
970         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
971                         sc->bge_cdata.bge_rx_jumbo_ring_map,
972                         BUS_DMASYNC_PREWRITE);
973
974         sc->bge_jumbo = i - 1;
975
976         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
977         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
978         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
979
980         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
981
982         return(0);
983 }
984
985 static void
986 bge_free_rx_ring_jumbo(struct bge_softc *sc)
987 {
988         int i;
989
990         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
991                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
992                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
993                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
994                 }
995                 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
996                     sizeof(struct bge_rx_bd));
997         }
998 }
999
1000 static void
1001 bge_free_tx_ring(struct bge_softc *sc)
1002 {
1003         int i;
1004
1005         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1006                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1007                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
1008                                           sc->bge_cdata.bge_tx_dmamap[i]);
1009                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1010                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1011                 }
1012                 bzero(&sc->bge_ldata.bge_tx_ring[i],
1013                     sizeof(struct bge_tx_bd));
1014         }
1015 }
1016
1017 static int
1018 bge_init_tx_ring(struct bge_softc *sc)
1019 {
1020         sc->bge_txcnt = 0;
1021         sc->bge_tx_saved_considx = 0;
1022         sc->bge_tx_prodidx = 0;
1023
1024         /* Initialize transmit producer index for host-memory send ring. */
1025         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1026
1027         /* 5700 b2 errata */
1028         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1029                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1030
1031         CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1032         /* 5700 b2 errata */
1033         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1034                 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1035
1036         return(0);
1037 }
1038
1039 static void
1040 bge_setmulti(struct bge_softc *sc)
1041 {
1042         struct ifnet *ifp;
1043         struct ifmultiaddr *ifma;
1044         uint32_t hashes[4] = { 0, 0, 0, 0 };
1045         int h, i;
1046
1047         ifp = &sc->arpcom.ac_if;
1048
1049         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1050                 for (i = 0; i < 4; i++)
1051                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1052                 return;
1053         }
1054
1055         /* First, zot all the existing filters. */
1056         for (i = 0; i < 4; i++)
1057                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1058
1059         /* Now program new ones. */
1060         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1061                 if (ifma->ifma_addr->sa_family != AF_LINK)
1062                         continue;
1063                 h = ether_crc32_le(
1064                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1065                     ETHER_ADDR_LEN) & 0x7f;
1066                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1067         }
1068
1069         for (i = 0; i < 4; i++)
1070                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1071 }
1072
1073 /*
1074  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1075  * self-test results.
1076  */
1077 static int
1078 bge_chipinit(struct bge_softc *sc)
1079 {
1080         int i;
1081         uint32_t dma_rw_ctl;
1082
1083         /* Set endian type before we access any non-PCI registers. */
1084         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1085
1086         /*
1087          * Check the 'ROM failed' bit on the RX CPU to see if
1088          * self-tests passed.
1089          */
1090         if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1091                 if_printf(&sc->arpcom.ac_if,
1092                           "RX CPU self-diagnostics failed!\n");
1093                 return(ENODEV);
1094         }
1095
1096         /* Clear the MAC control register */
1097         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1098
1099         /*
1100          * Clear the MAC statistics block in the NIC's
1101          * internal memory.
1102          */
1103         for (i = BGE_STATS_BLOCK;
1104             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1105                 BGE_MEMWIN_WRITE(sc, i, 0);
1106
1107         for (i = BGE_STATUS_BLOCK;
1108             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1109                 BGE_MEMWIN_WRITE(sc, i, 0);
1110
1111         /* Set up the PCI DMA control register. */
1112         if (sc->bge_flags & BGE_FLAG_PCIE) {
1113                 /* PCI Express */
1114                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1115                     (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1116                     (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1117         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1118                 /* PCI-X bus */
1119                 if (BGE_IS_5714_FAMILY(sc)) {
1120                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1121                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1122                         /* XXX magic values, Broadcom-supplied Linux driver */
1123                         if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1124                                 dma_rw_ctl |= (1 << 20) | (1 << 18) | 
1125                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1126                         } else {
1127                                 dma_rw_ctl |= (1 << 20) | (1 << 18) | (1 << 15);
1128                         }
1129                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1130                         /*
1131                          * The 5704 uses a different encoding of read/write
1132                          * watermarks.
1133                          */
1134                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1135                             (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1136                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1137                 } else {
1138                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1139                             (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1140                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1141                             (0x0F);
1142                 }
1143
1144                 /*
1145                  * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1146                  * for hardware bugs.
1147                  */
1148                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1149                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1150                         uint32_t tmp;
1151
1152                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1153                         if (tmp == 0x6 || tmp == 0x7)
1154                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1155                 }
1156         } else {
1157                 /* Conventional PCI bus */
1158                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1159                     (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1160                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1161                     (0x0F);
1162         }
1163
1164         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1165             sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1166             sc->bge_asicrev == BGE_ASICREV_BCM5705)
1167                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1168         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1169
1170         /*
1171          * Set up general mode register.
1172          */
1173         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1174             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1175             BGE_MODECTL_TX_NO_PHDR_CSUM);
1176
1177         /*
1178          * Disable memory write invalidate.  Apparently it is not supported
1179          * properly by these devices.
1180          */
1181         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1182
1183         /* Set the timer prescaler (always 66Mhz) */
1184         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1185
1186         return(0);
1187 }
1188
1189 static int
1190 bge_blockinit(struct bge_softc *sc)
1191 {
1192         struct bge_rcb *rcb;
1193         bus_size_t vrcb;
1194         bge_hostaddr taddr;
1195         uint32_t val;
1196         int i;
1197
1198         /*
1199          * Initialize the memory window pointer register so that
1200          * we can access the first 32K of internal NIC RAM. This will
1201          * allow us to set up the TX send ring RCBs and the RX return
1202          * ring RCBs, plus other things which live in NIC memory.
1203          */
1204         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1205
1206         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1207
1208         if (!BGE_IS_5705_PLUS(sc)) {
1209                 /* Configure mbuf memory pool */
1210                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1211                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1212                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1213                 else
1214                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1215
1216                 /* Configure DMA resource pool */
1217                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1218                     BGE_DMA_DESCRIPTORS);
1219                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1220         }
1221
1222         /* Configure mbuf pool watermarks */
1223         if (BGE_IS_5705_PLUS(sc)) {
1224                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1225                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1226         } else {
1227                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1228                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1229         }
1230         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1231
1232         /* Configure DMA resource watermarks */
1233         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1234         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1235
1236         /* Enable buffer manager */
1237         if (!BGE_IS_5705_PLUS(sc)) {
1238                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1239                     BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1240
1241                 /* Poll for buffer manager start indication */
1242                 for (i = 0; i < BGE_TIMEOUT; i++) {
1243                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1244                                 break;
1245                         DELAY(10);
1246                 }
1247
1248                 if (i == BGE_TIMEOUT) {
1249                         if_printf(&sc->arpcom.ac_if,
1250                                   "buffer manager failed to start\n");
1251                         return(ENXIO);
1252                 }
1253         }
1254
1255         /* Enable flow-through queues */
1256         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1257         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1258
1259         /* Wait until queue initialization is complete */
1260         for (i = 0; i < BGE_TIMEOUT; i++) {
1261                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1262                         break;
1263                 DELAY(10);
1264         }
1265
1266         if (i == BGE_TIMEOUT) {
1267                 if_printf(&sc->arpcom.ac_if,
1268                           "flow-through queue init failed\n");
1269                 return(ENXIO);
1270         }
1271
1272         /* Initialize the standard RX ring control block */
1273         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1274         rcb->bge_hostaddr.bge_addr_lo =
1275             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1276         rcb->bge_hostaddr.bge_addr_hi =
1277             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1278         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1279             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1280         if (BGE_IS_5705_PLUS(sc))
1281                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1282         else
1283                 rcb->bge_maxlen_flags =
1284                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1285         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1286         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1287         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1288         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1289         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1290
1291         /*
1292          * Initialize the jumbo RX ring control block
1293          * We set the 'ring disabled' bit in the flags
1294          * field until we're actually ready to start
1295          * using this ring (i.e. once we set the MTU
1296          * high enough to require it).
1297          */
1298         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1299                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1300
1301                 rcb->bge_hostaddr.bge_addr_lo =
1302                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1303                 rcb->bge_hostaddr.bge_addr_hi =
1304                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1305                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1306                     sc->bge_cdata.bge_rx_jumbo_ring_map,
1307                     BUS_DMASYNC_PREREAD);
1308                 rcb->bge_maxlen_flags =
1309                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1310                     BGE_RCB_FLAG_RING_DISABLED);
1311                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1312                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1313                     rcb->bge_hostaddr.bge_addr_hi);
1314                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1315                     rcb->bge_hostaddr.bge_addr_lo);
1316                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1317                     rcb->bge_maxlen_flags);
1318                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1319
1320                 /* Set up dummy disabled mini ring RCB */
1321                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1322                 rcb->bge_maxlen_flags =
1323                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1324                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1325                     rcb->bge_maxlen_flags);
1326         }
1327
1328         /*
1329          * Set the BD ring replentish thresholds. The recommended
1330          * values are 1/8th the number of descriptors allocated to
1331          * each ring.
1332          */
1333         if (BGE_IS_5705_PLUS(sc))
1334                 val = 8;
1335         else
1336                 val = BGE_STD_RX_RING_CNT / 8;
1337         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1338         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1339
1340         /*
1341          * Disable all unused send rings by setting the 'ring disabled'
1342          * bit in the flags field of all the TX send ring control blocks.
1343          * These are located in NIC memory.
1344          */
1345         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1346         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1347                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1348                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1349                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1350                 vrcb += sizeof(struct bge_rcb);
1351         }
1352
1353         /* Configure TX RCB 0 (we use only the first ring) */
1354         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1355         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1356         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1357         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1358         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1359             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1360         if (!BGE_IS_5705_PLUS(sc)) {
1361                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1362                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1363         }
1364
1365         /* Disable all unused RX return rings */
1366         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1367         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1368                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1369                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1370                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1371                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1372                     BGE_RCB_FLAG_RING_DISABLED));
1373                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1374                 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1375                     (i * (sizeof(uint64_t))), 0);
1376                 vrcb += sizeof(struct bge_rcb);
1377         }
1378
1379         /* Initialize RX ring indexes */
1380         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1381         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1382         CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1383
1384         /*
1385          * Set up RX return ring 0
1386          * Note that the NIC address for RX return rings is 0x00000000.
1387          * The return rings live entirely within the host, so the
1388          * nicaddr field in the RCB isn't used.
1389          */
1390         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1391         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1392         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1393         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1394         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1395         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1396             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1397
1398         /* Set random backoff seed for TX */
1399         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1400             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1401             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1402             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1403             BGE_TX_BACKOFF_SEED_MASK);
1404
1405         /* Set inter-packet gap */
1406         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1407
1408         /*
1409          * Specify which ring to use for packets that don't match
1410          * any RX rules.
1411          */
1412         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1413
1414         /*
1415          * Configure number of RX lists. One interrupt distribution
1416          * list, sixteen active lists, one bad frames class.
1417          */
1418         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1419
1420         /* Inialize RX list placement stats mask. */
1421         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1422         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1423
1424         /* Disable host coalescing until we get it set up */
1425         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1426
1427         /* Poll to make sure it's shut down. */
1428         for (i = 0; i < BGE_TIMEOUT; i++) {
1429                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1430                         break;
1431                 DELAY(10);
1432         }
1433
1434         if (i == BGE_TIMEOUT) {
1435                 if_printf(&sc->arpcom.ac_if,
1436                           "host coalescing engine failed to idle\n");
1437                 return(ENXIO);
1438         }
1439
1440         /* Set up host coalescing defaults */
1441         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1442         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1443         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1444         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1445         if (!BGE_IS_5705_PLUS(sc)) {
1446                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1447                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1448         }
1449         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1450         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1451
1452         /* Set up address of statistics block */
1453         if (!BGE_IS_5705_PLUS(sc)) {
1454                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1455                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1456                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1457                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1458
1459                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1460                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1461                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1462         }
1463
1464         /* Set up address of status block */
1465         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1466             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1467         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1468             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1469         sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1470         sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1471
1472         /* Turn on host coalescing state machine */
1473         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1474
1475         /* Turn on RX BD completion state machine and enable attentions */
1476         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1477             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1478
1479         /* Turn on RX list placement state machine */
1480         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1481
1482         /* Turn on RX list selector state machine. */
1483         if (!BGE_IS_5705_PLUS(sc))
1484                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1485
1486         /* Turn on DMA, clear stats */
1487         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1488             BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1489             BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1490             BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1491             ((sc->bge_flags & BGE_FLAG_TBI) ?
1492              BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1493
1494         /* Set misc. local control, enable interrupts on attentions */
1495         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1496
1497 #ifdef notdef
1498         /* Assert GPIO pins for PHY reset */
1499         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1500             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1501         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1502             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1503 #endif
1504
1505         /* Turn on DMA completion state machine */
1506         if (!BGE_IS_5705_PLUS(sc))
1507                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1508
1509         /* Turn on write DMA state machine */
1510         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1511         if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1512             sc->bge_asicrev == BGE_ASICREV_BCM5787)
1513                 val |= (1 << 29);       /* Enable host coalescing bug fix. */
1514         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1515         
1516         /* Turn on read DMA state machine */
1517         CSR_WRITE_4(sc, BGE_RDMA_MODE,
1518             BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1519
1520         /* Turn on RX data completion state machine */
1521         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1522
1523         /* Turn on RX BD initiator state machine */
1524         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1525
1526         /* Turn on RX data and RX BD initiator state machine */
1527         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1528
1529         /* Turn on Mbuf cluster free state machine */
1530         if (!BGE_IS_5705_PLUS(sc))
1531                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1532
1533         /* Turn on send BD completion state machine */
1534         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1535
1536         /* Turn on send data completion state machine */
1537         CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1538
1539         /* Turn on send data initiator state machine */
1540         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1541
1542         /* Turn on send BD initiator state machine */
1543         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1544
1545         /* Turn on send BD selector state machine */
1546         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1547
1548         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1549         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1550             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1551
1552         /* ack/clear link change events */
1553         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1554             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1555             BGE_MACSTAT_LINK_CHANGED);
1556         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1557
1558         /* Enable PHY auto polling (for MII/GMII only) */
1559         if (sc->bge_flags & BGE_FLAG_TBI) {
1560                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1561         } else {
1562                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1563                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1564                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1565                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1566                             BGE_EVTENB_MI_INTERRUPT);
1567                 }
1568         }
1569
1570         /*
1571          * Clear any pending link state attention.
1572          * Otherwise some link state change events may be lost until attention
1573          * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1574          * It's not necessary on newer BCM chips - perhaps enabling link
1575          * state change attentions implies clearing pending attention.
1576          */
1577         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1578             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1579             BGE_MACSTAT_LINK_CHANGED);
1580
1581         /* Enable link state change attentions. */
1582         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1583
1584         return(0);
1585 }
1586
1587 /*
1588  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1589  * against our list and return its name if we find a match. Note
1590  * that since the Broadcom controller contains VPD support, we
1591  * can get the device name string from the controller itself instead
1592  * of the compiled-in string. This is a little slow, but it guarantees
1593  * we'll always announce the right product name.
1594  */
1595 static int
1596 bge_probe(device_t dev)
1597 {
1598         struct bge_softc *sc;
1599         struct bge_type *t;
1600         char *descbuf;
1601         uint16_t product, vendor;
1602
1603         product = pci_get_device(dev);
1604         vendor = pci_get_vendor(dev);
1605
1606         for (t = bge_devs; t->bge_name != NULL; t++) {
1607                 if (vendor == t->bge_vid && product == t->bge_did)
1608                         break;
1609         }
1610
1611         if (t->bge_name == NULL)
1612                 return(ENXIO);
1613
1614         sc = device_get_softc(dev);
1615         descbuf = kmalloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1616         ksnprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1617             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1618         device_set_desc_copy(dev, descbuf);
1619         if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1620                 sc->bge_flags |= BGE_FLAG_NO_3LED;
1621         kfree(descbuf, M_TEMP);
1622         return(0);
1623 }
1624
1625 static int
1626 bge_attach(device_t dev)
1627 {
1628         struct ifnet *ifp;
1629         struct bge_softc *sc;
1630         uint32_t hwcfg = 0;
1631         uint32_t mac_addr = 0;
1632         int error = 0, rid;
1633         uint8_t ether_addr[ETHER_ADDR_LEN];
1634
1635         sc = device_get_softc(dev);
1636         sc->bge_dev = dev;
1637         callout_init(&sc->bge_stat_timer);
1638         lwkt_serialize_init(&sc->bge_jslot_serializer);
1639
1640         /*
1641          * Map control/status registers.
1642          */
1643         pci_enable_busmaster(dev);
1644
1645         rid = BGE_PCI_BAR0;
1646         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1647             RF_ACTIVE);
1648
1649         if (sc->bge_res == NULL) {
1650                 device_printf(dev, "couldn't map memory\n");
1651                 return ENXIO;
1652         }
1653
1654         sc->bge_btag = rman_get_bustag(sc->bge_res);
1655         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1656
1657         /* Save ASIC rev. */
1658         sc->bge_chipid =
1659             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1660             BGE_PCIMISCCTL_ASICREV;
1661         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1662         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1663
1664         /* Save chipset family. */
1665         switch (sc->bge_asicrev) {
1666         case BGE_ASICREV_BCM5700:
1667         case BGE_ASICREV_BCM5701:
1668         case BGE_ASICREV_BCM5703:
1669         case BGE_ASICREV_BCM5704:
1670                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
1671                 break;
1672
1673         case BGE_ASICREV_BCM5714_A0:
1674         case BGE_ASICREV_BCM5780:
1675         case BGE_ASICREV_BCM5714:
1676                 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
1677                 /* Fall through */
1678
1679         case BGE_ASICREV_BCM5750:
1680         case BGE_ASICREV_BCM5752:
1681         case BGE_ASICREV_BCM5755:
1682         case BGE_ASICREV_BCM5787:
1683                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
1684                 /* Fall through */
1685
1686         case BGE_ASICREV_BCM5705:
1687                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
1688                 break;
1689         }
1690
1691         /*
1692          * Set various quirk flags.
1693          */
1694
1695         sc->bge_flags |= BGE_FLAG_ETH_WIRESPEED;
1696         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1697             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
1698              (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
1699               sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
1700             sc->bge_asicrev == BGE_ASICREV_BCM5906)
1701                 sc->bge_flags &= ~BGE_FLAG_ETH_WIRESPEED;
1702
1703         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
1704             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
1705                 sc->bge_flags |= BGE_FLAG_CRC_BUG;
1706
1707         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
1708             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
1709                 sc->bge_flags |= BGE_FLAG_ADC_BUG;
1710
1711         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
1712                 sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
1713
1714         if (BGE_IS_5705_PLUS(sc)) {
1715                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1716                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
1717                         uint32_t product = pci_get_device(dev);
1718
1719                         if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
1720                             product != PCI_PRODUCT_BROADCOM_BCM5756)
1721                                 sc->bge_flags |= BGE_FLAG_JITTER_BUG;
1722                         if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
1723                                 sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
1724                 } else if (sc->bge_asicrev != BGE_ASICREV_BCM5906) {
1725                         sc->bge_flags |= BGE_FLAG_BER_BUG;
1726                 }
1727         }
1728
1729         /* Allocate interrupt */
1730         rid = 0;
1731
1732         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1733             RF_SHAREABLE | RF_ACTIVE);
1734
1735         if (sc->bge_irq == NULL) {
1736                 device_printf(dev, "couldn't map interrupt\n");
1737                 error = ENXIO;
1738                 goto fail;
1739         }
1740
1741         /*
1742          * Check if this is a PCI-X or PCI Express device.
1743          */
1744         if (BGE_IS_5705_PLUS(sc)) {
1745                 uint32_t reg;
1746
1747                 reg = pci_read_config(dev, BGE_PCIE_CAPID_REG, 4);
1748                 if ((reg & 0xff) == BGE_PCIE_CAPID)
1749                         sc->bge_flags |= BGE_FLAG_PCIE;
1750         } else {
1751                 /*
1752                  * Check if the device is in PCI-X Mode.
1753                  * (This bit is not valid on PCI Express controllers.)
1754                  */
1755                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1756                     BGE_PCISTATE_PCI_BUSMODE) == 0)
1757                         sc->bge_flags |= BGE_FLAG_PCIX;
1758         }
1759
1760         ifp = &sc->arpcom.ac_if;
1761         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1762
1763         /* Try to reset the chip. */
1764         bge_reset(sc);
1765
1766         if (bge_chipinit(sc)) {
1767                 device_printf(dev, "chip initialization failed\n");
1768                 error = ENXIO;
1769                 goto fail;
1770         }
1771
1772         /*
1773          * Get station address from the EEPROM.
1774          */
1775         mac_addr = bge_readmem_ind(sc, 0x0c14);
1776         if ((mac_addr >> 16) == 0x484b) {
1777                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
1778                 ether_addr[1] = (uint8_t)mac_addr;
1779                 mac_addr = bge_readmem_ind(sc, 0x0c18);
1780                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
1781                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
1782                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
1783                 ether_addr[5] = (uint8_t)mac_addr;
1784         } else if (bge_read_eeprom(sc, ether_addr,
1785             BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1786                 device_printf(dev, "failed to read station address\n");
1787                 error = ENXIO;
1788                 goto fail;
1789         }
1790
1791         /* 5705/5750 limits RX return ring to 512 entries. */
1792         if (BGE_IS_5705_PLUS(sc))
1793                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1794         else
1795                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1796
1797         error = bge_dma_alloc(sc);
1798         if (error)
1799                 goto fail;
1800
1801         /* Set default tuneable values. */
1802         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1803         sc->bge_rx_coal_ticks = bge_rx_coal_ticks;
1804         sc->bge_tx_coal_ticks = bge_tx_coal_ticks;
1805         sc->bge_rx_max_coal_bds = bge_rx_max_coal_bds;
1806         sc->bge_tx_max_coal_bds = bge_tx_max_coal_bds;
1807
1808         /* Set up ifnet structure */
1809         ifp->if_softc = sc;
1810         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1811         ifp->if_ioctl = bge_ioctl;
1812         ifp->if_start = bge_start;
1813 #ifdef DEVICE_POLLING
1814         ifp->if_poll = bge_poll;
1815 #endif
1816         ifp->if_watchdog = bge_watchdog;
1817         ifp->if_init = bge_init;
1818         ifp->if_mtu = ETHERMTU;
1819         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1820         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1821         ifq_set_ready(&ifp->if_snd);
1822
1823         /*
1824          * 5700 B0 chips do not support checksumming correctly due
1825          * to hardware bugs.
1826          */
1827         if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
1828                 ifp->if_capabilities |= IFCAP_HWCSUM;
1829                 ifp->if_hwassist = BGE_CSUM_FEATURES;
1830         }
1831         ifp->if_capenable = ifp->if_capabilities;
1832
1833         /*
1834          * Figure out what sort of media we have by checking the
1835          * hardware config word in the first 32k of NIC internal memory,
1836          * or fall back to examining the EEPROM if necessary.
1837          * Note: on some BCM5700 cards, this value appears to be unset.
1838          * If that's the case, we have to rely on identifying the NIC
1839          * by its PCI subsystem ID, as we do below for the SysKonnect
1840          * SK-9D41.
1841          */
1842         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1843                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1844         else {
1845                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
1846                                     sizeof(hwcfg))) {
1847                         device_printf(dev, "failed to read EEPROM\n");
1848                         error = ENXIO;
1849                         goto fail;
1850                 }
1851                 hwcfg = ntohl(hwcfg);
1852         }
1853
1854         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1855                 sc->bge_flags |= BGE_FLAG_TBI;
1856
1857         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1858         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1859                 sc->bge_flags |= BGE_FLAG_TBI;
1860
1861         if (sc->bge_flags & BGE_FLAG_TBI) {
1862                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1863                     bge_ifmedia_upd, bge_ifmedia_sts);
1864                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1865                 ifmedia_add(&sc->bge_ifmedia,
1866                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1867                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1868                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1869                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
1870         } else {
1871                 /*
1872                  * Do transceiver setup.
1873                  */
1874                 if (mii_phy_probe(dev, &sc->bge_miibus,
1875                     bge_ifmedia_upd, bge_ifmedia_sts)) {
1876                         device_printf(dev, "MII without any PHY!\n");
1877                         error = ENXIO;
1878                         goto fail;
1879                 }
1880         }
1881
1882         /*
1883          * When using the BCM5701 in PCI-X mode, data corruption has
1884          * been observed in the first few bytes of some received packets.
1885          * Aligning the packet buffer in memory eliminates the corruption.
1886          * Unfortunately, this misaligns the packet payloads.  On platforms
1887          * which do not support unaligned accesses, we will realign the
1888          * payloads by copying the received packets.
1889          */
1890         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1891             (sc->bge_flags & BGE_FLAG_PCIX))
1892                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
1893
1894         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1895             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1896                 sc->bge_link_upd = bge_bcm5700_link_upd;
1897                 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
1898         } else if (sc->bge_flags & BGE_FLAG_TBI) {
1899                 sc->bge_link_upd = bge_tbi_link_upd;
1900                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
1901         } else {
1902                 sc->bge_link_upd = bge_copper_link_upd;
1903                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
1904         }
1905
1906         /*
1907          * Create sysctl nodes.
1908          */
1909         sysctl_ctx_init(&sc->bge_sysctl_ctx);
1910         sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
1911                                               SYSCTL_STATIC_CHILDREN(_hw),
1912                                               OID_AUTO,
1913                                               device_get_nameunit(dev),
1914                                               CTLFLAG_RD, 0, "");
1915         if (sc->bge_sysctl_tree == NULL) {
1916                 device_printf(dev, "can't add sysctl node\n");
1917                 error = ENXIO;
1918                 goto fail;
1919         }
1920
1921         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1922                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1923                         OID_AUTO, "rx_coal_ticks",
1924                         CTLTYPE_INT | CTLFLAG_RW,
1925                         sc, 0, bge_sysctl_rx_coal_ticks, "I",
1926                         "Receive coalescing ticks (usec).");
1927         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1928                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1929                         OID_AUTO, "tx_coal_ticks",
1930                         CTLTYPE_INT | CTLFLAG_RW,
1931                         sc, 0, bge_sysctl_tx_coal_ticks, "I",
1932                         "Transmit coalescing ticks (usec).");
1933         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1934                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1935                         OID_AUTO, "rx_max_coal_bds",
1936                         CTLTYPE_INT | CTLFLAG_RW,
1937                         sc, 0, bge_sysctl_rx_max_coal_bds, "I",
1938                         "Receive max coalesced BD count.");
1939         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1940                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1941                         OID_AUTO, "tx_max_coal_bds",
1942                         CTLTYPE_INT | CTLFLAG_RW,
1943                         sc, 0, bge_sysctl_tx_max_coal_bds, "I",
1944                         "Transmit max coalesced BD count.");
1945
1946         /*
1947          * Call MI attach routine.
1948          */
1949         ether_ifattach(ifp, ether_addr, NULL);
1950
1951         error = bus_setup_intr(dev, sc->bge_irq, INTR_NETSAFE,
1952                                bge_intr, sc, &sc->bge_intrhand, 
1953                                ifp->if_serializer);
1954         if (error) {
1955                 ether_ifdetach(ifp);
1956                 device_printf(dev, "couldn't set up irq\n");
1957                 goto fail;
1958         }
1959
1960         ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->bge_irq));
1961         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1962
1963         return(0);
1964 fail:
1965         bge_detach(dev);
1966         return(error);
1967 }
1968
1969 static int
1970 bge_detach(device_t dev)
1971 {
1972         struct bge_softc *sc = device_get_softc(dev);
1973
1974         if (device_is_attached(dev)) {
1975                 struct ifnet *ifp = &sc->arpcom.ac_if;
1976
1977                 lwkt_serialize_enter(ifp->if_serializer);
1978                 bge_stop(sc);
1979                 bge_reset(sc);
1980                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1981                 lwkt_serialize_exit(ifp->if_serializer);
1982
1983                 ether_ifdetach(ifp);
1984         }
1985
1986         if (sc->bge_flags & BGE_FLAG_TBI)
1987                 ifmedia_removeall(&sc->bge_ifmedia);
1988         if (sc->bge_miibus)
1989                 device_delete_child(dev, sc->bge_miibus);
1990         bus_generic_detach(dev);
1991
1992         if (sc->bge_irq != NULL)
1993                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1994
1995         if (sc->bge_res != NULL)
1996                 bus_release_resource(dev, SYS_RES_MEMORY,
1997                     BGE_PCI_BAR0, sc->bge_res);
1998
1999         if (sc->bge_sysctl_tree != NULL)
2000                 sysctl_ctx_free(&sc->bge_sysctl_ctx);
2001
2002         bge_dma_free(sc);
2003
2004         return 0;
2005 }
2006
2007 static void
2008 bge_reset(struct bge_softc *sc)
2009 {
2010         device_t dev;
2011         uint32_t cachesize, command, pcistate, reset;
2012         void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2013         int i, val = 0;
2014
2015         dev = sc->bge_dev;
2016
2017         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc)) {
2018                 if (sc->bge_flags & BGE_FLAG_PCIE)
2019                         write_op = bge_writemem_direct;
2020                 else
2021                         write_op = bge_writemem_ind;
2022         } else {
2023                 write_op = bge_writereg_ind;
2024         }
2025
2026         /* Save some important PCI state. */
2027         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2028         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2029         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2030
2031         pci_write_config(dev, BGE_PCI_MISC_CTL,
2032             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2033             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2034
2035         /* Disable fastboot on controllers that support it. */
2036         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2037             sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2038             sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2039                 if (bootverbose)
2040                         if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2041                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2042         }
2043
2044         /*
2045          * Write the magic number to SRAM at offset 0xB50.
2046          * When firmware finishes its initialization it will
2047          * write ~BGE_MAGIC_NUMBER to the same location.
2048          */
2049         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2050
2051         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2052
2053         /* XXX: Broadcom Linux driver. */
2054         if (sc->bge_flags & BGE_FLAG_PCIE) {
2055                 if (CSR_READ_4(sc, 0x7e2c) == 0x60)     /* PCIE 1.0 */
2056                         CSR_WRITE_4(sc, 0x7e2c, 0x20);
2057                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2058                         /* Prevent PCIE link training during global reset */
2059                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2060                         reset |= (1<<29);
2061                 }
2062         }
2063
2064         /* 
2065          * Set GPHY Power Down Override to leave GPHY
2066          * powered up in D0 uninitialized.
2067          */
2068         if (BGE_IS_5705_PLUS(sc))
2069                 reset |= 0x04000000;
2070
2071         /* Issue global reset */
2072         write_op(sc, BGE_MISC_CFG, reset);
2073
2074         DELAY(1000);
2075
2076         /* XXX: Broadcom Linux driver. */
2077         if (sc->bge_flags & BGE_FLAG_PCIE) {
2078                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2079                         uint32_t v;
2080
2081                         DELAY(500000); /* wait for link training to complete */
2082                         v = pci_read_config(dev, 0xc4, 4);
2083                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
2084                 }
2085                 /*
2086                  * Set PCIE max payload size to 128 bytes and
2087                  * clear error status.
2088                  */
2089                 pci_write_config(dev, 0xd8, 0xf5000, 4);
2090         }
2091
2092         /* Reset some of the PCI state that got zapped by reset */
2093         pci_write_config(dev, BGE_PCI_MISC_CTL,
2094             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2095             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2096         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2097         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2098         write_op(sc, BGE_MISC_CFG, (65 << 1));
2099
2100         /* Enable memory arbiter. */
2101         if (BGE_IS_5714_FAMILY(sc)) {
2102                 uint32_t val;
2103
2104                 val = CSR_READ_4(sc, BGE_MARB_MODE);
2105                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2106         } else {
2107                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2108         }
2109
2110         /*
2111          * Poll until we see the 1's complement of the magic number.
2112          * This indicates that the firmware initialization
2113          * is complete.
2114          */
2115         for (i = 0; i < BGE_TIMEOUT; i++) {
2116                 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2117                 if (val == ~BGE_MAGIC_NUMBER)
2118                         break;
2119                 DELAY(10);
2120         }
2121         
2122         if (i == BGE_TIMEOUT) {
2123                 if_printf(&sc->arpcom.ac_if, "firmware handshake timed out,"
2124                           "found 0x%08x\n", val);
2125                 return;
2126         }
2127
2128         /*
2129          * XXX Wait for the value of the PCISTATE register to
2130          * return to its original pre-reset state. This is a
2131          * fairly good indicator of reset completion. If we don't
2132          * wait for the reset to fully complete, trying to read
2133          * from the device's non-PCI registers may yield garbage
2134          * results.
2135          */
2136         for (i = 0; i < BGE_TIMEOUT; i++) {
2137                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2138                         break;
2139                 DELAY(10);
2140         }
2141
2142         if (sc->bge_flags & BGE_FLAG_PCIE) {
2143                 reset = bge_readmem_ind(sc, 0x7c00);
2144                 bge_writemem_ind(sc, 0x7c00, reset | (1 << 25));
2145         }
2146
2147         /* Fix up byte swapping */
2148         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2149             BGE_MODECTL_BYTESWAP_DATA);
2150
2151         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2152
2153         /*
2154          * The 5704 in TBI mode apparently needs some special
2155          * adjustment to insure the SERDES drive level is set
2156          * to 1.2V.
2157          */
2158         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2159             (sc->bge_flags & BGE_FLAG_TBI)) {
2160                 uint32_t serdescfg;
2161
2162                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2163                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2164                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2165         }
2166
2167         /* XXX: Broadcom Linux driver. */
2168         if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2169             sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2170                 uint32_t v;
2171
2172                 v = CSR_READ_4(sc, 0x7c00);
2173                 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
2174         }
2175
2176         DELAY(10000);
2177 }
2178
2179 /*
2180  * Frame reception handling. This is called if there's a frame
2181  * on the receive return list.
2182  *
2183  * Note: we have to be able to handle two possibilities here:
2184  * 1) the frame is from the jumbo recieve ring
2185  * 2) the frame is from the standard receive ring
2186  */
2187
2188 static void
2189 bge_rxeof(struct bge_softc *sc)
2190 {
2191         struct ifnet *ifp;
2192         int stdcnt = 0, jumbocnt = 0;
2193
2194         if (sc->bge_rx_saved_considx ==
2195             sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx)
2196                 return;
2197
2198         ifp = &sc->arpcom.ac_if;
2199
2200         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
2201                         sc->bge_cdata.bge_rx_return_ring_map,
2202                         BUS_DMASYNC_POSTREAD);
2203         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2204                         sc->bge_cdata.bge_rx_std_ring_map,
2205                         BUS_DMASYNC_POSTREAD);
2206         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2207                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2208                                 sc->bge_cdata.bge_rx_jumbo_ring_map,
2209                                 BUS_DMASYNC_POSTREAD);
2210         }
2211
2212         while (sc->bge_rx_saved_considx !=
2213                sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
2214                 struct bge_rx_bd        *cur_rx;
2215                 uint32_t                rxidx;
2216                 struct mbuf             *m = NULL;
2217                 uint16_t                vlan_tag = 0;
2218                 int                     have_tag = 0;
2219
2220                 cur_rx =
2221             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2222
2223                 rxidx = cur_rx->bge_idx;
2224                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2225                 logif(rx_pkt);
2226
2227                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2228                         have_tag = 1;
2229                         vlan_tag = cur_rx->bge_vlan_tag;
2230                 }
2231
2232                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2233                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2234                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2235                         sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2236                         jumbocnt++;
2237                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2238                                 ifp->if_ierrors++;
2239                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2240                                 continue;
2241                         }
2242                         if (bge_newbuf_jumbo(sc,
2243                             sc->bge_jumbo, NULL) == ENOBUFS) {
2244                                 ifp->if_ierrors++;
2245                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2246                                 continue;
2247                         }
2248                 } else {
2249                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2250                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
2251                                         sc->bge_cdata.bge_rx_std_dmamap[rxidx],
2252                                         BUS_DMASYNC_POSTREAD);
2253                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
2254                                 sc->bge_cdata.bge_rx_std_dmamap[rxidx]);
2255                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2256                         sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2257                         stdcnt++;
2258                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2259                                 ifp->if_ierrors++;
2260                                 bge_newbuf_std(sc, sc->bge_std, m);
2261                                 continue;
2262                         }
2263                         if (bge_newbuf_std(sc, sc->bge_std,
2264                             NULL) == ENOBUFS) {
2265                                 ifp->if_ierrors++;
2266                                 bge_newbuf_std(sc, sc->bge_std, m);
2267                                 continue;
2268                         }
2269                 }
2270
2271                 ifp->if_ipackets++;
2272 #ifndef __i386__
2273                 /*
2274                  * The i386 allows unaligned accesses, but for other
2275                  * platforms we must make sure the payload is aligned.
2276                  */
2277                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
2278                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2279                             cur_rx->bge_len);
2280                         m->m_data += ETHER_ALIGN;
2281                 }
2282 #endif
2283                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2284                 m->m_pkthdr.rcvif = ifp;
2285
2286                 if (ifp->if_capenable & IFCAP_RXCSUM) {
2287                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2288                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2289                                 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2290                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2291                         }
2292                         if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
2293                             m->m_pkthdr.len >= BGE_MIN_FRAME) {
2294                                 m->m_pkthdr.csum_data =
2295                                         cur_rx->bge_tcp_udp_csum;
2296                                 m->m_pkthdr.csum_flags |=
2297                                         CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2298                         }
2299                 }
2300
2301                 /*
2302                  * If we received a packet with a vlan tag, pass it
2303                  * to vlan_input() instead of ether_input().
2304                  */
2305                 if (have_tag) {
2306                         m->m_flags |= M_VLANTAG;
2307                         m->m_pkthdr.ether_vlantag = vlan_tag;
2308                         have_tag = vlan_tag = 0;
2309                 }
2310                 ifp->if_input(ifp, m);
2311         }
2312
2313         if (stdcnt > 0) {
2314                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2315                                 sc->bge_cdata.bge_rx_std_ring_map,
2316                                 BUS_DMASYNC_PREWRITE);
2317         }
2318
2319         if (BGE_IS_JUMBO_CAPABLE(sc) && jumbocnt > 0) {
2320                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2321                                 sc->bge_cdata.bge_rx_jumbo_ring_map,
2322                                 BUS_DMASYNC_PREWRITE);
2323         }
2324
2325         CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2326         if (stdcnt)
2327                 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2328         if (jumbocnt)
2329                 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2330 }
2331
2332 static void
2333 bge_txeof(struct bge_softc *sc)
2334 {
2335         struct bge_tx_bd *cur_tx = NULL;
2336         struct ifnet *ifp;
2337
2338         if (sc->bge_tx_saved_considx ==
2339             sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx)
2340                 return;
2341
2342         ifp = &sc->arpcom.ac_if;
2343
2344         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
2345                         sc->bge_cdata.bge_tx_ring_map,
2346                         BUS_DMASYNC_POSTREAD);
2347
2348         /*
2349          * Go through our tx ring and free mbufs for those
2350          * frames that have been sent.
2351          */
2352         while (sc->bge_tx_saved_considx !=
2353                sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
2354                 uint32_t idx = 0;
2355
2356                 idx = sc->bge_tx_saved_considx;
2357                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
2358                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2359                         ifp->if_opackets++;
2360                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2361                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
2362                                         sc->bge_cdata.bge_tx_dmamap[idx],
2363                                         BUS_DMASYNC_POSTWRITE);
2364                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
2365                             sc->bge_cdata.bge_tx_dmamap[idx]);
2366                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2367                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
2368                 }
2369                 sc->bge_txcnt--;
2370                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2371                 logif(tx_pkt);
2372         }
2373
2374         if (cur_tx != NULL &&
2375             (BGE_TX_RING_CNT - sc->bge_txcnt) >=
2376             (BGE_NSEG_RSVD + BGE_NSEG_SPARE))
2377                 ifp->if_flags &= ~IFF_OACTIVE;
2378
2379         if (sc->bge_txcnt == 0)
2380                 ifp->if_timer = 0;
2381
2382         if (!ifq_is_empty(&ifp->if_snd))
2383                 if_devstart(ifp);
2384 }
2385
2386 #ifdef DEVICE_POLLING
2387
2388 static void
2389 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2390 {
2391         struct bge_softc *sc = ifp->if_softc;
2392         uint32_t status;
2393
2394         switch(cmd) {
2395         case POLL_REGISTER:
2396                 bge_disable_intr(sc);
2397                 break;
2398         case POLL_DEREGISTER:
2399                 bge_enable_intr(sc);
2400                 break;
2401         case POLL_AND_CHECK_STATUS:
2402                 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2403                                 sc->bge_cdata.bge_status_map,
2404                                 BUS_DMASYNC_POSTREAD);
2405
2406                 /*
2407                  * Process link state changes.
2408                  */
2409                 status = CSR_READ_4(sc, BGE_MAC_STS);
2410                 if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2411                         sc->bge_link_evt = 0;
2412                         sc->bge_link_upd(sc, status);
2413                 }
2414                 /* fall through */
2415         case POLL_ONLY:
2416                 if (ifp->if_flags & IFF_RUNNING) {
2417                         bge_rxeof(sc);
2418                         bge_txeof(sc);
2419                 }
2420                 break;
2421         }
2422 }
2423
2424 #endif
2425
2426 static void
2427 bge_intr(void *xsc)
2428 {
2429         struct bge_softc *sc = xsc;
2430         struct ifnet *ifp = &sc->arpcom.ac_if;
2431         uint32_t status;
2432
2433         logif(intr);
2434
2435         /*
2436          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
2437          * disable interrupts by writing nonzero like we used to, since with
2438          * our current organization this just gives complications and
2439          * pessimizations for re-enabling interrupts.  We used to have races
2440          * instead of the necessary complications.  Disabling interrupts
2441          * would just reduce the chance of a status update while we are
2442          * running (by switching to the interrupt-mode coalescence
2443          * parameters), but this chance is already very low so it is more
2444          * efficient to get another interrupt than prevent it.
2445          *
2446          * We do the ack first to ensure another interrupt if there is a
2447          * status update after the ack.  We don't check for the status
2448          * changing later because it is more efficient to get another
2449          * interrupt than prevent it, not quite as above (not checking is
2450          * a smaller optimization than not toggling the interrupt enable,
2451          * since checking doesn't involve PCI accesses and toggling require
2452          * the status check).  So toggling would probably be a pessimization
2453          * even with MSI.  It would only be needed for using a task queue.
2454          */
2455         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2456
2457         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2458                         sc->bge_cdata.bge_status_map,
2459                         BUS_DMASYNC_POSTREAD);
2460
2461         /*
2462          * Process link state changes.
2463          */
2464         status = CSR_READ_4(sc, BGE_MAC_STS);
2465         if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2466                 sc->bge_link_evt = 0;
2467                 sc->bge_link_upd(sc, status);
2468         }
2469
2470         if (ifp->if_flags & IFF_RUNNING) {
2471                 /* Check RX return ring producer/consumer */
2472                 bge_rxeof(sc);
2473
2474                 /* Check TX ring producer/consumer */
2475                 bge_txeof(sc);
2476         }
2477
2478         if (sc->bge_coal_chg)
2479                 bge_coal_change(sc);
2480 }
2481
2482 static void
2483 bge_tick(void *xsc)
2484 {
2485         struct bge_softc *sc = xsc;
2486         struct ifnet *ifp = &sc->arpcom.ac_if;
2487
2488         lwkt_serialize_enter(ifp->if_serializer);
2489
2490         if (BGE_IS_5705_PLUS(sc))
2491                 bge_stats_update_regs(sc);
2492         else
2493                 bge_stats_update(sc);
2494
2495         if (sc->bge_flags & BGE_FLAG_TBI) {
2496                 /*
2497                  * Since in TBI mode auto-polling can't be used we should poll
2498                  * link status manually. Here we register pending link event
2499                  * and trigger interrupt.
2500                  */
2501                 sc->bge_link_evt++;
2502                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
2503         } else if (!sc->bge_link) {
2504                 mii_tick(device_get_softc(sc->bge_miibus));
2505         }
2506
2507         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2508
2509         lwkt_serialize_exit(ifp->if_serializer);
2510 }
2511
2512 static void
2513 bge_stats_update_regs(struct bge_softc *sc)
2514 {
2515         struct ifnet *ifp = &sc->arpcom.ac_if;
2516         struct bge_mac_stats_regs stats;
2517         uint32_t *s;
2518         int i;
2519
2520         s = (uint32_t *)&stats;
2521         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2522                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2523                 s++;
2524         }
2525
2526         ifp->if_collisions +=
2527            (stats.dot3StatsSingleCollisionFrames +
2528            stats.dot3StatsMultipleCollisionFrames +
2529            stats.dot3StatsExcessiveCollisions +
2530            stats.dot3StatsLateCollisions) -
2531            ifp->if_collisions;
2532 }
2533
2534 static void
2535 bge_stats_update(struct bge_softc *sc)
2536 {
2537         struct ifnet *ifp = &sc->arpcom.ac_if;
2538         bus_size_t stats;
2539
2540         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2541
2542 #define READ_STAT(sc, stats, stat)      \
2543         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2544
2545         ifp->if_collisions +=
2546            (READ_STAT(sc, stats,
2547                 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
2548             READ_STAT(sc, stats,
2549                 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2550             READ_STAT(sc, stats,
2551                 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
2552             READ_STAT(sc, stats,
2553                 txstats.dot3StatsLateCollisions.bge_addr_lo)) -
2554            ifp->if_collisions;
2555
2556 #undef READ_STAT
2557
2558 #ifdef notdef
2559         ifp->if_collisions +=
2560            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2561            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2562            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2563            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2564            ifp->if_collisions;
2565 #endif
2566 }
2567
2568 /*
2569  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2570  * pointers to descriptors.
2571  */
2572 static int
2573 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx)
2574 {
2575         struct bge_tx_bd *d = NULL;
2576         uint16_t csum_flags = 0;
2577         struct bge_dmamap_arg ctx;
2578         bus_dma_segment_t segs[BGE_NSEG_NEW];
2579         bus_dmamap_t map;
2580         int error, maxsegs, idx, i;
2581         struct mbuf *m_head = *m_head0;
2582
2583         if (m_head->m_pkthdr.csum_flags) {
2584                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2585                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2586                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2587                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2588                 if (m_head->m_flags & M_LASTFRAG)
2589                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2590                 else if (m_head->m_flags & M_FRAG)
2591                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2592         }
2593
2594         idx = *txidx;
2595         map = sc->bge_cdata.bge_tx_dmamap[idx];
2596
2597         maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - BGE_NSEG_RSVD;
2598         KASSERT(maxsegs >= BGE_NSEG_SPARE,
2599                 ("not enough segments %d\n", maxsegs));
2600
2601         if (maxsegs > BGE_NSEG_NEW)
2602                 maxsegs = BGE_NSEG_NEW;
2603
2604         /*
2605          * Pad outbound frame to BGE_MIN_FRAME for an unusual reason.
2606          * The bge hardware will pad out Tx runts to BGE_MIN_FRAME,
2607          * but when such padded frames employ the bge IP/TCP checksum
2608          * offload, the hardware checksum assist gives incorrect results
2609          * (possibly from incorporating its own padding into the UDP/TCP
2610          * checksum; who knows).  If we pad such runts with zeros, the
2611          * onboard checksum comes out correct.  We do this by pretending
2612          * the mbuf chain has too many fragments so the coalescing code
2613          * below can assemble the packet into a single buffer that's
2614          * padded out to the mininum frame size.
2615          */
2616         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2617             m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2618                 error = EFBIG;
2619         } else {
2620                 ctx.bge_segs = segs;
2621                 ctx.bge_maxsegs = maxsegs;
2622                 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map,
2623                                              m_head, bge_dma_map_mbuf, &ctx,
2624                                              BUS_DMA_NOWAIT);
2625         }
2626         if (error == EFBIG || ctx.bge_maxsegs == 0) {
2627                 struct mbuf *m_new;
2628
2629                 m_new = m_defrag(m_head, MB_DONTWAIT);
2630                 if (m_new == NULL) {
2631                         if_printf(&sc->arpcom.ac_if,
2632                                   "could not defrag TX mbuf\n");
2633                         error = ENOBUFS;
2634                         goto back;
2635                 } else {
2636                         m_head = m_new;
2637                         *m_head0 = m_head;
2638                 }
2639
2640                 /*
2641                  * Manually pad short frames, and zero the pad space
2642                  * to avoid leaking data.
2643                  */
2644                 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2645                     m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2646                         int pad_len = BGE_MIN_FRAME - m_head->m_pkthdr.len;
2647
2648                         bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
2649                               pad_len);
2650                         m_head->m_pkthdr.len += pad_len;
2651                         m_head->m_len = m_head->m_pkthdr.len;
2652                 }
2653
2654                 ctx.bge_segs = segs;
2655                 ctx.bge_maxsegs = maxsegs;
2656                 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map,
2657                                              m_head, bge_dma_map_mbuf, &ctx,
2658                                              BUS_DMA_NOWAIT);
2659                 if (error || ctx.bge_maxsegs == 0) {
2660                         if_printf(&sc->arpcom.ac_if,
2661                                   "could not defrag TX mbuf\n");
2662                         if (error == 0)
2663                                 error = EFBIG;
2664                         goto back;
2665                 }
2666         } else if (error) {
2667                 if_printf(&sc->arpcom.ac_if, "could not map TX mbuf\n");
2668                 goto back;
2669         }
2670
2671         bus_dmamap_sync(sc->bge_cdata.bge_mtag, map, BUS_DMASYNC_PREWRITE);
2672
2673         for (i = 0; ; i++) {
2674                 d = &sc->bge_ldata.bge_tx_ring[idx];
2675
2676                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_segs[i].ds_addr);
2677                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_segs[i].ds_addr);
2678                 d->bge_len = segs[i].ds_len;
2679                 d->bge_flags = csum_flags;
2680
2681                 if (i == ctx.bge_maxsegs - 1)
2682                         break;
2683                 BGE_INC(idx, BGE_TX_RING_CNT);
2684         }
2685         /* Mark the last segment as end of packet... */
2686         d->bge_flags |= BGE_TXBDFLAG_END;
2687
2688         /* Set vlan tag to the first segment of the packet. */
2689         d = &sc->bge_ldata.bge_tx_ring[*txidx];
2690         if (m_head->m_flags & M_VLANTAG) {
2691                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2692                 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
2693         } else {
2694                 d->bge_vlan_tag = 0;
2695         }
2696
2697         /*
2698          * Insure that the map for this transmission is placed at
2699          * the array index of the last descriptor in this chain.
2700          */
2701         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
2702         sc->bge_cdata.bge_tx_dmamap[idx] = map;
2703         sc->bge_cdata.bge_tx_chain[idx] = m_head;
2704         sc->bge_txcnt += ctx.bge_maxsegs;
2705
2706         BGE_INC(idx, BGE_TX_RING_CNT);
2707         *txidx = idx;
2708 back:
2709         if (error) {
2710                 m_freem(m_head);
2711                 *m_head0 = NULL;
2712         }
2713         return error;
2714 }
2715
2716 /*
2717  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2718  * to the mbuf data regions directly in the transmit descriptors.
2719  */
2720 static void
2721 bge_start(struct ifnet *ifp)
2722 {
2723         struct bge_softc *sc = ifp->if_softc;
2724         struct mbuf *m_head = NULL;
2725         uint32_t prodidx;
2726         int need_trans;
2727
2728         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2729                 return;
2730
2731         prodidx = sc->bge_tx_prodidx;
2732
2733         need_trans = 0;
2734         while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2735                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
2736                 if (m_head == NULL)
2737                         break;
2738
2739                 /*
2740                  * XXX
2741                  * The code inside the if() block is never reached since we
2742                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
2743                  * requests to checksum TCP/UDP in a fragmented packet.
2744                  * 
2745                  * XXX
2746                  * safety overkill.  If this is a fragmented packet chain
2747                  * with delayed TCP/UDP checksums, then only encapsulate
2748                  * it if we have enough descriptors to handle the entire
2749                  * chain at once.
2750                  * (paranoia -- may not actually be needed)
2751                  */
2752                 if ((m_head->m_flags & M_FIRSTFRAG) &&
2753                     (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
2754                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2755                             m_head->m_pkthdr.csum_data + BGE_NSEG_RSVD) {
2756                                 ifp->if_flags |= IFF_OACTIVE;
2757                                 ifq_prepend(&ifp->if_snd, m_head);
2758                                 break;
2759                         }
2760                 }
2761
2762                 /*
2763                  * Sanity check: avoid coming within BGE_NSEG_RSVD
2764                  * descriptors of the end of the ring.  Also make
2765                  * sure there are BGE_NSEG_SPARE descriptors for
2766                  * jumbo buffers' defragmentation.
2767                  */
2768                 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2769                     (BGE_NSEG_RSVD + BGE_NSEG_SPARE)) {
2770                         ifp->if_flags |= IFF_OACTIVE;
2771                         ifq_prepend(&ifp->if_snd, m_head);
2772                         break;
2773                 }
2774
2775                 /*
2776                  * Pack the data into the transmit ring. If we
2777                  * don't have room, set the OACTIVE flag and wait
2778                  * for the NIC to drain the ring.
2779                  */
2780                 if (bge_encap(sc, &m_head, &prodidx)) {
2781                         ifp->if_flags |= IFF_OACTIVE;
2782                         break;
2783                 }
2784                 need_trans = 1;
2785
2786                 ETHER_BPF_MTAP(ifp, m_head);
2787         }
2788
2789         if (!need_trans)
2790                 return;
2791
2792         /* Transmit */
2793         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2794         /* 5700 b2 errata */
2795         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2796                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2797
2798         sc->bge_tx_prodidx = prodidx;
2799
2800         /*
2801          * Set a timeout in case the chip goes out to lunch.
2802          */
2803         ifp->if_timer = 5;
2804 }
2805
2806 static void
2807 bge_init(void *xsc)
2808 {
2809         struct bge_softc *sc = xsc;
2810         struct ifnet *ifp = &sc->arpcom.ac_if;
2811         uint16_t *m;
2812
2813         ASSERT_SERIALIZED(ifp->if_serializer);
2814
2815         if (ifp->if_flags & IFF_RUNNING)
2816                 return;
2817
2818         /* Cancel pending I/O and flush buffers. */
2819         bge_stop(sc);
2820         bge_reset(sc);
2821         bge_chipinit(sc);
2822
2823         /*
2824          * Init the various state machines, ring
2825          * control blocks and firmware.
2826          */
2827         if (bge_blockinit(sc)) {
2828                 if_printf(ifp, "initialization failure\n");
2829                 return;
2830         }
2831
2832         /* Specify MTU. */
2833         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2834             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
2835
2836         /* Load our MAC address. */
2837         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2838         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2839         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2840
2841         /* Enable or disable promiscuous mode as needed. */
2842         bge_setpromisc(sc);
2843
2844         /* Program multicast filter. */
2845         bge_setmulti(sc);
2846
2847         /* Init RX ring. */
2848         bge_init_rx_ring_std(sc);
2849
2850         /*
2851          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2852          * memory to insure that the chip has in fact read the first
2853          * entry of the ring.
2854          */
2855         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2856                 uint32_t                v, i;
2857                 for (i = 0; i < 10; i++) {
2858                         DELAY(20);
2859                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2860                         if (v == (MCLBYTES - ETHER_ALIGN))
2861                                 break;
2862                 }
2863                 if (i == 10)
2864                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2865         }
2866
2867         /* Init jumbo RX ring. */
2868         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2869                 bge_init_rx_ring_jumbo(sc);
2870
2871         /* Init our RX return ring index */
2872         sc->bge_rx_saved_considx = 0;
2873
2874         /* Init TX ring. */
2875         bge_init_tx_ring(sc);
2876
2877         /* Turn on transmitter */
2878         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2879
2880         /* Turn on receiver */
2881         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2882
2883         /* Tell firmware we're alive. */
2884         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2885
2886         /* Enable host interrupts if polling(4) is not enabled. */
2887         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2888 #ifdef DEVICE_POLLING
2889         if (ifp->if_flags & IFF_POLLING)
2890                 bge_disable_intr(sc);
2891         else
2892 #endif
2893         bge_enable_intr(sc);
2894
2895         bge_ifmedia_upd(ifp);
2896
2897         ifp->if_flags |= IFF_RUNNING;
2898         ifp->if_flags &= ~IFF_OACTIVE;
2899
2900         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2901 }
2902
2903 /*
2904  * Set media options.
2905  */
2906 static int
2907 bge_ifmedia_upd(struct ifnet *ifp)
2908 {
2909         struct bge_softc *sc = ifp->if_softc;
2910
2911         /* If this is a 1000baseX NIC, enable the TBI port. */
2912         if (sc->bge_flags & BGE_FLAG_TBI) {
2913                 struct ifmedia *ifm = &sc->bge_ifmedia;
2914
2915                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2916                         return(EINVAL);
2917
2918                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2919                 case IFM_AUTO:
2920                         /*
2921                          * The BCM5704 ASIC appears to have a special
2922                          * mechanism for programming the autoneg
2923                          * advertisement registers in TBI mode.
2924                          */
2925                         if (!bge_fake_autoneg &&
2926                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2927                                 uint32_t sgdig;
2928
2929                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
2930                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
2931                                 sgdig |= BGE_SGDIGCFG_AUTO |
2932                                          BGE_SGDIGCFG_PAUSE_CAP |
2933                                          BGE_SGDIGCFG_ASYM_PAUSE;
2934                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
2935                                             sgdig | BGE_SGDIGCFG_SEND);
2936                                 DELAY(5);
2937                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
2938                         }
2939                         break;
2940                 case IFM_1000_SX:
2941                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2942                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
2943                                     BGE_MACMODE_HALF_DUPLEX);
2944                         } else {
2945                                 BGE_SETBIT(sc, BGE_MAC_MODE,
2946                                     BGE_MACMODE_HALF_DUPLEX);
2947                         }
2948                         break;
2949                 default:
2950                         return(EINVAL);
2951                 }
2952         } else {
2953                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
2954
2955                 sc->bge_link_evt++;
2956                 sc->bge_link = 0;
2957                 if (mii->mii_instance) {
2958                         struct mii_softc *miisc;
2959
2960                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2961                                 mii_phy_reset(miisc);
2962                 }
2963                 mii_mediachg(mii);
2964         }
2965         return(0);
2966 }
2967
2968 /*
2969  * Report current media status.
2970  */
2971 static void
2972 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2973 {
2974         struct bge_softc *sc = ifp->if_softc;
2975
2976         if (sc->bge_flags & BGE_FLAG_TBI) {
2977                 ifmr->ifm_status = IFM_AVALID;
2978                 ifmr->ifm_active = IFM_ETHER;
2979                 if (CSR_READ_4(sc, BGE_MAC_STS) &
2980                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
2981                         ifmr->ifm_status |= IFM_ACTIVE;
2982                 } else {
2983                         ifmr->ifm_active |= IFM_NONE;
2984                         return;
2985                 }
2986
2987                 ifmr->ifm_active |= IFM_1000_SX;
2988                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2989                         ifmr->ifm_active |= IFM_HDX;    
2990                 else
2991                         ifmr->ifm_active |= IFM_FDX;
2992         } else {
2993                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
2994
2995                 mii_pollstat(mii);
2996                 ifmr->ifm_active = mii->mii_media_active;
2997                 ifmr->ifm_status = mii->mii_media_status;
2998         }
2999 }
3000
3001 static int
3002 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3003 {
3004         struct bge_softc *sc = ifp->if_softc;
3005         struct ifreq *ifr = (struct ifreq *)data;
3006         int mask, error = 0;
3007
3008         ASSERT_SERIALIZED(ifp->if_serializer);
3009
3010         switch (command) {
3011         case SIOCSIFMTU:
3012                 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3013                     (BGE_IS_JUMBO_CAPABLE(sc) &&
3014                      ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3015                         error = EINVAL;
3016                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3017                         ifp->if_mtu = ifr->ifr_mtu;
3018                         ifp->if_flags &= ~IFF_RUNNING;
3019                         bge_init(sc);
3020                 }
3021                 break;
3022         case SIOCSIFFLAGS:
3023                 if (ifp->if_flags & IFF_UP) {
3024                         if (ifp->if_flags & IFF_RUNNING) {
3025                                 mask = ifp->if_flags ^ sc->bge_if_flags;
3026
3027                                 /*
3028                                  * If only the state of the PROMISC flag
3029                                  * changed, then just use the 'set promisc
3030                                  * mode' command instead of reinitializing
3031                                  * the entire NIC. Doing a full re-init
3032                                  * means reloading the firmware and waiting
3033                                  * for it to start up, which may take a
3034                                  * second or two.  Similarly for ALLMULTI.
3035                                  */
3036                                 if (mask & IFF_PROMISC)
3037                                         bge_setpromisc(sc);
3038                                 if (mask & IFF_ALLMULTI)
3039                                         bge_setmulti(sc);
3040                         } else {
3041                                 bge_init(sc);
3042                         }
3043                 } else {
3044                         if (ifp->if_flags & IFF_RUNNING)
3045                                 bge_stop(sc);
3046                 }
3047                 sc->bge_if_flags = ifp->if_flags;
3048                 break;
3049         case SIOCADDMULTI:
3050         case SIOCDELMULTI:
3051                 if (ifp->if_flags & IFF_RUNNING)
3052                         bge_setmulti(sc);
3053                 break;
3054         case SIOCSIFMEDIA:
3055         case SIOCGIFMEDIA:
3056                 if (sc->bge_flags & BGE_FLAG_TBI) {
3057                         error = ifmedia_ioctl(ifp, ifr,
3058                             &sc->bge_ifmedia, command);
3059                 } else {
3060                         struct mii_data *mii;
3061
3062                         mii = device_get_softc(sc->bge_miibus);
3063                         error = ifmedia_ioctl(ifp, ifr,
3064                                               &mii->mii_media, command);
3065                 }
3066                 break;
3067         case SIOCSIFCAP:
3068                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3069                 if (mask & IFCAP_HWCSUM) {
3070                         ifp->if_capenable ^= IFCAP_HWCSUM;
3071                         if (IFCAP_HWCSUM & ifp->if_capenable)
3072                                 ifp->if_hwassist = BGE_CSUM_FEATURES;
3073                         else
3074                                 ifp->if_hwassist = 0;
3075                 }
3076                 break;
3077         default:
3078                 error = ether_ioctl(ifp, command, data);
3079                 break;
3080         }
3081         return error;
3082 }
3083
3084 static void
3085 bge_watchdog(struct ifnet *ifp)
3086 {
3087         struct bge_softc *sc = ifp->if_softc;
3088
3089         if_printf(ifp, "watchdog timeout -- resetting\n");
3090
3091         ifp->if_flags &= ~IFF_RUNNING;
3092         bge_init(sc);
3093
3094         ifp->if_oerrors++;
3095
3096         if (!ifq_is_empty(&ifp->if_snd))
3097                 if_devstart(ifp);
3098 }
3099
3100 /*
3101  * Stop the adapter and free any mbufs allocated to the
3102  * RX and TX lists.
3103  */
3104 static void
3105 bge_stop(struct bge_softc *sc)
3106 {
3107         struct ifnet *ifp = &sc->arpcom.ac_if;
3108         struct ifmedia_entry *ifm;
3109         struct mii_data *mii = NULL;
3110         int mtmp, itmp;
3111
3112         ASSERT_SERIALIZED(ifp->if_serializer);
3113
3114         if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
3115                 mii = device_get_softc(sc->bge_miibus);
3116
3117         callout_stop(&sc->bge_stat_timer);
3118
3119         /*
3120          * Disable all of the receiver blocks
3121          */
3122         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3123         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3124         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3125         if (!BGE_IS_5705_PLUS(sc))
3126                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3127         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3128         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3129         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3130
3131         /*
3132          * Disable all of the transmit blocks
3133          */
3134         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3135         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3136         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3137         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3138         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3139         if (!BGE_IS_5705_PLUS(sc))
3140                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3141         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3142
3143         /*
3144          * Shut down all of the memory managers and related
3145          * state machines.
3146          */
3147         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3148         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3149         if (!BGE_IS_5705_PLUS(sc))
3150                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3151         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3152         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3153         if (!BGE_IS_5705_PLUS(sc)) {
3154                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3155                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3156         }
3157
3158         /* Disable host interrupts. */
3159         bge_disable_intr(sc);
3160
3161         /*
3162          * Tell firmware we're shutting down.
3163          */
3164         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3165
3166         /* Free the RX lists. */
3167         bge_free_rx_ring_std(sc);
3168
3169         /* Free jumbo RX list. */
3170         if (BGE_IS_JUMBO_CAPABLE(sc))
3171                 bge_free_rx_ring_jumbo(sc);
3172
3173         /* Free TX buffers. */
3174         bge_free_tx_ring(sc);
3175
3176         /*
3177          * Isolate/power down the PHY, but leave the media selection
3178          * unchanged so that things will be put back to normal when
3179          * we bring the interface back up.
3180          *
3181          * 'mii' may be NULL in the following cases:
3182          * - The device uses TBI.
3183          * - bge_stop() is called by bge_detach().
3184          */
3185         if (mii != NULL) {
3186                 itmp = ifp->if_flags;
3187                 ifp->if_flags |= IFF_UP;
3188                 ifm = mii->mii_media.ifm_cur;
3189                 mtmp = ifm->ifm_media;
3190                 ifm->ifm_media = IFM_ETHER|IFM_NONE;
3191                 mii_mediachg(mii);
3192                 ifm->ifm_media = mtmp;
3193                 ifp->if_flags = itmp;
3194         }
3195
3196         sc->bge_link = 0;
3197         sc->bge_coal_chg = 0;
3198
3199         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3200
3201         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3202         ifp->if_timer = 0;
3203 }
3204
3205 /*
3206  * Stop all chip I/O so that the kernel's probe routines don't
3207  * get confused by errant DMAs when rebooting.
3208  */
3209 static void
3210 bge_shutdown(device_t dev)
3211 {
3212         struct bge_softc *sc = device_get_softc(dev);
3213         struct ifnet *ifp = &sc->arpcom.ac_if;
3214
3215         lwkt_serialize_enter(ifp->if_serializer);
3216         bge_stop(sc);
3217         bge_reset(sc);
3218         lwkt_serialize_exit(ifp->if_serializer);
3219 }
3220
3221 static int
3222 bge_suspend(device_t dev)
3223 {
3224         struct bge_softc *sc = device_get_softc(dev);
3225         struct ifnet *ifp = &sc->arpcom.ac_if;
3226
3227         lwkt_serialize_enter(ifp->if_serializer);
3228         bge_stop(sc);
3229         lwkt_serialize_exit(ifp->if_serializer);
3230
3231         return 0;
3232 }
3233
3234 static int
3235 bge_resume(device_t dev)
3236 {
3237         struct bge_softc *sc = device_get_softc(dev);
3238         struct ifnet *ifp = &sc->arpcom.ac_if;
3239
3240         lwkt_serialize_enter(ifp->if_serializer);
3241
3242         if (ifp->if_flags & IFF_UP) {
3243                 bge_init(sc);
3244
3245                 if (!ifq_is_empty(&ifp->if_snd))
3246                         if_devstart(ifp);
3247         }
3248
3249         lwkt_serialize_exit(ifp->if_serializer);
3250
3251         return 0;
3252 }
3253
3254 static void
3255 bge_setpromisc(struct bge_softc *sc)
3256 {
3257         struct ifnet *ifp = &sc->arpcom.ac_if;
3258
3259         if (ifp->if_flags & IFF_PROMISC)
3260                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3261         else
3262                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3263 }
3264
3265 static void
3266 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3267 {
3268         struct bge_dmamap_arg *ctx = arg;
3269
3270         if (error)
3271                 return;
3272
3273         KASSERT(nsegs == 1 && ctx->bge_maxsegs == 1,
3274                 ("only one segment is allowed\n"));
3275
3276         ctx->bge_segs[0] = *segs;
3277 }
3278
3279 static void
3280 bge_dma_map_mbuf(void *arg, bus_dma_segment_t *segs, int nsegs,
3281                  bus_size_t mapsz __unused, int error)
3282 {
3283         struct bge_dmamap_arg *ctx = arg;
3284         int i;
3285
3286         if (error)
3287                 return;
3288
3289         if (nsegs > ctx->bge_maxsegs) {
3290                 ctx->bge_maxsegs = 0;
3291                 return;
3292         }
3293
3294         ctx->bge_maxsegs = nsegs;
3295         for (i = 0; i < nsegs; ++i)
3296                 ctx->bge_segs[i] = segs[i];
3297 }
3298
3299 static void
3300 bge_dma_free(struct bge_softc *sc)
3301 {
3302         int i;
3303
3304         /* Destroy RX/TX mbuf DMA stuffs. */
3305         if (sc->bge_cdata.bge_mtag != NULL) {
3306                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3307                         if (sc->bge_cdata.bge_rx_std_dmamap[i]) {
3308                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3309                                     sc->bge_cdata.bge_rx_std_dmamap[i]);
3310                         }
3311                 }
3312
3313                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
3314                         if (sc->bge_cdata.bge_tx_dmamap[i]) {
3315                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3316                                     sc->bge_cdata.bge_tx_dmamap[i]);
3317                         }
3318                 }
3319                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3320         }
3321
3322         /* Destroy standard RX ring */
3323         bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
3324                            sc->bge_cdata.bge_rx_std_ring_map,
3325                            sc->bge_ldata.bge_rx_std_ring);
3326
3327         if (BGE_IS_JUMBO_CAPABLE(sc))
3328                 bge_free_jumbo_mem(sc);
3329
3330         /* Destroy RX return ring */
3331         bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
3332                            sc->bge_cdata.bge_rx_return_ring_map,
3333                            sc->bge_ldata.bge_rx_return_ring);
3334
3335         /* Destroy TX ring */
3336         bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
3337                            sc->bge_cdata.bge_tx_ring_map,
3338                            sc->bge_ldata.bge_tx_ring);
3339
3340         /* Destroy status block */
3341         bge_dma_block_free(sc->bge_cdata.bge_status_tag,
3342                            sc->bge_cdata.bge_status_map,
3343                            sc->bge_ldata.bge_status_block);
3344
3345         /* Destroy statistics block */
3346         bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
3347                            sc->bge_cdata.bge_stats_map,
3348                            sc->bge_ldata.bge_stats);
3349
3350         /* Destroy the parent tag */
3351         if (sc->bge_cdata.bge_parent_tag != NULL)
3352                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
3353 }
3354
3355 static int
3356 bge_dma_alloc(struct bge_softc *sc)
3357 {
3358         struct ifnet *ifp = &sc->arpcom.ac_if;
3359         int nseg, i, error;
3360
3361         /*
3362          * Allocate the parent bus DMA tag appropriate for PCI.
3363          */
3364         error = bus_dma_tag_create(NULL, 1, 0,
3365                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3366                                    NULL, NULL,
3367                                    MAXBSIZE, BGE_NSEG_NEW,
3368                                    BUS_SPACE_MAXSIZE_32BIT,
3369                                    0, &sc->bge_cdata.bge_parent_tag);
3370         if (error) {
3371                 if_printf(ifp, "could not allocate parent dma tag\n");
3372                 return error;
3373         }
3374
3375         /*
3376          * Create DMA tag for mbufs.
3377          */
3378         nseg = BGE_NSEG_NEW;
3379         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
3380                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3381                                    NULL, NULL,
3382                                    MCLBYTES * nseg, nseg, MCLBYTES,
3383                                    BUS_DMA_ALLOCNOW, &sc->bge_cdata.bge_mtag);
3384         if (error) {
3385                 if_printf(ifp, "could not allocate mbuf dma tag\n");
3386                 return error;
3387         }
3388
3389         /*
3390          * Create DMA maps for TX/RX mbufs.
3391          */
3392         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3393                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
3394                                           &sc->bge_cdata.bge_rx_std_dmamap[i]);
3395                 if (error) {
3396                         int j;
3397
3398                         for (j = 0; j < i; ++j) {
3399                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3400                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
3401                         }
3402                         bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3403                         sc->bge_cdata.bge_mtag = NULL;
3404
3405                         if_printf(ifp, "could not create DMA map for RX\n");
3406                         return error;
3407                 }
3408         }
3409
3410         for (i = 0; i < BGE_TX_RING_CNT; i++) {
3411                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
3412                                           &sc->bge_cdata.bge_tx_dmamap[i]);
3413                 if (error) {
3414                         int j;
3415
3416                         for (j = 0; j < BGE_STD_RX_RING_CNT; ++j) {
3417                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3418                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
3419                         }
3420                         for (j = 0; j < i; ++j) {
3421                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3422                                         sc->bge_cdata.bge_tx_dmamap[j]);
3423                         }
3424                         bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3425                         sc->bge_cdata.bge_mtag = NULL;
3426
3427                         if_printf(ifp, "could not create DMA map for TX\n");
3428                         return error;
3429                 }
3430         }
3431
3432         /*
3433          * Create DMA stuffs for standard RX ring.
3434          */
3435         error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
3436                                     &sc->bge_cdata.bge_rx_std_ring_tag,
3437                                     &sc->bge_cdata.bge_rx_std_ring_map,
3438                                     (void **)&sc->bge_ldata.bge_rx_std_ring,
3439                                     &sc->bge_ldata.bge_rx_std_ring_paddr);
3440         if (error) {
3441                 if_printf(ifp, "could not create std RX ring\n");
3442                 return error;
3443         }
3444
3445         /*
3446          * Create jumbo buffer pool.
3447          */
3448         if (BGE_IS_JUMBO_CAPABLE(sc)) {
3449                 error = bge_alloc_jumbo_mem(sc);
3450                 if (error) {
3451                         if_printf(ifp, "could not create jumbo buffer pool\n");
3452                         return error;
3453                 }
3454         }
3455
3456         /*
3457          * Create DMA stuffs for RX return ring.
3458          */
3459         error = bge_dma_block_alloc(sc, BGE_RX_RTN_RING_SZ(sc),
3460                                     &sc->bge_cdata.bge_rx_return_ring_tag,
3461                                     &sc->bge_cdata.bge_rx_return_ring_map,
3462                                     (void **)&sc->bge_ldata.bge_rx_return_ring,
3463                                     &sc->bge_ldata.bge_rx_return_ring_paddr);
3464         if (error) {
3465                 if_printf(ifp, "could not create RX ret ring\n");
3466                 return error;
3467         }
3468
3469         /*
3470          * Create DMA stuffs for TX ring.
3471          */
3472         error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
3473                                     &sc->bge_cdata.bge_tx_ring_tag,
3474                                     &sc->bge_cdata.bge_tx_ring_map,
3475                                     (void **)&sc->bge_ldata.bge_tx_ring,
3476                                     &sc->bge_ldata.bge_tx_ring_paddr);
3477         if (error) {
3478                 if_printf(ifp, "could not create TX ring\n");
3479                 return error;
3480         }
3481
3482         /*
3483          * Create DMA stuffs for status block.
3484          */
3485         error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
3486                                     &sc->bge_cdata.bge_status_tag,
3487                                     &sc->bge_cdata.bge_status_map,
3488                                     (void **)&sc->bge_ldata.bge_status_block,
3489                                     &sc->bge_ldata.bge_status_block_paddr);
3490         if (error) {
3491                 if_printf(ifp, "could not create status block\n");
3492                 return error;
3493         }
3494
3495         /*
3496          * Create DMA stuffs for statistics block.
3497          */
3498         error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
3499                                     &sc->bge_cdata.bge_stats_tag,
3500                                     &sc->bge_cdata.bge_stats_map,
3501                                     (void **)&sc->bge_ldata.bge_stats,
3502                                     &sc->bge_ldata.bge_stats_paddr);
3503         if (error) {
3504                 if_printf(ifp, "could not create stats block\n");
3505                 return error;
3506         }
3507         return 0;
3508 }
3509
3510 static int
3511 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
3512                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
3513 {
3514         struct ifnet *ifp = &sc->arpcom.ac_if;
3515         struct bge_dmamap_arg ctx;
3516         bus_dma_segment_t seg;
3517         int error;
3518
3519         /*
3520          * Create DMA tag
3521          */
3522         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
3523                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3524                                    NULL, NULL, size, 1, size, 0, tag);
3525         if (error) {
3526                 if_printf(ifp, "could not allocate dma tag\n");
3527                 return error;
3528         }
3529
3530         /*
3531          * Allocate DMA'able memory
3532          */
3533         error = bus_dmamem_alloc(*tag, addr, BUS_DMA_WAITOK | BUS_DMA_ZERO,
3534                                  map);
3535         if (error) {
3536                 if_printf(ifp, "could not allocate dma memory\n");
3537                 bus_dma_tag_destroy(*tag);
3538                 *tag = NULL;
3539                 return error;
3540         }
3541
3542         /*
3543          * Load the DMA'able memory
3544          */
3545         ctx.bge_maxsegs = 1;
3546         ctx.bge_segs = &seg;
3547         error = bus_dmamap_load(*tag, *map, *addr, size, bge_dma_map_addr, &ctx,
3548                                 BUS_DMA_WAITOK);
3549         if (error) {
3550                 if_printf(ifp, "could not load dma memory\n");
3551                 bus_dmamem_free(*tag, *addr, *map);
3552                 bus_dma_tag_destroy(*tag);
3553                 *tag = NULL;
3554                 return error;
3555         }
3556         *paddr = ctx.bge_segs[0].ds_addr;
3557
3558         return 0;
3559 }
3560
3561 static void
3562 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
3563 {
3564         if (tag != NULL) {
3565                 bus_dmamap_unload(tag, map);
3566                 bus_dmamem_free(tag, addr, map);
3567                 bus_dma_tag_destroy(tag);
3568         }
3569 }
3570
3571 /*
3572  * Grrr. The link status word in the status block does
3573  * not work correctly on the BCM5700 rev AX and BX chips,
3574  * according to all available information. Hence, we have
3575  * to enable MII interrupts in order to properly obtain
3576  * async link changes. Unfortunately, this also means that
3577  * we have to read the MAC status register to detect link
3578  * changes, thereby adding an additional register access to
3579  * the interrupt handler.
3580  *
3581  * XXX: perhaps link state detection procedure used for
3582  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
3583  */
3584 static void
3585 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
3586 {
3587         struct ifnet *ifp = &sc->arpcom.ac_if;
3588         struct mii_data *mii = device_get_softc(sc->bge_miibus);
3589
3590         mii_pollstat(mii);
3591
3592         if (!sc->bge_link &&
3593             (mii->mii_media_status & IFM_ACTIVE) &&
3594             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3595                 sc->bge_link++;
3596                 if (bootverbose)
3597                         if_printf(ifp, "link UP\n");
3598         } else if (sc->bge_link &&
3599             (!(mii->mii_media_status & IFM_ACTIVE) ||
3600             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3601                 sc->bge_link = 0;
3602                 if (bootverbose)
3603                         if_printf(ifp, "link DOWN\n");
3604         }
3605
3606         /* Clear the interrupt. */
3607         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
3608         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3609         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
3610 }
3611
3612 static void
3613 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
3614 {
3615         struct ifnet *ifp = &sc->arpcom.ac_if;
3616
3617 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
3618
3619         /*
3620          * Sometimes PCS encoding errors are detected in
3621          * TBI mode (on fiber NICs), and for some reason
3622          * the chip will signal them as link changes.
3623          * If we get a link change event, but the 'PCS
3624          * encoding error' bit in the MAC status register
3625          * is set, don't bother doing a link check.
3626          * This avoids spurious "gigabit link up" messages
3627          * that sometimes appear on fiber NICs during
3628          * periods of heavy traffic.
3629          */
3630         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
3631                 if (!sc->bge_link) {
3632                         sc->bge_link++;
3633                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3634                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3635                                     BGE_MACMODE_TBI_SEND_CFGS);
3636                         }
3637                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3638
3639                         if (bootverbose)
3640                                 if_printf(ifp, "link UP\n");
3641
3642                         ifp->if_link_state = LINK_STATE_UP;
3643                         if_link_state_change(ifp);
3644                 }
3645         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
3646                 if (sc->bge_link) {
3647                         sc->bge_link = 0;
3648
3649                         if (bootverbose)
3650                                 if_printf(ifp, "link DOWN\n");
3651
3652                         ifp->if_link_state = LINK_STATE_DOWN;
3653                         if_link_state_change(ifp);
3654                 }
3655         }
3656
3657 #undef PCS_ENCODE_ERR
3658
3659         /* Clear the attention. */
3660         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3661             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3662             BGE_MACSTAT_LINK_CHANGED);
3663 }
3664
3665 static void
3666 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
3667 {
3668         /*
3669          * Check that the AUTOPOLL bit is set before
3670          * processing the event as a real link change.
3671          * Turning AUTOPOLL on and off in the MII read/write
3672          * functions will often trigger a link status
3673          * interrupt for no reason.
3674          */
3675         if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
3676                 struct ifnet *ifp = &sc->arpcom.ac_if;
3677                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3678
3679                 mii_pollstat(mii);
3680
3681                 if (!sc->bge_link &&
3682                     (mii->mii_media_status & IFM_ACTIVE) &&
3683                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3684                         sc->bge_link++;
3685                         if (bootverbose)
3686                                 if_printf(ifp, "link UP\n");
3687                 } else if (sc->bge_link &&
3688                     (!(mii->mii_media_status & IFM_ACTIVE) ||
3689                     IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3690                         sc->bge_link = 0;
3691                         if (bootverbose)
3692                                 if_printf(ifp, "link DOWN\n");
3693                 }
3694         }
3695
3696         /* Clear the attention. */
3697         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3698             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3699             BGE_MACSTAT_LINK_CHANGED);
3700 }
3701
3702 static int
3703 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
3704 {
3705         struct bge_softc *sc = arg1;
3706
3707         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3708                                    &sc->bge_rx_coal_ticks,
3709                                    BGE_RX_COAL_TICKS_CHG);
3710 }
3711
3712 static int
3713 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
3714 {
3715         struct bge_softc *sc = arg1;
3716
3717         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3718                                    &sc->bge_tx_coal_ticks,
3719                                    BGE_TX_COAL_TICKS_CHG);
3720 }
3721
3722 static int
3723 bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3724 {
3725         struct bge_softc *sc = arg1;
3726
3727         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3728                                    &sc->bge_rx_max_coal_bds,
3729                                    BGE_RX_MAX_COAL_BDS_CHG);
3730 }
3731
3732 static int
3733 bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3734 {
3735         struct bge_softc *sc = arg1;
3736
3737         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3738                                    &sc->bge_tx_max_coal_bds,
3739                                    BGE_TX_MAX_COAL_BDS_CHG);
3740 }
3741
3742 static int
3743 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
3744                     uint32_t coal_chg_mask)
3745 {
3746         struct bge_softc *sc = arg1;
3747         struct ifnet *ifp = &sc->arpcom.ac_if;
3748         int error = 0, v;
3749
3750         lwkt_serialize_enter(ifp->if_serializer);
3751
3752         v = *coal;
3753         error = sysctl_handle_int(oidp, &v, 0, req);
3754         if (!error && req->newptr != NULL) {
3755                 if (v < 0) {
3756                         error = EINVAL;
3757                 } else {
3758                         *coal = v;
3759                         sc->bge_coal_chg |= coal_chg_mask;
3760                 }
3761         }
3762
3763         lwkt_serialize_exit(ifp->if_serializer);
3764         return error;
3765 }
3766
3767 static void
3768 bge_coal_change(struct bge_softc *sc)
3769 {
3770         struct ifnet *ifp = &sc->arpcom.ac_if;
3771         uint32_t val;
3772
3773         ASSERT_SERIALIZED(ifp->if_serializer);
3774
3775         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
3776                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
3777                             sc->bge_rx_coal_ticks);
3778                 DELAY(10);
3779                 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3780
3781                 if (bootverbose) {
3782                         if_printf(ifp, "rx_coal_ticks -> %u\n",
3783                                   sc->bge_rx_coal_ticks);
3784                 }
3785         }
3786
3787         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
3788                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
3789                             sc->bge_tx_coal_ticks);
3790                 DELAY(10);
3791                 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
3792
3793                 if (bootverbose) {
3794                         if_printf(ifp, "tx_coal_ticks -> %u\n",
3795                                   sc->bge_tx_coal_ticks);
3796                 }
3797         }
3798
3799         if (sc->bge_coal_chg & BGE_RX_MAX_COAL_BDS_CHG) {
3800                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
3801                             sc->bge_rx_max_coal_bds);
3802                 DELAY(10);
3803                 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3804
3805                 if (bootverbose) {
3806                         if_printf(ifp, "rx_max_coal_bds -> %u\n",
3807                                   sc->bge_rx_max_coal_bds);
3808                 }
3809         }
3810
3811         if (sc->bge_coal_chg & BGE_TX_MAX_COAL_BDS_CHG) {
3812                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
3813                             sc->bge_tx_max_coal_bds);
3814                 DELAY(10);
3815                 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
3816
3817                 if (bootverbose) {
3818                         if_printf(ifp, "tx_max_coal_bds -> %u\n",
3819                                   sc->bge_tx_max_coal_bds);
3820                 }
3821         }
3822
3823         sc->bge_coal_chg = 0;
3824 }
3825
3826 static void
3827 bge_enable_intr(struct bge_softc *sc)
3828 {
3829         struct ifnet *ifp = &sc->arpcom.ac_if;
3830
3831         lwkt_serialize_handler_enable(ifp->if_serializer);
3832
3833         /*
3834          * Enable interrupt.
3835          */
3836         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3837
3838         /*
3839          * Unmask the interrupt when we stop polling.
3840          */
3841         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3842
3843         /*
3844          * Trigger another interrupt, since above writing
3845          * to interrupt mailbox0 may acknowledge pending
3846          * interrupt.
3847          */
3848         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3849 }
3850
3851 static void
3852 bge_disable_intr(struct bge_softc *sc)
3853 {
3854         struct ifnet *ifp = &sc->arpcom.ac_if;
3855
3856         /*
3857          * Mask the interrupt when we start polling.
3858          */
3859         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3860
3861         /*
3862          * Acknowledge possible asserted interrupt.
3863          */
3864         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3865
3866         lwkt_serialize_handler_disable(ifp->if_serializer);
3867 }