/*- * Copyright (c) 1997 Brian Somers * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/usr.sbin/ppp/deflate.c,v 1.18.2.4 2002/09/01 02:12:26 brian Exp $ * $DragonFly: src/usr.sbin/ppp/deflate.c,v 1.2 2003/06/17 04:30:00 dillon Exp $ */ #include #include #include #include #include "mbuf.h" #include "log.h" #include "timer.h" #include "fsm.h" #include "ccp.h" #include "deflate.h" /* Our state */ struct deflate_state { u_short seqno; int uncomp_rec; int winsize; z_stream cx; }; static char garbage[10]; static u_char EMPTY_BLOCK[4] = { 0x00, 0x00, 0xff, 0xff }; #define DEFLATE_CHUNK_LEN (1536 - sizeof(struct mbuf)) static int DeflateResetOutput(void *v) { struct deflate_state *state = (struct deflate_state *)v; state->seqno = 0; state->uncomp_rec = 0; deflateReset(&state->cx); log_Printf(LogCCP, "Deflate: Output channel reset\n"); return 1; /* Ask FSM to ACK */ } static struct mbuf * DeflateOutput(void *v, struct ccp *ccp, struct link *l, int pri, u_short *proto, struct mbuf *mp) { struct deflate_state *state = (struct deflate_state *)v; u_char *wp, *rp; int olen, ilen, len, res, flush; struct mbuf *mo_head, *mo, *mi_head, *mi; ilen = m_length(mp); log_Printf(LogDEBUG, "DeflateOutput: Proto %02x (%d bytes)\n", *proto, ilen); log_DumpBp(LogDEBUG, "DeflateOutput: Compress packet:", mp); /* Stuff the protocol in front of the input */ mi_head = mi = m_get(2, MB_CCPOUT); mi->m_next = mp; rp = MBUF_CTOP(mi); if (*proto < 0x100) { /* Compress the protocol */ rp[0] = *proto & 0377; mi->m_len = 1; } else { /* Don't compress the protocol */ rp[0] = *proto >> 8; rp[1] = *proto & 0377; mi->m_len = 2; } /* Allocate the initial output mbuf */ mo_head = mo = m_get(DEFLATE_CHUNK_LEN, MB_CCPOUT); mo->m_len = 2; wp = MBUF_CTOP(mo); *wp++ = state->seqno >> 8; *wp++ = state->seqno & 0377; log_Printf(LogDEBUG, "DeflateOutput: Seq %d\n", state->seqno); state->seqno++; /* Set up the deflation context */ state->cx.next_out = wp; state->cx.avail_out = DEFLATE_CHUNK_LEN - 2; state->cx.next_in = MBUF_CTOP(mi); state->cx.avail_in = mi->m_len; flush = Z_NO_FLUSH; olen = 0; while (1) { if ((res = deflate(&state->cx, flush)) != Z_OK) { if (res == Z_STREAM_END) break; /* Done */ log_Printf(LogWARN, "DeflateOutput: deflate returned %d (%s)\n", res, state->cx.msg ? state->cx.msg : ""); m_freem(mo_head); m_free(mi_head); state->seqno--; return mp; /* Our dictionary's probably dead now :-( */ } if (flush == Z_SYNC_FLUSH && state->cx.avail_out != 0) break; if (state->cx.avail_in == 0 && mi->m_next != NULL) { mi = mi->m_next; state->cx.next_in = MBUF_CTOP(mi); state->cx.avail_in = mi->m_len; if (mi->m_next == NULL) flush = Z_SYNC_FLUSH; } if (state->cx.avail_out == 0) { mo->m_next = m_get(DEFLATE_CHUNK_LEN, MB_CCPOUT); olen += (mo->m_len = DEFLATE_CHUNK_LEN); mo = mo->m_next; mo->m_len = 0; state->cx.next_out = MBUF_CTOP(mo); state->cx.avail_out = DEFLATE_CHUNK_LEN; } } olen += (mo->m_len = DEFLATE_CHUNK_LEN - state->cx.avail_out); olen -= 4; /* exclude the trailing EMPTY_BLOCK */ /* * If the output packet (including seqno and excluding the EMPTY_BLOCK) * got bigger, send the original. */ if (olen >= ilen) { m_freem(mo_head); m_free(mi_head); log_Printf(LogDEBUG, "DeflateOutput: %d => %d: Uncompressible (0x%04x)\n", ilen, olen, *proto); ccp->uncompout += ilen; ccp->compout += ilen; /* We measure this stuff too */ return mp; } m_freem(mi_head); /* * Lose the last four bytes of our output. * XXX: We should probably assert that these are the same as the * contents of EMPTY_BLOCK. */ mo = mo_head; for (len = mo->m_len; len < olen; mo = mo->m_next, len += mo->m_len) ; mo->m_len -= len - olen; if (mo->m_next != NULL) { m_freem(mo->m_next); mo->m_next = NULL; } ccp->uncompout += ilen; ccp->compout += olen; log_Printf(LogDEBUG, "DeflateOutput: %d => %d bytes, proto 0x%04x\n", ilen, olen, *proto); *proto = ccp_Proto(ccp); return mo_head; } static void DeflateResetInput(void *v) { struct deflate_state *state = (struct deflate_state *)v; state->seqno = 0; state->uncomp_rec = 0; inflateReset(&state->cx); log_Printf(LogCCP, "Deflate: Input channel reset\n"); } static struct mbuf * DeflateInput(void *v, struct ccp *ccp, u_short *proto, struct mbuf *mi) { struct deflate_state *state = (struct deflate_state *)v; struct mbuf *mo, *mo_head, *mi_head; u_char *wp; int ilen, olen; int seq, flush, res, first; u_char hdr[2]; log_DumpBp(LogDEBUG, "DeflateInput: Decompress packet:", mi); mi_head = mi = mbuf_Read(mi, hdr, 2); ilen = 2; /* Check the sequence number. */ seq = (hdr[0] << 8) + hdr[1]; log_Printf(LogDEBUG, "DeflateInput: Seq %d\n", seq); if (seq != state->seqno) { if (seq <= state->uncomp_rec) /* * So the peer's started at zero again - fine ! If we're wrong, * inflate() will fail. This is better than getting into a loop * trying to get a ResetReq to a busy sender. */ state->seqno = seq; else { log_Printf(LogCCP, "DeflateInput: Seq error: Got %d, expected %d\n", seq, state->seqno); m_freem(mi_head); ccp_SendResetReq(&ccp->fsm); return NULL; } } state->seqno++; state->uncomp_rec = 0; /* Allocate an output mbuf */ mo_head = mo = m_get(DEFLATE_CHUNK_LEN, MB_CCPIN); /* Our proto starts with 0 if it's compressed */ wp = MBUF_CTOP(mo); wp[0] = '\0'; /* * We set avail_out to 1 initially so we can look at the first * byte of the output and decide whether we have a compressed * proto field. */ state->cx.next_in = MBUF_CTOP(mi); state->cx.avail_in = mi->m_len; state->cx.next_out = wp + 1; state->cx.avail_out = 1; ilen += mi->m_len; flush = mi->m_next ? Z_NO_FLUSH : Z_SYNC_FLUSH; first = 1; olen = 0; while (1) { if ((res = inflate(&state->cx, flush)) != Z_OK) { if (res == Z_STREAM_END) break; /* Done */ log_Printf(LogCCP, "DeflateInput: inflate returned %d (%s)\n", res, state->cx.msg ? state->cx.msg : ""); m_freem(mo_head); m_freem(mi); ccp_SendResetReq(&ccp->fsm); return NULL; } if (flush == Z_SYNC_FLUSH && state->cx.avail_out != 0) break; if (state->cx.avail_in == 0 && mi && (mi = m_free(mi)) != NULL) { /* underflow */ state->cx.next_in = MBUF_CTOP(mi); ilen += (state->cx.avail_in = mi->m_len); if (mi->m_next == NULL) flush = Z_SYNC_FLUSH; } if (state->cx.avail_out == 0) { /* overflow */ if (first) { if (!(wp[1] & 1)) { /* 2 byte proto, shuffle it back in output */ wp[0] = wp[1]; state->cx.next_out--; state->cx.avail_out = DEFLATE_CHUNK_LEN-1; } else state->cx.avail_out = DEFLATE_CHUNK_LEN-2; first = 0; } else { olen += (mo->m_len = DEFLATE_CHUNK_LEN); mo->m_next = m_get(DEFLATE_CHUNK_LEN, MB_CCPIN); mo = mo->m_next; state->cx.next_out = MBUF_CTOP(mo); state->cx.avail_out = DEFLATE_CHUNK_LEN; } } } if (mi != NULL) m_freem(mi); if (first) { log_Printf(LogCCP, "DeflateInput: Length error\n"); m_freem(mo_head); ccp_SendResetReq(&ccp->fsm); return NULL; } olen += (mo->m_len = DEFLATE_CHUNK_LEN - state->cx.avail_out); *proto = ((u_short)wp[0] << 8) | wp[1]; mo_head->m_offset += 2; mo_head->m_len -= 2; olen -= 2; ccp->compin += ilen; ccp->uncompin += olen; log_Printf(LogDEBUG, "DeflateInput: %d => %d bytes, proto 0x%04x\n", ilen, olen, *proto); /* * Simulate an EMPTY_BLOCK so that our dictionary stays in sync. * The peer will have silently removed this! */ state->cx.next_out = garbage; state->cx.avail_out = sizeof garbage; state->cx.next_in = EMPTY_BLOCK; state->cx.avail_in = sizeof EMPTY_BLOCK; inflate(&state->cx, Z_SYNC_FLUSH); return mo_head; } static void DeflateDictSetup(void *v, struct ccp *ccp, u_short proto, struct mbuf *mi) { struct deflate_state *state = (struct deflate_state *)v; int res, flush, expect_error; u_char *rp; struct mbuf *mi_head; short len; log_Printf(LogDEBUG, "DeflateDictSetup: Got seq %d\n", state->seqno); /* * Stuff an ``uncompressed data'' block header followed by the * protocol in front of the input */ mi_head = m_get(7, MB_CCPOUT); mi_head->m_next = mi; len = m_length(mi); mi = mi_head; rp = MBUF_CTOP(mi); if (proto < 0x100) { /* Compress the protocol */ rp[5] = proto & 0377; mi->m_len = 6; len++; } else { /* Don't compress the protocol */ rp[5] = proto >> 8; rp[6] = proto & 0377; mi->m_len = 7; len += 2; } rp[0] = 0x80; /* BITS: 100xxxxx */ rp[1] = len & 0377; /* The length */ rp[2] = len >> 8; rp[3] = (~len) & 0377; /* One's compliment of the length */ rp[4] = (~len) >> 8; state->cx.next_in = rp; state->cx.avail_in = mi->m_len; state->cx.next_out = garbage; state->cx.avail_out = sizeof garbage; flush = Z_NO_FLUSH; expect_error = 0; while (1) { if ((res = inflate(&state->cx, flush)) != Z_OK) { if (res == Z_STREAM_END) break; /* Done */ if (expect_error && res == Z_BUF_ERROR) break; log_Printf(LogCCP, "DeflateDictSetup: inflate returned %d (%s)\n", res, state->cx.msg ? state->cx.msg : ""); log_Printf(LogCCP, "DeflateDictSetup: avail_in %d, avail_out %d\n", state->cx.avail_in, state->cx.avail_out); ccp_SendResetReq(&ccp->fsm); m_free(mi_head); /* lose our allocated ``head'' buf */ return; } if (flush == Z_SYNC_FLUSH && state->cx.avail_out != 0) break; if (state->cx.avail_in == 0 && mi && (mi = mi->m_next) != NULL) { /* underflow */ state->cx.next_in = MBUF_CTOP(mi); state->cx.avail_in = mi->m_len; if (mi->m_next == NULL) flush = Z_SYNC_FLUSH; } if (state->cx.avail_out == 0) { if (state->cx.avail_in == 0) /* * This seems to be a bug in libz ! If inflate() finished * with 0 avail_in and 0 avail_out *and* this is the end of * our input *and* inflate() *has* actually written all the * output it's going to, it *doesn't* return Z_STREAM_END ! * When we subsequently call it with no more input, it gives * us Z_BUF_ERROR :-( It seems pretty safe to ignore this * error (the dictionary seems to stay in sync). In the worst * case, we'll drop the next compressed packet and do a * CcpReset() then. */ expect_error = 1; /* overflow */ state->cx.next_out = garbage; state->cx.avail_out = sizeof garbage; } } ccp->compin += len; ccp->uncompin += len; state->seqno++; state->uncomp_rec++; m_free(mi_head); /* lose our allocated ``head'' buf */ } static const char * DeflateDispOpts(struct fsm_opt *o) { static char disp[7]; /* Must be used immediately */ sprintf(disp, "win %d", (o->data[0]>>4) + 8); return disp; } static void DeflateInitOptsOutput(struct bundle *bundle, struct fsm_opt *o, const struct ccp_config *cfg) { o->hdr.len = 4; o->data[0] = ((cfg->deflate.out.winsize - 8) << 4) + 8; o->data[1] = '\0'; } static int DeflateSetOptsOutput(struct bundle *bundle, struct fsm_opt *o, const struct ccp_config *cfg) { if (o->hdr.len != 4 || (o->data[0] & 15) != 8 || o->data[1] != '\0') return MODE_REJ; if ((o->data[0] >> 4) + 8 > 15) { o->data[0] = ((15 - 8) << 4) + 8; return MODE_NAK; } return MODE_ACK; } static int DeflateSetOptsInput(struct bundle *bundle, struct fsm_opt *o, const struct ccp_config *cfg) { int want; if (o->hdr.len != 4 || (o->data[0] & 15) != 8 || o->data[1] != '\0') return MODE_REJ; want = (o->data[0] >> 4) + 8; if (cfg->deflate.in.winsize == 0) { if (want < 8 || want > 15) { o->data[0] = ((15 - 8) << 4) + 8; } } else if (want != cfg->deflate.in.winsize) { o->data[0] = ((cfg->deflate.in.winsize - 8) << 4) + 8; return MODE_NAK; } return MODE_ACK; } static void * DeflateInitInput(struct bundle *bundle, struct fsm_opt *o) { struct deflate_state *state; state = (struct deflate_state *)malloc(sizeof(struct deflate_state)); if (state != NULL) { state->winsize = (o->data[0] >> 4) + 8; state->cx.zalloc = NULL; state->cx.opaque = NULL; state->cx.zfree = NULL; state->cx.next_out = NULL; if (inflateInit2(&state->cx, -state->winsize) == Z_OK) DeflateResetInput(state); else { free(state); state = NULL; } } return state; } static void * DeflateInitOutput(struct bundle *bundle, struct fsm_opt *o) { struct deflate_state *state; state = (struct deflate_state *)malloc(sizeof(struct deflate_state)); if (state != NULL) { state->winsize = (o->data[0] >> 4) + 8; state->cx.zalloc = NULL; state->cx.opaque = NULL; state->cx.zfree = NULL; state->cx.next_in = NULL; if (deflateInit2(&state->cx, Z_DEFAULT_COMPRESSION, 8, -state->winsize, 8, Z_DEFAULT_STRATEGY) == Z_OK) DeflateResetOutput(state); else { free(state); state = NULL; } } return state; } static void DeflateTermInput(void *v) { struct deflate_state *state = (struct deflate_state *)v; inflateEnd(&state->cx); free(state); } static void DeflateTermOutput(void *v) { struct deflate_state *state = (struct deflate_state *)v; deflateEnd(&state->cx); free(state); } const struct ccp_algorithm PppdDeflateAlgorithm = { TY_PPPD_DEFLATE, /* Older versions of pppd expected this ``type'' */ CCP_NEG_DEFLATE24, DeflateDispOpts, ccp_DefaultUsable, ccp_DefaultRequired, { DeflateSetOptsInput, DeflateInitInput, DeflateTermInput, DeflateResetInput, DeflateInput, DeflateDictSetup }, { 0, DeflateInitOptsOutput, DeflateSetOptsOutput, DeflateInitOutput, DeflateTermOutput, DeflateResetOutput, DeflateOutput }, }; const struct ccp_algorithm DeflateAlgorithm = { TY_DEFLATE, /* rfc 1979 */ CCP_NEG_DEFLATE, DeflateDispOpts, ccp_DefaultUsable, ccp_DefaultRequired, { DeflateSetOptsInput, DeflateInitInput, DeflateTermInput, DeflateResetInput, DeflateInput, DeflateDictSetup }, { 0, DeflateInitOptsOutput, DeflateSetOptsOutput, DeflateInitOutput, DeflateTermOutput, DeflateResetOutput, DeflateOutput }, };