/* Include file for internal GNU MP types and definitions. THE CONTENTS OF THIS FILE ARE FOR INTERNAL USE AND ARE ALMOST CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES IN FUTURE GNU MP RELEASES. Copyright 1991, 1993, 1994, 1995, 1996, 1997, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */ /* __GMP_DECLSPEC must be given on any global data that will be accessed from outside libgmp, meaning from the test or development programs, or from libgmpxx. Failing to do this will result in an incorrect address being used for the accesses. On functions __GMP_DECLSPEC makes calls from outside libgmp more efficient, but they'll still work fine without it. */ #ifndef __GMP_IMPL_H__ #define __GMP_IMPL_H__ #if defined _CRAY #include /* for _popcnt */ #endif /* limits.h is not used in general, since it's an ANSI-ism, and since on solaris gcc 2.95 under -mcpu=ultrasparc in ABI=32 ends up getting wrong values (the ABI=64 values). On Cray vector systems, however, we need the system limits.h since sizes of signed and unsigned types can differ there, depending on compiler options (eg. -hnofastmd), making our SHRT_MAX etc expressions fail. For reference, int can be 46 or 64 bits, whereas uint is always 64 bits; and short can be 24, 32, 46 or 64 bits, and different for ushort. */ #if defined _CRAY #include #endif /* For fat.h and other fat binary stuff. No need for __GMP_ATTRIBUTE_PURE or __GMP_NOTHROW, since functions declared this way are only used to set function pointers in __gmp_cpuvec, they're not called directly. */ #define DECL_add_n(name) \ mp_limb_t name __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)) #define DECL_addmul_1(name) \ mp_limb_t name __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_limb_t)) #define DECL_copyd(name) \ void name __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t)) #define DECL_copyi(name) \ DECL_copyd (name) #define DECL_divexact_1(name) \ mp_limb_t name __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_limb_t)) #define DECL_divexact_by3c(name) \ mp_limb_t name __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_limb_t)) #define DECL_divrem_1(name) \ mp_limb_t name __GMP_PROTO ((mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_limb_t)) #define DECL_gcd_1(name) \ mp_limb_t name __GMP_PROTO ((mp_srcptr, mp_size_t, mp_limb_t)) #define DECL_lshift(name) \ mp_limb_t name __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, unsigned)) #define DECL_mod_1(name) \ mp_limb_t name __GMP_PROTO ((mp_srcptr, mp_size_t, mp_limb_t)) #define DECL_mod_34lsub1(name) \ mp_limb_t name __GMP_PROTO ((mp_srcptr, mp_size_t)) #define DECL_modexact_1c_odd(name) \ mp_limb_t name __GMP_PROTO ((mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t)) #define DECL_mul_1(name) \ DECL_addmul_1 (name) #define DECL_mul_basecase(name) \ void name __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t)) #define DECL_preinv_divrem_1(name) \ mp_limb_t name __GMP_PROTO ((mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t, int)) #define DECL_preinv_mod_1(name) \ mp_limb_t name __GMP_PROTO ((mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t)) #define DECL_rshift(name) \ DECL_lshift (name) #define DECL_sqr_basecase(name) \ void name __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t)) #define DECL_sub_n(name) \ DECL_add_n (name) #define DECL_submul_1(name) \ DECL_addmul_1 (name) #if ! __GMP_WITHIN_CONFIGURE #include "config.h" #include "gmp-mparam.h" #include "fib_table.h" #include "mp_bases.h" #if WANT_FAT_BINARY #include "fat.h" #endif #endif #if HAVE_INTTYPES_H /* for uint_least32_t */ # include #else # if HAVE_STDINT_H # include # endif #endif #ifdef __cplusplus #include /* for strlen */ #include /* for std::string */ #endif #ifndef WANT_TMP_DEBUG /* for TMP_ALLOC_LIMBS_2 and others */ #define WANT_TMP_DEBUG 0 #endif /* The following tries to get a good version of alloca. The tests are adapted from autoconf AC_FUNC_ALLOCA, with a couple of additions. Whether this succeeds is tested by GMP_FUNC_ALLOCA and HAVE_ALLOCA will be setup appropriately. ifndef alloca - a cpp define might already exist. glibc includes which uses GCC __builtin_alloca. HP cc +Olibcalls adds a #define of alloca to __builtin_alloca. GCC __builtin_alloca - preferred whenever available. _AIX pragma - IBM compilers need a #pragma in "each module that needs to use alloca". Pragma indented to protect pre-ANSI cpp's. _IBMR2 was used in past versions of GMP, retained still in case it matters. The autoconf manual says this pragma needs to be at the start of a C file, apart from comments and preprocessor directives. Is that true? xlc on aix 4.xxx doesn't seem to mind it being after prototypes etc from gmp.h. */ #ifndef alloca # ifdef __GNUC__ # define alloca __builtin_alloca # else # ifdef __DECC # define alloca(x) __ALLOCA(x) # else # ifdef _MSC_VER # include # define alloca _alloca # else # if HAVE_ALLOCA_H # include # else # if defined (_AIX) || defined (_IBMR2) #pragma alloca # else char *alloca (); # endif # endif # endif # endif # endif #endif /* if not provided by gmp-mparam.h */ #ifndef BYTES_PER_MP_LIMB #define BYTES_PER_MP_LIMB SIZEOF_MP_LIMB_T #endif #ifndef BITS_PER_MP_LIMB #define BITS_PER_MP_LIMB (8 * SIZEOF_MP_LIMB_T) #endif #define BITS_PER_ULONG (8 * SIZEOF_UNSIGNED_LONG) /* gmp_uint_least32_t is an unsigned integer type with at least 32 bits. */ #if HAVE_UINT_LEAST32_T typedef uint_least32_t gmp_uint_least32_t; #else #if SIZEOF_UNSIGNED_SHORT >= 4 typedef unsigned short gmp_uint_least32_t; #else #if SIZEOF_UNSIGNED >= 4 typedef unsigned gmp_uint_least32_t; #else typedef unsigned long gmp_uint_least32_t; #endif #endif #endif /* const and signed must match __gmp_const and __gmp_signed, so follow the decision made for those in gmp.h. */ #if ! __GMP_HAVE_CONST #define const /* empty */ #define signed /* empty */ #endif /* "const" basically means a function does nothing but examine its arguments and give a return value, it doesn't read or write any memory (neither global nor pointed to by arguments), and has no other side-effects. This is more restrictive than "pure". See info node "(gcc)Function Attributes". __GMP_NO_ATTRIBUTE_CONST_PURE lets tune/common.c etc turn this off when trying to write timing loops. */ #if HAVE_ATTRIBUTE_CONST && ! defined (__GMP_NO_ATTRIBUTE_CONST_PURE) #define ATTRIBUTE_CONST __attribute__ ((const)) #else #define ATTRIBUTE_CONST #endif #if HAVE_ATTRIBUTE_NORETURN #define ATTRIBUTE_NORETURN __attribute__ ((noreturn)) #else #define ATTRIBUTE_NORETURN #endif /* "malloc" means a function behaves like malloc in that the pointer it returns doesn't alias anything. */ #if HAVE_ATTRIBUTE_MALLOC #define ATTRIBUTE_MALLOC __attribute__ ((malloc)) #else #define ATTRIBUTE_MALLOC #endif #if ! HAVE_STRCHR #define strchr(s,c) index(s,c) #endif #if ! HAVE_MEMSET #define memset(p, c, n) \ do { \ ASSERT ((n) >= 0); \ char *__memset__p = (p); \ int __i; \ for (__i = 0; __i < (n); __i++) \ __memset__p[__i] = (c); \ } while (0) #endif /* va_copy is standard in C99, and gcc provides __va_copy when in strict C89 mode. Falling back to a memcpy will give maximum portability, since it works no matter whether va_list is a pointer, struct or array. */ #if ! defined (va_copy) && defined (__va_copy) #define va_copy(dst,src) __va_copy(dst,src) #endif #if ! defined (va_copy) #define va_copy(dst,src) \ do { memcpy (&(dst), &(src), sizeof (va_list)); } while (0) #endif /* HAVE_HOST_CPU_alpha_CIX is 1 on an alpha with the CIX instructions (ie. ctlz, ctpop, cttz). */ #if HAVE_HOST_CPU_alphaev67 || HAVE_HOST_CPU_alphaev68 \ || HAVE_HOST_CPU_alphaev7 #define HAVE_HOST_CPU_alpha_CIX 1 #endif #if defined (__cplusplus) extern "C" { #endif /* Usage: TMP_DECL; TMP_MARK; ptr = TMP_ALLOC (bytes); TMP_FREE; Small allocations should use TMP_SALLOC, big allocations should use TMP_BALLOC. Allocations that might be small or big should use TMP_ALLOC. Functions that use just TMP_SALLOC should use TMP_SDECL, TMP_SMARK, and TMP_SFREE. TMP_DECL just declares a variable, but might be empty and so must be last in a list of variables. TMP_MARK must be done before any TMP_ALLOC. TMP_ALLOC(0) is not allowed. TMP_FREE doesn't need to be done if a TMP_MARK was made, but then no TMP_ALLOCs. */ /* The alignment in bytes, used for TMP_ALLOCed blocks, when alloca or __gmp_allocate_func doesn't already determine it. Currently TMP_ALLOC isn't used for "double"s, so that's not in the union. */ union tmp_align_t { mp_limb_t l; char *p; }; #define __TMP_ALIGN sizeof (union tmp_align_t) /* Return "a" rounded upwards to a multiple of "m", if it isn't already. "a" must be an unsigned type. This is designed for use with a compile-time constant "m". The POW2 case is expected to be usual, and gcc 3.0 and up recognises "(-(8*n))%8" or the like is always zero, which means the rounding up in the WANT_TMP_NOTREENTRANT version of TMP_ALLOC below will be a noop. */ #define ROUND_UP_MULTIPLE(a,m) \ (POW2_P(m) ? (a) + (-(a))%(m) \ : (a)+(m)-1 - (((a)+(m)-1) % (m))) #if defined (WANT_TMP_ALLOCA) || defined (WANT_TMP_REENTRANT) struct tmp_reentrant_t { struct tmp_reentrant_t *next; size_t size; /* bytes, including header */ }; void *__gmp_tmp_reentrant_alloc __GMP_PROTO ((struct tmp_reentrant_t **, size_t)) ATTRIBUTE_MALLOC; void __gmp_tmp_reentrant_free __GMP_PROTO ((struct tmp_reentrant_t *)); #endif #if WANT_TMP_ALLOCA #define TMP_SDECL #define TMP_DECL struct tmp_reentrant_t *__tmp_marker #define TMP_SMARK #define TMP_MARK __tmp_marker = 0 #define TMP_SALLOC(n) alloca(n) #define TMP_BALLOC(n) __gmp_tmp_reentrant_alloc (&__tmp_marker, n) #define TMP_ALLOC(n) \ (LIKELY ((n) < 65536) ? TMP_SALLOC(n) : TMP_BALLOC(n)) #define TMP_SFREE #define TMP_FREE \ do { \ if (UNLIKELY (__tmp_marker != 0)) __gmp_tmp_reentrant_free (__tmp_marker); \ } while (0) #endif #if WANT_TMP_REENTRANT #define TMP_SDECL TMP_DECL #define TMP_DECL struct tmp_reentrant_t *__tmp_marker #define TMP_SMARK TMP_MARK #define TMP_MARK __tmp_marker = 0 #define TMP_SALLOC(n) TMP_ALLOC(n) #define TMP_BALLOC(n) TMP_ALLOC(n) #define TMP_ALLOC(n) __gmp_tmp_reentrant_alloc (&__tmp_marker, n) #define TMP_SFREE TMP_FREE #define TMP_FREE __gmp_tmp_reentrant_free (__tmp_marker) #endif #if WANT_TMP_NOTREENTRANT struct tmp_marker { struct tmp_stack *which_chunk; void *alloc_point; }; void *__gmp_tmp_alloc __GMP_PROTO ((unsigned long)) ATTRIBUTE_MALLOC; void __gmp_tmp_mark __GMP_PROTO ((struct tmp_marker *)); void __gmp_tmp_free __GMP_PROTO ((struct tmp_marker *)); #define TMP_SDECL TMP_DECL #define TMP_DECL struct tmp_marker __tmp_marker #define TMP_SMARK TMP_MARK #define TMP_MARK __gmp_tmp_mark (&__tmp_marker) #define TMP_SALLOC(n) TMP_ALLOC(n) #define TMP_BALLOC(n) TMP_ALLOC(n) #define TMP_ALLOC(n) \ __gmp_tmp_alloc (ROUND_UP_MULTIPLE ((unsigned long) (n), __TMP_ALIGN)) #define TMP_SFREE TMP_FREE #define TMP_FREE __gmp_tmp_free (&__tmp_marker) #endif #if WANT_TMP_DEBUG /* See tal-debug.c for some comments. */ struct tmp_debug_t { struct tmp_debug_entry_t *list; const char *file; int line; }; struct tmp_debug_entry_t { struct tmp_debug_entry_t *next; char *block; size_t size; }; void __gmp_tmp_debug_mark __GMP_PROTO ((const char *, int, struct tmp_debug_t **, struct tmp_debug_t *, const char *, const char *)); void *__gmp_tmp_debug_alloc __GMP_PROTO ((const char *, int, int, struct tmp_debug_t **, const char *, size_t)) ATTRIBUTE_MALLOC; void __gmp_tmp_debug_free __GMP_PROTO ((const char *, int, int, struct tmp_debug_t **, const char *, const char *)); #define TMP_SDECL TMP_DECL_NAME(__tmp_xmarker, "__tmp_marker") #define TMP_DECL TMP_DECL_NAME(__tmp_xmarker, "__tmp_marker") #define TMP_SMARK TMP_MARK_NAME(__tmp_xmarker, "__tmp_marker") #define TMP_MARK TMP_MARK_NAME(__tmp_xmarker, "__tmp_marker") #define TMP_SFREE TMP_FREE_NAME(__tmp_xmarker, "__tmp_marker") #define TMP_FREE TMP_FREE_NAME(__tmp_xmarker, "__tmp_marker") /* The marker variable is designed to provoke an uninitialized variable warning from the compiler if TMP_FREE is used without a TMP_MARK. __tmp_marker_inscope does the same for TMP_ALLOC. Runtime tests pick these things up too. */ #define TMP_DECL_NAME(marker, marker_name) \ int marker; \ int __tmp_marker_inscope; \ const char *__tmp_marker_name = marker_name; \ struct tmp_debug_t __tmp_marker_struct; \ /* don't demand NULL, just cast a zero */ \ struct tmp_debug_t *__tmp_marker = (struct tmp_debug_t *) 0 #define TMP_MARK_NAME(marker, marker_name) \ do { \ marker = 1; \ __tmp_marker_inscope = 1; \ __gmp_tmp_debug_mark (ASSERT_FILE, ASSERT_LINE, \ &__tmp_marker, &__tmp_marker_struct, \ __tmp_marker_name, marker_name); \ } while (0) #define TMP_SALLOC(n) TMP_ALLOC(n) #define TMP_BALLOC(n) TMP_ALLOC(n) #define TMP_ALLOC(size) \ __gmp_tmp_debug_alloc (ASSERT_FILE, ASSERT_LINE, \ __tmp_marker_inscope, \ &__tmp_marker, __tmp_marker_name, size) #define TMP_FREE_NAME(marker, marker_name) \ do { \ __gmp_tmp_debug_free (ASSERT_FILE, ASSERT_LINE, \ marker, &__tmp_marker, \ __tmp_marker_name, marker_name); \ } while (0) #endif /* WANT_TMP_DEBUG */ /* Allocating various types. */ #define TMP_ALLOC_TYPE(n,type) ((type *) TMP_ALLOC ((n) * sizeof (type))) #define TMP_SALLOC_TYPE(n,type) ((type *) TMP_SALLOC ((n) * sizeof (type))) #define TMP_BALLOC_TYPE(n,type) ((type *) TMP_BALLOC ((n) * sizeof (type))) #define TMP_ALLOC_LIMBS(n) TMP_ALLOC_TYPE(n,mp_limb_t) #define TMP_SALLOC_LIMBS(n) TMP_SALLOC_TYPE(n,mp_limb_t) #define TMP_BALLOC_LIMBS(n) TMP_BALLOC_TYPE(n,mp_limb_t) #define TMP_ALLOC_MP_PTRS(n) TMP_ALLOC_TYPE(n,mp_ptr) #define TMP_SALLOC_MP_PTRS(n) TMP_SALLOC_TYPE(n,mp_ptr) #define TMP_BALLOC_MP_PTRS(n) TMP_BALLOC_TYPE(n,mp_ptr) /* It's more efficient to allocate one block than two. This is certainly true of the malloc methods, but it can even be true of alloca if that involves copying a chunk of stack (various RISCs), or a call to a stack bounds check (mingw). In any case, when debugging keep separate blocks so a redzoning malloc debugger can protect each individually. */ #define TMP_ALLOC_LIMBS_2(xp,xsize, yp,ysize) \ do { \ if (WANT_TMP_DEBUG) \ { \ (xp) = TMP_ALLOC_LIMBS (xsize); \ (yp) = TMP_ALLOC_LIMBS (ysize); \ } \ else \ { \ (xp) = TMP_ALLOC_LIMBS ((xsize) + (ysize)); \ (yp) = (xp) + (xsize); \ } \ } while (0) /* From gmp.h, nicer names for internal use. */ #define CRAY_Pragma(str) __GMP_CRAY_Pragma(str) #define MPN_CMP(result, xp, yp, size) __GMPN_CMP(result, xp, yp, size) #define LIKELY(cond) __GMP_LIKELY(cond) #define UNLIKELY(cond) __GMP_UNLIKELY(cond) #define ABS(x) ((x) >= 0 ? (x) : -(x)) #undef MIN #define MIN(l,o) ((l) < (o) ? (l) : (o)) #undef MAX #define MAX(h,i) ((h) > (i) ? (h) : (i)) #define numberof(x) (sizeof (x) / sizeof ((x)[0])) /* Field access macros. */ #define SIZ(x) ((x)->_mp_size) #define ABSIZ(x) ABS (SIZ (x)) #define PTR(x) ((x)->_mp_d) #define LIMBS(x) ((x)->_mp_d) #define EXP(x) ((x)->_mp_exp) #define PREC(x) ((x)->_mp_prec) #define ALLOC(x) ((x)->_mp_alloc) /* n-1 inverts any low zeros and the lowest one bit. If n&(n-1) leaves zero then that lowest one bit must have been the only bit set. n==0 will return true though, so avoid that. */ #define POW2_P(n) (((n) & ((n) - 1)) == 0) /* The "short" defines are a bit different because shorts are promoted to ints by ~ or >> etc. #ifndef's are used since on some systems (HP?) header files other than limits.h setup these defines. We could forcibly #undef in that case, but there seems no need to worry about that. */ #ifndef ULONG_MAX #define ULONG_MAX __GMP_ULONG_MAX #endif #ifndef UINT_MAX #define UINT_MAX __GMP_UINT_MAX #endif #ifndef USHRT_MAX #define USHRT_MAX __GMP_USHRT_MAX #endif #define MP_LIMB_T_MAX (~ (mp_limb_t) 0) /* Must cast ULONG_MAX etc to unsigned long etc, since they might not be unsigned on a K&R compiler. In particular the HP-UX 10 bundled K&R cc treats the plain decimal values in as signed. */ #define ULONG_HIGHBIT (ULONG_MAX ^ ((unsigned long) ULONG_MAX >> 1)) #define UINT_HIGHBIT (UINT_MAX ^ ((unsigned) UINT_MAX >> 1)) #define USHRT_HIGHBIT ((unsigned short) (USHRT_MAX ^ ((unsigned short) USHRT_MAX >> 1))) #define GMP_LIMB_HIGHBIT (MP_LIMB_T_MAX ^ (MP_LIMB_T_MAX >> 1)) #ifndef LONG_MIN #define LONG_MIN ((long) ULONG_HIGHBIT) #endif #ifndef LONG_MAX #define LONG_MAX (-(LONG_MIN+1)) #endif #ifndef INT_MIN #define INT_MIN ((int) UINT_HIGHBIT) #endif #ifndef INT_MAX #define INT_MAX (-(INT_MIN+1)) #endif #ifndef SHRT_MIN #define SHRT_MIN ((short) USHRT_HIGHBIT) #endif #ifndef SHRT_MAX #define SHRT_MAX ((short) (-(SHRT_MIN+1))) #endif #if __GMP_MP_SIZE_T_INT #define MP_SIZE_T_MAX INT_MAX #define MP_SIZE_T_MIN INT_MIN #else #define MP_SIZE_T_MAX LONG_MAX #define MP_SIZE_T_MIN LONG_MIN #endif /* mp_exp_t is the same as mp_size_t */ #define MP_EXP_T_MAX MP_SIZE_T_MAX #define MP_EXP_T_MIN MP_SIZE_T_MIN #define LONG_HIGHBIT LONG_MIN #define INT_HIGHBIT INT_MIN #define SHRT_HIGHBIT SHRT_MIN #define GMP_NUMB_HIGHBIT (CNST_LIMB(1) << (GMP_NUMB_BITS-1)) #if GMP_NAIL_BITS == 0 #define GMP_NAIL_LOWBIT CNST_LIMB(0) #else #define GMP_NAIL_LOWBIT (CNST_LIMB(1) << GMP_NUMB_BITS) #endif #if GMP_NAIL_BITS != 0 /* Set various *_THRESHOLD values to be used for nails. Thus we avoid using code that has not yet been qualified. */ #undef DIV_SB_PREINV_THRESHOLD #undef DIV_DC_THRESHOLD #undef POWM_THRESHOLD #define DIV_SB_PREINV_THRESHOLD MP_SIZE_T_MAX #define DIV_DC_THRESHOLD 50 #define POWM_THRESHOLD 0 #undef GCD_ACCEL_THRESHOLD #define GCD_ACCEL_THRESHOLD 3 #undef DIVREM_1_NORM_THRESHOLD #undef DIVREM_1_UNNORM_THRESHOLD #undef MOD_1_NORM_THRESHOLD #undef MOD_1_UNNORM_THRESHOLD #undef USE_PREINV_DIVREM_1 #undef USE_PREINV_MOD_1 #undef DIVREM_2_THRESHOLD #undef DIVEXACT_1_THRESHOLD #undef MODEXACT_1_ODD_THRESHOLD #define DIVREM_1_NORM_THRESHOLD MP_SIZE_T_MAX /* no preinv */ #define DIVREM_1_UNNORM_THRESHOLD MP_SIZE_T_MAX /* no preinv */ #define MOD_1_NORM_THRESHOLD MP_SIZE_T_MAX /* no preinv */ #define MOD_1_UNNORM_THRESHOLD MP_SIZE_T_MAX /* no preinv */ #define USE_PREINV_DIVREM_1 0 /* no preinv */ #define USE_PREINV_MOD_1 0 /* no preinv */ #define DIVREM_2_THRESHOLD MP_SIZE_T_MAX /* no preinv */ /* mpn/generic/mul_fft.c is not nails-capable. */ #undef MUL_FFT_THRESHOLD #undef SQR_FFT_THRESHOLD #define MUL_FFT_THRESHOLD MP_SIZE_T_MAX #define SQR_FFT_THRESHOLD MP_SIZE_T_MAX #endif /* Swap macros. */ #define MP_LIMB_T_SWAP(x, y) \ do { \ mp_limb_t __mp_limb_t_swap__tmp = (x); \ (x) = (y); \ (y) = __mp_limb_t_swap__tmp; \ } while (0) #define MP_SIZE_T_SWAP(x, y) \ do { \ mp_size_t __mp_size_t_swap__tmp = (x); \ (x) = (y); \ (y) = __mp_size_t_swap__tmp; \ } while (0) #define MP_PTR_SWAP(x, y) \ do { \ mp_ptr __mp_ptr_swap__tmp = (x); \ (x) = (y); \ (y) = __mp_ptr_swap__tmp; \ } while (0) #define MP_SRCPTR_SWAP(x, y) \ do { \ mp_srcptr __mp_srcptr_swap__tmp = (x); \ (x) = (y); \ (y) = __mp_srcptr_swap__tmp; \ } while (0) #define MPN_PTR_SWAP(xp,xs, yp,ys) \ do { \ MP_PTR_SWAP (xp, yp); \ MP_SIZE_T_SWAP (xs, ys); \ } while(0) #define MPN_SRCPTR_SWAP(xp,xs, yp,ys) \ do { \ MP_SRCPTR_SWAP (xp, yp); \ MP_SIZE_T_SWAP (xs, ys); \ } while(0) #define MPZ_PTR_SWAP(x, y) \ do { \ mpz_ptr __mpz_ptr_swap__tmp = (x); \ (x) = (y); \ (y) = __mpz_ptr_swap__tmp; \ } while (0) #define MPZ_SRCPTR_SWAP(x, y) \ do { \ mpz_srcptr __mpz_srcptr_swap__tmp = (x); \ (x) = (y); \ (y) = __mpz_srcptr_swap__tmp; \ } while (0) /* Enhancement: __gmp_allocate_func could have "__attribute__ ((malloc))", but current gcc (3.0) doesn't seem to support that. */ __GMP_DECLSPEC extern void * (*__gmp_allocate_func) __GMP_PROTO ((size_t)); __GMP_DECLSPEC extern void * (*__gmp_reallocate_func) __GMP_PROTO ((void *, size_t, size_t)); __GMP_DECLSPEC extern void (*__gmp_free_func) __GMP_PROTO ((void *, size_t)); void *__gmp_default_allocate __GMP_PROTO ((size_t)); void *__gmp_default_reallocate __GMP_PROTO ((void *, size_t, size_t)); void __gmp_default_free __GMP_PROTO ((void *, size_t)); #define __GMP_ALLOCATE_FUNC_TYPE(n,type) \ ((type *) (*__gmp_allocate_func) ((n) * sizeof (type))) #define __GMP_ALLOCATE_FUNC_LIMBS(n) __GMP_ALLOCATE_FUNC_TYPE (n, mp_limb_t) #define __GMP_REALLOCATE_FUNC_TYPE(p, old_size, new_size, type) \ ((type *) (*__gmp_reallocate_func) \ (p, (old_size) * sizeof (type), (new_size) * sizeof (type))) #define __GMP_REALLOCATE_FUNC_LIMBS(p, old_size, new_size) \ __GMP_REALLOCATE_FUNC_TYPE(p, old_size, new_size, mp_limb_t) #define __GMP_FREE_FUNC_TYPE(p,n,type) (*__gmp_free_func) (p, (n) * sizeof (type)) #define __GMP_FREE_FUNC_LIMBS(p,n) __GMP_FREE_FUNC_TYPE (p, n, mp_limb_t) #define __GMP_REALLOCATE_FUNC_MAYBE(ptr, oldsize, newsize) \ do { \ if ((oldsize) != (newsize)) \ (ptr) = (*__gmp_reallocate_func) (ptr, oldsize, newsize); \ } while (0) #define __GMP_REALLOCATE_FUNC_MAYBE_TYPE(ptr, oldsize, newsize, type) \ do { \ if ((oldsize) != (newsize)) \ (ptr) = (type *) (*__gmp_reallocate_func) \ (ptr, (oldsize) * sizeof (type), (newsize) * sizeof (type)); \ } while (0) /* Dummy for non-gcc, code involving it will go dead. */ #if ! defined (__GNUC__) || __GNUC__ < 2 #define __builtin_constant_p(x) 0 #endif /* In gcc 2.96 and up on i386, tail calls are optimized to jumps if the stack usage is compatible. __attribute__ ((regparm (N))) helps by putting leading parameters in registers, avoiding extra stack. regparm cannot be used with calls going through the PLT, because the binding code there may clobber the registers (%eax, %edx, %ecx) used for the regparm parameters. Calls to local (ie. static) functions could still use this, if we cared to differentiate locals and globals. On athlon-unknown-freebsd4.9 with gcc 3.3.3, regparm cannot be used with -p or -pg profiling, since that version of gcc doesn't realize the .mcount calls will clobber the parameter registers. Other systems are ok, like debian with glibc 2.3.2 (mcount doesn't clobber), but we don't bother to try to detect this. regparm is only an optimization so we just disable it when profiling (profiling being a slowdown anyway). */ #if HAVE_HOST_CPU_FAMILY_x86 && __GMP_GNUC_PREREQ (2,96) && ! defined (PIC) \ && ! WANT_PROFILING_PROF && ! WANT_PROFILING_GPROF #define USE_LEADING_REGPARM 1 #else #define USE_LEADING_REGPARM 0 #endif /* Macros for altering parameter order according to regparm usage. */ #if USE_LEADING_REGPARM #define REGPARM_2_1(a,b,x) x,a,b #define REGPARM_3_1(a,b,c,x) x,a,b,c #define REGPARM_ATTR(n) __attribute__ ((regparm (n))) #else #define REGPARM_2_1(a,b,x) a,b,x #define REGPARM_3_1(a,b,c,x) a,b,c,x #define REGPARM_ATTR(n) #endif /* ASM_L gives a local label for a gcc asm block, for use when temporary local labels like "1:" might not be available, which is the case for instance on the x86s (the SCO assembler doesn't support them). The label generated is made unique by including "%=" which is a unique number for each insn. This ensures the same name can be used in multiple asm blocks, perhaps via a macro. Since jumps between asm blocks are not allowed there's no need for a label to be usable outside a single block. */ #define ASM_L(name) LSYM_PREFIX "asm_%=_" #name #if defined (__GNUC__) && HAVE_HOST_CPU_FAMILY_x86 #if 0 /* FIXME: Check that these actually improve things. FIXME: Need a cld after each std. FIXME: Can't have inputs in clobbered registers, must describe them as dummy outputs, and add volatile. */ #define MPN_COPY_INCR(DST, SRC, N) \ __asm__ ("cld\n\trep\n\tmovsl" : : \ "D" (DST), "S" (SRC), "c" (N) : \ "cx", "di", "si", "memory") #define MPN_COPY_DECR(DST, SRC, N) \ __asm__ ("std\n\trep\n\tmovsl" : : \ "D" ((DST) + (N) - 1), "S" ((SRC) + (N) - 1), "c" (N) : \ "cx", "di", "si", "memory") #endif #endif void __gmpz_aorsmul_1 __GMP_PROTO ((REGPARM_3_1 (mpz_ptr, mpz_srcptr, mp_limb_t, mp_size_t))) REGPARM_ATTR(1); #define mpz_aorsmul_1(w,u,v,sub) __gmpz_aorsmul_1 (REGPARM_3_1 (w, u, v, sub)) #define mpz_n_pow_ui __gmpz_n_pow_ui void mpz_n_pow_ui __GMP_PROTO ((mpz_ptr, mp_srcptr, mp_size_t, unsigned long)); #define mpn_addmul_1c __MPN(addmul_1c) __GMP_DECLSPEC mp_limb_t mpn_addmul_1c __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t)); #define mpn_addmul_2 __MPN(addmul_2) __GMP_DECLSPEC mp_limb_t mpn_addmul_2 __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr)); #define mpn_addmul_3 __MPN(addmul_3) __GMP_DECLSPEC mp_limb_t mpn_addmul_3 __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr)); #define mpn_addmul_4 __MPN(addmul_4) __GMP_DECLSPEC mp_limb_t mpn_addmul_4 __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr)); #define mpn_addmul_5 __MPN(addmul_5) __GMP_DECLSPEC mp_limb_t mpn_addmul_5 __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr)); #define mpn_addmul_6 __MPN(addmul_6) __GMP_DECLSPEC mp_limb_t mpn_addmul_6 __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr)); #define mpn_addmul_7 __MPN(addmul_7) __GMP_DECLSPEC mp_limb_t mpn_addmul_7 __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr)); #define mpn_addmul_8 __MPN(addmul_8) __GMP_DECLSPEC mp_limb_t mpn_addmul_8 __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr)); /* mpn_addlsh1_n(c,a,b,n), when it exists, sets {c,n} to {a,n}+2*{b,n}, and returns the carry out (0, 1 or 2). */ #define mpn_addlsh1_n __MPN(addlsh1_n) __GMP_DECLSPEC mp_limb_t mpn_addlsh1_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); /* mpn_sublsh1_n(c,a,b,n), when it exists, sets {c,n} to {a,n}-2*{b,n}, and returns the borrow out (0, 1 or 2). */ #define mpn_sublsh1_n __MPN(sublsh1_n) __GMP_DECLSPEC mp_limb_t mpn_sublsh1_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); /* mpn_rsh1add_n(c,a,b,n), when it exists, sets {c,n} to ({a,n} + {b,n}) >> 1, and returns the bit rshifted out (0 or 1). */ #define mpn_rsh1add_n __MPN(rsh1add_n) __GMP_DECLSPEC mp_limb_t mpn_rsh1add_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); /* mpn_rsh1sub_n(c,a,b,n), when it exists, sets {c,n} to ({a,n} - {b,n}) >> 1, and returns the bit rshifted out (0 or 1). If there's a borrow from the subtract, it's stored as a 1 in the high bit of c[n-1], like a twos complement negative. */ #define mpn_rsh1sub_n __MPN(rsh1sub_n) __GMP_DECLSPEC mp_limb_t mpn_rsh1sub_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); #define mpn_lshiftc __MPN(lshiftc) __GMP_DECLSPEC mp_limb_t mpn_lshiftc __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, unsigned int)); #define mpn_addsub_n __MPN(addsub_n) __GMP_DECLSPEC mp_limb_t mpn_addsub_n __GMP_PROTO ((mp_ptr, mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); #define mpn_addsub_nc __MPN(addsub_nc) __GMP_DECLSPEC mp_limb_t mpn_addsub_nc __GMP_PROTO ((mp_ptr, mp_ptr, mp_srcptr, mp_srcptr, mp_size_t, mp_limb_t)); #define mpn_addaddmul_1msb0 __MPN(addaddmul_1msb0) __GMP_DECLSPEC mp_limb_t mpn_addaddmul_1msb0 __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t)); #define mpn_divrem_1c __MPN(divrem_1c) __GMP_DECLSPEC mp_limb_t mpn_divrem_1c __GMP_PROTO ((mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t)); #define mpn_dump __MPN(dump) __GMP_DECLSPEC void mpn_dump __GMP_PROTO ((mp_srcptr, mp_size_t)); #define mpn_fib2_ui __MPN(fib2_ui) mp_size_t mpn_fib2_ui __GMP_PROTO ((mp_ptr, mp_ptr, unsigned long)); /* Remap names of internal mpn functions. */ #define __clz_tab __MPN(clz_tab) #define mpn_udiv_w_sdiv __MPN(udiv_w_sdiv) #define mpn_jacobi_base __MPN(jacobi_base) int mpn_jacobi_base __GMP_PROTO ((mp_limb_t, mp_limb_t, int)) ATTRIBUTE_CONST; #define mpn_mod_1c __MPN(mod_1c) __GMP_DECLSPEC mp_limb_t mpn_mod_1c __GMP_PROTO ((mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t)) __GMP_ATTRIBUTE_PURE; #define mpn_mul_1c __MPN(mul_1c) __GMP_DECLSPEC mp_limb_t mpn_mul_1c __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t)); #define mpn_mul_2 __MPN(mul_2) mp_limb_t mpn_mul_2 __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr)); #define mpn_mul_3 __MPN(mul_3) __GMP_DECLSPEC mp_limb_t mpn_mul_3 __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr)); #define mpn_mul_4 __MPN(mul_4) __GMP_DECLSPEC mp_limb_t mpn_mul_4 __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr)); #ifndef mpn_mul_basecase /* if not done with cpuvec in a fat binary */ #define mpn_mul_basecase __MPN(mul_basecase) __GMP_DECLSPEC void mpn_mul_basecase __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t)); #endif #define mpn_mullow_n __MPN(mullow_n) __GMP_DECLSPEC void mpn_mullow_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); #define mpn_mullow_basecase __MPN(mullow_basecase) __GMP_DECLSPEC void mpn_mullow_basecase __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); #define mpn_sqr_n __MPN(sqr) /* compatibility */ #ifndef mpn_sqr_basecase /* if not done with cpuvec in a fat binary */ #define mpn_sqr_basecase __MPN(sqr_basecase) __GMP_DECLSPEC void mpn_sqr_basecase __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t)); #endif #define mpn_submul_1c __MPN(submul_1c) __GMP_DECLSPEC mp_limb_t mpn_submul_1c __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t)); #define mpn_invert_2exp __MPN(invert_2exp) __GMP_DECLSPEC void mpn_invert_2exp __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_redc_1 __MPN(redc_1) __GMP_DECLSPEC void mpn_redc_1 __GMP_PROTO ((mp_ptr, mp_ptr, mp_srcptr, mp_size_t, mp_limb_t);) #define mpn_redc_2 __MPN(redc_2) __GMP_DECLSPEC void mpn_redc_2 __GMP_PROTO ((mp_ptr, mp_ptr, mp_srcptr, mp_size_t, mp_srcptr)); #define mpn_mod_1s_1p_cps __MPN(mod_1s_1p_cps) __GMP_DECLSPEC void mpn_mod_1s_1p_cps __GMP_PROTO ((mp_limb_t [4], mp_limb_t)); #define mpn_mod_1s_1p __MPN(mod_1s_1p) __GMP_DECLSPEC mp_limb_t mpn_mod_1s_1p __GMP_PROTO ((mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t [4])); #define mpn_mod_1s_2p_cps __MPN(mod_1s_2p_cps) __GMP_DECLSPEC void mpn_mod_1s_2p_cps __GMP_PROTO ((mp_limb_t [5], mp_limb_t)); #define mpn_mod_1s_2p __MPN(mod_1s_2p) __GMP_DECLSPEC mp_limb_t mpn_mod_1s_2p __GMP_PROTO ((mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t [5])); #define mpn_mod_1s_3p_cps __MPN(mod_1s_3p_cps) __GMP_DECLSPEC void mpn_mod_1s_3p_cps __GMP_PROTO ((mp_limb_t [6], mp_limb_t)); #define mpn_mod_1s_3p __MPN(mod_1s_3p) __GMP_DECLSPEC mp_limb_t mpn_mod_1s_3p __GMP_PROTO ((mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t [6])); #define mpn_mod_1s_4p_cps __MPN(mod_1s_4p_cps) __GMP_DECLSPEC void mpn_mod_1s_4p_cps __GMP_PROTO ((mp_limb_t [7], mp_limb_t)); #define mpn_mod_1s_4p __MPN(mod_1s_4p) __GMP_DECLSPEC mp_limb_t mpn_mod_1s_4p __GMP_PROTO ((mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t [7])); typedef __gmp_randstate_struct *gmp_randstate_ptr; typedef const __gmp_randstate_struct *gmp_randstate_srcptr; /* Pseudo-random number generator function pointers structure. */ typedef struct { void (*randseed_fn) __GMP_PROTO ((gmp_randstate_t, mpz_srcptr)); void (*randget_fn) __GMP_PROTO ((gmp_randstate_t, mp_ptr, unsigned long int)); void (*randclear_fn) __GMP_PROTO ((gmp_randstate_t)); void (*randiset_fn) __GMP_PROTO ((gmp_randstate_ptr, gmp_randstate_srcptr)); } gmp_randfnptr_t; /* Macro to obtain a void pointer to the function pointers structure. */ #define RNG_FNPTR(rstate) ((rstate)->_mp_algdata._mp_lc) /* Macro to obtain a pointer to the generator's state. When used as a lvalue the rvalue needs to be cast to mp_ptr. */ #define RNG_STATE(rstate) ((rstate)->_mp_seed->_mp_d) /* Write a given number of random bits to rp. */ #define _gmp_rand(rp, state, bits) \ do { \ gmp_randstate_ptr __rstate = (state); \ (*((gmp_randfnptr_t *) RNG_FNPTR (__rstate))->randget_fn) \ (__rstate, rp, bits); \ } while (0) __GMP_DECLSPEC void __gmp_randinit_mt_noseed __GMP_PROTO ((gmp_randstate_t)); /* __gmp_rands is the global state for the old-style random functions, and is also used in the test programs (hence the __GMP_DECLSPEC). There's no seeding here, so mpz_random etc will generate the same sequence every time. This is not unlike the C library random functions if you don't seed them, so perhaps it's acceptable. Digging up a seed from /dev/random or the like would work on many systems, but might encourage a false confidence, since it'd be pretty much impossible to do something that would work reliably everywhere. In any case the new style functions are recommended to applications which care about randomness, so the old functions aren't too important. */ __GMP_DECLSPEC extern char __gmp_rands_initialized; __GMP_DECLSPEC extern gmp_randstate_t __gmp_rands; #define RANDS \ ((__gmp_rands_initialized ? 0 \ : (__gmp_rands_initialized = 1, \ __gmp_randinit_mt_noseed (__gmp_rands), 0)), \ __gmp_rands) /* this is used by the test programs, to free memory */ #define RANDS_CLEAR() \ do { \ if (__gmp_rands_initialized) \ { \ __gmp_rands_initialized = 0; \ gmp_randclear (__gmp_rands); \ } \ } while (0) /* FIXME: Make these itch functions less conservative. Also consider making them dependent on just 'an', and compute the allocation directly from 'an' instead of via n. */ static inline mp_size_t mpn_toom22_mul_itch (mp_size_t an, mp_size_t bn) { mp_size_t n = 1 + (2 * an >= 3 * bn ? (an - 1) / (size_t) 3 : (bn - 1) >> 1); return 4 * n + 2; } static inline mp_size_t mpn_toom33_mul_itch (mp_size_t an, mp_size_t bn) { /* We could trim this to 4n+3 if HAVE_NATIVE_mpn_sublsh1_n, since mpn_toom_interpolate_5pts only needs scratch otherwise. */ mp_size_t n = (an + 2) / (size_t) 3; return 6 * n + GMP_NUMB_BITS; } static inline mp_size_t mpn_toom44_mul_itch (mp_size_t an, mp_size_t bn) { mp_size_t n = (an + 3) >> 2; return 12 * n + GMP_NUMB_BITS; } static inline mp_size_t mpn_toom32_mul_itch (mp_size_t an, mp_size_t bn) { mp_size_t n = 1 + (2 * an >= 3 * bn ? (an - 1) / (size_t) 3 : (bn - 1) >> 1); return 4 * n + 2; } static inline mp_size_t mpn_toom42_mul_itch (mp_size_t an, mp_size_t bn) { /* We could trim this to 4n+3 if HAVE_NATIVE_mpn_sublsh1_n, since mpn_toom_interpolate_5pts only needs scratch otherwise. */ mp_size_t n = an >= 2 * bn ? (an + 3) >> 2 : (bn + 1) >> 1; return 6 * n + 3; } static inline mp_size_t mpn_toom53_mul_itch (mp_size_t an, mp_size_t bn) { mp_size_t n = 1 + (3 * an >= 5 * bn ? (an - 1) / (size_t) 5 : (bn - 1) / (size_t) 3); return 10 * n + 10; } static inline mp_size_t mpn_toom2_sqr_itch (mp_size_t an) { mp_size_t n = 1 + ((an - 1) >> 1); return 4 * n + 2; } static inline mp_size_t mpn_toom3_sqr_itch (mp_size_t an) { /* We could trim this to 4n+3 if HAVE_NATIVE_mpn_sublsh1_n, since mpn_toom_interpolate_5pts only needs scratch otherwise. */ mp_size_t n = (an + 2) / (size_t) 3; return 6 * n + GMP_NUMB_BITS; } static inline mp_size_t mpn_toom4_sqr_itch (mp_size_t an) { mp_size_t n = (an + 3) >> 2; return 12 * n + GMP_NUMB_BITS; } /* kara uses n+1 limbs of temporary space and then recurses with the balance, so need (n+1) + (ceil(n/2)+1) + (ceil(n/4)+1) + ... This can be solved to 2n + o(n). Since n is very limited, o(n) in practice could be around 15. For now, assume n is arbitrarily large. */ #define MPN_KARA_MUL_N_TSIZE(n) (2*(n) + 2*GMP_LIMB_BITS) #define MPN_KARA_SQR_N_TSIZE(n) (2*(n) + 2*GMP_LIMB_BITS) /* toom3 uses 2n + 2n/3 + o(n) limbs of temporary space if mpn_sublsh1_n is unavailable, but just 2n + o(n) if mpn_sublsh1_n is available. It is hard to pin down the value of o(n), since it is a complex function of MUL_TOOM3_THRESHOLD and n. Normally toom3 is used between kara and fft; in that case o(n) will be really limited. If toom3 is used for arbitrarily large operands, o(n) will be larger. These definitions handle operands of up to 8956264246117233 limbs. A single multiplication using toom3 on the fastest hardware currently (2008) would need 10 million years, which suggests that these limits are acceptable. */ #if WANT_FFT #if HAVE_NATIVE_mpn_sublsh1_n #define MPN_TOOM3_MUL_N_TSIZE(n) (2*(n) + 63) #define MPN_TOOM3_SQR_N_TSIZE(n) (2*(n) + 63) #else #define MPN_TOOM3_MUL_N_TSIZE(n) (2*(n) + 2*(n/3) + 63) #define MPN_TOOM3_SQR_N_TSIZE(n) (2*(n) + 2*(n/3) + 63) #endif #else /* WANT_FFT */ #if HAVE_NATIVE_mpn_sublsh1_n #define MPN_TOOM3_MUL_N_TSIZE(n) (2*(n) + 255) #define MPN_TOOM3_SQR_N_TSIZE(n) (2*(n) + 255) #else #define MPN_TOOM3_MUL_N_TSIZE(n) (2*(n) + 2*(n/3) + 255) #define MPN_TOOM3_SQR_N_TSIZE(n) (2*(n) + 2*(n/3) + 255) #endif #define MPN_TOOM44_MAX_N 285405 #endif /* WANT_FFT */ /* need 2 so that n2>=1 */ #define MPN_KARA_MUL_N_MINSIZE 2 #define MPN_KARA_SQR_N_MINSIZE 2 /* Need l>=1, ls>=1, and 2*ls > l (the latter for the tD MPN_INCR_U) */ #define MPN_TOOM3_MUL_N_MINSIZE 17 #define MPN_TOOM3_SQR_N_MINSIZE 17 #define MPN_TOOM44_MUL_N_MINSIZE 30 /* ??? */ #define MPN_TOOM4_SQR_N_MINSIZE 30 /* ??? */ #define mpn_sqr_diagonal __MPN(sqr_diagonal) void mpn_sqr_diagonal __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t)); #define mpn_kara_mul_n __MPN(kara_mul_n) void mpn_kara_mul_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_kara_sqr_n __MPN(kara_sqr_n) void mpn_kara_sqr_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_toom_interpolate_5pts __MPN(toom_interpolate_5pts) void mpn_toom_interpolate_5pts __GMP_PROTO ((mp_ptr, mp_ptr, mp_ptr, mp_size_t, mp_size_t, int, mp_limb_t, mp_ptr)); enum toom4_flags { toom4_w1_neg = 1, toom4_w3_neg = 2 }; /* FIXME */ #define mpn_toom_interpolate_7pts __MPN(toom_interpolate_7pts) void mpn_toom_interpolate_7pts __GMP_PROTO ((mp_ptr, mp_size_t, enum toom4_flags, mp_ptr, mp_ptr, mp_ptr, mp_ptr, mp_size_t, mp_ptr)); #define mpn_toom3_mul_n __MPN(toom3_mul_n) void mpn_toom3_mul_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t,mp_ptr)); #define mpn_toom3_sqr_n __MPN(toom3_sqr_n) void mpn_toom3_sqr_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_toom22_mul __MPN(toom22_mul) void mpn_toom22_mul __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_toom2_sqr __MPN(toom2_sqr) void mpn_toom2_sqr __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_toom33_mul __MPN(toom33_mul) void mpn_toom33_mul __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_toom3_sqr __MPN(toom3_sqr) void mpn_toom3_sqr __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_toom44_mul __MPN(toom44_mul) void mpn_toom44_mul __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_toom32_mul __MPN(toom32_mul) void mpn_toom32_mul __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_toom42_mul __MPN(toom42_mul) void mpn_toom42_mul __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_toom53_mul __MPN(toom53_mul) void mpn_toom53_mul __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_toom62_mul __MPN(toom62_mul) void mpn_toom62_mul __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_toom4_sqr __MPN(toom4_sqr) void mpn_toom4_sqr __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_fft_best_k __MPN(fft_best_k) int mpn_fft_best_k __GMP_PROTO ((mp_size_t, int)) ATTRIBUTE_CONST; #define mpn_mul_fft __MPN(mul_fft) mp_limb_t mpn_mul_fft __GMP_PROTO ((mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, int)); #define mpn_mul_fft_full __MPN(mul_fft_full) void mpn_mul_fft_full __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t)); #define mpn_fft_next_size __MPN(fft_next_size) mp_size_t mpn_fft_next_size __GMP_PROTO ((mp_size_t, int)) ATTRIBUTE_CONST; #define mpn_sb_divrem_mn __MPN(sb_divrem_mn) mp_limb_t mpn_sb_divrem_mn __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t)); #define mpn_dc_divrem_n __MPN(dc_divrem_n) mp_limb_t mpn_dc_divrem_n __GMP_PROTO ((mp_ptr, mp_ptr, mp_srcptr, mp_size_t)); #define mpn_sb_div_qr __MPN(sb_div_qr) mp_limb_t mpn_sb_div_qr __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_srcptr)); #define mpn_sb_div_q __MPN(sb_div_q) mp_limb_t mpn_sb_div_q __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_srcptr)); #define mpn_sb_divappr_q __MPN(sb_divappr_q) mp_limb_t mpn_sb_divappr_q __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_srcptr)); #define mpn_dc_div_qr __MPN(dc_div_qr) mp_limb_t mpn_dc_div_qr __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t)); #define mpn_dc_div_qr_n __MPN(dc_div_qr_n) mp_limb_t mpn_dc_div_qr_n __GMP_PROTO ((mp_ptr, mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_ptr)); #define mpn_dc_div_q __MPN(dc_div_q) mp_limb_t mpn_dc_div_q __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t)); #define mpn_preinv_dc_div_qr __MPN(preinv_dc_div_qr) mp_limb_t mpn_preinv_dc_div_qr __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_srcptr)); #define mpn_dc_divappr_q __MPN(dc_divappr_q) mp_limb_t mpn_dc_divappr_q __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t)); #define mpn_dc_divappr_q_n __MPN(dc_divappr_q_n) mp_limb_t mpn_dc_divappr_q_n __GMP_PROTO ((mp_ptr, mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_ptr)); #define mpn_preinv_dc_divappr_q __MPN(preinv_dc_divappr_q) mp_limb_t mpn_preinv_dc_divappr_q __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_srcptr)); #define mpn_mu_div_qr __MPN(mu_div_qr) mp_limb_t mpn_mu_div_qr __GMP_PROTO ((mp_ptr, mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_mu_div_qr_itch __MPN(mu_div_qr_itch) mp_size_t mpn_mu_div_qr_itch __GMP_PROTO ((mp_size_t, mp_size_t, int)); #define mpn_mu_div_qr_choose_in __MPN(mu_div_qr_choose_in) mp_size_t mpn_mu_div_qr_choose_in __GMP_PROTO ((mp_size_t, mp_size_t, int)); #define mpn_preinv_mu_div_qr __MPN(preinv_mu_div_qr) void mpn_preinv_mu_div_qr __GMP_PROTO ((mp_ptr, mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_mu_divappr_q __MPN(mu_divappr_q) mp_limb_t mpn_mu_divappr_q __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_mu_divappr_q_itch __MPN(mu_divappr_q_itch) mp_size_t mpn_mu_divappr_q_itch __GMP_PROTO ((mp_size_t, mp_size_t, int)); #define mpn_mu_divappr_q_choose_in __MPN(mu_divappr_q_choose_in) mp_size_t mpn_mu_divappr_q_choose_in __GMP_PROTO ((mp_size_t, mp_size_t, int)); #define mpn_preinv_mu_divappr_q __MPN(preinv_mu_divappr_q) void mpn_preinv_mu_divappr_q __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_mu_div_q __MPN(mu_div_q) mp_limb_t mpn_mu_div_q __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_invert __MPN(invert) void mpn_invert __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_invert_itch __MPN(invert_itch) mp_size_t mpn_invert_itch __GMP_PROTO ((mp_size_t)); #define mpn_binvert __MPN(binvert) void mpn_binvert __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_binvert_itch __MPN(binvert_itch) mp_size_t mpn_binvert_itch __GMP_PROTO ((mp_size_t)); #define mpn_sb_bdiv_qr __MPN(sb_bdiv_qr) mp_limb_t mpn_sb_bdiv_qr __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_limb_t)); #define mpn_sb_bdiv_q __MPN(sb_bdiv_q) void mpn_sb_bdiv_q __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_limb_t)); #define mpn_dc_bdiv_qr __MPN(dc_bdiv_qr) mp_limb_t mpn_dc_bdiv_qr __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_limb_t)); #define mpn_dc_bdiv_qr_n_itch __MPN(dc_bdiv_qr_n_itch) mp_size_t mpn_dc_bdiv_qr_n_itch __GMP_PROTO ((mp_size_t)); #define mpn_dc_bdiv_qr_n __MPN(dc_bdiv_qr_n) mp_limb_t mpn_dc_bdiv_qr_n __GMP_PROTO ((mp_ptr, mp_ptr, mp_srcptr, mp_size_t, mp_limb_t, mp_ptr)); #define mpn_dc_bdiv_q __MPN(dc_bdiv_q) void mpn_dc_bdiv_q __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_limb_t)); #define mpn_dc_bdiv_q_n_itch __MPN(dc_bdiv_q_n_itch) mp_size_t mpn_dc_bdiv_q_n_itch __GMP_PROTO ((mp_size_t)); #define mpn_dc_bdiv_q_n __MPN(dc_bdiv_q_n) void mpn_dc_bdiv_q_n __GMP_PROTO ((mp_ptr, mp_ptr, mp_srcptr, mp_size_t, mp_limb_t, mp_ptr)); #define mpn_mu_bdiv_qr __MPN(mu_bdiv_qr) void mpn_mu_bdiv_qr __GMP_PROTO ((mp_ptr, mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_mu_bdiv_qr_itch __MPN(mu_bdiv_qr_itch) mp_size_t mpn_mu_bdiv_qr_itch __GMP_PROTO ((mp_size_t, mp_size_t)); #define mpn_mu_bdiv_q __MPN(mu_bdiv_q) void mpn_mu_bdiv_q __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_mu_bdiv_q_itch __MPN(mu_bdiv_q_itch) mp_size_t mpn_mu_bdiv_q_itch __GMP_PROTO ((mp_size_t, mp_size_t)); #define mpn_divexact __MPN(divexact) void mpn_divexact __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_divexact_itch __MPN(divexact_itch) mp_size_t mpn_divexact_itch __GMP_PROTO ((mp_size_t, mp_size_t)); #define mpn_bdiv_dbm1c __MPN(bdiv_dbm1c) mp_limb_t mpn_bdiv_dbm1c __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t)); #define mpn_bdiv_dbm1(dst, src, size, divisor) \ mpn_bdiv_dbm1c (dst, src, size, divisor, __GMP_CAST (mp_limb_t, 0)) #define mpn_powm __MPN(powm) void mpn_powm __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_powlo __MPN(powlo) void mpn_powlo __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t, mp_size_t, mp_ptr)); #define mpn_powm_sec __MPN(powm_sec) void mpn_powm_sec __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_subcnd_n __MPN(subcnd_n) mp_limb_t mpn_subcnd_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t, mp_limb_t)); #define mpn_tabselect __MPN(tabselect) void mpn_tabselect __GMP_PROTO ((volatile mp_limb_t *, volatile mp_limb_t *, mp_size_t, mp_size_t, mp_size_t)); #ifndef DIVEXACT_BY3_METHOD #if GMP_NUMB_BITS % 2 == 0 && ! defined (HAVE_NATIVE_mpn_divexact_by3c) #define DIVEXACT_BY3_METHOD 0 /* default to using mpn_bdiv_dbm1c */ #else #define DIVEXACT_BY3_METHOD 1 #endif #endif #if DIVEXACT_BY3_METHOD == 0 #undef mpn_divexact_by3 #define mpn_divexact_by3(dst,src,size) \ (3 & mpn_bdiv_dbm1 (dst, src, size, __GMP_CAST (mp_limb_t, GMP_NUMB_MASK / 3))) /* override mpn_divexact_by3c defined in gmp.h */ /* #undef mpn_divexact_by3c #define mpn_divexact_by3c(dst,src,size,cy) \ (3 & mpn_bdiv_dbm1c (dst, src, size, __GMP_CAST (mp_limb_t, GMP_NUMB_MASK / 3, GMP_NUMB_MASK / 3 * cy))) */ #endif #if GMP_NUMB_BITS % 4 == 0 #define mpn_divexact_by5(dst,src,size) \ (7 & 3 * mpn_bdiv_dbm1 (dst, src, size, __GMP_CAST (mp_limb_t, GMP_NUMB_MASK / 5))) #endif #if GMP_NUMB_BITS % 6 == 0 #define mpn_divexact_by7(dst,src,size) \ (7 & 1 * mpn_bdiv_dbm1 (dst, src, size, __GMP_CAST (mp_limb_t, GMP_NUMB_MASK / 7))) #endif #if GMP_NUMB_BITS % 6 == 0 #define mpn_divexact_by9(dst,src,size) \ (15 & 7 * mpn_bdiv_dbm1 (dst, src, size, __GMP_CAST (mp_limb_t, GMP_NUMB_MASK / 9))) #endif #if GMP_NUMB_BITS % 10 == 0 #define mpn_divexact_by11(dst,src,size) \ (15 & 5 * mpn_bdiv_dbm1 (dst, src, size, __GMP_CAST (mp_limb_t, GMP_NUMB_MASK / 11))) #endif #if GMP_NUMB_BITS % 12 == 0 #define mpn_divexact_by13(dst,src,size) \ (15 & 3 * mpn_bdiv_dbm1 (dst, src, size, __GMP_CAST (mp_limb_t, GMP_NUMB_MASK / 13))) #endif #if GMP_NUMB_BITS % 4 == 0 #define mpn_divexact_by15(dst,src,size) \ (15 & 1 * mpn_bdiv_dbm1 (dst, src, size, __GMP_CAST (mp_limb_t, GMP_NUMB_MASK / 15))) #endif #define mpz_divexact_gcd __gmpz_divexact_gcd void mpz_divexact_gcd __GMP_PROTO ((mpz_ptr, mpz_srcptr, mpz_srcptr)); #define mpz_inp_str_nowhite __gmpz_inp_str_nowhite #ifdef _GMP_H_HAVE_FILE size_t mpz_inp_str_nowhite __GMP_PROTO ((mpz_ptr, FILE *, int, int, size_t)); #endif #define mpn_divisible_p __MPN(divisible_p) int mpn_divisible_p __GMP_PROTO ((mp_srcptr, mp_size_t, mp_srcptr, mp_size_t)) __GMP_ATTRIBUTE_PURE; #define mpn_rootrem __MPN(rootrem) mp_size_t mpn_rootrem __GMP_PROTO ((mp_ptr, mp_ptr, mp_srcptr, mp_size_t, mp_limb_t)); #if defined (_CRAY) #define MPN_COPY_INCR(dst, src, n) \ do { \ int __i; /* Faster on some Crays with plain int */ \ _Pragma ("_CRI ivdep"); \ for (__i = 0; __i < (n); __i++) \ (dst)[__i] = (src)[__i]; \ } while (0) #endif /* used by test programs, hence __GMP_DECLSPEC */ #ifndef mpn_copyi /* if not done with cpuvec in a fat binary */ #define mpn_copyi __MPN(copyi) __GMP_DECLSPEC void mpn_copyi __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t)); #endif #if ! defined (MPN_COPY_INCR) && HAVE_NATIVE_mpn_copyi #define MPN_COPY_INCR(dst, src, size) \ do { \ ASSERT ((size) >= 0); \ ASSERT (MPN_SAME_OR_INCR_P (dst, src, size)); \ mpn_copyi (dst, src, size); \ } while (0) #endif /* Copy N limbs from SRC to DST incrementing, N==0 allowed. */ #if ! defined (MPN_COPY_INCR) #define MPN_COPY_INCR(dst, src, n) \ do { \ ASSERT ((n) >= 0); \ ASSERT (MPN_SAME_OR_INCR_P (dst, src, n)); \ if ((n) != 0) \ { \ mp_size_t __n = (n) - 1; \ mp_ptr __dst = (dst); \ mp_srcptr __src = (src); \ mp_limb_t __x; \ __x = *__src++; \ if (__n != 0) \ { \ do \ { \ *__dst++ = __x; \ __x = *__src++; \ } \ while (--__n); \ } \ *__dst++ = __x; \ } \ } while (0) #endif #if defined (_CRAY) #define MPN_COPY_DECR(dst, src, n) \ do { \ int __i; /* Faster on some Crays with plain int */ \ _Pragma ("_CRI ivdep"); \ for (__i = (n) - 1; __i >= 0; __i--) \ (dst)[__i] = (src)[__i]; \ } while (0) #endif /* used by test programs, hence __GMP_DECLSPEC */ #ifndef mpn_copyd /* if not done with cpuvec in a fat binary */ #define mpn_copyd __MPN(copyd) __GMP_DECLSPEC void mpn_copyd __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t)); #endif #if ! defined (MPN_COPY_DECR) && HAVE_NATIVE_mpn_copyd #define MPN_COPY_DECR(dst, src, size) \ do { \ ASSERT ((size) >= 0); \ ASSERT (MPN_SAME_OR_DECR_P (dst, src, size)); \ mpn_copyd (dst, src, size); \ } while (0) #endif /* Copy N limbs from SRC to DST decrementing, N==0 allowed. */ #if ! defined (MPN_COPY_DECR) #define MPN_COPY_DECR(dst, src, n) \ do { \ ASSERT ((n) >= 0); \ ASSERT (MPN_SAME_OR_DECR_P (dst, src, n)); \ if ((n) != 0) \ { \ mp_size_t __n = (n) - 1; \ mp_ptr __dst = (dst) + __n; \ mp_srcptr __src = (src) + __n; \ mp_limb_t __x; \ __x = *__src--; \ if (__n != 0) \ { \ do \ { \ *__dst-- = __x; \ __x = *__src--; \ } \ while (--__n); \ } \ *__dst-- = __x; \ } \ } while (0) #endif #ifndef MPN_COPY #define MPN_COPY(d,s,n) \ do { \ ASSERT (MPN_SAME_OR_SEPARATE_P (d, s, n)); \ MPN_COPY_INCR (d, s, n); \ } while (0) #endif /* Set {dst,size} to the limbs of {src,size} in reverse order. */ #define MPN_REVERSE(dst, src, size) \ do { \ mp_ptr __dst = (dst); \ mp_size_t __size = (size); \ mp_srcptr __src = (src) + __size - 1; \ mp_size_t __i; \ ASSERT ((size) >= 0); \ ASSERT (! MPN_OVERLAP_P (dst, size, src, size)); \ CRAY_Pragma ("_CRI ivdep"); \ for (__i = 0; __i < __size; __i++) \ { \ *__dst = *__src; \ __dst++; \ __src--; \ } \ } while (0) /* Zero n limbs at dst. For power and powerpc we want an inline stu/bdnz loop for zeroing. On ppc630 for instance this is optimal since it can sustain only 1 store per cycle. gcc 2.95.x (for powerpc64 -maix64, or powerpc32) doesn't recognise the "for" loop in the generic code below can become stu/bdnz. The do/while here helps it get to that. The same caveat about plain -mpowerpc64 mode applies here as to __GMPN_COPY_INCR in gmp.h. xlc 3.1 already generates stu/bdnz from the generic C, and does so from this loop too. Enhancement: GLIBC does some trickery with dcbz to zero whole cache lines at a time. MPN_ZERO isn't all that important in GMP, so it might be more trouble than it's worth to do the same, though perhaps a call to memset would be good when on a GNU system. */ #if HAVE_HOST_CPU_FAMILY_power || HAVE_HOST_CPU_FAMILY_powerpc #define MPN_ZERO(dst, n) \ do { \ ASSERT ((n) >= 0); \ if ((n) != 0) \ { \ mp_ptr __dst = (dst) - 1; \ mp_size_t __n = (n); \ do \ *++__dst = 0; \ while (--__n); \ } \ } while (0) #endif #ifndef MPN_ZERO #define MPN_ZERO(dst, n) \ do { \ ASSERT ((n) >= 0); \ if ((n) != 0) \ { \ mp_ptr __dst = (dst); \ mp_size_t __n = (n); \ do \ *__dst++ = 0; \ while (--__n); \ } \ } while (0) #endif /* On the x86s repe/scasl doesn't seem useful, since it takes many cycles to start up and would need to strip a lot of zeros before it'd be faster than a simple cmpl loop. Here are some times in cycles for std/repe/scasl/cld and cld/repe/scasl (the latter would be for stripping low zeros). std cld P5 18 16 P6 46 38 K6 36 13 K7 21 20 */ #ifndef MPN_NORMALIZE #define MPN_NORMALIZE(DST, NLIMBS) \ do { \ while ((NLIMBS) > 0) \ { \ if ((DST)[(NLIMBS) - 1] != 0) \ break; \ (NLIMBS)--; \ } \ } while (0) #endif #ifndef MPN_NORMALIZE_NOT_ZERO #define MPN_NORMALIZE_NOT_ZERO(DST, NLIMBS) \ do { \ ASSERT ((NLIMBS) >= 1); \ while (1) \ { \ if ((DST)[(NLIMBS) - 1] != 0) \ break; \ (NLIMBS)--; \ } \ } while (0) #endif /* Strip least significant zero limbs from {ptr,size} by incrementing ptr and decrementing size. low should be ptr[0], and will be the new ptr[0] on returning. The number in {ptr,size} must be non-zero, ie. size!=0 and somewhere a non-zero limb. */ #define MPN_STRIP_LOW_ZEROS_NOT_ZERO(ptr, size, low) \ do { \ ASSERT ((size) >= 1); \ ASSERT ((low) == (ptr)[0]); \ \ while ((low) == 0) \ { \ (size)--; \ ASSERT ((size) >= 1); \ (ptr)++; \ (low) = *(ptr); \ } \ } while (0) /* Initialize X of type mpz_t with space for NLIMBS limbs. X should be a temporary variable; it will be automatically cleared out at function return. We use __x here to make it possible to accept both mpz_ptr and mpz_t arguments. */ #define MPZ_TMP_INIT(X, NLIMBS) \ do { \ mpz_ptr __x = (X); \ ASSERT ((NLIMBS) >= 1); \ __x->_mp_alloc = (NLIMBS); \ __x->_mp_d = (mp_ptr) TMP_ALLOC ((NLIMBS) * BYTES_PER_MP_LIMB); \ } while (0) /* Realloc for an mpz_t WHAT if it has less than NEEDED limbs. */ #define MPZ_REALLOC(z,n) (UNLIKELY ((n) > ALLOC(z)) \ ? (mp_ptr) _mpz_realloc(z,n) \ : PTR(z)) #define MPZ_EQUAL_1_P(z) (SIZ(z)==1 && PTR(z)[0] == 1) /* MPN_FIB2_SIZE(n) is the size in limbs required by mpn_fib2_ui for fp and f1p. From Knuth vol 1 section 1.2.8, F[n] = phi^n/sqrt(5) rounded to the nearest integer, where phi=(1+sqrt(5))/2 is the golden ratio. So the number of bits required is n*log_2((1+sqrt(5))/2) = n*0.6942419. The multiplier used is 23/32=0.71875 for efficient calculation on CPUs without good floating point. There's +2 for rounding up, and a further +2 since at the last step x limbs are doubled into a 2x+1 limb region whereas the actual F[2k] value might be only 2x-1 limbs. Note that a division is done first, since on a 32-bit system it's at least conceivable to go right up to n==ULONG_MAX. (F[2^32-1] would be about 380Mbytes, plus temporary workspace of about 1.2Gbytes here and whatever a multiply of two 190Mbyte numbers takes.) Enhancement: When GMP_NUMB_BITS is not a power of 2 the division could be worked into the multiplier. */ #define MPN_FIB2_SIZE(n) \ ((mp_size_t) ((n) / 32 * 23 / GMP_NUMB_BITS) + 4) /* FIB_TABLE(n) returns the Fibonacci number F[n]. Must have n in the range -1 <= n <= FIB_TABLE_LIMIT (that constant in fib_table.h). FIB_TABLE_LUCNUM_LIMIT (in fib_table.h) is the largest n for which L[n] = F[n] + 2*F[n-1] fits in a limb. */ __GMP_DECLSPEC extern const mp_limb_t __gmp_fib_table[]; #define FIB_TABLE(n) (__gmp_fib_table[(n)+1]) /* For a threshold between algorithms A and B, size>=thresh is where B should be used. Special value MP_SIZE_T_MAX means only ever use A, or value 0 means only ever use B. The tests for these special values will be compile-time constants, so the compiler should be able to eliminate the code for the unwanted algorithm. */ #define ABOVE_THRESHOLD(size,thresh) \ ((thresh) == 0 \ || ((thresh) != MP_SIZE_T_MAX \ && (size) >= (thresh))) #define BELOW_THRESHOLD(size,thresh) (! ABOVE_THRESHOLD (size, thresh)) /* Usage: int use_foo = BELOW_THRESHOLD (size, FOO_THRESHOLD); ... if (CACHED_BELOW_THRESHOLD (use_foo, size, FOO_THRESHOLD)) When "use_foo" is a constant (thresh is 0 or MP_SIZE_T), gcc prior to version 3.3 doesn't optimize away a test "if (use_foo)" when within a loop. CACHED_BELOW_THRESHOLD helps it do so. */ #define CACHED_ABOVE_THRESHOLD(cache, thresh) \ ((thresh) == 0 || (thresh) == MP_SIZE_T_MAX \ ? ABOVE_THRESHOLD (0, thresh) \ : (cache)) #define CACHED_BELOW_THRESHOLD(cache, thresh) \ ((thresh) == 0 || (thresh) == MP_SIZE_T_MAX \ ? BELOW_THRESHOLD (0, thresh) \ : (cache)) /* If MUL_KARATSUBA_THRESHOLD is not already defined, define it to a value which is good on most machines. */ #ifndef MUL_KARATSUBA_THRESHOLD #define MUL_KARATSUBA_THRESHOLD 32 #endif /* If MUL_TOOM3_THRESHOLD is not already defined, define it to a value which is good on most machines. */ #ifndef MUL_TOOM3_THRESHOLD #define MUL_TOOM3_THRESHOLD 128 #endif #ifndef MUL_TOOM44_THRESHOLD #define MUL_TOOM44_THRESHOLD 500 #endif /* Source compatibility while source is in flux. */ #define MUL_TOOM22_THRESHOLD MUL_KARATSUBA_THRESHOLD #define MUL_TOOM33_THRESHOLD MUL_TOOM3_THRESHOLD #define SQR_TOOM2_THRESHOLD SQR_KARATSUBA_THRESHOLD /* MUL_KARATSUBA_THRESHOLD_LIMIT is the maximum for MUL_KARATSUBA_THRESHOLD. In a normal build MUL_KARATSUBA_THRESHOLD is a constant and we use that. In a fat binary or tune program build MUL_KARATSUBA_THRESHOLD is a variable and a separate hard limit will have been defined. Similarly for TOOM3. */ #ifndef MUL_KARATSUBA_THRESHOLD_LIMIT #define MUL_KARATSUBA_THRESHOLD_LIMIT MUL_KARATSUBA_THRESHOLD #endif #ifndef MUL_TOOM3_THRESHOLD_LIMIT #define MUL_TOOM3_THRESHOLD_LIMIT MUL_TOOM3_THRESHOLD #endif #ifndef MULLOW_BASECASE_THRESHOLD_LIMIT #define MULLOW_BASECASE_THRESHOLD_LIMIT MULLOW_BASECASE_THRESHOLD #endif /* SQR_BASECASE_THRESHOLD is where mpn_sqr_basecase should take over from mpn_mul_basecase in mpn_sqr_n. Default is to use mpn_sqr_basecase always. (Note that we certainly always want it if there's a native assembler mpn_sqr_basecase.) If it turns out that mpn_kara_sqr_n becomes faster than mpn_mul_basecase before mpn_sqr_basecase does, then SQR_BASECASE_THRESHOLD is the karatsuba threshold and SQR_KARATSUBA_THRESHOLD is 0. This oddity arises more or less because SQR_KARATSUBA_THRESHOLD represents the size up to which mpn_sqr_basecase should be used, and that may be never. */ #ifndef SQR_BASECASE_THRESHOLD #define SQR_BASECASE_THRESHOLD 0 #endif #ifndef SQR_KARATSUBA_THRESHOLD #define SQR_KARATSUBA_THRESHOLD (2*MUL_KARATSUBA_THRESHOLD) #endif #ifndef SQR_TOOM3_THRESHOLD #define SQR_TOOM3_THRESHOLD 128 #endif #ifndef SQR_TOOM4_THRESHOLD #define SQR_TOOM4_THRESHOLD 500 #endif /* See comments above about MUL_TOOM3_THRESHOLD_LIMIT. */ #ifndef SQR_TOOM3_THRESHOLD_LIMIT #define SQR_TOOM3_THRESHOLD_LIMIT SQR_TOOM3_THRESHOLD #endif #ifndef DC_DIV_QR_THRESHOLD #define DC_DIV_QR_THRESHOLD 43 #endif #ifndef DC_DIVAPPR_Q_THRESHOLD #define DC_DIVAPPR_Q_THRESHOLD 208 #endif #ifndef DC_DIV_Q_THRESHOLD #define DC_DIV_Q_THRESHOLD 228 #endif #ifndef DC_BDIV_QR_THRESHOLD #define DC_BDIV_QR_THRESHOLD 52 #endif #ifndef DC_BDIV_Q_THRESHOLD #define DC_BDIV_Q_THRESHOLD 224 #endif #ifndef DIVEXACT_JEB_THRESHOLD #define DIVEXACT_JEB_THRESHOLD 25 #endif #ifndef INV_NEWTON_THRESHOLD #define INV_NEWTON_THRESHOLD 654 #endif #ifndef BINV_NEWTON_THRESHOLD #define BINV_NEWTON_THRESHOLD 807 #endif #ifndef MU_DIVAPPR_Q_THRESHOLD #define MU_DIVAPPR_Q_THRESHOLD 4000 #endif #ifndef MU_DIV_Q_THRESHOLD #define MU_DIV_Q_THRESHOLD 4000 #endif #ifndef MU_BDIV_Q_THRESHOLD #define MU_BDIV_Q_THRESHOLD 2000 #endif /* First k to use for an FFT modF multiply. A modF FFT is an order log(2^k)/log(2^(k-1)) algorithm, so k=3 is merely 1.5 like karatsuba, whereas k=4 is 1.33 which is faster than toom3 at 1.485. */ #define FFT_FIRST_K 4 /* Threshold at which FFT should be used to do a modF NxN -> N multiply. */ #ifndef MUL_FFT_MODF_THRESHOLD #define MUL_FFT_MODF_THRESHOLD (MUL_TOOM3_THRESHOLD * 3) #endif #ifndef SQR_FFT_MODF_THRESHOLD #define SQR_FFT_MODF_THRESHOLD (SQR_TOOM3_THRESHOLD * 3) #endif /* Threshold at which FFT should be used to do an NxN -> 2N multiply. This will be a size where FFT is using k=7 or k=8, since an FFT-k used for an NxN->2N multiply and not recursing into itself is an order log(2^k)/log(2^(k-2)) algorithm, so it'll be at least k=7 at 1.39 which is the first better than toom3. */ #ifndef MUL_FFT_THRESHOLD #define MUL_FFT_THRESHOLD (MUL_FFT_MODF_THRESHOLD * 10) #endif #ifndef SQR_FFT_THRESHOLD #define SQR_FFT_THRESHOLD (SQR_FFT_MODF_THRESHOLD * 10) #endif /* Table of thresholds for successive modF FFT "k"s. The first entry is where FFT_FIRST_K+1 should be used, the second FFT_FIRST_K+2, etc. See mpn_fft_best_k(). */ #ifndef MUL_FFT_TABLE #define MUL_FFT_TABLE \ { MUL_TOOM3_THRESHOLD * 4, /* k=5 */ \ MUL_TOOM3_THRESHOLD * 8, /* k=6 */ \ MUL_TOOM3_THRESHOLD * 16, /* k=7 */ \ MUL_TOOM3_THRESHOLD * 32, /* k=8 */ \ MUL_TOOM3_THRESHOLD * 96, /* k=9 */ \ MUL_TOOM3_THRESHOLD * 288, /* k=10 */ \ 0 } #endif #ifndef SQR_FFT_TABLE #define SQR_FFT_TABLE \ { SQR_TOOM3_THRESHOLD * 4, /* k=5 */ \ SQR_TOOM3_THRESHOLD * 8, /* k=6 */ \ SQR_TOOM3_THRESHOLD * 16, /* k=7 */ \ SQR_TOOM3_THRESHOLD * 32, /* k=8 */ \ SQR_TOOM3_THRESHOLD * 96, /* k=9 */ \ SQR_TOOM3_THRESHOLD * 288, /* k=10 */ \ 0 } #endif #ifndef FFT_TABLE_ATTRS #define FFT_TABLE_ATTRS static const #endif #define MPN_FFT_TABLE_SIZE 16 /* mpn_dc_divrem_n(n) calls 2*mul(n/2)+2*div(n/2), thus to be faster than div(n) = 4*div(n/2), we need mul(n/2) to be faster than the classic way, i.e. n/2 >= MUL_KARATSUBA_THRESHOLD Measured values are between 2 and 4 times MUL_KARATSUBA_THRESHOLD, so go for 3 as an average. */ #ifndef DIV_DC_THRESHOLD #define DIV_DC_THRESHOLD (3 * MUL_KARATSUBA_THRESHOLD) #endif #ifndef GET_STR_DC_THRESHOLD #define GET_STR_DC_THRESHOLD 18 #endif #ifndef GET_STR_PRECOMPUTE_THRESHOLD #define GET_STR_PRECOMPUTE_THRESHOLD 35 #endif #ifndef SET_STR_DC_THRESHOLD #define SET_STR_DC_THRESHOLD 750 #endif #ifndef SET_STR_PRECOMPUTE_THRESHOLD #define SET_STR_PRECOMPUTE_THRESHOLD 2000 #endif /* Return non-zero if xp,xsize and yp,ysize overlap. If xp+xsize<=yp there's no overlap, or if yp+ysize<=xp there's no overlap. If both these are false, there's an overlap. */ #define MPN_OVERLAP_P(xp, xsize, yp, ysize) \ ((xp) + (xsize) > (yp) && (yp) + (ysize) > (xp)) #define MEM_OVERLAP_P(xp, xsize, yp, ysize) \ ( (char *) (xp) + (xsize) > (char *) (yp) \ && (char *) (yp) + (ysize) > (char *) (xp)) /* Return non-zero if xp,xsize and yp,ysize are either identical or not overlapping. Return zero if they're partially overlapping. */ #define MPN_SAME_OR_SEPARATE_P(xp, yp, size) \ MPN_SAME_OR_SEPARATE2_P(xp, size, yp, size) #define MPN_SAME_OR_SEPARATE2_P(xp, xsize, yp, ysize) \ ((xp) == (yp) || ! MPN_OVERLAP_P (xp, xsize, yp, ysize)) /* Return non-zero if dst,dsize and src,ssize are either identical or overlapping in a way suitable for an incrementing/decrementing algorithm. Return zero if they're partially overlapping in an unsuitable fashion. */ #define MPN_SAME_OR_INCR2_P(dst, dsize, src, ssize) \ ((dst) <= (src) || ! MPN_OVERLAP_P (dst, dsize, src, ssize)) #define MPN_SAME_OR_INCR_P(dst, src, size) \ MPN_SAME_OR_INCR2_P(dst, size, src, size) #define MPN_SAME_OR_DECR2_P(dst, dsize, src, ssize) \ ((dst) >= (src) || ! MPN_OVERLAP_P (dst, dsize, src, ssize)) #define MPN_SAME_OR_DECR_P(dst, src, size) \ MPN_SAME_OR_DECR2_P(dst, size, src, size) /* ASSERT() is a private assertion checking scheme, similar to . ASSERT() does the check only if WANT_ASSERT is selected, ASSERT_ALWAYS() does it always. Generally assertions are meant for development, but might help when looking for a problem later too. Note that strings shouldn't be used within the ASSERT expression, eg. ASSERT(strcmp(s,"notgood")!=0), since the quotes upset the "expr" used in the !HAVE_STRINGIZE case (ie. K&R). */ #ifdef __LINE__ #define ASSERT_LINE __LINE__ #else #define ASSERT_LINE -1 #endif #ifdef __FILE__ #define ASSERT_FILE __FILE__ #else #define ASSERT_FILE "" #endif void __gmp_assert_header __GMP_PROTO ((const char *, int)); __GMP_DECLSPEC void __gmp_assert_fail __GMP_PROTO ((const char *, int, const char *)) ATTRIBUTE_NORETURN; #if HAVE_STRINGIZE #define ASSERT_FAIL(expr) __gmp_assert_fail (ASSERT_FILE, ASSERT_LINE, #expr) #else #define ASSERT_FAIL(expr) __gmp_assert_fail (ASSERT_FILE, ASSERT_LINE, "expr") #endif #define ASSERT_ALWAYS(expr) \ do { \ if (!(expr)) \ ASSERT_FAIL (expr); \ } while (0) #if WANT_ASSERT #define ASSERT(expr) ASSERT_ALWAYS (expr) #else #define ASSERT(expr) do {} while (0) #endif /* ASSERT_CARRY checks the expression is non-zero, and ASSERT_NOCARRY checks that it's zero. In both cases if assertion checking is disabled the expression is still evaluated. These macros are meant for use with routines like mpn_add_n() where the return value represents a carry or whatever that should or shouldn't occur in some context. For example, ASSERT_NOCARRY (mpn_add_n (rp, s1p, s2p, size)); */ #if WANT_ASSERT #define ASSERT_CARRY(expr) ASSERT_ALWAYS ((expr) != 0) #define ASSERT_NOCARRY(expr) ASSERT_ALWAYS ((expr) == 0) #else #define ASSERT_CARRY(expr) (expr) #define ASSERT_NOCARRY(expr) (expr) #endif /* ASSERT_CODE includes code when assertion checking is wanted. This is the same as writing "#if WANT_ASSERT", but more compact. */ #if WANT_ASSERT #define ASSERT_CODE(expr) expr #else #define ASSERT_CODE(expr) #endif /* Test that an mpq_t is in fully canonical form. This can be used as protection on routines like mpq_equal which give wrong results on non-canonical inputs. */ #if WANT_ASSERT #define ASSERT_MPQ_CANONICAL(q) \ do { \ ASSERT (q->_mp_den._mp_size > 0); \ if (q->_mp_num._mp_size == 0) \ { \ /* zero should be 0/1 */ \ ASSERT (mpz_cmp_ui (mpq_denref(q), 1L) == 0); \ } \ else \ { \ /* no common factors */ \ mpz_t __g; \ mpz_init (__g); \ mpz_gcd (__g, mpq_numref(q), mpq_denref(q)); \ ASSERT (mpz_cmp_ui (__g, 1) == 0); \ mpz_clear (__g); \ } \ } while (0) #else #define ASSERT_MPQ_CANONICAL(q) do {} while (0) #endif /* Check that the nail parts are zero. */ #define ASSERT_ALWAYS_LIMB(limb) \ do { \ mp_limb_t __nail = (limb) & GMP_NAIL_MASK; \ ASSERT_ALWAYS (__nail == 0); \ } while (0) #define ASSERT_ALWAYS_MPN(ptr, size) \ do { \ /* let whole loop go dead when no nails */ \ if (GMP_NAIL_BITS != 0) \ { \ mp_size_t __i; \ for (__i = 0; __i < (size); __i++) \ ASSERT_ALWAYS_LIMB ((ptr)[__i]); \ } \ } while (0) #if WANT_ASSERT #define ASSERT_LIMB(limb) ASSERT_ALWAYS_LIMB (limb) #define ASSERT_MPN(ptr, size) ASSERT_ALWAYS_MPN (ptr, size) #else #define ASSERT_LIMB(limb) do {} while (0) #define ASSERT_MPN(ptr, size) do {} while (0) #endif /* Assert that an mpn region {ptr,size} is zero, or non-zero. size==0 is allowed, and in that case {ptr,size} considered to be zero. */ #if WANT_ASSERT #define ASSERT_MPN_ZERO_P(ptr,size) \ do { \ mp_size_t __i; \ ASSERT ((size) >= 0); \ for (__i = 0; __i < (size); __i++) \ ASSERT ((ptr)[__i] == 0); \ } while (0) #define ASSERT_MPN_NONZERO_P(ptr,size) \ do { \ mp_size_t __i; \ int __nonzero = 0; \ ASSERT ((size) >= 0); \ for (__i = 0; __i < (size); __i++) \ if ((ptr)[__i] != 0) \ { \ __nonzero = 1; \ break; \ } \ ASSERT (__nonzero); \ } while (0) #else #define ASSERT_MPN_ZERO_P(ptr,size) do {} while (0) #define ASSERT_MPN_NONZERO_P(ptr,size) do {} while (0) #endif #if HAVE_NATIVE_mpn_com_n #define mpn_com_n __MPN(com_n) void mpn_com_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t)); #else #define mpn_com_n(d,s,n) \ do { \ mp_ptr __d = (d); \ mp_srcptr __s = (s); \ mp_size_t __n = (n); \ ASSERT (__n >= 1); \ ASSERT (MPN_SAME_OR_SEPARATE_P (__d, __s, __n)); \ do \ *__d++ = (~ *__s++) & GMP_NUMB_MASK; \ while (--__n); \ } while (0) #endif #define MPN_LOGOPS_N_INLINE(d, s1, s2, n, operation) \ do { \ mp_ptr __d = (d); \ mp_srcptr __s1 = (s1); \ mp_srcptr __s2 = (s2); \ mp_size_t __n = (n); \ ASSERT (__n >= 1); \ ASSERT (MPN_SAME_OR_SEPARATE_P (__d, __s1, __n)); \ ASSERT (MPN_SAME_OR_SEPARATE_P (__d, __s2, __n)); \ do \ operation; \ while (--__n); \ } while (0) #if HAVE_NATIVE_mpn_and_n #define mpn_and_n __MPN(and_n) void mpn_and_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); #else #define mpn_and_n(d, s1, s2, n) \ MPN_LOGOPS_N_INLINE (d, s1, s2, n, *__d++ = *__s1++ & *__s2++) #endif #if HAVE_NATIVE_mpn_andn_n #define mpn_andn_n __MPN(andn_n) void mpn_andn_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); #else #define mpn_andn_n(d, s1, s2, n) \ MPN_LOGOPS_N_INLINE (d, s1, s2, n, *__d++ = *__s1++ & ~*__s2++) #endif #if HAVE_NATIVE_mpn_nand_n #define mpn_nand_n __MPN(nand_n) void mpn_nand_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); #else #define mpn_nand_n(d, s1, s2, n) \ MPN_LOGOPS_N_INLINE (d, s1, s2, n, *__d++ = ~(*__s1++ & *__s2++) & GMP_NUMB_MASK) #endif #if HAVE_NATIVE_mpn_ior_n #define mpn_ior_n __MPN(ior_n) void mpn_ior_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); #else #define mpn_ior_n(d, s1, s2, n) \ MPN_LOGOPS_N_INLINE (d, s1, s2, n, *__d++ = *__s1++ | *__s2++) #endif #if HAVE_NATIVE_mpn_iorn_n #define mpn_iorn_n __MPN(iorn_n) void mpn_iorn_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); #else #define mpn_iorn_n(d, s1, s2, n) \ MPN_LOGOPS_N_INLINE (d, s1, s2, n, *__d++ = (*__s1++ | ~*__s2++) & GMP_NUMB_MASK) #endif #if HAVE_NATIVE_mpn_nior_n #define mpn_nior_n __MPN(nior_n) void mpn_nior_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); #else #define mpn_nior_n(d, s1, s2, n) \ MPN_LOGOPS_N_INLINE (d, s1, s2, n, *__d++ = ~(*__s1++ | *__s2++) & GMP_NUMB_MASK) #endif #if HAVE_NATIVE_mpn_xor_n #define mpn_xor_n __MPN(xor_n) void mpn_xor_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); #else #define mpn_xor_n(d, s1, s2, n) \ MPN_LOGOPS_N_INLINE (d, s1, s2, n, *__d++ = *__s1++ ^ *__s2++) #endif #if HAVE_NATIVE_mpn_xnor_n #define mpn_xnor_n __MPN(xnor_n) void mpn_xnor_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); #else #define mpn_xnor_n(d, s1, s2, n) \ MPN_LOGOPS_N_INLINE (d, s1, s2, n, *__d++ = ~(*__s1++ ^ *__s2++) & GMP_NUMB_MASK) #endif /* ADDC_LIMB sets w=x+y and cout to 0 or 1 for a carry from that addition. */ #if GMP_NAIL_BITS == 0 #define ADDC_LIMB(cout, w, x, y) \ do { \ mp_limb_t __x = (x); \ mp_limb_t __y = (y); \ mp_limb_t __w = __x + __y; \ (w) = __w; \ (cout) = __w < __x; \ } while (0) #else #define ADDC_LIMB(cout, w, x, y) \ do { \ mp_limb_t __w; \ ASSERT_LIMB (x); \ ASSERT_LIMB (y); \ __w = (x) + (y); \ (w) = __w & GMP_NUMB_MASK; \ (cout) = __w >> GMP_NUMB_BITS; \ } while (0) #endif /* SUBC_LIMB sets w=x-y and cout to 0 or 1 for a borrow from that subtract. */ #if GMP_NAIL_BITS == 0 #define SUBC_LIMB(cout, w, x, y) \ do { \ mp_limb_t __x = (x); \ mp_limb_t __y = (y); \ mp_limb_t __w = __x - __y; \ (w) = __w; \ (cout) = __w > __x; \ } while (0) #else #define SUBC_LIMB(cout, w, x, y) \ do { \ mp_limb_t __w = (x) - (y); \ (w) = __w & GMP_NUMB_MASK; \ (cout) = __w >> (GMP_LIMB_BITS-1); \ } while (0) #endif /* MPN_INCR_U does {ptr,size} += n, MPN_DECR_U does {ptr,size} -= n, both expecting no carry (or borrow) from that. The size parameter is only for the benefit of assertion checking. In a normal build it's unused and the carry/borrow is just propagated as far as it needs to go. On random data, usually only one or two limbs of {ptr,size} get updated, so there's no need for any sophisticated looping, just something compact and sensible. FIXME: Switch all code from mpn_{incr,decr}_u to MPN_{INCR,DECR}_U, declaring their operand sizes, then remove the former. This is purely for the benefit of assertion checking. */ #if defined (__GNUC__) && HAVE_HOST_CPU_FAMILY_x86 && GMP_NAIL_BITS == 0 \ && BITS_PER_MP_LIMB == 32 && ! defined (NO_ASM) && ! WANT_ASSERT /* Better flags handling than the generic C gives on i386, saving a few bytes of code and maybe a cycle or two. */ #define MPN_IORD_U(ptr, incr, aors) \ do { \ mp_ptr __ptr_dummy; \ if (__builtin_constant_p (incr) && (incr) == 1) \ { \ __asm__ __volatile__ \ ("\n" ASM_L(top) ":\n" \ "\t" aors " $1, (%0)\n" \ "\tleal 4(%0),%0\n" \ "\tjc " ASM_L(top) \ : "=r" (__ptr_dummy) \ : "0" (ptr) \ : "memory"); \ } \ else \ { \ __asm__ __volatile__ \ ( aors " %2,(%0)\n" \ "\tjnc " ASM_L(done) "\n" \ ASM_L(top) ":\n" \ "\t" aors " $1,4(%0)\n" \ "\tleal 4(%0),%0\n" \ "\tjc " ASM_L(top) "\n" \ ASM_L(done) ":\n" \ : "=r" (__ptr_dummy) \ : "0" (ptr), \ "ri" (incr) \ : "memory"); \ } \ } while (0) #define MPN_INCR_U(ptr, size, incr) MPN_IORD_U (ptr, incr, "addl") #define MPN_DECR_U(ptr, size, incr) MPN_IORD_U (ptr, incr, "subl") #define mpn_incr_u(ptr, incr) MPN_INCR_U (ptr, 0, incr) #define mpn_decr_u(ptr, incr) MPN_DECR_U (ptr, 0, incr) #endif #if GMP_NAIL_BITS == 0 #ifndef mpn_incr_u #define mpn_incr_u(p,incr) \ do { \ mp_limb_t __x; \ mp_ptr __p = (p); \ if (__builtin_constant_p (incr) && (incr) == 1) \ { \ while (++(*(__p++)) == 0) \ ; \ } \ else \ { \ __x = *__p + (incr); \ *__p = __x; \ if (__x < (incr)) \ while (++(*(++__p)) == 0) \ ; \ } \ } while (0) #endif #ifndef mpn_decr_u #define mpn_decr_u(p,incr) \ do { \ mp_limb_t __x; \ mp_ptr __p = (p); \ if (__builtin_constant_p (incr) && (incr) == 1) \ { \ while ((*(__p++))-- == 0) \ ; \ } \ else \ { \ __x = *__p; \ *__p = __x - (incr); \ if (__x < (incr)) \ while ((*(++__p))-- == 0) \ ; \ } \ } while (0) #endif #endif #if GMP_NAIL_BITS >= 1 #ifndef mpn_incr_u #define mpn_incr_u(p,incr) \ do { \ mp_limb_t __x; \ mp_ptr __p = (p); \ if (__builtin_constant_p (incr) && (incr) == 1) \ { \ do \ { \ __x = (*__p + 1) & GMP_NUMB_MASK; \ *__p++ = __x; \ } \ while (__x == 0); \ } \ else \ { \ __x = (*__p + (incr)); \ *__p++ = __x & GMP_NUMB_MASK; \ if (__x >> GMP_NUMB_BITS != 0) \ { \ do \ { \ __x = (*__p + 1) & GMP_NUMB_MASK; \ *__p++ = __x; \ } \ while (__x == 0); \ } \ } \ } while (0) #endif #ifndef mpn_decr_u #define mpn_decr_u(p,incr) \ do { \ mp_limb_t __x; \ mp_ptr __p = (p); \ if (__builtin_constant_p (incr) && (incr) == 1) \ { \ do \ { \ __x = *__p; \ *__p++ = (__x - 1) & GMP_NUMB_MASK; \ } \ while (__x == 0); \ } \ else \ { \ __x = *__p - (incr); \ *__p++ = __x & GMP_NUMB_MASK; \ if (__x >> GMP_NUMB_BITS != 0) \ { \ do \ { \ __x = *__p; \ *__p++ = (__x - 1) & GMP_NUMB_MASK; \ } \ while (__x == 0); \ } \ } \ } while (0) #endif #endif #ifndef MPN_INCR_U #if WANT_ASSERT #define MPN_INCR_U(ptr, size, n) \ do { \ ASSERT ((size) >= 1); \ ASSERT_NOCARRY (mpn_add_1 (ptr, ptr, size, n)); \ } while (0) #else #define MPN_INCR_U(ptr, size, n) mpn_incr_u (ptr, n) #endif #endif #ifndef MPN_DECR_U #if WANT_ASSERT #define MPN_DECR_U(ptr, size, n) \ do { \ ASSERT ((size) >= 1); \ ASSERT_NOCARRY (mpn_sub_1 (ptr, ptr, size, n)); \ } while (0) #else #define MPN_DECR_U(ptr, size, n) mpn_decr_u (ptr, n) #endif #endif /* Structure for conversion between internal binary format and strings in base 2..36. */ struct bases { /* Number of digits in the conversion base that always fits in an mp_limb_t. For example, for base 10 on a machine where a mp_limb_t has 32 bits this is 9, since 10**9 is the largest number that fits into a mp_limb_t. */ int chars_per_limb; /* log(2)/log(conversion_base) */ double chars_per_bit_exactly; /* base**chars_per_limb, i.e. the biggest number that fits a word, built by factors of base. Exception: For 2, 4, 8, etc, big_base is log2(base), i.e. the number of bits used to represent each digit in the base. */ mp_limb_t big_base; /* A BITS_PER_MP_LIMB bit approximation to 1/big_base, represented as a fixed-point number. Instead of dividing by big_base an application can choose to multiply by big_base_inverted. */ mp_limb_t big_base_inverted; }; #define mp_bases __MPN(bases) #define __mp_bases __MPN(bases) __GMP_DECLSPEC extern const struct bases mp_bases[257]; /* For power of 2 bases this is exact. For other bases the result is either exact or one too big. To be exact always it'd be necessary to examine all the limbs of the operand, since numbers like 100..000 and 99...999 generally differ only in the lowest limb. It'd be possible to examine just a couple of high limbs to increase the probability of being exact, but that doesn't seem worth bothering with. */ #define MPN_SIZEINBASE(result, ptr, size, base) \ do { \ int __lb_base, __cnt; \ size_t __totbits; \ \ ASSERT ((size) >= 0); \ ASSERT ((base) >= 2); \ ASSERT ((base) < numberof (mp_bases)); \ \ /* Special case for X == 0. */ \ if ((size) == 0) \ (result) = 1; \ else \ { \ /* Calculate the total number of significant bits of X. */ \ count_leading_zeros (__cnt, (ptr)[(size)-1]); \ __totbits = (size_t) (size) * GMP_NUMB_BITS - (__cnt - GMP_NAIL_BITS);\ \ if (POW2_P (base)) \ { \ __lb_base = mp_bases[base].big_base; \ (result) = (__totbits + __lb_base - 1) / __lb_base; \ } \ else \ (result) = (size_t) \ (__totbits * mp_bases[base].chars_per_bit_exactly) + 1; \ } \ } while (0) /* eliminate mp_bases lookups for base==16 */ #define MPN_SIZEINBASE_16(result, ptr, size) \ do { \ int __cnt; \ mp_size_t __totbits; \ \ ASSERT ((size) >= 0); \ \ /* Special case for X == 0. */ \ if ((size) == 0) \ (result) = 1; \ else \ { \ /* Calculate the total number of significant bits of X. */ \ count_leading_zeros (__cnt, (ptr)[(size)-1]); \ __totbits = (size_t) (size) * GMP_NUMB_BITS - (__cnt - GMP_NAIL_BITS);\ (result) = (__totbits + 4 - 1) / 4; \ } \ } while (0) /* bit count to limb count, rounding up */ #define BITS_TO_LIMBS(n) (((n) + (GMP_NUMB_BITS - 1)) / GMP_NUMB_BITS) /* MPN_SET_UI sets an mpn (ptr, cnt) to given ui. MPZ_FAKE_UI creates fake mpz_t from ui. The zp argument must have room for LIMBS_PER_ULONG limbs in both cases (LIMBS_PER_ULONG is also defined here.) */ #if BITS_PER_ULONG <= GMP_NUMB_BITS /* need one limb per ulong */ #define LIMBS_PER_ULONG 1 #define MPN_SET_UI(zp, zn, u) \ (zp)[0] = (u); \ (zn) = ((zp)[0] != 0); #define MPZ_FAKE_UI(z, zp, u) \ (zp)[0] = (u); \ PTR (z) = (zp); \ SIZ (z) = ((zp)[0] != 0); \ ASSERT_CODE (ALLOC (z) = 1); #else /* need two limbs per ulong */ #define LIMBS_PER_ULONG 2 #define MPN_SET_UI(zp, zn, u) \ (zp)[0] = (u) & GMP_NUMB_MASK; \ (zp)[1] = (u) >> GMP_NUMB_BITS; \ (zn) = ((zp)[1] != 0 ? 2 : (zp)[0] != 0 ? 1 : 0); #define MPZ_FAKE_UI(z, zp, u) \ (zp)[0] = (u) & GMP_NUMB_MASK; \ (zp)[1] = (u) >> GMP_NUMB_BITS; \ SIZ (z) = ((zp)[1] != 0 ? 2 : (zp)[0] != 0 ? 1 : 0); \ PTR (z) = (zp); \ ASSERT_CODE (ALLOC (z) = 2); #endif #if HAVE_HOST_CPU_FAMILY_x86 #define TARGET_REGISTER_STARVED 1 #else #define TARGET_REGISTER_STARVED 0 #endif /* LIMB_HIGHBIT_TO_MASK(n) examines the high bit of a limb value and turns 1 or 0 there into a limb 0xFF..FF or 0 respectively. On most CPUs this is just an arithmetic right shift by GMP_LIMB_BITS-1, but C99 doesn't guarantee signed right shifts are arithmetic, so we have a little compile-time test and a fallback to a "? :" form. The latter is necessary for instance on Cray vector systems. Recent versions of gcc (eg. 3.3) will in fact optimize a "? :" like this to an arithmetic right shift anyway, but it's good to get the desired shift on past versions too (in particular since an important use of LIMB_HIGHBIT_TO_MASK is in udiv_qrnnd_preinv). */ #define LIMB_HIGHBIT_TO_MASK(n) \ (((mp_limb_signed_t) -1 >> 1) < 0 \ ? (mp_limb_signed_t) (n) >> (GMP_LIMB_BITS - 1) \ : (n) & GMP_LIMB_HIGHBIT ? MP_LIMB_T_MAX : CNST_LIMB(0)) /* Use a library function for invert_limb, if available. */ #define mpn_invert_limb __MPN(invert_limb) mp_limb_t mpn_invert_limb __GMP_PROTO ((mp_limb_t)) ATTRIBUTE_CONST; #if ! defined (invert_limb) && HAVE_NATIVE_mpn_invert_limb #define invert_limb(invxl,xl) \ do { \ (invxl) = mpn_invert_limb (xl); \ } while (0) #endif #ifndef invert_limb #define invert_limb(invxl,xl) \ do { \ mp_limb_t dummy; \ ASSERT ((xl) != 0); \ udiv_qrnnd (invxl, dummy, ~(xl), ~CNST_LIMB(0), xl); \ } while (0) #endif #ifndef udiv_qrnnd_preinv #define udiv_qrnnd_preinv udiv_qrnnd_preinv3 #endif /* Divide the two-limb number in (NH,,NL) by D, with DI being the largest limb not larger than (2**(2*BITS_PER_MP_LIMB))/D - (2**BITS_PER_MP_LIMB). If this would yield overflow, DI should be the largest possible number (i.e., only ones). For correct operation, the most significant bit of D has to be set. Put the quotient in Q and the remainder in R. */ #define udiv_qrnnd_preinv1(q, r, nh, nl, d, di) \ do { \ mp_limb_t _q, _ql, _r; \ mp_limb_t _xh, _xl; \ ASSERT ((d) != 0); \ umul_ppmm (_q, _ql, (nh), (di)); \ _q += (nh); /* Compensate, di is 2**GMP_LIMB_BITS too small */ \ umul_ppmm (_xh, _xl, _q, (d)); \ sub_ddmmss (_xh, _r, (nh), (nl), _xh, _xl); \ if (_xh != 0) \ { \ sub_ddmmss (_xh, _r, _xh, _r, 0, (d)); \ _q += 1; \ if (_xh != 0) \ { \ _r -= (d); \ _q += 1; \ } \ } \ if (_r >= (d)) \ { \ _r -= (d); \ _q += 1; \ } \ (r) = _r; \ (q) = _q; \ } while (0) /* Like udiv_qrnnd_preinv, but branch-free. */ #define udiv_qrnnd_preinv2(q, r, nh, nl, d, di) \ do { \ mp_limb_t _n2, _n10, _nmask, _nadj, _q1; \ mp_limb_t _xh, _xl; \ _n2 = (nh); \ _n10 = (nl); \ _nmask = LIMB_HIGHBIT_TO_MASK (_n10); \ _nadj = _n10 + (_nmask & (d)); \ umul_ppmm (_xh, _xl, di, _n2 - _nmask); \ add_ssaaaa (_xh, _xl, _xh, _xl, _n2, _nadj); \ _q1 = ~_xh; \ umul_ppmm (_xh, _xl, _q1, d); \ add_ssaaaa (_xh, _xl, _xh, _xl, nh, nl); \ _xh -= (d); /* xh = 0 or -1 */ \ (r) = _xl + ((d) & _xh); \ (q) = _xh - _q1; \ } while (0) /* Like udiv_qrnnd_preinv2, but for for any value D. DNORM is D shifted left so that its most significant bit is set. LGUP is ceil(log2(D)). */ #define udiv_qrnnd_preinv2gen(q, r, nh, nl, d, di, dnorm, lgup) \ do { \ mp_limb_t _n2, _n10, _nmask, _nadj, _q1; \ mp_limb_t _xh, _xl; \ _n2 = ((nh) << (BITS_PER_MP_LIMB - (lgup))) + ((nl) >> 1 >> (l - 1));\ _n10 = (nl) << (BITS_PER_MP_LIMB - (lgup)); \ _nmask = LIMB_HIGHBIT_TO_MASK (_n10); \ _nadj = _n10 + (_nmask & (dnorm)); \ umul_ppmm (_xh, _xl, di, _n2 - _nmask); \ add_ssaaaa (_xh, _xl, _xh, _xl, _n2, _nadj); \ _q1 = ~_xh; \ umul_ppmm (_xh, _xl, _q1, d); \ add_ssaaaa (_xh, _xl, _xh, _xl, nh, nl); \ _xh -= (d); \ (r) = _xl + ((d) & _xh); \ (q) = _xh - _q1; \ } while (0) /* udiv_qrnnd_preinv3 -- Based on work by Niels Möller and Torbjörn Granlund. We write things strangely below, to help gcc. A more straightforward version: _r = (nl) - _qh * (d); _t = _r + (d); if (_r >= _ql) { _qh--; _r = _t; } For one operation shorter critical path, one may want to use this form: _p = _qh * (d) _s = (nl) + (d); _r = (nl) - _p; _t = _s - _p; if (_r >= _ql) { _qh--; _r = _t; } */ #define udiv_qrnnd_preinv3(q, r, nh, nl, d, di) \ do { \ mp_limb_t _qh, _ql, _r; \ umul_ppmm (_qh, _ql, (nh), (di)); \ if (__builtin_constant_p (nl) && (nl) == 0) \ _qh += (nh) + 1; \ else \ add_ssaaaa (_qh, _ql, _qh, _ql, (nh) + 1, (nl)); \ _r = (nl) - _qh * (d); \ if (_r > _ql) /* both > and >= should be OK */ \ { \ _r += (d); \ _qh--; \ } \ if (UNLIKELY (_r >= (d))) \ { \ _r -= (d); \ _qh++; \ } \ (r) = _r; \ (q) = _qh; \ } while (0) /* Compute r = nh*B mod d, where di is the inverse of d. */ #define udiv_rnd_preinv(r, nh, d, di) \ do { \ mp_limb_t _qh, _ql, _r; \ umul_ppmm (_qh, _ql, (nh), (di)); \ _qh += (nh) + 1; \ _r = - _qh * (d); \ if (_r > _ql) \ _r += (d); \ (r) = _r; \ } while (0) #ifndef mpn_preinv_divrem_1 /* if not done with cpuvec in a fat binary */ #define mpn_preinv_divrem_1 __MPN(preinv_divrem_1) mp_limb_t mpn_preinv_divrem_1 __GMP_PROTO ((mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t, int)); #endif /* USE_PREINV_DIVREM_1 is whether to use mpn_preinv_divrem_1, as opposed to the plain mpn_divrem_1. Likewise USE_PREINV_MOD_1 chooses between mpn_preinv_mod_1 and plain mpn_mod_1. The default for both is yes, since the few CISC chips where preinv is not good have defines saying so. */ #ifndef USE_PREINV_DIVREM_1 #define USE_PREINV_DIVREM_1 1 #endif #ifndef USE_PREINV_MOD_1 #define USE_PREINV_MOD_1 1 #endif #if USE_PREINV_DIVREM_1 #define MPN_DIVREM_OR_PREINV_DIVREM_1(qp,xsize,ap,size,d,dinv,shift) \ mpn_preinv_divrem_1 (qp, xsize, ap, size, d, dinv, shift) #else #define MPN_DIVREM_OR_PREINV_DIVREM_1(qp,xsize,ap,size,d,dinv,shift) \ mpn_divrem_1 (qp, xsize, ap, size, d) #endif #if USE_PREINV_MOD_1 #define MPN_MOD_OR_PREINV_MOD_1(src,size,divisor,inverse) \ mpn_preinv_mod_1 (src, size, divisor, inverse) #else #define MPN_MOD_OR_PREINV_MOD_1(src,size,divisor,inverse) \ mpn_mod_1 (src, size, divisor) #endif #ifndef mpn_mod_34lsub1 /* if not done with cpuvec in a fat binary */ #define mpn_mod_34lsub1 __MPN(mod_34lsub1) mp_limb_t mpn_mod_34lsub1 __GMP_PROTO ((mp_srcptr, mp_size_t)) __GMP_ATTRIBUTE_PURE; #endif /* DIVEXACT_1_THRESHOLD is at what size to use mpn_divexact_1, as opposed to plain mpn_divrem_1. Likewise MODEXACT_1_ODD_THRESHOLD for mpn_modexact_1_odd against plain mpn_mod_1. On most CPUs divexact and modexact are faster at all sizes, so the defaults are 0. Those CPUs where this is not right have a tuned threshold. */ #ifndef DIVEXACT_1_THRESHOLD #define DIVEXACT_1_THRESHOLD 0 #endif #ifndef MODEXACT_1_ODD_THRESHOLD #define MODEXACT_1_ODD_THRESHOLD 0 #endif #ifndef mpn_divexact_1 /* if not done with cpuvec in a fat binary */ #define mpn_divexact_1 __MPN(divexact_1) void mpn_divexact_1 __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_limb_t)); #endif #define MPN_DIVREM_OR_DIVEXACT_1(dst, src, size, divisor) \ do { \ if (BELOW_THRESHOLD (size, DIVEXACT_1_THRESHOLD)) \ ASSERT_NOCARRY (mpn_divrem_1 (dst, (mp_size_t) 0, src, size, divisor)); \ else \ { \ ASSERT (mpn_mod_1 (src, size, divisor) == 0); \ mpn_divexact_1 (dst, src, size, divisor); \ } \ } while (0) #ifndef mpn_modexact_1c_odd /* if not done with cpuvec in a fat binary */ #define mpn_modexact_1c_odd __MPN(modexact_1c_odd) mp_limb_t mpn_modexact_1c_odd __GMP_PROTO ((mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t)) __GMP_ATTRIBUTE_PURE; #endif #if HAVE_NATIVE_mpn_modexact_1_odd #define mpn_modexact_1_odd __MPN(modexact_1_odd) mp_limb_t mpn_modexact_1_odd __GMP_PROTO ((mp_srcptr, mp_size_t, mp_limb_t)) __GMP_ATTRIBUTE_PURE; #else #define mpn_modexact_1_odd(src,size,divisor) \ mpn_modexact_1c_odd (src, size, divisor, CNST_LIMB(0)) #endif #define MPN_MOD_OR_MODEXACT_1_ODD(src,size,divisor) \ (ABOVE_THRESHOLD (size, MODEXACT_1_ODD_THRESHOLD) \ ? mpn_modexact_1_odd (src, size, divisor) \ : mpn_mod_1 (src, size, divisor)) /* binvert_limb() sets inv to the multiplicative inverse of n modulo 2^GMP_NUMB_BITS, ie. satisfying inv*n == 1 mod 2^GMP_NUMB_BITS. n must be odd (otherwise such an inverse doesn't exist). This is not to be confused with invert_limb(), which is completely different. The table lookup gives an inverse with the low 8 bits valid, and each multiply step doubles the number of bits. See Jebelean "An algorithm for exact division" end of section 4 (reference in gmp.texi). Possible enhancement: Could use UHWtype until the last step, if half-size multiplies are faster (might help under _LONG_LONG_LIMB). Alternative: As noted in Granlund and Montgomery "Division by Invariant Integers using Multiplication" (reference in gmp.texi), n itself gives a 3-bit inverse immediately, and could be used instead of a table lookup. A 4-bit inverse can be obtained effectively from xoring bits 1 and 2 into bit 3, for instance with (((n + 2) & 4) << 1) ^ n. */ #define binvert_limb_table __gmp_binvert_limb_table __GMP_DECLSPEC extern const unsigned char binvert_limb_table[128]; #define binvert_limb(inv,n) \ do { \ mp_limb_t __n = (n); \ mp_limb_t __inv; \ ASSERT ((__n & 1) == 1); \ \ __inv = binvert_limb_table[(__n/2) & 0x7F]; /* 8 */ \ if (GMP_NUMB_BITS > 8) __inv = 2 * __inv - __inv * __inv * __n; \ if (GMP_NUMB_BITS > 16) __inv = 2 * __inv - __inv * __inv * __n; \ if (GMP_NUMB_BITS > 32) __inv = 2 * __inv - __inv * __inv * __n; \ \ if (GMP_NUMB_BITS > 64) \ { \ int __invbits = 64; \ do { \ __inv = 2 * __inv - __inv * __inv * __n; \ __invbits *= 2; \ } while (__invbits < GMP_NUMB_BITS); \ } \ \ ASSERT ((__inv * __n & GMP_NUMB_MASK) == 1); \ (inv) = __inv & GMP_NUMB_MASK; \ } while (0) #define modlimb_invert binvert_limb /* backward compatibility */ /* Multiplicative inverse of 3, modulo 2^GMP_NUMB_BITS. Eg. 0xAAAAAAAB for 32 bits, 0xAAAAAAAAAAAAAAAB for 64 bits. GMP_NUMB_MAX/3*2+1 is right when GMP_NUMB_BITS is even, but when it's odd we need to start from GMP_NUMB_MAX>>1. */ #define MODLIMB_INVERSE_3 (((GMP_NUMB_MAX >> (GMP_NUMB_BITS % 2)) / 3) * 2 + 1) /* ceil(GMP_NUMB_MAX/3) and ceil(2*GMP_NUMB_MAX/3). These expressions work because GMP_NUMB_MAX%3 != 0 for all GMP_NUMB_BITS. */ #define GMP_NUMB_CEIL_MAX_DIV3 (GMP_NUMB_MAX / 3 + 1) #define GMP_NUMB_CEIL_2MAX_DIV3 ((GMP_NUMB_MAX>>1) / 3 + 1 + GMP_NUMB_HIGHBIT) /* Set r to -a mod d. a>=d is allowed. Can give r>d. All should be limbs. It's not clear whether this is the best way to do this calculation. Anything congruent to -a would be fine for the one limb congruence tests. */ #define NEG_MOD(r, a, d) \ do { \ ASSERT ((d) != 0); \ ASSERT_LIMB (a); \ ASSERT_LIMB (d); \ \ if ((a) <= (d)) \ { \ /* small a is reasonably likely */ \ (r) = (d) - (a); \ } \ else \ { \ unsigned __twos; \ mp_limb_t __dnorm; \ count_leading_zeros (__twos, d); \ __twos -= GMP_NAIL_BITS; \ __dnorm = (d) << __twos; \ (r) = ((a) <= __dnorm ? __dnorm : 2*__dnorm) - (a); \ } \ \ ASSERT_LIMB (r); \ } while (0) /* A bit mask of all the least significant zero bits of n, or -1 if n==0. */ #define LOW_ZEROS_MASK(n) (((n) & -(n)) - 1) /* ULONG_PARITY sets "p" to 1 if there's an odd number of 1 bits in "n", or to 0 if there's an even number. "n" should be an unsigned long and "p" an int. */ #if defined (__GNUC__) && ! defined (NO_ASM) && HAVE_HOST_CPU_alpha_CIX #define ULONG_PARITY(p, n) \ do { \ int __p; \ __asm__ ("ctpop %1, %0" : "=r" (__p) : "r" (n)); \ (p) = __p & 1; \ } while (0) #endif /* Cray intrinsic _popcnt. */ #ifdef _CRAY #define ULONG_PARITY(p, n) \ do { \ (p) = _popcnt (n) & 1; \ } while (0) #endif #if defined (__GNUC__) && ! defined (__INTEL_COMPILER) \ && ! defined (NO_ASM) && defined (__ia64) /* unsigned long is either 32 or 64 bits depending on the ABI, zero extend to a 64 bit unsigned long long for popcnt */ #define ULONG_PARITY(p, n) \ do { \ unsigned long long __n = (unsigned long) (n); \ int __p; \ __asm__ ("popcnt %0 = %1" : "=r" (__p) : "r" (__n)); \ (p) = __p & 1; \ } while (0) #endif #if defined (__GNUC__) && ! defined (__INTEL_COMPILER) \ && ! defined (NO_ASM) && HAVE_HOST_CPU_FAMILY_x86 #if __GMP_GNUC_PREREQ (3,1) #define __GMP_qm "=Qm" #define __GMP_q "=Q" #else #define __GMP_qm "=qm" #define __GMP_q "=q" #endif #define ULONG_PARITY(p, n) \ do { \ char __p; \ unsigned long __n = (n); \ __n ^= (__n >> 16); \ __asm__ ("xorb %h1, %b1\n\t" \ "setpo %0" \ : __GMP_qm (__p), __GMP_q (__n) \ : "1" (__n)); \ (p) = __p; \ } while (0) #endif #if ! defined (ULONG_PARITY) #define ULONG_PARITY(p, n) \ do { \ unsigned long __n = (n); \ int __p = 0; \ do \ { \ __p ^= 0x96696996L >> (__n & 0x1F); \ __n >>= 5; \ } \ while (__n != 0); \ \ (p) = __p & 1; \ } while (0) #endif /* 3 cycles on 604 or 750 since shifts and rlwimi's can pair. gcc (as of version 3.1 at least) doesn't seem to know how to generate rlwimi for anything other than bit-fields, so use "asm". */ #if defined (__GNUC__) && ! defined (NO_ASM) \ && HAVE_HOST_CPU_FAMILY_powerpc && BITS_PER_MP_LIMB == 32 #define BSWAP_LIMB(dst, src) \ do { \ mp_limb_t __bswapl_src = (src); \ mp_limb_t __tmp1 = __bswapl_src >> 24; /* low byte */ \ mp_limb_t __tmp2 = __bswapl_src << 24; /* high byte */ \ __asm__ ("rlwimi %0, %2, 24, 16, 23" /* 2nd low */ \ : "=r" (__tmp1) : "0" (__tmp1), "r" (__bswapl_src)); \ __asm__ ("rlwimi %0, %2, 8, 8, 15" /* 3nd high */ \ : "=r" (__tmp2) : "0" (__tmp2), "r" (__bswapl_src)); \ (dst) = __tmp1 | __tmp2; /* whole */ \ } while (0) #endif /* bswap is available on i486 and up and is fast. A combination rorw $8 / roll $16 / rorw $8 is used in glibc for plain i386 (and in the linux kernel with xchgb instead of rorw), but this is not done here, because i386 means generic x86 and mixing word and dword operations will cause partial register stalls on P6 chips. */ #if defined (__GNUC__) && ! defined (NO_ASM) \ && HAVE_HOST_CPU_FAMILY_x86 && ! HAVE_HOST_CPU_i386 \ && BITS_PER_MP_LIMB == 32 #define BSWAP_LIMB(dst, src) \ do { \ __asm__ ("bswap %0" : "=r" (dst) : "0" (src)); \ } while (0) #endif #if defined (__GNUC__) && ! defined (NO_ASM) \ && defined (__amd64__) && BITS_PER_MP_LIMB == 64 #define BSWAP_LIMB(dst, src) \ do { \ __asm__ ("bswap %q0" : "=r" (dst) : "0" (src)); \ } while (0) #endif #if defined (__GNUC__) && ! defined (__INTEL_COMPILER) \ && ! defined (NO_ASM) && defined (__ia64) && GMP_LIMB_BITS == 64 #define BSWAP_LIMB(dst, src) \ do { \ __asm__ ("mux1 %0 = %1, @rev" : "=r" (dst) : "r" (src)); \ } while (0) #endif /* As per glibc. */ #if defined (__GNUC__) && ! defined (NO_ASM) \ && HAVE_HOST_CPU_FAMILY_m68k && BITS_PER_MP_LIMB == 32 #define BSWAP_LIMB(dst, src) \ do { \ mp_limb_t __bswapl_src = (src); \ __asm__ ("ror%.w %#8, %0\n\t" \ "swap %0\n\t" \ "ror%.w %#8, %0" \ : "=d" (dst) \ : "0" (__bswapl_src)); \ } while (0) #endif #if ! defined (BSWAP_LIMB) #if BITS_PER_MP_LIMB == 8 #define BSWAP_LIMB(dst, src) \ do { (dst) = (src); } while (0) #endif #if BITS_PER_MP_LIMB == 16 #define BSWAP_LIMB(dst, src) \ do { \ (dst) = ((src) << 8) + ((src) >> 8); \ } while (0) #endif #if BITS_PER_MP_LIMB == 32 #define BSWAP_LIMB(dst, src) \ do { \ (dst) = \ ((src) << 24) \ + (((src) & 0xFF00) << 8) \ + (((src) >> 8) & 0xFF00) \ + ((src) >> 24); \ } while (0) #endif #if BITS_PER_MP_LIMB == 64 #define BSWAP_LIMB(dst, src) \ do { \ (dst) = \ ((src) << 56) \ + (((src) & 0xFF00) << 40) \ + (((src) & 0xFF0000) << 24) \ + (((src) & 0xFF000000) << 8) \ + (((src) >> 8) & 0xFF000000) \ + (((src) >> 24) & 0xFF0000) \ + (((src) >> 40) & 0xFF00) \ + ((src) >> 56); \ } while (0) #endif #endif #if ! defined (BSWAP_LIMB) #define BSWAP_LIMB(dst, src) \ do { \ mp_limb_t __bswapl_src = (src); \ mp_limb_t __dst = 0; \ int __i; \ for (__i = 0; __i < BYTES_PER_MP_LIMB; __i++) \ { \ __dst = (__dst << 8) | (__bswapl_src & 0xFF); \ __bswapl_src >>= 8; \ } \ (dst) = __dst; \ } while (0) #endif /* Apparently lwbrx might be slow on some PowerPC chips, so restrict it to those we know are fast. */ #if defined (__GNUC__) && ! defined (NO_ASM) \ && BITS_PER_MP_LIMB == 32 && HAVE_LIMB_BIG_ENDIAN \ && (HAVE_HOST_CPU_powerpc604 \ || HAVE_HOST_CPU_powerpc604e \ || HAVE_HOST_CPU_powerpc750 \ || HAVE_HOST_CPU_powerpc7400) #define BSWAP_LIMB_FETCH(limb, src) \ do { \ mp_srcptr __blf_src = (src); \ mp_limb_t __limb; \ __asm__ ("lwbrx %0, 0, %1" \ : "=r" (__limb) \ : "r" (__blf_src), \ "m" (*__blf_src)); \ (limb) = __limb; \ } while (0) #endif #if ! defined (BSWAP_LIMB_FETCH) #define BSWAP_LIMB_FETCH(limb, src) BSWAP_LIMB (limb, *(src)) #endif /* On the same basis that lwbrx might be slow, restrict stwbrx to those we know are fast. FIXME: Is this necessary? */ #if defined (__GNUC__) && ! defined (NO_ASM) \ && BITS_PER_MP_LIMB == 32 && HAVE_LIMB_BIG_ENDIAN \ && (HAVE_HOST_CPU_powerpc604 \ || HAVE_HOST_CPU_powerpc604e \ || HAVE_HOST_CPU_powerpc750 \ || HAVE_HOST_CPU_powerpc7400) #define BSWAP_LIMB_STORE(dst, limb) \ do { \ mp_ptr __dst = (dst); \ mp_limb_t __limb = (limb); \ __asm__ ("stwbrx %1, 0, %2" \ : "=m" (*__dst) \ : "r" (__limb), \ "r" (__dst)); \ } while (0) #endif #if ! defined (BSWAP_LIMB_STORE) #define BSWAP_LIMB_STORE(dst, limb) BSWAP_LIMB (*(dst), limb) #endif /* Byte swap limbs from {src,size} and store at {dst,size}. */ #define MPN_BSWAP(dst, src, size) \ do { \ mp_ptr __dst = (dst); \ mp_srcptr __src = (src); \ mp_size_t __size = (size); \ mp_size_t __i; \ ASSERT ((size) >= 0); \ ASSERT (MPN_SAME_OR_SEPARATE_P (dst, src, size)); \ CRAY_Pragma ("_CRI ivdep"); \ for (__i = 0; __i < __size; __i++) \ { \ BSWAP_LIMB_FETCH (*__dst, __src); \ __dst++; \ __src++; \ } \ } while (0) /* Byte swap limbs from {dst,size} and store in reverse order at {src,size}. */ #define MPN_BSWAP_REVERSE(dst, src, size) \ do { \ mp_ptr __dst = (dst); \ mp_size_t __size = (size); \ mp_srcptr __src = (src) + __size - 1; \ mp_size_t __i; \ ASSERT ((size) >= 0); \ ASSERT (! MPN_OVERLAP_P (dst, size, src, size)); \ CRAY_Pragma ("_CRI ivdep"); \ for (__i = 0; __i < __size; __i++) \ { \ BSWAP_LIMB_FETCH (*__dst, __src); \ __dst++; \ __src--; \ } \ } while (0) /* No processor claiming to be SPARC v9 compliant seems to implement the POPC instruction. Disable pattern for now. */ #if 0 #if defined __GNUC__ && defined __sparc_v9__ && BITS_PER_MP_LIMB == 64 #define popc_limb(result, input) \ do { \ DItype __res; \ __asm__ ("popc %1,%0" : "=r" (result) : "rI" (input)); \ } while (0) #endif #endif #if defined (__GNUC__) && ! defined (NO_ASM) && HAVE_HOST_CPU_alpha_CIX #define popc_limb(result, input) \ do { \ __asm__ ("ctpop %1, %0" : "=r" (result) : "r" (input)); \ } while (0) #endif /* Cray intrinsic. */ #ifdef _CRAY #define popc_limb(result, input) \ do { \ (result) = _popcnt (input); \ } while (0) #endif #if defined (__GNUC__) && ! defined (__INTEL_COMPILER) \ && ! defined (NO_ASM) && defined (__ia64) && GMP_LIMB_BITS == 64 #define popc_limb(result, input) \ do { \ __asm__ ("popcnt %0 = %1" : "=r" (result) : "r" (input)); \ } while (0) #endif /* Cool population count of an mp_limb_t. You have to figure out how this works, We won't tell you! The constants could also be expressed as: 0x55... = [2^N / 3] = [(2^N-1)/3] 0x33... = [2^N / 5] = [(2^N-1)/5] 0x0f... = [2^N / 17] = [(2^N-1)/17] (N is GMP_LIMB_BITS, [] denotes truncation.) */ #if ! defined (popc_limb) && GMP_LIMB_BITS == 8 #define popc_limb(result, input) \ do { \ mp_limb_t __x = (input); \ __x -= (__x >> 1) & MP_LIMB_T_MAX/3; \ __x = ((__x >> 2) & MP_LIMB_T_MAX/5) + (__x & MP_LIMB_T_MAX/5); \ __x = ((__x >> 4) + __x) & MP_LIMB_T_MAX/17; \ (result) = __x & 0xff; \ } while (0) #endif #if ! defined (popc_limb) && GMP_LIMB_BITS == 16 #define popc_limb(result, input) \ do { \ mp_limb_t __x = (input); \ __x -= (__x >> 1) & MP_LIMB_T_MAX/3; \ __x = ((__x >> 2) & MP_LIMB_T_MAX/5) + (__x & MP_LIMB_T_MAX/5); \ __x = ((__x >> 4) + __x) & MP_LIMB_T_MAX/17; \ __x = ((__x >> 8) + __x); \ (result) = __x & 0xff; \ } while (0) #endif #if ! defined (popc_limb) && GMP_LIMB_BITS == 32 #define popc_limb(result, input) \ do { \ mp_limb_t __x = (input); \ __x -= (__x >> 1) & MP_LIMB_T_MAX/3; \ __x = ((__x >> 2) & MP_LIMB_T_MAX/5) + (__x & MP_LIMB_T_MAX/5); \ __x = ((__x >> 4) + __x) & MP_LIMB_T_MAX/17; \ __x = ((__x >> 8) + __x); \ __x = ((__x >> 16) + __x); \ (result) = __x & 0xff; \ } while (0) #endif #if ! defined (popc_limb) && GMP_LIMB_BITS == 64 #define popc_limb(result, input) \ do { \ mp_limb_t __x = (input); \ __x -= (__x >> 1) & MP_LIMB_T_MAX/3; \ __x = ((__x >> 2) & MP_LIMB_T_MAX/5) + (__x & MP_LIMB_T_MAX/5); \ __x = ((__x >> 4) + __x) & MP_LIMB_T_MAX/17; \ __x = ((__x >> 8) + __x); \ __x = ((__x >> 16) + __x); \ __x = ((__x >> 32) + __x); \ (result) = __x & 0xff; \ } while (0) #endif /* Define stuff for longlong.h. */ #if HAVE_ATTRIBUTE_MODE typedef unsigned int UQItype __attribute__ ((mode (QI))); typedef int SItype __attribute__ ((mode (SI))); typedef unsigned int USItype __attribute__ ((mode (SI))); typedef int DItype __attribute__ ((mode (DI))); typedef unsigned int UDItype __attribute__ ((mode (DI))); #else typedef unsigned char UQItype; typedef long SItype; typedef unsigned long USItype; #if HAVE_LONG_LONG typedef long long int DItype; typedef unsigned long long int UDItype; #else /* Assume `long' gives us a wide enough type. Needed for hppa2.0w. */ typedef long int DItype; typedef unsigned long int UDItype; #endif #endif typedef mp_limb_t UWtype; typedef unsigned int UHWtype; #define W_TYPE_SIZE BITS_PER_MP_LIMB /* Define ieee_double_extract and _GMP_IEEE_FLOATS. Bit field packing is "implementation defined" according to C99, which leaves us at the compiler's mercy here. For some systems packing is defined in the ABI (eg. x86). In any case so far it seems universal that little endian systems pack from low to high, and big endian from high to low within the given type. Within the fields we rely on the integer endianness being the same as the float endianness, this is true everywhere we know of and it'd be a fairly strange system that did anything else. */ #if HAVE_DOUBLE_IEEE_LITTLE_SWAPPED #define _GMP_IEEE_FLOATS 1 union ieee_double_extract { struct { gmp_uint_least32_t manh:20; gmp_uint_least32_t exp:11; gmp_uint_least32_t sig:1; gmp_uint_least32_t manl:32; } s; double d; }; #endif #if HAVE_DOUBLE_IEEE_LITTLE_ENDIAN #define _GMP_IEEE_FLOATS 1 union ieee_double_extract { struct { gmp_uint_least32_t manl:32; gmp_uint_least32_t manh:20; gmp_uint_least32_t exp:11; gmp_uint_least32_t sig:1; } s; double d; }; #endif #if HAVE_DOUBLE_IEEE_BIG_ENDIAN #define _GMP_IEEE_FLOATS 1 union ieee_double_extract { struct { gmp_uint_least32_t sig:1; gmp_uint_least32_t exp:11; gmp_uint_least32_t manh:20; gmp_uint_least32_t manl:32; } s; double d; }; #endif /* Use (4.0 * ...) instead of (2.0 * ...) to work around buggy compilers that don't convert ulong->double correctly (eg. SunOS 4 native cc). */ #define MP_BASE_AS_DOUBLE (4.0 * ((mp_limb_t) 1 << (GMP_NUMB_BITS - 2))) /* Maximum number of limbs it will take to store any `double'. We assume doubles have 53 mantissa bits. */ #define LIMBS_PER_DOUBLE ((53 + GMP_NUMB_BITS - 2) / GMP_NUMB_BITS + 1) int __gmp_extract_double __GMP_PROTO ((mp_ptr, double)); #define mpn_get_d __gmpn_get_d double mpn_get_d __GMP_PROTO ((mp_srcptr, mp_size_t, mp_size_t, long)) __GMP_ATTRIBUTE_PURE; /* DOUBLE_NAN_INF_ACTION executes code a_nan if x is a NaN, or executes a_inf if x is an infinity. Both are considered unlikely values, for branch prediction. */ #if _GMP_IEEE_FLOATS #define DOUBLE_NAN_INF_ACTION(x, a_nan, a_inf) \ do { \ union ieee_double_extract u; \ u.d = (x); \ if (UNLIKELY (u.s.exp == 0x7FF)) \ { \ if (u.s.manl == 0 && u.s.manh == 0) \ { a_inf; } \ else \ { a_nan; } \ } \ } while (0) #endif #if HAVE_DOUBLE_VAX_D || HAVE_DOUBLE_VAX_G || HAVE_DOUBLE_CRAY_CFP /* no nans or infs in these formats */ #define DOUBLE_NAN_INF_ACTION(x, a_nan, a_inf) \ do { } while (0) #endif #ifndef DOUBLE_NAN_INF_ACTION /* Unknown format, try something generic. NaN should be "unordered", so x!=x. Inf should be bigger than DBL_MAX. */ #define DOUBLE_NAN_INF_ACTION(x, a_nan, a_inf) \ do { \ { \ if (UNLIKELY ((x) != (x))) \ { a_nan; } \ else if (UNLIKELY ((x) > DBL_MAX || (x) < -DBL_MAX)) \ { a_inf; } \ } \ } while (0) #endif /* On m68k, x86 and amd64, gcc (and maybe other compilers) can hold doubles in the coprocessor, which means a bigger exponent range than normal, and depending on the rounding mode, a bigger mantissa than normal. (See "Disappointments" in the gcc manual.) FORCE_DOUBLE stores and fetches "d" through memory to force any rounding and overflows to occur. On amd64, and on x86s with SSE2, gcc (depending on options) uses the xmm registers, where there's no such extra precision and no need for the FORCE_DOUBLE. We don't bother to detect this since the present uses for FORCE_DOUBLE are only in test programs and default generic C code. Not quite sure that an "automatic volatile" will use memory, but it does in gcc. An asm("":"=m"(d):"0"(d)) can't be used to trick gcc, since apparently matching operands like "0" are only allowed on a register output. gcc 3.4 warns about this, though in fact it and past versions seem to put the operand through memory as hoped. */ #if (HAVE_HOST_CPU_FAMILY_m68k || HAVE_HOST_CPU_FAMILY_x86 \ || defined (__amd64__)) #define FORCE_DOUBLE(d) \ do { volatile double __gmp_force = (d); (d) = __gmp_force; } while (0) #else #define FORCE_DOUBLE(d) do { } while (0) #endif extern int __gmp_junk; extern const int __gmp_0; void __gmp_exception __GMP_PROTO ((int)) ATTRIBUTE_NORETURN; void __gmp_divide_by_zero __GMP_PROTO ((void)) ATTRIBUTE_NORETURN; void __gmp_sqrt_of_negative __GMP_PROTO ((void)) ATTRIBUTE_NORETURN; void __gmp_invalid_operation __GMP_PROTO ((void)) ATTRIBUTE_NORETURN; #define GMP_ERROR(code) __gmp_exception (code) #define DIVIDE_BY_ZERO __gmp_divide_by_zero () #define SQRT_OF_NEGATIVE __gmp_sqrt_of_negative () #if defined _LONG_LONG_LIMB #if __GMP_HAVE_TOKEN_PASTE #define CNST_LIMB(C) ((mp_limb_t) C##LL) #else #define CNST_LIMB(C) ((mp_limb_t) C/**/LL) #endif #else /* not _LONG_LONG_LIMB */ #if __GMP_HAVE_TOKEN_PASTE #define CNST_LIMB(C) ((mp_limb_t) C##L) #else #define CNST_LIMB(C) ((mp_limb_t) C/**/L) #endif #endif /* _LONG_LONG_LIMB */ /* Stuff used by mpn/generic/perfsqr.c and mpz/prime_p.c */ #if GMP_NUMB_BITS == 2 #define PP 0x3 /* 3 */ #define PP_FIRST_OMITTED 5 #endif #if GMP_NUMB_BITS == 4 #define PP 0xF /* 3 x 5 */ #define PP_FIRST_OMITTED 7 #endif #if GMP_NUMB_BITS == 8 #define PP 0x69 /* 3 x 5 x 7 */ #define PP_FIRST_OMITTED 11 #endif #if GMP_NUMB_BITS == 16 #define PP 0x3AA7 /* 3 x 5 x 7 x 11 x 13 */ #define PP_FIRST_OMITTED 17 #endif #if GMP_NUMB_BITS == 32 #define PP 0xC0CFD797L /* 3 x 5 x 7 x 11 x ... x 29 */ #define PP_INVERTED 0x53E5645CL #define PP_FIRST_OMITTED 31 #endif #if GMP_NUMB_BITS == 64 #define PP CNST_LIMB(0xE221F97C30E94E1D) /* 3 x 5 x 7 x 11 x ... x 53 */ #define PP_INVERTED CNST_LIMB(0x21CFE6CFC938B36B) #define PP_FIRST_OMITTED 59 #endif #ifndef PP_FIRST_OMITTED #define PP_FIRST_OMITTED 3 #endif /* BIT1 means a result value in bit 1 (second least significant bit), with a zero bit representing +1 and a one bit representing -1. Bits other than bit 1 are garbage. These are meant to be kept in "int"s, and casts are used to ensure the expressions are "int"s even if a and/or b might be other types. JACOBI_TWOS_U_BIT1 and JACOBI_RECIP_UU_BIT1 are used in mpn_jacobi_base and their speed is important. Expressions are used rather than conditionals to accumulate sign changes, which effectively means XORs instead of conditional JUMPs. */ /* (a/0), with a signed; is 1 if a=+/-1, 0 otherwise */ #define JACOBI_S0(a) (((a) == 1) | ((a) == -1)) /* (a/0), with a unsigned; is 1 if a=+/-1, 0 otherwise */ #define JACOBI_U0(a) ((a) == 1) /* (a/0), with a given by low and size; is 1 if a=+/-1, 0 otherwise */ #define JACOBI_LS0(alow,asize) \ (((asize) == 1 || (asize) == -1) && (alow) == 1) /* (a/0), with a an mpz_t; fetch of low limb always valid, even if size is zero */ #define JACOBI_Z0(a) JACOBI_LS0 (PTR(a)[0], SIZ(a)) /* (0/b), with b unsigned; is 1 if b=1, 0 otherwise */ #define JACOBI_0U(b) ((b) == 1) /* (0/b), with b unsigned; is 1 if b=+/-1, 0 otherwise */ #define JACOBI_0S(b) ((b) == 1 || (b) == -1) /* (0/b), with b given by low and size; is 1 if b=+/-1, 0 otherwise */ #define JACOBI_0LS(blow,bsize) \ (((bsize) == 1 || (bsize) == -1) && (blow) == 1) /* Convert a bit1 to +1 or -1. */ #define JACOBI_BIT1_TO_PN(result_bit1) \ (1 - ((int) (result_bit1) & 2)) /* (2/b), with b unsigned and odd; is (-1)^((b^2-1)/8) which is 1 if b==1,7mod8 or -1 if b==3,5mod8 and hence obtained from (b>>1)^b */ #define JACOBI_TWO_U_BIT1(b) \ ((int) (((b) >> 1) ^ (b))) /* (2/b)^twos, with b unsigned and odd */ #define JACOBI_TWOS_U_BIT1(twos, b) \ ((int) ((twos) << 1) & JACOBI_TWO_U_BIT1 (b)) /* (2/b)^twos, with b unsigned and odd */ #define JACOBI_TWOS_U(twos, b) \ (JACOBI_BIT1_TO_PN (JACOBI_TWOS_U_BIT1 (twos, b))) /* (-1/b), with b odd (signed or unsigned); is (-1)^((b-1)/2) */ #define JACOBI_N1B_BIT1(b) \ ((int) (b)) /* (a/b) effect due to sign of a: signed/unsigned, b odd; is (-1/b) if a<0, or +1 if a>=0 */ #define JACOBI_ASGN_SU_BIT1(a, b) \ ((((a) < 0) << 1) & JACOBI_N1B_BIT1(b)) /* (a/b) effect due to sign of b: signed/signed; is -1 if a and b both negative, +1 otherwise */ #define JACOBI_BSGN_SS_BIT1(a, b) \ ((((a)<0) & ((b)<0)) << 1) /* (a/b) effect due to sign of b: signed/mpz; is -1 if a and b both negative, +1 otherwise */ #define JACOBI_BSGN_SZ_BIT1(a, b) \ JACOBI_BSGN_SS_BIT1 (a, SIZ(b)) /* (a/b) effect due to sign of b: mpz/signed; is -1 if a and b both negative, +1 otherwise */ #define JACOBI_BSGN_ZS_BIT1(a, b) \ JACOBI_BSGN_SZ_BIT1 (b, a) /* (a/b) reciprocity to switch to (b/a), a,b both unsigned and odd; is (-1)^((a-1)*(b-1)/4), which means +1 if either a,b==1mod4, or -1 if both a,b==3mod4, achieved in bit 1 by a&b. No ASSERT()s about a,b odd because this is used in a couple of places with only bit 1 of a or b valid. */ #define JACOBI_RECIP_UU_BIT1(a, b) \ ((int) ((a) & (b))) /* Strip low zero limbs from {b_ptr,b_size} by incrementing b_ptr and decrementing b_size. b_low should be b_ptr[0] on entry, and will be updated for the new b_ptr. result_bit1 is updated according to the factors of 2 stripped, as per (a/2). */ #define JACOBI_STRIP_LOW_ZEROS(result_bit1, a, b_ptr, b_size, b_low) \ do { \ ASSERT ((b_size) >= 1); \ ASSERT ((b_low) == (b_ptr)[0]); \ \ while (UNLIKELY ((b_low) == 0)) \ { \ (b_size)--; \ ASSERT ((b_size) >= 1); \ (b_ptr)++; \ (b_low) = *(b_ptr); \ \ ASSERT (((a) & 1) != 0); \ if ((GMP_NUMB_BITS % 2) == 1) \ (result_bit1) ^= JACOBI_TWO_U_BIT1(a); \ } \ } while (0) /* Set a_rem to {a_ptr,a_size} reduced modulo b, either using mod_1 or modexact_1_odd, but in either case leaving a_rem= 1); \ ASSERT (__b & 1); \ \ if ((GMP_NUMB_BITS % 2) != 0 \ || BELOW_THRESHOLD (__a_size, MODEXACT_1_ODD_THRESHOLD)) \ { \ (a_rem) = mpn_mod_1 (__a_ptr, __a_size, __b); \ } \ else \ { \ (result_bit1) ^= JACOBI_N1B_BIT1 (__b); \ (a_rem) = mpn_modexact_1_odd (__a_ptr, __a_size, __b); \ } \ } while (0) /* Matrix multiplication */ #define mpn_matrix22_mul __MPN(matrix22_mul) void mpn_matrix22_mul __GMP_PROTO ((mp_ptr, mp_ptr, mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_srcptr, mp_srcptr, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_matrix22_mul_strassen __MPN(matrix22_mul_strassen) void mpn_matrix22_mul_strassen __GMP_PROTO ((mp_ptr, mp_ptr, mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_srcptr, mp_srcptr, mp_srcptr, mp_size_t, mp_ptr)); #define mpn_matrix22_mul_itch __MPN(matrix22_mul_itch) mp_size_t mpn_matrix22_mul_itch __GMP_PROTO ((mp_size_t, mp_size_t)); #ifndef MATRIX22_STRASSEN_THRESHOLD #define MATRIX22_STRASSEN_THRESHOLD 30 #endif /* HGCD definitions */ /* Extract one numb, shifting count bits left ________ ________ |___xh___||___xl___| |____r____| >count < The count includes any nail bits, so it should work fine if count is computed using count_leading_zeros. If GMP_NAIL_BITS > 0, all of xh, xl and r include nail bits. Must have 0 < count < GMP_LIMB_BITS. FIXME: Omit masking with GMP_NUMB_MASK, and let callers do that for those calls where the count high bits of xh may be non-zero. */ #define MPN_EXTRACT_NUMB(count, xh, xl) \ ((((xh) << ((count) - GMP_NAIL_BITS)) & GMP_NUMB_MASK) | \ ((xl) >> (GMP_LIMB_BITS - (count)))) /* The matrix non-negative M = (u, u'; v,v') keeps track of the reduction (a;b) = M (alpha; beta) where alpha, beta are smaller than a, b. The determinant must always be one, so that M has an inverse (v', -u'; -v, u). Elements always fit in GMP_NUMB_BITS - 1 bits. */ struct hgcd_matrix1 { mp_limb_t u[2][2]; }; #define mpn_hgcd2 __MPN (hgcd2) int mpn_hgcd2 __GMP_PROTO ((mp_limb_t, mp_limb_t, mp_limb_t, mp_limb_t, struct hgcd_matrix1 *)); #define mpn_hgcd_mul_matrix1_vector __MPN (hgcd_mul_matrix1_vector) mp_size_t mpn_hgcd_mul_matrix1_vector __GMP_PROTO ((const struct hgcd_matrix1 *, mp_ptr, mp_srcptr, mp_ptr, mp_size_t)); #define mpn_hgcd_mul_matrix1_inverse_vector __MPN (hgcd_mul_matrix1_inverse_vector) mp_size_t mpn_hgcd_mul_matrix1_inverse_vector __GMP_PROTO ((const struct hgcd_matrix1 *, mp_ptr, mp_srcptr, mp_ptr, mp_size_t)); struct hgcd_matrix { mp_size_t alloc; /* for sanity checking only */ mp_size_t n; mp_ptr p[2][2]; }; #define MPN_HGCD_MATRIX_INIT_ITCH(n) (4 * ((n+1)/2 + 1)) #define mpn_hgcd_matrix_init __MPN (hgcd_matrix_init) void mpn_hgcd_matrix_init __GMP_PROTO ((struct hgcd_matrix *, mp_size_t, mp_ptr)); #define mpn_hgcd_matrix_mul __MPN (hgcd_matrix_mul) void mpn_hgcd_matrix_mul __GMP_PROTO ((struct hgcd_matrix *, const struct hgcd_matrix *, mp_ptr)); #define mpn_hgcd_matrix_adjust __MPN (hgcd_matrix_adjust) mp_size_t mpn_hgcd_matrix_adjust __GMP_PROTO ((struct hgcd_matrix *, mp_size_t, mp_ptr, mp_ptr, mp_size_t, mp_ptr)); #define mpn_hgcd_itch __MPN (hgcd_itch) mp_size_t mpn_hgcd_itch __GMP_PROTO ((mp_size_t)); #define mpn_hgcd __MPN (hgcd) mp_size_t mpn_hgcd __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, struct hgcd_matrix *, mp_ptr)); #define MPN_HGCD_LEHMER_ITCH(n) (n) #define mpn_hgcd_lehmer __MPN (hgcd_lehmer) mp_size_t mpn_hgcd_lehmer __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t, struct hgcd_matrix *, mp_ptr)); /* Needs storage for the quotient */ #define MPN_GCD_SUBDIV_STEP_ITCH(n) (n) #define mpn_gcd_subdiv_step __MPN(gcd_subdiv_step) mp_size_t mpn_gcd_subdiv_step __GMP_PROTO ((mp_ptr, mp_size_t *, mp_ptr, mp_ptr, mp_size_t, mp_ptr)); #define MPN_GCD_LEHMER_N_ITCH(n) (n) #define mpn_gcd_lehmer_n __MPN(gcd_lehmer_n) mp_size_t mpn_gcd_lehmer_n __GMP_PROTO ((mp_ptr, mp_ptr, mp_ptr, mp_size_t, mp_ptr)); #define mpn_gcdext_subdiv_step __MPN(gcdext_subdiv_step) mp_size_t mpn_gcdext_subdiv_step __GMP_PROTO ((mp_ptr, mp_size_t *, mp_ptr, mp_size_t *, mp_ptr, mp_ptr, mp_size_t, mp_ptr, mp_ptr, mp_size_t *, mp_ptr, mp_ptr)); #define MPN_GCDEXT_LEHMER_N_ITCH(n) (4*(n) + 3) #define mpn_gcdext_lehmer_n __MPN(gcdext_lehmer_n) mp_size_t mpn_gcdext_lehmer_n __GMP_PROTO ((mp_ptr, mp_ptr, mp_size_t *, mp_ptr, mp_ptr, mp_size_t, mp_ptr)); /* 4*(an + 1) + 4*(bn + 1) + an */ #define MPN_GCDEXT_LEHMER_ITCH(an, bn) (5*(an) + 4*(bn) + 8) #ifndef HGCD_THRESHOLD #define HGCD_THRESHOLD 400 #endif #ifndef GCD_DC_THRESHOLD #define GCD_DC_THRESHOLD 1000 #endif #ifndef GCDEXT_DC_THRESHOLD #define GCDEXT_DC_THRESHOLD 600 #endif /* Definitions for mpn_set_str and mpn_get_str */ struct powers { mp_ptr p; /* actual power value */ mp_size_t n; /* # of limbs at p */ mp_size_t shift; /* weight of lowest limb, in limb base B */ size_t digits_in_base; /* number of corresponding digits */ int base; }; typedef struct powers powers_t; #define mpn_dc_set_str_powtab_alloc(n) ((n) + GMP_LIMB_BITS) #define mpn_dc_set_str_itch(n) ((n) + GMP_LIMB_BITS) #define mpn_dc_get_str_powtab_alloc(n) ((n) + 2 * GMP_LIMB_BITS) #define mpn_dc_get_str_itch(n) ((n) + GMP_LIMB_BITS) #define mpn_dc_set_str __MPN(dc_set_str) mp_size_t mpn_dc_set_str __GMP_PROTO ((mp_ptr, const unsigned char *, size_t, const powers_t *, mp_ptr)); #define mpn_bc_set_str __MPN(bc_set_str) mp_size_t mpn_bc_set_str __GMP_PROTO ((mp_ptr, const unsigned char *, size_t, int)); #define mpn_set_str_compute_powtab __MPN(set_str_compute_powtab) void mpn_set_str_compute_powtab __GMP_PROTO ((powers_t *, mp_ptr, mp_size_t, int)); /* __GMPF_BITS_TO_PREC applies a minimum 53 bits, rounds upwards to a whole limb and adds an extra limb. __GMPF_PREC_TO_BITS drops that extra limb, hence giving back the user's size in bits rounded up. Notice that converting prec->bits->prec gives an unchanged value. */ #define __GMPF_BITS_TO_PREC(n) \ ((mp_size_t) ((__GMP_MAX (53, n) + 2 * GMP_NUMB_BITS - 1) / GMP_NUMB_BITS)) #define __GMPF_PREC_TO_BITS(n) \ ((unsigned long) (n) * GMP_NUMB_BITS - GMP_NUMB_BITS) extern mp_size_t __gmp_default_fp_limb_precision; /* Set n to the number of significant digits an mpf of the given _mp_prec field, in the given base. This is a rounded up value, designed to ensure there's enough digits to reproduce all the guaranteed part of the value. There are prec many limbs, but the high might be only "1" so forget it and just count prec-1 limbs into chars. +1 rounds that upwards, and a further +1 is because the limbs usually won't fall on digit boundaries. FIXME: If base is a power of 2 and the bits per digit divides BITS_PER_MP_LIMB then the +2 is unnecessary. This happens always for base==2, and in base==16 with the current 32 or 64 bit limb sizes. */ #define MPF_SIGNIFICANT_DIGITS(n, base, prec) \ do { \ ASSERT (base >= 2 && base < numberof (mp_bases)); \ (n) = 2 + (size_t) ((((size_t) (prec) - 1) * GMP_NUMB_BITS) \ * mp_bases[(base)].chars_per_bit_exactly); \ } while (0) /* Decimal point string, from the current C locale. Needs for nl_langinfo and constants, preferably with _GNU_SOURCE defined to get DECIMAL_POINT from glibc, and needs for localeconv, each under their respective #if HAVE_FOO_H. GLIBC recommends nl_langinfo because getting only one facet can be faster, apparently. */ /* DECIMAL_POINT seems to need _GNU_SOURCE defined to get it from glibc. */ #if HAVE_NL_LANGINFO && defined (DECIMAL_POINT) #define GMP_DECIMAL_POINT (nl_langinfo (DECIMAL_POINT)) #endif /* RADIXCHAR is deprecated, still in unix98 or some such. */ #if HAVE_NL_LANGINFO && defined (RADIXCHAR) && ! defined (GMP_DECIMAL_POINT) #define GMP_DECIMAL_POINT (nl_langinfo (RADIXCHAR)) #endif /* localeconv is slower since it returns all locale stuff */ #if HAVE_LOCALECONV && ! defined (GMP_DECIMAL_POINT) #define GMP_DECIMAL_POINT (localeconv()->decimal_point) #endif #if ! defined (GMP_DECIMAL_POINT) #define GMP_DECIMAL_POINT (".") #endif #define DOPRNT_CONV_FIXED 1 #define DOPRNT_CONV_SCIENTIFIC 2 #define DOPRNT_CONV_GENERAL 3 #define DOPRNT_JUSTIFY_NONE 0 #define DOPRNT_JUSTIFY_LEFT 1 #define DOPRNT_JUSTIFY_RIGHT 2 #define DOPRNT_JUSTIFY_INTERNAL 3 #define DOPRNT_SHOWBASE_YES 1 #define DOPRNT_SHOWBASE_NO 2 #define DOPRNT_SHOWBASE_NONZERO 3 struct doprnt_params_t { int base; /* negative for upper case */ int conv; /* choices above */ const char *expfmt; /* exponent format */ int exptimes4; /* exponent multiply by 4 */ char fill; /* character */ int justify; /* choices above */ int prec; /* prec field, or -1 for all digits */ int showbase; /* choices above */ int showpoint; /* if radix point always shown */ int showtrailing; /* if trailing zeros wanted */ char sign; /* '+', ' ', or '\0' */ int width; /* width field */ }; #if _GMP_H_HAVE_VA_LIST typedef int (*doprnt_format_t) __GMP_PROTO ((void *, const char *, va_list)); typedef int (*doprnt_memory_t) __GMP_PROTO ((void *, const char *, size_t)); typedef int (*doprnt_reps_t) __GMP_PROTO ((void *, int, int)); typedef int (*doprnt_final_t) __GMP_PROTO ((void *)); struct doprnt_funs_t { doprnt_format_t format; doprnt_memory_t memory; doprnt_reps_t reps; doprnt_final_t final; /* NULL if not required */ }; extern const struct doprnt_funs_t __gmp_fprintf_funs; extern const struct doprnt_funs_t __gmp_sprintf_funs; extern const struct doprnt_funs_t __gmp_snprintf_funs; extern const struct doprnt_funs_t __gmp_obstack_printf_funs; extern const struct doprnt_funs_t __gmp_ostream_funs; /* "buf" is a __gmp_allocate_func block of "alloc" many bytes. The first "size" of these have been written. "alloc > size" is maintained, so there's room to store a '\0' at the end. "result" is where the application wants the final block pointer. */ struct gmp_asprintf_t { char **result; char *buf; size_t size; size_t alloc; }; #define GMP_ASPRINTF_T_INIT(d, output) \ do { \ (d).result = (output); \ (d).alloc = 256; \ (d).buf = (char *) (*__gmp_allocate_func) ((d).alloc); \ (d).size = 0; \ } while (0) /* If a realloc is necessary, use twice the size actually required, so as to avoid repeated small reallocs. */ #define GMP_ASPRINTF_T_NEED(d, n) \ do { \ size_t alloc, newsize, newalloc; \ ASSERT ((d)->alloc >= (d)->size + 1); \ \ alloc = (d)->alloc; \ newsize = (d)->size + (n); \ if (alloc <= newsize) \ { \ newalloc = 2*newsize; \ (d)->alloc = newalloc; \ (d)->buf = __GMP_REALLOCATE_FUNC_TYPE ((d)->buf, \ alloc, newalloc, char); \ } \ } while (0) __GMP_DECLSPEC int __gmp_asprintf_memory __GMP_PROTO ((struct gmp_asprintf_t *, const char *, size_t)); __GMP_DECLSPEC int __gmp_asprintf_reps __GMP_PROTO ((struct gmp_asprintf_t *, int, int)); __GMP_DECLSPEC int __gmp_asprintf_final __GMP_PROTO ((struct gmp_asprintf_t *)); /* buf is where to write the next output, and size is how much space is left there. If the application passed size==0 then that's what we'll have here, and nothing at all should be written. */ struct gmp_snprintf_t { char *buf; size_t size; }; /* Add the bytes printed by the call to the total retval, or bail out on an error. */ #define DOPRNT_ACCUMULATE(call) \ do { \ int __ret; \ __ret = call; \ if (__ret == -1) \ goto error; \ retval += __ret; \ } while (0) #define DOPRNT_ACCUMULATE_FUN(fun, params) \ do { \ ASSERT ((fun) != NULL); \ DOPRNT_ACCUMULATE ((*(fun)) params); \ } while (0) #define DOPRNT_FORMAT(fmt, ap) \ DOPRNT_ACCUMULATE_FUN (funs->format, (data, fmt, ap)) #define DOPRNT_MEMORY(ptr, len) \ DOPRNT_ACCUMULATE_FUN (funs->memory, (data, ptr, len)) #define DOPRNT_REPS(c, n) \ DOPRNT_ACCUMULATE_FUN (funs->reps, (data, c, n)) #define DOPRNT_STRING(str) DOPRNT_MEMORY (str, strlen (str)) #define DOPRNT_REPS_MAYBE(c, n) \ do { \ if ((n) != 0) \ DOPRNT_REPS (c, n); \ } while (0) #define DOPRNT_MEMORY_MAYBE(ptr, len) \ do { \ if ((len) != 0) \ DOPRNT_MEMORY (ptr, len); \ } while (0) __GMP_DECLSPEC int __gmp_doprnt __GMP_PROTO ((const struct doprnt_funs_t *, void *, const char *, va_list)); __GMP_DECLSPEC int __gmp_doprnt_integer __GMP_PROTO ((const struct doprnt_funs_t *, void *, const struct doprnt_params_t *, const char *)); #define __gmp_doprnt_mpf __gmp_doprnt_mpf2 __GMP_DECLSPEC int __gmp_doprnt_mpf __GMP_PROTO ((const struct doprnt_funs_t *, void *, const struct doprnt_params_t *, const char *, mpf_srcptr)); int __gmp_replacement_vsnprintf __GMP_PROTO ((char *, size_t, const char *, va_list)); #endif /* _GMP_H_HAVE_VA_LIST */ typedef int (*gmp_doscan_scan_t) __GMP_PROTO ((void *, const char *, ...)); typedef void *(*gmp_doscan_step_t) __GMP_PROTO ((void *, int)); typedef int (*gmp_doscan_get_t) __GMP_PROTO ((void *)); typedef int (*gmp_doscan_unget_t) __GMP_PROTO ((int, void *)); struct gmp_doscan_funs_t { gmp_doscan_scan_t scan; gmp_doscan_step_t step; gmp_doscan_get_t get; gmp_doscan_unget_t unget; }; extern const struct gmp_doscan_funs_t __gmp_fscanf_funs; extern const struct gmp_doscan_funs_t __gmp_sscanf_funs; #if _GMP_H_HAVE_VA_LIST int __gmp_doscan __GMP_PROTO ((const struct gmp_doscan_funs_t *, void *, const char *, va_list)); #endif /* For testing and debugging. */ #define MPZ_CHECK_FORMAT(z) \ do { \ ASSERT_ALWAYS (SIZ(z) == 0 || PTR(z)[ABSIZ(z) - 1] != 0); \ ASSERT_ALWAYS (ALLOC(z) >= ABSIZ(z)); \ ASSERT_ALWAYS_MPN (PTR(z), ABSIZ(z)); \ } while (0) #define MPQ_CHECK_FORMAT(q) \ do { \ MPZ_CHECK_FORMAT (mpq_numref (q)); \ MPZ_CHECK_FORMAT (mpq_denref (q)); \ ASSERT_ALWAYS (SIZ(mpq_denref(q)) >= 1); \ \ if (SIZ(mpq_numref(q)) == 0) \ { \ /* should have zero as 0/1 */ \ ASSERT_ALWAYS (SIZ(mpq_denref(q)) == 1 \ && PTR(mpq_denref(q))[0] == 1); \ } \ else \ { \ /* should have no common factors */ \ mpz_t g; \ mpz_init (g); \ mpz_gcd (g, mpq_numref(q), mpq_denref(q)); \ ASSERT_ALWAYS (mpz_cmp_ui (g, 1) == 0); \ mpz_clear (g); \ } \ } while (0) #define MPF_CHECK_FORMAT(f) \ do { \ ASSERT_ALWAYS (PREC(f) >= __GMPF_BITS_TO_PREC(53)); \ ASSERT_ALWAYS (ABSIZ(f) <= PREC(f)+1); \ if (SIZ(f) == 0) \ ASSERT_ALWAYS (EXP(f) == 0); \ if (SIZ(f) != 0) \ ASSERT_ALWAYS (PTR(f)[ABSIZ(f) - 1] != 0); \ } while (0) #define MPZ_PROVOKE_REALLOC(z) \ do { ALLOC(z) = ABSIZ(z); } while (0) /* Enhancement: The "mod" and "gcd_1" functions below could have __GMP_ATTRIBUTE_PURE, but currently (gcc 3.3) that's not supported on function pointers, only actual functions. It probably doesn't make much difference to the gmp code, since hopefully we arrange calls so there's no great need for the compiler to move things around. */ #if WANT_FAT_BINARY && HAVE_HOST_CPU_FAMILY_x86 /* NOTE: The function pointers in this struct are also in CPUVEC_FUNCS_LIST in mpn/x86/x86-defs.m4. Be sure to update that when changing here. */ struct cpuvec_t { DECL_add_n ((*add_n)); DECL_addmul_1 ((*addmul_1)); DECL_copyd ((*copyd)); DECL_copyi ((*copyi)); DECL_divexact_1 ((*divexact_1)); DECL_divexact_by3c ((*divexact_by3c)); DECL_divrem_1 ((*divrem_1)); DECL_gcd_1 ((*gcd_1)); DECL_lshift ((*lshift)); DECL_mod_1 ((*mod_1)); DECL_mod_34lsub1 ((*mod_34lsub1)); DECL_modexact_1c_odd ((*modexact_1c_odd)); DECL_mul_1 ((*mul_1)); DECL_mul_basecase ((*mul_basecase)); DECL_preinv_divrem_1 ((*preinv_divrem_1)); DECL_preinv_mod_1 ((*preinv_mod_1)); DECL_rshift ((*rshift)); DECL_sqr_basecase ((*sqr_basecase)); DECL_sub_n ((*sub_n)); DECL_submul_1 ((*submul_1)); int initialized; mp_size_t mul_karatsuba_threshold; mp_size_t mul_toom3_threshold; mp_size_t sqr_karatsuba_threshold; mp_size_t sqr_toom3_threshold; }; __GMP_DECLSPEC extern struct cpuvec_t __gmpn_cpuvec; #endif /* x86 fat binary */ void __gmpn_cpuvec_init __GMP_PROTO ((void)); /* Get a threshold "field" from __gmpn_cpuvec, running __gmpn_cpuvec_init() if that hasn't yet been done (to establish the right values). */ #define CPUVEC_THRESHOLD(field) \ ((LIKELY (__gmpn_cpuvec.initialized) ? 0 : (__gmpn_cpuvec_init (), 0)), \ __gmpn_cpuvec.field) #if HAVE_NATIVE_mpn_add_nc #define mpn_add_nc __MPN(add_nc) __GMP_DECLSPEC mp_limb_t mpn_add_nc __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t, mp_limb_t)); #else static inline mp_limb_t mpn_add_nc (mp_ptr rp, mp_srcptr up, mp_srcptr vp, mp_size_t n, mp_limb_t ci) { mp_limb_t co; co = mpn_add_n (rp, up, vp, n); co += mpn_add_1 (rp, rp, n, ci); return co; } #endif #if HAVE_NATIVE_mpn_sub_nc #define mpn_sub_nc __MPN(sub_nc) __GMP_DECLSPEC mp_limb_t mpn_sub_nc __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t, mp_limb_t)); #else static inline mp_limb_t mpn_sub_nc (mp_ptr rp, mp_srcptr up, mp_srcptr vp, mp_size_t n, mp_limb_t ci) { mp_limb_t co; co = mpn_sub_n (rp, up, vp, n); co += mpn_sub_1 (rp, rp, n, ci); return co; } #endif static inline int mpn_zero_p (mp_srcptr ap, mp_size_t n) { mp_size_t i; for (i = n - 1; i >= 0; i--) { if (ap[i] != 0) return 0; } return 1; } #if TUNE_PROGRAM_BUILD /* Some extras wanted when recompiling some .c files for use by the tune program. Not part of a normal build. It's necessary to keep these thresholds as #defines (just to an identically named variable), since various defaults are established based on #ifdef in the .c files. For some this is not so (the defaults are instead established above), but all are done this way for consistency. */ #undef MUL_KARATSUBA_THRESHOLD #define MUL_KARATSUBA_THRESHOLD mul_karatsuba_threshold extern mp_size_t mul_karatsuba_threshold; #undef MUL_TOOM3_THRESHOLD #define MUL_TOOM3_THRESHOLD mul_toom3_threshold extern mp_size_t mul_toom3_threshold; #undef MUL_TOOM44_THRESHOLD #define MUL_TOOM44_THRESHOLD mul_toom44_threshold extern mp_size_t mul_toom44_threshold; #undef MUL_FFT_THRESHOLD #define MUL_FFT_THRESHOLD mul_fft_threshold extern mp_size_t mul_fft_threshold; #undef MUL_FFT_MODF_THRESHOLD #define MUL_FFT_MODF_THRESHOLD mul_fft_modf_threshold extern mp_size_t mul_fft_modf_threshold; #undef MUL_FFT_TABLE #define MUL_FFT_TABLE { 0 } /* A native mpn_sqr_basecase is not tuned and SQR_BASECASE_THRESHOLD should remain as zero (always use it). */ #if ! HAVE_NATIVE_mpn_sqr_basecase #undef SQR_BASECASE_THRESHOLD #define SQR_BASECASE_THRESHOLD sqr_basecase_threshold extern mp_size_t sqr_basecase_threshold; #endif #if TUNE_PROGRAM_BUILD_SQR #undef SQR_KARATSUBA_THRESHOLD #define SQR_KARATSUBA_THRESHOLD SQR_KARATSUBA_MAX_GENERIC #else #undef SQR_KARATSUBA_THRESHOLD #define SQR_KARATSUBA_THRESHOLD sqr_karatsuba_threshold extern mp_size_t sqr_karatsuba_threshold; #endif #undef SQR_TOOM3_THRESHOLD #define SQR_TOOM3_THRESHOLD sqr_toom3_threshold extern mp_size_t sqr_toom3_threshold; #undef SQR_TOOM4_THRESHOLD #define SQR_TOOM4_THRESHOLD sqr_toom4_threshold extern mp_size_t sqr_toom4_threshold; #undef SQR_FFT_THRESHOLD #define SQR_FFT_THRESHOLD sqr_fft_threshold extern mp_size_t sqr_fft_threshold; #undef SQR_FFT_MODF_THRESHOLD #define SQR_FFT_MODF_THRESHOLD sqr_fft_modf_threshold extern mp_size_t sqr_fft_modf_threshold; #undef SQR_FFT_TABLE #define SQR_FFT_TABLE { 0 } #undef MULLOW_BASECASE_THRESHOLD #define MULLOW_BASECASE_THRESHOLD mullow_basecase_threshold extern mp_size_t mullow_basecase_threshold; #undef MULLOW_DC_THRESHOLD #define MULLOW_DC_THRESHOLD mullow_dc_threshold extern mp_size_t mullow_dc_threshold; #undef MULLOW_MUL_N_THRESHOLD #define MULLOW_MUL_N_THRESHOLD mullow_mul_n_threshold extern mp_size_t mullow_mul_n_threshold; #if ! UDIV_PREINV_ALWAYS #undef DIV_SB_PREINV_THRESHOLD #define DIV_SB_PREINV_THRESHOLD div_sb_preinv_threshold extern mp_size_t div_sb_preinv_threshold; #endif #undef DIV_DC_THRESHOLD #define DIV_DC_THRESHOLD div_dc_threshold extern mp_size_t div_dc_threshold; #undef POWM_THRESHOLD #define POWM_THRESHOLD powm_threshold extern mp_size_t powm_threshold; #undef MATRIX22_STRASSEN_THRESHOLD #define MATRIX22_STRASSEN_THRESHOLD matrix22_strassen_threshold extern mp_size_t matrix22_strassen_threshold; #undef HGCD_THRESHOLD #define HGCD_THRESHOLD hgcd_threshold extern mp_size_t hgcd_threshold; #undef GCD_ACCEL_THRESHOLD #define GCD_ACCEL_THRESHOLD gcd_accel_threshold extern mp_size_t gcd_accel_threshold; #undef GCD_DC_THRESHOLD #define GCD_DC_THRESHOLD gcd_dc_threshold extern mp_size_t gcd_dc_threshold; #undef GCDEXT_DC_THRESHOLD #define GCDEXT_DC_THRESHOLD gcdext_dc_threshold extern mp_size_t gcdext_dc_threshold; #undef DIVREM_1_NORM_THRESHOLD #define DIVREM_1_NORM_THRESHOLD divrem_1_norm_threshold extern mp_size_t divrem_1_norm_threshold; #undef DIVREM_1_UNNORM_THRESHOLD #define DIVREM_1_UNNORM_THRESHOLD divrem_1_unnorm_threshold extern mp_size_t divrem_1_unnorm_threshold; #undef MOD_1_NORM_THRESHOLD #define MOD_1_NORM_THRESHOLD mod_1_norm_threshold extern mp_size_t mod_1_norm_threshold; #undef MOD_1_UNNORM_THRESHOLD #define MOD_1_UNNORM_THRESHOLD mod_1_unnorm_threshold extern mp_size_t mod_1_unnorm_threshold; #undef MOD_1_1_THRESHOLD #define MOD_1_1_THRESHOLD mod_1_1_threshold extern mp_size_t mod_1_1_threshold; #undef MOD_1_2_THRESHOLD #define MOD_1_2_THRESHOLD mod_1_2_threshold extern mp_size_t mod_1_2_threshold; #undef MOD_1_3_THRESHOLD #define MOD_1_3_THRESHOLD mod_1_3_threshold extern mp_size_t mod_1_3_threshold; #undef MOD_1_4_THRESHOLD #define MOD_1_4_THRESHOLD mod_1_4_threshold extern mp_size_t mod_1_4_threshold; #if ! UDIV_PREINV_ALWAYS #undef DIVREM_2_THRESHOLD #define DIVREM_2_THRESHOLD divrem_2_threshold extern mp_size_t divrem_2_threshold; #endif #undef GET_STR_DC_THRESHOLD #define GET_STR_DC_THRESHOLD get_str_dc_threshold extern mp_size_t get_str_dc_threshold; #undef GET_STR_PRECOMPUTE_THRESHOLD #define GET_STR_PRECOMPUTE_THRESHOLD get_str_precompute_threshold extern mp_size_t get_str_precompute_threshold; #undef SET_STR_DC_THRESHOLD #define SET_STR_DC_THRESHOLD set_str_dc_threshold extern mp_size_t set_str_dc_threshold; #undef SET_STR_PRECOMPUTE_THRESHOLD #define SET_STR_PRECOMPUTE_THRESHOLD set_str_precompute_threshold extern mp_size_t set_str_precompute_threshold; #undef SET_STR_THRESHOLD #define SET_STR_THRESHOLD set_str_threshold extern mp_size_t SET_STR_THRESHOLD; #undef FFT_TABLE_ATTRS #define FFT_TABLE_ATTRS extern mp_size_t mpn_fft_table[2][MPN_FFT_TABLE_SIZE]; /* Sizes the tune program tests up to, used in a couple of recompilations. */ #undef MUL_KARATSUBA_THRESHOLD_LIMIT #undef MUL_TOOM3_THRESHOLD_LIMIT #undef MULLOW_BASECASE_THRESHOLD_LIMIT #undef SQR_TOOM3_THRESHOLD_LIMIT #define SQR_KARATSUBA_MAX_GENERIC 200 #define MUL_KARATSUBA_THRESHOLD_LIMIT 700 #define MUL_TOOM3_THRESHOLD_LIMIT 700 #define SQR_TOOM3_THRESHOLD_LIMIT 400 #define MUL_TOOM44_THRESHOLD_LIMIT 1000 #define SQR_TOOM4_THRESHOLD_LIMIT 1000 #define MULLOW_BASECASE_THRESHOLD_LIMIT 200 #define GET_STR_THRESHOLD_LIMIT 150 /* "thresh" will normally be a variable when tuning, so use the cached result. This helps mpn_sb_divrem_mn for instance. */ #undef CACHED_ABOVE_THRESHOLD #define CACHED_ABOVE_THRESHOLD(cache, thresh) (cache) #undef CACHED_BELOW_THRESHOLD #define CACHED_BELOW_THRESHOLD(cache, thresh) (cache) #endif /* TUNE_PROGRAM_BUILD */ #if defined (__cplusplus) } #endif #ifdef __cplusplus /* A little helper for a null-terminated __gmp_allocate_func string. The destructor ensures it's freed even if an exception is thrown. The len field is needed by the destructor, and can be used by anyone else to avoid a second strlen pass over the data. Since our input is a C string, using strlen is correct. Perhaps it'd be more C++-ish style to use std::char_traits::length, but char_traits isn't available in gcc 2.95.4. */ class gmp_allocated_string { public: char *str; size_t len; gmp_allocated_string(char *arg) { str = arg; len = std::strlen (str); } ~gmp_allocated_string() { (*__gmp_free_func) (str, len+1); } }; std::istream &__gmpz_operator_in_nowhite (std::istream &, mpz_ptr, char); int __gmp_istream_set_base (std::istream &, char &, bool &, bool &); void __gmp_istream_set_digits (std::string &, std::istream &, char &, bool &, int); void __gmp_doprnt_params_from_ios (struct doprnt_params_t *p, std::ios &o); std::ostream& __gmp_doprnt_integer_ostream (std::ostream &o, struct doprnt_params_t *p, char *s); extern const struct doprnt_funs_t __gmp_asprintf_funs_noformat; #endif /* __cplusplus */ #endif /* __GMP_IMPL_H__ */