fortune - Add yet another prompt tip.
[dragonfly.git] / sys / dev / drm / i915kms / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  *
26  * $FreeBSD: src/sys/dev/drm2/i915/intel_display.c,v 1.2 2012/05/24 19:13:54 dim Exp $
27  */
28
29 #include <ddb/ddb.h>
30 #include <sys/limits.h>
31
32 #include <dev/drm/drmP.h>
33 #include <dev/drm/drm.h>
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "intel_drv.h"
37 #include <dev/drm/drm_edid.h>
38 #include <dev/drm/drm_dp_helper.h>
39 #include <dev/drm/drm_crtc_helper.h>
40
41 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
42
43 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
44 static void intel_update_watermarks(struct drm_device *dev);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75                         int, int, intel_clock_t *, intel_clock_t *);
76 };
77
78 /* FDI */
79 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
80
81 static bool
82 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
83                     int target, int refclk, intel_clock_t *match_clock,
84                     intel_clock_t *best_clock);
85 static bool
86 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
87                         int target, int refclk, intel_clock_t *match_clock,
88                         intel_clock_t *best_clock);
89
90 static bool
91 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
92                       int target, int refclk, intel_clock_t *match_clock,
93                       intel_clock_t *best_clock);
94 static bool
95 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
96                            int target, int refclk, intel_clock_t *match_clock,
97                            intel_clock_t *best_clock);
98
99 static inline u32 /* units of 100MHz */
100 intel_fdi_link_freq(struct drm_device *dev)
101 {
102         if (IS_GEN5(dev)) {
103                 struct drm_i915_private *dev_priv = dev->dev_private;
104                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
105         } else
106                 return 27;
107 }
108
109 static const intel_limit_t intel_limits_i8xx_dvo = {
110         .dot = { .min = 25000, .max = 350000 },
111         .vco = { .min = 930000, .max = 1400000 },
112         .n = { .min = 3, .max = 16 },
113         .m = { .min = 96, .max = 140 },
114         .m1 = { .min = 18, .max = 26 },
115         .m2 = { .min = 6, .max = 16 },
116         .p = { .min = 4, .max = 128 },
117         .p1 = { .min = 2, .max = 33 },
118         .p2 = { .dot_limit = 165000,
119                 .p2_slow = 4, .p2_fast = 2 },
120         .find_pll = intel_find_best_PLL,
121 };
122
123 static const intel_limit_t intel_limits_i8xx_lvds = {
124         .dot = { .min = 25000, .max = 350000 },
125         .vco = { .min = 930000, .max = 1400000 },
126         .n = { .min = 3, .max = 16 },
127         .m = { .min = 96, .max = 140 },
128         .m1 = { .min = 18, .max = 26 },
129         .m2 = { .min = 6, .max = 16 },
130         .p = { .min = 4, .max = 128 },
131         .p1 = { .min = 1, .max = 6 },
132         .p2 = { .dot_limit = 165000,
133                 .p2_slow = 14, .p2_fast = 7 },
134         .find_pll = intel_find_best_PLL,
135 };
136
137 static const intel_limit_t intel_limits_i9xx_sdvo = {
138         .dot = { .min = 20000, .max = 400000 },
139         .vco = { .min = 1400000, .max = 2800000 },
140         .n = { .min = 1, .max = 6 },
141         .m = { .min = 70, .max = 120 },
142         .m1 = { .min = 10, .max = 22 },
143         .m2 = { .min = 5, .max = 9 },
144         .p = { .min = 5, .max = 80 },
145         .p1 = { .min = 1, .max = 8 },
146         .p2 = { .dot_limit = 200000,
147                 .p2_slow = 10, .p2_fast = 5 },
148         .find_pll = intel_find_best_PLL,
149 };
150
151 static const intel_limit_t intel_limits_i9xx_lvds = {
152         .dot = { .min = 20000, .max = 400000 },
153         .vco = { .min = 1400000, .max = 2800000 },
154         .n = { .min = 1, .max = 6 },
155         .m = { .min = 70, .max = 120 },
156         .m1 = { .min = 10, .max = 22 },
157         .m2 = { .min = 5, .max = 9 },
158         .p = { .min = 7, .max = 98 },
159         .p1 = { .min = 1, .max = 8 },
160         .p2 = { .dot_limit = 112000,
161                 .p2_slow = 14, .p2_fast = 7 },
162         .find_pll = intel_find_best_PLL,
163 };
164
165
166 static const intel_limit_t intel_limits_g4x_sdvo = {
167         .dot = { .min = 25000, .max = 270000 },
168         .vco = { .min = 1750000, .max = 3500000},
169         .n = { .min = 1, .max = 4 },
170         .m = { .min = 104, .max = 138 },
171         .m1 = { .min = 17, .max = 23 },
172         .m2 = { .min = 5, .max = 11 },
173         .p = { .min = 10, .max = 30 },
174         .p1 = { .min = 1, .max = 3},
175         .p2 = { .dot_limit = 270000,
176                 .p2_slow = 10,
177                 .p2_fast = 10
178         },
179         .find_pll = intel_g4x_find_best_PLL,
180 };
181
182 static const intel_limit_t intel_limits_g4x_hdmi = {
183         .dot = { .min = 22000, .max = 400000 },
184         .vco = { .min = 1750000, .max = 3500000},
185         .n = { .min = 1, .max = 4 },
186         .m = { .min = 104, .max = 138 },
187         .m1 = { .min = 16, .max = 23 },
188         .m2 = { .min = 5, .max = 11 },
189         .p = { .min = 5, .max = 80 },
190         .p1 = { .min = 1, .max = 8},
191         .p2 = { .dot_limit = 165000,
192                 .p2_slow = 10, .p2_fast = 5 },
193         .find_pll = intel_g4x_find_best_PLL,
194 };
195
196 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
197         .dot = { .min = 20000, .max = 115000 },
198         .vco = { .min = 1750000, .max = 3500000 },
199         .n = { .min = 1, .max = 3 },
200         .m = { .min = 104, .max = 138 },
201         .m1 = { .min = 17, .max = 23 },
202         .m2 = { .min = 5, .max = 11 },
203         .p = { .min = 28, .max = 112 },
204         .p1 = { .min = 2, .max = 8 },
205         .p2 = { .dot_limit = 0,
206                 .p2_slow = 14, .p2_fast = 14
207         },
208         .find_pll = intel_g4x_find_best_PLL,
209 };
210
211 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
212         .dot = { .min = 80000, .max = 224000 },
213         .vco = { .min = 1750000, .max = 3500000 },
214         .n = { .min = 1, .max = 3 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 14, .max = 42 },
219         .p1 = { .min = 2, .max = 6 },
220         .p2 = { .dot_limit = 0,
221                 .p2_slow = 7, .p2_fast = 7
222         },
223         .find_pll = intel_g4x_find_best_PLL,
224 };
225
226 static const intel_limit_t intel_limits_g4x_display_port = {
227         .dot = { .min = 161670, .max = 227000 },
228         .vco = { .min = 1750000, .max = 3500000},
229         .n = { .min = 1, .max = 2 },
230         .m = { .min = 97, .max = 108 },
231         .m1 = { .min = 0x10, .max = 0x12 },
232         .m2 = { .min = 0x05, .max = 0x06 },
233         .p = { .min = 10, .max = 20 },
234         .p1 = { .min = 1, .max = 2},
235         .p2 = { .dot_limit = 0,
236                 .p2_slow = 10, .p2_fast = 10 },
237         .find_pll = intel_find_pll_g4x_dp,
238 };
239
240 static const intel_limit_t intel_limits_pineview_sdvo = {
241         .dot = { .min = 20000, .max = 400000},
242         .vco = { .min = 1700000, .max = 3500000 },
243         /* Pineview's Ncounter is a ring counter */
244         .n = { .min = 3, .max = 6 },
245         .m = { .min = 2, .max = 256 },
246         /* Pineview only has one combined m divider, which we treat as m2. */
247         .m1 = { .min = 0, .max = 0 },
248         .m2 = { .min = 0, .max = 254 },
249         .p = { .min = 5, .max = 80 },
250         .p1 = { .min = 1, .max = 8 },
251         .p2 = { .dot_limit = 200000,
252                 .p2_slow = 10, .p2_fast = 5 },
253         .find_pll = intel_find_best_PLL,
254 };
255
256 static const intel_limit_t intel_limits_pineview_lvds = {
257         .dot = { .min = 20000, .max = 400000 },
258         .vco = { .min = 1700000, .max = 3500000 },
259         .n = { .min = 3, .max = 6 },
260         .m = { .min = 2, .max = 256 },
261         .m1 = { .min = 0, .max = 0 },
262         .m2 = { .min = 0, .max = 254 },
263         .p = { .min = 7, .max = 112 },
264         .p1 = { .min = 1, .max = 8 },
265         .p2 = { .dot_limit = 112000,
266                 .p2_slow = 14, .p2_fast = 14 },
267         .find_pll = intel_find_best_PLL,
268 };
269
270 /* Ironlake / Sandybridge
271  *
272  * We calculate clock using (register_value + 2) for N/M1/M2, so here
273  * the range value for them is (actual_value - 2).
274  */
275 static const intel_limit_t intel_limits_ironlake_dac = {
276         .dot = { .min = 25000, .max = 350000 },
277         .vco = { .min = 1760000, .max = 3510000 },
278         .n = { .min = 1, .max = 5 },
279         .m = { .min = 79, .max = 127 },
280         .m1 = { .min = 12, .max = 22 },
281         .m2 = { .min = 5, .max = 9 },
282         .p = { .min = 5, .max = 80 },
283         .p1 = { .min = 1, .max = 8 },
284         .p2 = { .dot_limit = 225000,
285                 .p2_slow = 10, .p2_fast = 5 },
286         .find_pll = intel_g4x_find_best_PLL,
287 };
288
289 static const intel_limit_t intel_limits_ironlake_single_lvds = {
290         .dot = { .min = 25000, .max = 350000 },
291         .vco = { .min = 1760000, .max = 3510000 },
292         .n = { .min = 1, .max = 3 },
293         .m = { .min = 79, .max = 118 },
294         .m1 = { .min = 12, .max = 22 },
295         .m2 = { .min = 5, .max = 9 },
296         .p = { .min = 28, .max = 112 },
297         .p1 = { .min = 2, .max = 8 },
298         .p2 = { .dot_limit = 225000,
299                 .p2_slow = 14, .p2_fast = 14 },
300         .find_pll = intel_g4x_find_best_PLL,
301 };
302
303 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
304         .dot = { .min = 25000, .max = 350000 },
305         .vco = { .min = 1760000, .max = 3510000 },
306         .n = { .min = 1, .max = 3 },
307         .m = { .min = 79, .max = 127 },
308         .m1 = { .min = 12, .max = 22 },
309         .m2 = { .min = 5, .max = 9 },
310         .p = { .min = 14, .max = 56 },
311         .p1 = { .min = 2, .max = 8 },
312         .p2 = { .dot_limit = 225000,
313                 .p2_slow = 7, .p2_fast = 7 },
314         .find_pll = intel_g4x_find_best_PLL,
315 };
316
317 /* LVDS 100mhz refclk limits. */
318 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
319         .dot = { .min = 25000, .max = 350000 },
320         .vco = { .min = 1760000, .max = 3510000 },
321         .n = { .min = 1, .max = 2 },
322         .m = { .min = 79, .max = 126 },
323         .m1 = { .min = 12, .max = 22 },
324         .m2 = { .min = 5, .max = 9 },
325         .p = { .min = 28, .max = 112 },
326         .p1 = { .min = 2, .max = 8 },
327         .p2 = { .dot_limit = 225000,
328                 .p2_slow = 14, .p2_fast = 14 },
329         .find_pll = intel_g4x_find_best_PLL,
330 };
331
332 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
333         .dot = { .min = 25000, .max = 350000 },
334         .vco = { .min = 1760000, .max = 3510000 },
335         .n = { .min = 1, .max = 3 },
336         .m = { .min = 79, .max = 126 },
337         .m1 = { .min = 12, .max = 22 },
338         .m2 = { .min = 5, .max = 9 },
339         .p = { .min = 14, .max = 42 },
340         .p1 = { .min = 2, .max = 6 },
341         .p2 = { .dot_limit = 225000,
342                 .p2_slow = 7, .p2_fast = 7 },
343         .find_pll = intel_g4x_find_best_PLL,
344 };
345
346 static const intel_limit_t intel_limits_ironlake_display_port = {
347         .dot = { .min = 25000, .max = 350000 },
348         .vco = { .min = 1760000, .max = 3510000},
349         .n = { .min = 1, .max = 2 },
350         .m = { .min = 81, .max = 90 },
351         .m1 = { .min = 12, .max = 22 },
352         .m2 = { .min = 5, .max = 9 },
353         .p = { .min = 10, .max = 20 },
354         .p1 = { .min = 1, .max = 2},
355         .p2 = { .dot_limit = 0,
356                 .p2_slow = 10, .p2_fast = 10 },
357         .find_pll = intel_find_pll_ironlake_dp,
358 };
359
360 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
361                                                 int refclk)
362 {
363         struct drm_device *dev = crtc->dev;
364         struct drm_i915_private *dev_priv = dev->dev_private;
365         const intel_limit_t *limit;
366
367         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
368                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
369                     LVDS_CLKB_POWER_UP) {
370                         /* LVDS dual channel */
371                         if (refclk == 100000)
372                                 limit = &intel_limits_ironlake_dual_lvds_100m;
373                         else
374                                 limit = &intel_limits_ironlake_dual_lvds;
375                 } else {
376                         if (refclk == 100000)
377                                 limit = &intel_limits_ironlake_single_lvds_100m;
378                         else
379                                 limit = &intel_limits_ironlake_single_lvds;
380                 }
381         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
382                         HAS_eDP)
383                 limit = &intel_limits_ironlake_display_port;
384         else
385                 limit = &intel_limits_ironlake_dac;
386
387         return limit;
388 }
389
390 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
391 {
392         struct drm_device *dev = crtc->dev;
393         struct drm_i915_private *dev_priv = dev->dev_private;
394         const intel_limit_t *limit;
395
396         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
397                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
398                     LVDS_CLKB_POWER_UP)
399                         /* LVDS with dual channel */
400                         limit = &intel_limits_g4x_dual_channel_lvds;
401                 else
402                         /* LVDS with dual channel */
403                         limit = &intel_limits_g4x_single_channel_lvds;
404         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
405                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
406                 limit = &intel_limits_g4x_hdmi;
407         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
408                 limit = &intel_limits_g4x_sdvo;
409         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
410                 limit = &intel_limits_g4x_display_port;
411         } else /* The option is for other outputs */
412                 limit = &intel_limits_i9xx_sdvo;
413
414         return limit;
415 }
416
417 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
418 {
419         struct drm_device *dev = crtc->dev;
420         const intel_limit_t *limit;
421
422         if (HAS_PCH_SPLIT(dev))
423                 limit = intel_ironlake_limit(crtc, refclk);
424         else if (IS_G4X(dev)) {
425                 limit = intel_g4x_limit(crtc);
426         } else if (IS_PINEVIEW(dev)) {
427                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
428                         limit = &intel_limits_pineview_lvds;
429                 else
430                         limit = &intel_limits_pineview_sdvo;
431         } else if (!IS_GEN2(dev)) {
432                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
433                         limit = &intel_limits_i9xx_lvds;
434                 else
435                         limit = &intel_limits_i9xx_sdvo;
436         } else {
437                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
438                         limit = &intel_limits_i8xx_lvds;
439                 else
440                         limit = &intel_limits_i8xx_dvo;
441         }
442         return limit;
443 }
444
445 /* m1 is reserved as 0 in Pineview, n is a ring counter */
446 static void pineview_clock(int refclk, intel_clock_t *clock)
447 {
448         clock->m = clock->m2 + 2;
449         clock->p = clock->p1 * clock->p2;
450         clock->vco = refclk * clock->m / clock->n;
451         clock->dot = clock->vco / clock->p;
452 }
453
454 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
455 {
456         if (IS_PINEVIEW(dev)) {
457                 pineview_clock(refclk, clock);
458                 return;
459         }
460         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
461         clock->p = clock->p1 * clock->p2;
462         clock->vco = refclk * clock->m / (clock->n + 2);
463         clock->dot = clock->vco / clock->p;
464 }
465
466 /**
467  * Returns whether any output on the specified pipe is of the specified type
468  */
469 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
470 {
471         struct drm_device *dev = crtc->dev;
472         struct drm_mode_config *mode_config = &dev->mode_config;
473         struct intel_encoder *encoder;
474
475         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
476                 if (encoder->base.crtc == crtc && encoder->type == type)
477                         return true;
478
479         return false;
480 }
481
482 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
483 /**
484  * Returns whether the given set of divisors are valid for a given refclk with
485  * the given connectors.
486  */
487
488 static bool intel_PLL_is_valid(struct drm_device *dev,
489                                const intel_limit_t *limit,
490                                const intel_clock_t *clock)
491 {
492         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
493                 INTELPllInvalid("p1 out of range\n");
494         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
495                 INTELPllInvalid("p out of range\n");
496         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
497                 INTELPllInvalid("m2 out of range\n");
498         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
499                 INTELPllInvalid("m1 out of range\n");
500         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
501                 INTELPllInvalid("m1 <= m2\n");
502         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
503                 INTELPllInvalid("m out of range\n");
504         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
505                 INTELPllInvalid("n out of range\n");
506         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
507                 INTELPllInvalid("vco out of range\n");
508         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
509          * connector, etc., rather than just a single range.
510          */
511         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
512                 INTELPllInvalid("dot out of range\n");
513
514         return true;
515 }
516
517 static bool
518 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
519                     int target, int refclk, intel_clock_t *match_clock,
520                     intel_clock_t *best_clock)
521
522 {
523         struct drm_device *dev = crtc->dev;
524         struct drm_i915_private *dev_priv = dev->dev_private;
525         intel_clock_t clock;
526         int err = target;
527
528         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
529             (I915_READ(LVDS)) != 0) {
530                 /*
531                  * For LVDS, if the panel is on, just rely on its current
532                  * settings for dual-channel.  We haven't figured out how to
533                  * reliably set up different single/dual channel state, if we
534                  * even can.
535                  */
536                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
537                     LVDS_CLKB_POWER_UP)
538                         clock.p2 = limit->p2.p2_fast;
539                 else
540                         clock.p2 = limit->p2.p2_slow;
541         } else {
542                 if (target < limit->p2.dot_limit)
543                         clock.p2 = limit->p2.p2_slow;
544                 else
545                         clock.p2 = limit->p2.p2_fast;
546         }
547
548         memset(best_clock, 0, sizeof(*best_clock));
549
550         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
551              clock.m1++) {
552                 for (clock.m2 = limit->m2.min;
553                      clock.m2 <= limit->m2.max; clock.m2++) {
554                         /* m1 is always 0 in Pineview */
555                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
556                                 break;
557                         for (clock.n = limit->n.min;
558                              clock.n <= limit->n.max; clock.n++) {
559                                 for (clock.p1 = limit->p1.min;
560                                         clock.p1 <= limit->p1.max; clock.p1++) {
561                                         int this_err;
562
563                                         intel_clock(dev, refclk, &clock);
564                                         if (!intel_PLL_is_valid(dev, limit,
565                                                                 &clock))
566                                                 continue;
567                                         if (match_clock &&
568                                             clock.p != match_clock->p)
569                                                 continue;
570
571                                         this_err = abs(clock.dot - target);
572                                         if (this_err < err) {
573                                                 *best_clock = clock;
574                                                 err = this_err;
575                                         }
576                                 }
577                         }
578                 }
579         }
580
581         return (err != target);
582 }
583
584 static bool
585 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
586                         int target, int refclk, intel_clock_t *match_clock,
587                         intel_clock_t *best_clock)
588 {
589         struct drm_device *dev = crtc->dev;
590         struct drm_i915_private *dev_priv = dev->dev_private;
591         intel_clock_t clock;
592         int max_n;
593         bool found;
594         /* approximately equals target * 0.00585 */
595         int err_most = (target >> 8) + (target >> 9);
596         found = false;
597
598         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
599                 int lvds_reg;
600
601                 if (HAS_PCH_SPLIT(dev))
602                         lvds_reg = PCH_LVDS;
603                 else
604                         lvds_reg = LVDS;
605                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
606                     LVDS_CLKB_POWER_UP)
607                         clock.p2 = limit->p2.p2_fast;
608                 else
609                         clock.p2 = limit->p2.p2_slow;
610         } else {
611                 if (target < limit->p2.dot_limit)
612                         clock.p2 = limit->p2.p2_slow;
613                 else
614                         clock.p2 = limit->p2.p2_fast;
615         }
616
617         memset(best_clock, 0, sizeof(*best_clock));
618         max_n = limit->n.max;
619         /* based on hardware requirement, prefer smaller n to precision */
620         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
621                 /* based on hardware requirement, prefere larger m1,m2 */
622                 for (clock.m1 = limit->m1.max;
623                      clock.m1 >= limit->m1.min; clock.m1--) {
624                         for (clock.m2 = limit->m2.max;
625                              clock.m2 >= limit->m2.min; clock.m2--) {
626                                 for (clock.p1 = limit->p1.max;
627                                      clock.p1 >= limit->p1.min; clock.p1--) {
628                                         int this_err;
629
630                                         intel_clock(dev, refclk, &clock);
631                                         if (!intel_PLL_is_valid(dev, limit,
632                                                                 &clock))
633                                                 continue;
634                                         if (match_clock &&
635                                             clock.p != match_clock->p)
636                                                 continue;
637
638                                         this_err = abs(clock.dot - target);
639                                         if (this_err < err_most) {
640                                                 *best_clock = clock;
641                                                 err_most = this_err;
642                                                 max_n = clock.n;
643                                                 found = true;
644                                         }
645                                 }
646                         }
647                 }
648         }
649         return found;
650 }
651
652 static bool
653 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
654                            int target, int refclk, intel_clock_t *match_clock,
655                            intel_clock_t *best_clock)
656 {
657         struct drm_device *dev = crtc->dev;
658         intel_clock_t clock;
659
660         if (target < 200000) {
661                 clock.n = 1;
662                 clock.p1 = 2;
663                 clock.p2 = 10;
664                 clock.m1 = 12;
665                 clock.m2 = 9;
666         } else {
667                 clock.n = 2;
668                 clock.p1 = 1;
669                 clock.p2 = 10;
670                 clock.m1 = 14;
671                 clock.m2 = 8;
672         }
673         intel_clock(dev, refclk, &clock);
674         memcpy(best_clock, &clock, sizeof(intel_clock_t));
675         return true;
676 }
677
678 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
679 static bool
680 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
681                       int target, int refclk, intel_clock_t *match_clock,
682                       intel_clock_t *best_clock)
683 {
684         intel_clock_t clock;
685         if (target < 200000) {
686                 clock.p1 = 2;
687                 clock.p2 = 10;
688                 clock.n = 2;
689                 clock.m1 = 23;
690                 clock.m2 = 8;
691         } else {
692                 clock.p1 = 1;
693                 clock.p2 = 10;
694                 clock.n = 1;
695                 clock.m1 = 14;
696                 clock.m2 = 2;
697         }
698         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
699         clock.p = (clock.p1 * clock.p2);
700         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
701         clock.vco = 0;
702         memcpy(best_clock, &clock, sizeof(intel_clock_t));
703         return true;
704 }
705
706 /**
707  * intel_wait_for_vblank - wait for vblank on a given pipe
708  * @dev: drm device
709  * @pipe: pipe to wait for
710  *
711  * Wait for vblank to occur on a given pipe.  Needed for various bits of
712  * mode setting code.
713  */
714 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
715 {
716         struct drm_i915_private *dev_priv = dev->dev_private;
717         int pipestat_reg = PIPESTAT(pipe);
718
719         /* Clear existing vblank status. Note this will clear any other
720          * sticky status fields as well.
721          *
722          * This races with i915_driver_irq_handler() with the result
723          * that either function could miss a vblank event.  Here it is not
724          * fatal, as we will either wait upon the next vblank interrupt or
725          * timeout.  Generally speaking intel_wait_for_vblank() is only
726          * called during modeset at which time the GPU should be idle and
727          * should *not* be performing page flips and thus not waiting on
728          * vblanks...
729          * Currently, the result of us stealing a vblank from the irq
730          * handler is that a single frame will be skipped during swapbuffers.
731          */
732         I915_WRITE(pipestat_reg,
733                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
734
735         /* Wait for vblank interrupt bit to set */
736         if (_intel_wait_for(dev,
737             I915_READ(pipestat_reg) & PIPE_VBLANK_INTERRUPT_STATUS,
738             50, 1, "915vbl"))
739                 DRM_DEBUG_KMS("vblank wait timed out\n");
740 }
741
742 /*
743  * intel_wait_for_pipe_off - wait for pipe to turn off
744  * @dev: drm device
745  * @pipe: pipe to wait for
746  *
747  * After disabling a pipe, we can't wait for vblank in the usual way,
748  * spinning on the vblank interrupt status bit, since we won't actually
749  * see an interrupt when the pipe is disabled.
750  *
751  * On Gen4 and above:
752  *   wait for the pipe register state bit to turn off
753  *
754  * Otherwise:
755  *   wait for the display line value to settle (it usually
756  *   ends up stopping at the start of the next frame).
757  *
758  */
759 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
760 {
761         struct drm_i915_private *dev_priv = dev->dev_private;
762
763         if (INTEL_INFO(dev)->gen >= 4) {
764                 int reg = PIPECONF(pipe);
765
766                 /* Wait for the Pipe State to go off */
767                 if (_intel_wait_for(dev,
768                     (I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, 100,
769                     1, "915pip"))
770                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
771         } else {
772                 u32 last_line;
773                 int reg = PIPEDSL(pipe);
774                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
775
776                 /* Wait for the display line to settle */
777                 do {
778                         last_line = I915_READ(reg) & DSL_LINEMASK;
779                         DELAY(5000);
780                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
781                          time_after(timeout, jiffies));
782                 if (time_after(jiffies, timeout))
783                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
784         }
785 }
786
787 static const char *state_string(bool enabled)
788 {
789         return enabled ? "on" : "off";
790 }
791
792 /* Only for pre-ILK configs */
793 static void assert_pll(struct drm_i915_private *dev_priv,
794                        enum i915_pipe pipe, bool state)
795 {
796         int reg;
797         u32 val;
798         bool cur_state;
799
800         reg = DPLL(pipe);
801         val = I915_READ(reg);
802         cur_state = !!(val & DPLL_VCO_ENABLE);
803         if (cur_state != state)
804                 kprintf("PLL state assertion failure (expected %s, current %s)\n",
805                     state_string(state), state_string(cur_state));
806 }
807 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
808 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
809
810 /* For ILK+ */
811 static void assert_pch_pll(struct drm_i915_private *dev_priv,
812                            enum i915_pipe pipe, bool state)
813 {
814         int reg;
815         u32 val;
816         bool cur_state;
817
818         if (HAS_PCH_CPT(dev_priv->dev)) {
819                 u32 pch_dpll;
820
821                 pch_dpll = I915_READ(PCH_DPLL_SEL);
822
823                 /* Make sure the selected PLL is enabled to the transcoder */
824                 KASSERT(((pch_dpll >> (4 * pipe)) & 8) != 0,
825                     ("transcoder %d PLL not enabled\n", pipe));
826
827                 /* Convert the transcoder pipe number to a pll pipe number */
828                 pipe = (pch_dpll >> (4 * pipe)) & 1;
829         }
830
831         reg = PCH_DPLL(pipe);
832         val = I915_READ(reg);
833         cur_state = !!(val & DPLL_VCO_ENABLE);
834         if (cur_state != state)
835                 kprintf("PCH PLL state assertion failure (expected %s, current %s)\n",
836                     state_string(state), state_string(cur_state));
837 }
838 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
839 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
840
841 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
842                           enum i915_pipe pipe, bool state)
843 {
844         int reg;
845         u32 val;
846         bool cur_state;
847
848         reg = FDI_TX_CTL(pipe);
849         val = I915_READ(reg);
850         cur_state = !!(val & FDI_TX_ENABLE);
851         if (cur_state != state)
852                 kprintf("FDI TX state assertion failure (expected %s, current %s)\n",
853                     state_string(state), state_string(cur_state));
854 }
855 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
856 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
857
858 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
859                           enum i915_pipe pipe, bool state)
860 {
861         int reg;
862         u32 val;
863         bool cur_state;
864
865         reg = FDI_RX_CTL(pipe);
866         val = I915_READ(reg);
867         cur_state = !!(val & FDI_RX_ENABLE);
868         if (cur_state != state)
869                 kprintf("FDI RX state assertion failure (expected %s, current %s)\n",
870                     state_string(state), state_string(cur_state));
871 }
872 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
873 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
874
875 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
876                                       enum i915_pipe pipe)
877 {
878         int reg;
879         u32 val;
880
881         /* ILK FDI PLL is always enabled */
882         if (dev_priv->info->gen == 5)
883                 return;
884
885         reg = FDI_TX_CTL(pipe);
886         val = I915_READ(reg);
887         if (!(val & FDI_TX_PLL_ENABLE))
888                 kprintf("FDI TX PLL assertion failure, should be active but is disabled\n");
889 }
890
891 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
892                                       enum i915_pipe pipe)
893 {
894         int reg;
895         u32 val;
896
897         reg = FDI_RX_CTL(pipe);
898         val = I915_READ(reg);
899         if (!(val & FDI_RX_PLL_ENABLE))
900                 kprintf("FDI RX PLL assertion failure, should be active but is disabled\n");
901 }
902
903 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
904                                   enum i915_pipe pipe)
905 {
906         int pp_reg, lvds_reg;
907         u32 val;
908         enum i915_pipe panel_pipe = PIPE_A;
909         bool locked = true;
910
911         if (HAS_PCH_SPLIT(dev_priv->dev)) {
912                 pp_reg = PCH_PP_CONTROL;
913                 lvds_reg = PCH_LVDS;
914         } else {
915                 pp_reg = PP_CONTROL;
916                 lvds_reg = LVDS;
917         }
918
919         val = I915_READ(pp_reg);
920         if (!(val & PANEL_POWER_ON) ||
921             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
922                 locked = false;
923
924         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
925                 panel_pipe = PIPE_B;
926
927         if (panel_pipe == pipe && locked)
928                 kprintf("panel assertion failure, pipe %c regs locked\n",
929              pipe_name(pipe));
930 }
931
932 void assert_pipe(struct drm_i915_private *dev_priv,
933                  enum i915_pipe pipe, bool state)
934 {
935         int reg;
936         u32 val;
937         bool cur_state;
938
939         /* if we need the pipe A quirk it must be always on */
940         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
941                 state = true;
942
943         reg = PIPECONF(pipe);
944         val = I915_READ(reg);
945         cur_state = !!(val & PIPECONF_ENABLE);
946         if (cur_state != state)
947                 kprintf("pipe %c assertion failure (expected %s, current %s)\n",
948                     pipe_name(pipe), state_string(state), state_string(cur_state));
949 }
950
951 static void assert_plane(struct drm_i915_private *dev_priv,
952                          enum plane plane, bool state)
953 {
954         int reg;
955         u32 val;
956         bool cur_state;
957
958         reg = DSPCNTR(plane);
959         val = I915_READ(reg);
960         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
961         if (cur_state != state)
962                 kprintf("plane %c assertion failure, (expected %s, current %s)\n",
963                        plane_name(plane), state_string(state), state_string(cur_state));
964 }
965
966 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
967 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
968
969 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
970                                    enum i915_pipe pipe)
971 {
972         int reg, i;
973         u32 val;
974         int cur_pipe;
975
976         /* Planes are fixed to pipes on ILK+ */
977         if (HAS_PCH_SPLIT(dev_priv->dev)) {
978                 reg = DSPCNTR(pipe);
979                 val = I915_READ(reg);
980                 if ((val & DISPLAY_PLANE_ENABLE) != 0)
981                         kprintf("plane %c assertion failure, should be disabled but not\n",
982                                plane_name(pipe));
983                 return;
984         }
985
986         /* Need to check both planes against the pipe */
987         for (i = 0; i < 2; i++) {
988                 reg = DSPCNTR(i);
989                 val = I915_READ(reg);
990                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
991                         DISPPLANE_SEL_PIPE_SHIFT;
992                 if ((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe)
993                         kprintf("plane %c assertion failure, should be off on pipe %c but is still active\n",
994                      plane_name(i), pipe_name(pipe));
995         }
996 }
997
998 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
999 {
1000         u32 val;
1001         bool enabled;
1002
1003         val = I915_READ(PCH_DREF_CONTROL);
1004         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1005                             DREF_SUPERSPREAD_SOURCE_MASK));
1006         if (!enabled)
1007                 kprintf("PCH refclk assertion failure, should be active but is disabled\n");
1008 }
1009
1010 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1011                                        enum i915_pipe pipe)
1012 {
1013         int reg;
1014         u32 val;
1015         bool enabled;
1016
1017         reg = TRANSCONF(pipe);
1018         val = I915_READ(reg);
1019         enabled = !!(val & TRANS_ENABLE);
1020         if (enabled)
1021                 kprintf("transcoder assertion failed, should be off on pipe %c but is still active\n",
1022              pipe_name(pipe));
1023 }
1024
1025 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1026                               enum i915_pipe pipe, u32 val)
1027 {
1028         if ((val & PORT_ENABLE) == 0)
1029                 return false;
1030
1031         if (HAS_PCH_CPT(dev_priv->dev)) {
1032                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1033                         return false;
1034         } else {
1035                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1036                         return false;
1037         }
1038         return true;
1039 }
1040
1041 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1042                               enum i915_pipe pipe, u32 val)
1043 {
1044         if ((val & LVDS_PORT_EN) == 0)
1045                 return false;
1046
1047         if (HAS_PCH_CPT(dev_priv->dev)) {
1048                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1049                         return false;
1050         } else {
1051                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1052                         return false;
1053         }
1054         return true;
1055 }
1056
1057 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1058                               enum i915_pipe pipe, u32 val)
1059 {
1060         if ((val & ADPA_DAC_ENABLE) == 0)
1061                 return false;
1062         if (HAS_PCH_CPT(dev_priv->dev)) {
1063                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1064                         return false;
1065         } else {
1066                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1067                         return false;
1068         }
1069         return true;
1070 }
1071
1072 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1073                             enum i915_pipe pipe, u32 port_sel, u32 val)
1074 {
1075         if ((val & DP_PORT_EN) == 0)
1076                 return false;
1077
1078         if (HAS_PCH_CPT(dev_priv->dev)) {
1079                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1080                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1081                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1082                         return false;
1083         } else {
1084                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1085                         return false;
1086         }
1087         return true;
1088 }
1089
1090 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1091                                    enum i915_pipe pipe, int reg, u32 port_sel)
1092 {
1093         u32 val = I915_READ(reg);
1094         if (dp_pipe_enabled(dev_priv, pipe, port_sel, val))
1095                 kprintf("PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1096              reg, pipe_name(pipe));
1097 }
1098
1099 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1100                                      enum i915_pipe pipe, int reg)
1101 {
1102         u32 val = I915_READ(reg);
1103         if (hdmi_pipe_enabled(dev_priv, val, pipe))
1104                 kprintf("PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1105              reg, pipe_name(pipe));
1106 }
1107
1108 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1109                                       enum i915_pipe pipe)
1110 {
1111         int reg;
1112         u32 val;
1113
1114         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1115         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1116         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1117
1118         reg = PCH_ADPA;
1119         val = I915_READ(reg);
1120         if (adpa_pipe_enabled(dev_priv, val, pipe))
1121                 kprintf("PCH VGA enabled on transcoder %c, should be disabled\n",
1122              pipe_name(pipe));
1123
1124         reg = PCH_LVDS;
1125         val = I915_READ(reg);
1126         if (lvds_pipe_enabled(dev_priv, val, pipe))
1127                 kprintf("PCH LVDS enabled on transcoder %c, should be disabled\n",
1128              pipe_name(pipe));
1129
1130         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1131         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1132         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1133 }
1134
1135 /**
1136  * intel_enable_pll - enable a PLL
1137  * @dev_priv: i915 private structure
1138  * @pipe: pipe PLL to enable
1139  *
1140  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1141  * make sure the PLL reg is writable first though, since the panel write
1142  * protect mechanism may be enabled.
1143  *
1144  * Note!  This is for pre-ILK only.
1145  */
1146 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1147 {
1148         int reg;
1149         u32 val;
1150
1151         /* No really, not for ILK+ */
1152         KASSERT(dev_priv->info->gen < 5, ("Wrong device gen"));
1153
1154         /* PLL is protected by panel, make sure we can write it */
1155         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1156                 assert_panel_unlocked(dev_priv, pipe);
1157
1158         reg = DPLL(pipe);
1159         val = I915_READ(reg);
1160         val |= DPLL_VCO_ENABLE;
1161
1162         /* We do this three times for luck */
1163         I915_WRITE(reg, val);
1164         POSTING_READ(reg);
1165         DELAY(150); /* wait for warmup */
1166         I915_WRITE(reg, val);
1167         POSTING_READ(reg);
1168         DELAY(150); /* wait for warmup */
1169         I915_WRITE(reg, val);
1170         POSTING_READ(reg);
1171         DELAY(150); /* wait for warmup */
1172 }
1173
1174 /**
1175  * intel_disable_pll - disable a PLL
1176  * @dev_priv: i915 private structure
1177  * @pipe: pipe PLL to disable
1178  *
1179  * Disable the PLL for @pipe, making sure the pipe is off first.
1180  *
1181  * Note!  This is for pre-ILK only.
1182  */
1183 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1184 {
1185         int reg;
1186         u32 val;
1187
1188         /* Don't disable pipe A or pipe A PLLs if needed */
1189         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1190                 return;
1191
1192         /* Make sure the pipe isn't still relying on us */
1193         assert_pipe_disabled(dev_priv, pipe);
1194
1195         reg = DPLL(pipe);
1196         val = I915_READ(reg);
1197         val &= ~DPLL_VCO_ENABLE;
1198         I915_WRITE(reg, val);
1199         POSTING_READ(reg);
1200 }
1201
1202 /**
1203  * intel_enable_pch_pll - enable PCH PLL
1204  * @dev_priv: i915 private structure
1205  * @pipe: pipe PLL to enable
1206  *
1207  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1208  * drives the transcoder clock.
1209  */
1210 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1211                                  enum i915_pipe pipe)
1212 {
1213         int reg;
1214         u32 val;
1215
1216         if (pipe > 1)
1217                 return;
1218
1219         /* PCH only available on ILK+ */
1220         KASSERT(dev_priv->info->gen >= 5, ("Wrong device gen"));
1221
1222         /* PCH refclock must be enabled first */
1223         assert_pch_refclk_enabled(dev_priv);
1224
1225         reg = PCH_DPLL(pipe);
1226         val = I915_READ(reg);
1227         val |= DPLL_VCO_ENABLE;
1228         I915_WRITE(reg, val);
1229         POSTING_READ(reg);
1230         DELAY(200);
1231 }
1232
1233 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1234                                   enum i915_pipe pipe)
1235 {
1236         int reg;
1237         u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1238                 pll_sel = TRANSC_DPLL_ENABLE;
1239
1240         if (pipe > 1)
1241                 return;
1242
1243         /* PCH only available on ILK+ */
1244         KASSERT(dev_priv->info->gen >= 5, ("Wrong device gen"));
1245
1246         /* Make sure transcoder isn't still depending on us */
1247         assert_transcoder_disabled(dev_priv, pipe);
1248
1249         if (pipe == 0)
1250                 pll_sel |= TRANSC_DPLLA_SEL;
1251         else if (pipe == 1)
1252                 pll_sel |= TRANSC_DPLLB_SEL;
1253
1254
1255         if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1256                 return;
1257
1258         reg = PCH_DPLL(pipe);
1259         val = I915_READ(reg);
1260         val &= ~DPLL_VCO_ENABLE;
1261         I915_WRITE(reg, val);
1262         POSTING_READ(reg);
1263         DELAY(200);
1264 }
1265
1266 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1267                                     enum i915_pipe pipe)
1268 {
1269         int reg;
1270         u32 val, pipeconf_val;
1271         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1272
1273         /* PCH only available on ILK+ */
1274         KASSERT(dev_priv->info->gen >= 5, ("Wrong device gen"));
1275
1276         /* Make sure PCH DPLL is enabled */
1277         assert_pch_pll_enabled(dev_priv, pipe);
1278
1279         /* FDI must be feeding us bits for PCH ports */
1280         assert_fdi_tx_enabled(dev_priv, pipe);
1281         assert_fdi_rx_enabled(dev_priv, pipe);
1282
1283
1284         reg = TRANSCONF(pipe);
1285         val = I915_READ(reg);
1286         pipeconf_val = I915_READ(PIPECONF(pipe));
1287
1288         if (HAS_PCH_IBX(dev_priv->dev)) {
1289                 /*
1290                  * make the BPC in transcoder be consistent with
1291                  * that in pipeconf reg.
1292                  */
1293                 val &= ~PIPE_BPC_MASK;
1294                 val |= pipeconf_val & PIPE_BPC_MASK;
1295         }
1296
1297         val &= ~TRANS_INTERLACE_MASK;
1298         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1299                 if (HAS_PCH_IBX(dev_priv->dev) &&
1300                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1301                         val |= TRANS_LEGACY_INTERLACED_ILK;
1302                 else
1303                         val |= TRANS_INTERLACED;
1304         else
1305                 val |= TRANS_PROGRESSIVE;
1306
1307         I915_WRITE(reg, val | TRANS_ENABLE);
1308         if (_intel_wait_for(dev_priv->dev, I915_READ(reg) & TRANS_STATE_ENABLE,
1309             100, 1, "915trc"))
1310                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1311 }
1312
1313 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1314                                      enum i915_pipe pipe)
1315 {
1316         int reg;
1317         u32 val;
1318
1319         /* FDI relies on the transcoder */
1320         assert_fdi_tx_disabled(dev_priv, pipe);
1321         assert_fdi_rx_disabled(dev_priv, pipe);
1322
1323         /* Ports must be off as well */
1324         assert_pch_ports_disabled(dev_priv, pipe);
1325
1326         reg = TRANSCONF(pipe);
1327         val = I915_READ(reg);
1328         val &= ~TRANS_ENABLE;
1329         I915_WRITE(reg, val);
1330         /* wait for PCH transcoder off, transcoder state */
1331         if (_intel_wait_for(dev_priv->dev,
1332             (I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50,
1333             1, "915trd"))
1334                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1335 }
1336
1337 /**
1338  * intel_enable_pipe - enable a pipe, asserting requirements
1339  * @dev_priv: i915 private structure
1340  * @pipe: pipe to enable
1341  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1342  *
1343  * Enable @pipe, making sure that various hardware specific requirements
1344  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1345  *
1346  * @pipe should be %PIPE_A or %PIPE_B.
1347  *
1348  * Will wait until the pipe is actually running (i.e. first vblank) before
1349  * returning.
1350  */
1351 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
1352                               bool pch_port)
1353 {
1354         int reg;
1355         u32 val;
1356
1357         /*
1358          * A pipe without a PLL won't actually be able to drive bits from
1359          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1360          * need the check.
1361          */
1362         if (!HAS_PCH_SPLIT(dev_priv->dev))
1363                 assert_pll_enabled(dev_priv, pipe);
1364         else {
1365                 if (pch_port) {
1366                         /* if driving the PCH, we need FDI enabled */
1367                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1368                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1369                 }
1370                 /* FIXME: assert CPU port conditions for SNB+ */
1371         }
1372
1373         reg = PIPECONF(pipe);
1374         val = I915_READ(reg);
1375         if (val & PIPECONF_ENABLE)
1376                 return;
1377
1378         I915_WRITE(reg, val | PIPECONF_ENABLE);
1379         intel_wait_for_vblank(dev_priv->dev, pipe);
1380 }
1381
1382 /**
1383  * intel_disable_pipe - disable a pipe, asserting requirements
1384  * @dev_priv: i915 private structure
1385  * @pipe: pipe to disable
1386  *
1387  * Disable @pipe, making sure that various hardware specific requirements
1388  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1389  *
1390  * @pipe should be %PIPE_A or %PIPE_B.
1391  *
1392  * Will wait until the pipe has shut down before returning.
1393  */
1394 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1395                                enum i915_pipe pipe)
1396 {
1397         int reg;
1398         u32 val;
1399
1400         /*
1401          * Make sure planes won't keep trying to pump pixels to us,
1402          * or we might hang the display.
1403          */
1404         assert_planes_disabled(dev_priv, pipe);
1405
1406         /* Don't disable pipe A or pipe A PLLs if needed */
1407         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1408                 return;
1409
1410         reg = PIPECONF(pipe);
1411         val = I915_READ(reg);
1412         if ((val & PIPECONF_ENABLE) == 0)
1413                 return;
1414
1415         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1416         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1417 }
1418
1419 /*
1420  * Plane regs are double buffered, going from enabled->disabled needs a
1421  * trigger in order to latch.  The display address reg provides this.
1422  */
1423 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1424                                       enum plane plane)
1425 {
1426         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1427         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1428 }
1429
1430 /**
1431  * intel_enable_plane - enable a display plane on a given pipe
1432  * @dev_priv: i915 private structure
1433  * @plane: plane to enable
1434  * @pipe: pipe being fed
1435  *
1436  * Enable @plane on @pipe, making sure that @pipe is running first.
1437  */
1438 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1439                                enum plane plane, enum i915_pipe pipe)
1440 {
1441         int reg;
1442         u32 val;
1443
1444         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1445         assert_pipe_enabled(dev_priv, pipe);
1446
1447         reg = DSPCNTR(plane);
1448         val = I915_READ(reg);
1449         if (val & DISPLAY_PLANE_ENABLE)
1450                 return;
1451
1452         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1453         intel_flush_display_plane(dev_priv, plane);
1454         intel_wait_for_vblank(dev_priv->dev, pipe);
1455 }
1456
1457 /**
1458  * intel_disable_plane - disable a display plane
1459  * @dev_priv: i915 private structure
1460  * @plane: plane to disable
1461  * @pipe: pipe consuming the data
1462  *
1463  * Disable @plane; should be an independent operation.
1464  */
1465 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1466                                 enum plane plane, enum i915_pipe pipe)
1467 {
1468         int reg;
1469         u32 val;
1470
1471         reg = DSPCNTR(plane);
1472         val = I915_READ(reg);
1473         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1474                 return;
1475
1476         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1477         intel_flush_display_plane(dev_priv, plane);
1478         intel_wait_for_vblank(dev_priv->dev, pipe);
1479 }
1480
1481 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1482                            enum i915_pipe pipe, int reg, u32 port_sel)
1483 {
1484         u32 val = I915_READ(reg);
1485         if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1486                 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1487                 I915_WRITE(reg, val & ~DP_PORT_EN);
1488         }
1489 }
1490
1491 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1492                              enum i915_pipe pipe, int reg)
1493 {
1494         u32 val = I915_READ(reg);
1495         if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1496                 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1497                               reg, pipe);
1498                 I915_WRITE(reg, val & ~PORT_ENABLE);
1499         }
1500 }
1501
1502 /* Disable any ports connected to this transcoder */
1503 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1504                                     enum i915_pipe pipe)
1505 {
1506         u32 reg, val;
1507
1508         val = I915_READ(PCH_PP_CONTROL);
1509         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1510
1511         disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1512         disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1513         disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1514
1515         reg = PCH_ADPA;
1516         val = I915_READ(reg);
1517         if (adpa_pipe_enabled(dev_priv, val, pipe))
1518                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1519
1520         reg = PCH_LVDS;
1521         val = I915_READ(reg);
1522         if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1523                 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1524                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1525                 POSTING_READ(reg);
1526                 DELAY(100);
1527         }
1528
1529         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1530         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1531         disable_pch_hdmi(dev_priv, pipe, HDMID);
1532 }
1533
1534 static void i8xx_disable_fbc(struct drm_device *dev)
1535 {
1536         struct drm_i915_private *dev_priv = dev->dev_private;
1537         u32 fbc_ctl;
1538
1539         /* Disable compression */
1540         fbc_ctl = I915_READ(FBC_CONTROL);
1541         if ((fbc_ctl & FBC_CTL_EN) == 0)
1542                 return;
1543
1544         fbc_ctl &= ~FBC_CTL_EN;
1545         I915_WRITE(FBC_CONTROL, fbc_ctl);
1546
1547         /* Wait for compressing bit to clear */
1548         if (_intel_wait_for(dev,
1549             (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10,
1550             1, "915fbd")) {
1551                 DRM_DEBUG_KMS("FBC idle timed out\n");
1552                 return;
1553         }
1554
1555         DRM_DEBUG_KMS("disabled FBC\n");
1556 }
1557
1558 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1559 {
1560         struct drm_device *dev = crtc->dev;
1561         struct drm_i915_private *dev_priv = dev->dev_private;
1562         struct drm_framebuffer *fb = crtc->fb;
1563         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1564         struct drm_i915_gem_object *obj = intel_fb->obj;
1565         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1566         int cfb_pitch;
1567         int plane, i;
1568         u32 fbc_ctl, fbc_ctl2;
1569
1570         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1571         if (fb->pitches[0] < cfb_pitch)
1572                 cfb_pitch = fb->pitches[0];
1573
1574         /* FBC_CTL wants 64B units */
1575         cfb_pitch = (cfb_pitch / 64) - 1;
1576         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1577
1578         /* Clear old tags */
1579         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1580                 I915_WRITE(FBC_TAG + (i * 4), 0);
1581
1582         /* Set it up... */
1583         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1584         fbc_ctl2 |= plane;
1585         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1586         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1587
1588         /* enable it... */
1589         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1590         if (IS_I945GM(dev))
1591                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1592         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1593         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1594         fbc_ctl |= obj->fence_reg;
1595         I915_WRITE(FBC_CONTROL, fbc_ctl);
1596
1597         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1598                       cfb_pitch, crtc->y, intel_crtc->plane);
1599 }
1600
1601 static bool i8xx_fbc_enabled(struct drm_device *dev)
1602 {
1603         struct drm_i915_private *dev_priv = dev->dev_private;
1604
1605         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1606 }
1607
1608 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1609 {
1610         struct drm_device *dev = crtc->dev;
1611         struct drm_i915_private *dev_priv = dev->dev_private;
1612         struct drm_framebuffer *fb = crtc->fb;
1613         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1614         struct drm_i915_gem_object *obj = intel_fb->obj;
1615         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1616         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1617         unsigned long stall_watermark = 200;
1618         u32 dpfc_ctl;
1619
1620         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1621         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1622         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1623
1624         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1625                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1626                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1627         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1628
1629         /* enable it... */
1630         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1631
1632         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1633 }
1634
1635 static void g4x_disable_fbc(struct drm_device *dev)
1636 {
1637         struct drm_i915_private *dev_priv = dev->dev_private;
1638         u32 dpfc_ctl;
1639
1640         /* Disable compression */
1641         dpfc_ctl = I915_READ(DPFC_CONTROL);
1642         if (dpfc_ctl & DPFC_CTL_EN) {
1643                 dpfc_ctl &= ~DPFC_CTL_EN;
1644                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1645
1646                 DRM_DEBUG_KMS("disabled FBC\n");
1647         }
1648 }
1649
1650 static bool g4x_fbc_enabled(struct drm_device *dev)
1651 {
1652         struct drm_i915_private *dev_priv = dev->dev_private;
1653
1654         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1655 }
1656
1657 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1658 {
1659         struct drm_i915_private *dev_priv = dev->dev_private;
1660         u32 blt_ecoskpd;
1661
1662         /* Make sure blitter notifies FBC of writes */
1663         gen6_gt_force_wake_get(dev_priv);
1664         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1665         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1666                 GEN6_BLITTER_LOCK_SHIFT;
1667         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1668         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1669         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1670         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1671                          GEN6_BLITTER_LOCK_SHIFT);
1672         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1673         POSTING_READ(GEN6_BLITTER_ECOSKPD);
1674         gen6_gt_force_wake_put(dev_priv);
1675 }
1676
1677 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1678 {
1679         struct drm_device *dev = crtc->dev;
1680         struct drm_i915_private *dev_priv = dev->dev_private;
1681         struct drm_framebuffer *fb = crtc->fb;
1682         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1683         struct drm_i915_gem_object *obj = intel_fb->obj;
1684         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1685         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1686         unsigned long stall_watermark = 200;
1687         u32 dpfc_ctl;
1688
1689         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1690         dpfc_ctl &= DPFC_RESERVED;
1691         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1692         /* Set persistent mode for front-buffer rendering, ala X. */
1693         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1694         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1695         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1696
1697         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1698                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1699                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1700         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1701         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1702         /* enable it... */
1703         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1704
1705         if (IS_GEN6(dev)) {
1706                 I915_WRITE(SNB_DPFC_CTL_SA,
1707                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1708                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1709                 sandybridge_blit_fbc_update(dev);
1710         }
1711
1712         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1713 }
1714
1715 static void ironlake_disable_fbc(struct drm_device *dev)
1716 {
1717         struct drm_i915_private *dev_priv = dev->dev_private;
1718         u32 dpfc_ctl;
1719
1720         /* Disable compression */
1721         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1722         if (dpfc_ctl & DPFC_CTL_EN) {
1723                 dpfc_ctl &= ~DPFC_CTL_EN;
1724                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1725
1726                 DRM_DEBUG_KMS("disabled FBC\n");
1727         }
1728 }
1729
1730 static bool ironlake_fbc_enabled(struct drm_device *dev)
1731 {
1732         struct drm_i915_private *dev_priv = dev->dev_private;
1733
1734         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1735 }
1736
1737 bool intel_fbc_enabled(struct drm_device *dev)
1738 {
1739         struct drm_i915_private *dev_priv = dev->dev_private;
1740
1741         if (!dev_priv->display.fbc_enabled)
1742                 return false;
1743
1744         return dev_priv->display.fbc_enabled(dev);
1745 }
1746
1747 static void intel_fbc_work_fn(void *arg, int pending)
1748 {
1749         struct intel_fbc_work *work = arg;
1750         struct drm_device *dev = work->crtc->dev;
1751         struct drm_i915_private *dev_priv = dev->dev_private;
1752
1753         DRM_LOCK(dev);
1754         if (work == dev_priv->fbc_work) {
1755                 /* Double check that we haven't switched fb without cancelling
1756                  * the prior work.
1757                  */
1758                 if (work->crtc->fb == work->fb) {
1759                         dev_priv->display.enable_fbc(work->crtc,
1760                                                      work->interval);
1761
1762                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1763                         dev_priv->cfb_fb = work->crtc->fb->base.id;
1764                         dev_priv->cfb_y = work->crtc->y;
1765                 }
1766
1767                 dev_priv->fbc_work = NULL;
1768         }
1769         DRM_UNLOCK(dev);
1770
1771         drm_free(work, DRM_MEM_KMS);
1772 }
1773
1774 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1775 {
1776         u_int pending;
1777
1778         if (dev_priv->fbc_work == NULL)
1779                 return;
1780
1781         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1782
1783         /* Synchronisation is provided by struct_mutex and checking of
1784          * dev_priv->fbc_work, so we can perform the cancellation
1785          * entirely asynchronously.
1786          */
1787         if (taskqueue_cancel_timeout(dev_priv->tq, &dev_priv->fbc_work->task,
1788             &pending) == 0)
1789                 /* tasklet was killed before being run, clean up */
1790                 drm_free(dev_priv->fbc_work, DRM_MEM_KMS);
1791
1792         /* Mark the work as no longer wanted so that if it does
1793          * wake-up (because the work was already running and waiting
1794          * for our mutex), it will discover that is no longer
1795          * necessary to run.
1796          */
1797         dev_priv->fbc_work = NULL;
1798 }
1799
1800 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1801 {
1802         struct intel_fbc_work *work;
1803         struct drm_device *dev = crtc->dev;
1804         struct drm_i915_private *dev_priv = dev->dev_private;
1805
1806         if (!dev_priv->display.enable_fbc)
1807                 return;
1808
1809         intel_cancel_fbc_work(dev_priv);
1810
1811         work = kmalloc(sizeof(*work), DRM_MEM_KMS, M_WAITOK | M_ZERO);
1812         work->crtc = crtc;
1813         work->fb = crtc->fb;
1814         work->interval = interval;
1815         TIMEOUT_TASK_INIT(dev_priv->tq, &work->task, 0, intel_fbc_work_fn,
1816             work);
1817
1818         dev_priv->fbc_work = work;
1819
1820         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1821
1822         /* Delay the actual enabling to let pageflipping cease and the
1823          * display to settle before starting the compression. Note that
1824          * this delay also serves a second purpose: it allows for a
1825          * vblank to pass after disabling the FBC before we attempt
1826          * to modify the control registers.
1827          *
1828          * A more complicated solution would involve tracking vblanks
1829          * following the termination of the page-flipping sequence
1830          * and indeed performing the enable as a co-routine and not
1831          * waiting synchronously upon the vblank.
1832          */
1833         taskqueue_enqueue_timeout(dev_priv->tq, &work->task,
1834             msecs_to_jiffies(50));
1835 }
1836
1837 void intel_disable_fbc(struct drm_device *dev)
1838 {
1839         struct drm_i915_private *dev_priv = dev->dev_private;
1840
1841         intel_cancel_fbc_work(dev_priv);
1842
1843         if (!dev_priv->display.disable_fbc)
1844                 return;
1845
1846         dev_priv->display.disable_fbc(dev);
1847         dev_priv->cfb_plane = -1;
1848 }
1849
1850 /**
1851  * intel_update_fbc - enable/disable FBC as needed
1852  * @dev: the drm_device
1853  *
1854  * Set up the framebuffer compression hardware at mode set time.  We
1855  * enable it if possible:
1856  *   - plane A only (on pre-965)
1857  *   - no pixel mulitply/line duplication
1858  *   - no alpha buffer discard
1859  *   - no dual wide
1860  *   - framebuffer <= 2048 in width, 1536 in height
1861  *
1862  * We can't assume that any compression will take place (worst case),
1863  * so the compressed buffer has to be the same size as the uncompressed
1864  * one.  It also must reside (along with the line length buffer) in
1865  * stolen memory.
1866  *
1867  * We need to enable/disable FBC on a global basis.
1868  */
1869 static void intel_update_fbc(struct drm_device *dev)
1870 {
1871         struct drm_i915_private *dev_priv = dev->dev_private;
1872         struct drm_crtc *crtc = NULL, *tmp_crtc;
1873         struct intel_crtc *intel_crtc;
1874         struct drm_framebuffer *fb;
1875         struct intel_framebuffer *intel_fb;
1876         struct drm_i915_gem_object *obj;
1877         int enable_fbc;
1878
1879         DRM_DEBUG_KMS("\n");
1880
1881         if (!i915_powersave)
1882                 return;
1883
1884         if (!I915_HAS_FBC(dev))
1885                 return;
1886
1887         /*
1888          * If FBC is already on, we just have to verify that we can
1889          * keep it that way...
1890          * Need to disable if:
1891          *   - more than one pipe is active
1892          *   - changing FBC params (stride, fence, mode)
1893          *   - new fb is too large to fit in compressed buffer
1894          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1895          */
1896         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1897                 if (tmp_crtc->enabled && tmp_crtc->fb) {
1898                         if (crtc) {
1899                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1900                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1901                                 goto out_disable;
1902                         }
1903                         crtc = tmp_crtc;
1904                 }
1905         }
1906
1907         if (!crtc || crtc->fb == NULL) {
1908                 DRM_DEBUG_KMS("no output, disabling\n");
1909                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1910                 goto out_disable;
1911         }
1912
1913         intel_crtc = to_intel_crtc(crtc);
1914         fb = crtc->fb;
1915         intel_fb = to_intel_framebuffer(fb);
1916         obj = intel_fb->obj;
1917
1918         enable_fbc = i915_enable_fbc;
1919         if (enable_fbc < 0) {
1920                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1921                 enable_fbc = 1;
1922                 if (INTEL_INFO(dev)->gen <= 6)
1923                         enable_fbc = 0;
1924         }
1925         if (!enable_fbc) {
1926                 DRM_DEBUG_KMS("fbc disabled per module param\n");
1927                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1928                 goto out_disable;
1929         }
1930         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1931                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1932                               "compression\n");
1933                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1934                 goto out_disable;
1935         }
1936         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1937             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1938                 DRM_DEBUG_KMS("mode incompatible with compression, "
1939                               "disabling\n");
1940                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1941                 goto out_disable;
1942         }
1943         if ((crtc->mode.hdisplay > 2048) ||
1944             (crtc->mode.vdisplay > 1536)) {
1945                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1946                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1947                 goto out_disable;
1948         }
1949         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1950                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1951                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1952                 goto out_disable;
1953         }
1954         if (obj->tiling_mode != I915_TILING_X ||
1955             obj->fence_reg == I915_FENCE_REG_NONE) {
1956                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1957                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1958                 goto out_disable;
1959         }
1960
1961 #ifdef DDB
1962         /* If the kernel debugger is active, always disable compression */
1963         if (db_active)
1964                 goto out_disable;
1965 #endif
1966
1967         /* If the scanout has not changed, don't modify the FBC settings.
1968          * Note that we make the fundamental assumption that the fb->obj
1969          * cannot be unpinned (and have its GTT offset and fence revoked)
1970          * without first being decoupled from the scanout and FBC disabled.
1971          */
1972         if (dev_priv->cfb_plane == intel_crtc->plane &&
1973             dev_priv->cfb_fb == fb->base.id &&
1974             dev_priv->cfb_y == crtc->y)
1975                 return;
1976
1977         if (intel_fbc_enabled(dev)) {
1978                 /* We update FBC along two paths, after changing fb/crtc
1979                  * configuration (modeswitching) and after page-flipping
1980                  * finishes. For the latter, we know that not only did
1981                  * we disable the FBC at the start of the page-flip
1982                  * sequence, but also more than one vblank has passed.
1983                  *
1984                  * For the former case of modeswitching, it is possible
1985                  * to switch between two FBC valid configurations
1986                  * instantaneously so we do need to disable the FBC
1987                  * before we can modify its control registers. We also
1988                  * have to wait for the next vblank for that to take
1989                  * effect. However, since we delay enabling FBC we can
1990                  * assume that a vblank has passed since disabling and
1991                  * that we can safely alter the registers in the deferred
1992                  * callback.
1993                  *
1994                  * In the scenario that we go from a valid to invalid
1995                  * and then back to valid FBC configuration we have
1996                  * no strict enforcement that a vblank occurred since
1997                  * disabling the FBC. However, along all current pipe
1998                  * disabling paths we do need to wait for a vblank at
1999                  * some point. And we wait before enabling FBC anyway.
2000                  */
2001                 DRM_DEBUG_KMS("disabling active FBC for update\n");
2002                 intel_disable_fbc(dev);
2003         }
2004
2005         intel_enable_fbc(crtc, 500);
2006         return;
2007
2008 out_disable:
2009         /* Multiple disables should be harmless */
2010         if (intel_fbc_enabled(dev)) {
2011                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
2012                 intel_disable_fbc(dev);
2013         }
2014 }
2015
2016 int
2017 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2018                            struct drm_i915_gem_object *obj,
2019                            struct intel_ring_buffer *pipelined)
2020 {
2021         struct drm_i915_private *dev_priv = dev->dev_private;
2022         u32 alignment;
2023         int ret;
2024
2025         alignment = 0; /* shut gcc */
2026         switch (obj->tiling_mode) {
2027         case I915_TILING_NONE:
2028                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2029                         alignment = 128 * 1024;
2030                 else if (INTEL_INFO(dev)->gen >= 4)
2031                         alignment = 4 * 1024;
2032                 else
2033                         alignment = 64 * 1024;
2034                 break;
2035         case I915_TILING_X:
2036                 /* pin() will align the object as required by fence */
2037                 alignment = 0;
2038                 break;
2039         case I915_TILING_Y:
2040                 /* FIXME: Is this true? */
2041                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2042                 return -EINVAL;
2043         default:
2044                 KASSERT(0, ("Wrong tiling for fb obj"));
2045         }
2046
2047         dev_priv->mm.interruptible = false;
2048         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2049         if (ret)
2050                 goto err_interruptible;
2051
2052         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2053          * fence, whereas 965+ only requires a fence if using
2054          * framebuffer compression.  For simplicity, we always install
2055          * a fence as the cost is not that onerous.
2056          */
2057         if (obj->tiling_mode != I915_TILING_NONE) {
2058                 ret = i915_gem_object_get_fence(obj, pipelined);
2059                 if (ret)
2060                         goto err_unpin;
2061
2062                 i915_gem_object_pin_fence(obj);
2063         }
2064
2065         dev_priv->mm.interruptible = true;
2066         return 0;
2067
2068 err_unpin:
2069         i915_gem_object_unpin(obj);
2070 err_interruptible:
2071         dev_priv->mm.interruptible = true;
2072         return ret;
2073 }
2074
2075 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2076 {
2077         i915_gem_object_unpin_fence(obj);
2078         i915_gem_object_unpin(obj);
2079 }
2080
2081 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2082                              int x, int y)
2083 {
2084         struct drm_device *dev = crtc->dev;
2085         struct drm_i915_private *dev_priv = dev->dev_private;
2086         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2087         struct intel_framebuffer *intel_fb;
2088         struct drm_i915_gem_object *obj;
2089         int plane = intel_crtc->plane;
2090         unsigned long Start, Offset;
2091         u32 dspcntr;
2092         u32 reg;
2093
2094         switch (plane) {
2095         case 0:
2096         case 1:
2097                 break;
2098         default:
2099                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2100                 return -EINVAL;
2101         }
2102
2103         intel_fb = to_intel_framebuffer(fb);
2104         obj = intel_fb->obj;
2105
2106         reg = DSPCNTR(plane);
2107         dspcntr = I915_READ(reg);
2108         /* Mask out pixel format bits in case we change it */
2109         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2110         switch (fb->bits_per_pixel) {
2111         case 8:
2112                 dspcntr |= DISPPLANE_8BPP;
2113                 break;
2114         case 16:
2115                 if (fb->depth == 15)
2116                         dspcntr |= DISPPLANE_15_16BPP;
2117                 else
2118                         dspcntr |= DISPPLANE_16BPP;
2119                 break;
2120         case 24:
2121         case 32:
2122                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2123                 break;
2124         default:
2125                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2126                 return -EINVAL;
2127         }
2128         if (INTEL_INFO(dev)->gen >= 4) {
2129                 if (obj->tiling_mode != I915_TILING_NONE)
2130                         dspcntr |= DISPPLANE_TILED;
2131                 else
2132                         dspcntr &= ~DISPPLANE_TILED;
2133         }
2134
2135         I915_WRITE(reg, dspcntr);
2136
2137         Start = obj->gtt_offset;
2138         Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2139
2140         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2141                       Start, Offset, x, y, fb->pitches[0]);
2142         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2143         if (INTEL_INFO(dev)->gen >= 4) {
2144                 I915_WRITE(DSPSURF(plane), Start);
2145                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2146                 I915_WRITE(DSPADDR(plane), Offset);
2147         } else
2148                 I915_WRITE(DSPADDR(plane), Start + Offset);
2149         POSTING_READ(reg);
2150
2151         return (0);
2152 }
2153
2154 static int ironlake_update_plane(struct drm_crtc *crtc,
2155                                  struct drm_framebuffer *fb, int x, int y)
2156 {
2157         struct drm_device *dev = crtc->dev;
2158         struct drm_i915_private *dev_priv = dev->dev_private;
2159         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2160         struct intel_framebuffer *intel_fb;
2161         struct drm_i915_gem_object *obj;
2162         int plane = intel_crtc->plane;
2163         unsigned long Start, Offset;
2164         u32 dspcntr;
2165         u32 reg;
2166
2167         switch (plane) {
2168         case 0:
2169         case 1:
2170         case 2:
2171                 break;
2172         default:
2173                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2174                 return -EINVAL;
2175         }
2176
2177         intel_fb = to_intel_framebuffer(fb);
2178         obj = intel_fb->obj;
2179
2180         reg = DSPCNTR(plane);
2181         dspcntr = I915_READ(reg);
2182         /* Mask out pixel format bits in case we change it */
2183         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2184         switch (fb->bits_per_pixel) {
2185         case 8:
2186                 dspcntr |= DISPPLANE_8BPP;
2187                 break;
2188         case 16:
2189                 if (fb->depth != 16) {
2190                         DRM_ERROR("bpp 16, depth %d\n", fb->depth);
2191                         return -EINVAL;
2192                 }
2193
2194                 dspcntr |= DISPPLANE_16BPP;
2195                 break;
2196         case 24:
2197         case 32:
2198                 if (fb->depth == 24)
2199                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2200                 else if (fb->depth == 30)
2201                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2202                 else {
2203                         DRM_ERROR("bpp %d depth %d\n", fb->bits_per_pixel,
2204                             fb->depth);
2205                         return -EINVAL;
2206                 }
2207                 break;
2208         default:
2209                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2210                 return -EINVAL;
2211         }
2212
2213         if (obj->tiling_mode != I915_TILING_NONE)
2214                 dspcntr |= DISPPLANE_TILED;
2215         else
2216                 dspcntr &= ~DISPPLANE_TILED;
2217
2218         /* must disable */
2219         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2220
2221         I915_WRITE(reg, dspcntr);
2222
2223         Start = obj->gtt_offset;
2224         Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2225
2226         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2227                       Start, Offset, x, y, fb->pitches[0]);
2228         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2229         I915_WRITE(DSPSURF(plane), Start);
2230         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2231         I915_WRITE(DSPADDR(plane), Offset);
2232         POSTING_READ(reg);
2233
2234         return 0;
2235 }
2236
2237 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2238 static int
2239 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2240                            int x, int y, enum mode_set_atomic state)
2241 {
2242         struct drm_device *dev = crtc->dev;
2243         struct drm_i915_private *dev_priv = dev->dev_private;
2244         int ret;
2245
2246         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2247         if (ret)
2248                 return ret;
2249
2250         intel_update_fbc(dev);
2251         intel_increase_pllclock(crtc);
2252
2253         return 0;
2254 }
2255
2256 static int
2257 intel_finish_fb(struct drm_framebuffer *old_fb)
2258 {
2259         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2260         struct drm_device *dev = obj->base.dev;
2261         struct drm_i915_private *dev_priv = dev->dev_private;
2262         bool was_interruptible = dev_priv->mm.interruptible;
2263         int ret;
2264
2265         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
2266         while (!atomic_read(&dev_priv->mm.wedged) &&
2267             atomic_read(&obj->pending_flip) != 0) {
2268                 lksleep(&obj->pending_flip, &dev->event_lock,
2269                     0, "915flp", 0);
2270         }
2271         lockmgr(&dev->event_lock, LK_RELEASE);
2272
2273         /* Big Hammer, we also need to ensure that any pending
2274          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2275          * current scanout is retired before unpinning the old
2276          * framebuffer.
2277          *
2278          * This should only fail upon a hung GPU, in which case we
2279          * can safely continue.
2280          */
2281         dev_priv->mm.interruptible = false;
2282         ret = i915_gem_object_finish_gpu(obj);
2283         dev_priv->mm.interruptible = was_interruptible;
2284         return ret;
2285 }
2286
2287 static int
2288 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2289                     struct drm_framebuffer *old_fb)
2290 {
2291         struct drm_device *dev = crtc->dev;
2292 #if 0
2293         struct drm_i915_master_private *master_priv;
2294 #else
2295         drm_i915_private_t *dev_priv = dev->dev_private;
2296 #endif
2297         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2298         int ret;
2299
2300         /* no fb bound */
2301         if (!crtc->fb) {
2302                 DRM_ERROR("No FB bound\n");
2303                 return 0;
2304         }
2305
2306         switch (intel_crtc->plane) {
2307         case 0:
2308         case 1:
2309                 break;
2310         case 2:
2311                 if (IS_IVYBRIDGE(dev))
2312                         break;
2313                 /* fall through otherwise */
2314         default:
2315                 DRM_ERROR("no plane for crtc\n");
2316                 return -EINVAL;
2317         }
2318
2319         DRM_LOCK(dev);
2320         ret = intel_pin_and_fence_fb_obj(dev,
2321                                          to_intel_framebuffer(crtc->fb)->obj,
2322                                          NULL);
2323         if (ret != 0) {
2324                 DRM_UNLOCK(dev);
2325                 DRM_ERROR("pin & fence failed\n");
2326                 return ret;
2327         }
2328
2329         if (old_fb)
2330                 intel_finish_fb(old_fb);
2331
2332         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2333                                          LEAVE_ATOMIC_MODE_SET);
2334         if (ret) {
2335                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2336                 DRM_UNLOCK(dev);
2337                 DRM_ERROR("failed to update base address\n");
2338                 return ret;
2339         }
2340
2341         if (old_fb) {
2342                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2343                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2344         }
2345
2346         DRM_UNLOCK(dev);
2347
2348 #if 0
2349         if (!dev->primary->master)
2350                 return 0;
2351
2352         master_priv = dev->primary->master->driver_priv;
2353         if (!master_priv->sarea_priv)
2354                 return 0;
2355
2356         if (intel_crtc->pipe) {
2357                 master_priv->sarea_priv->pipeB_x = x;
2358                 master_priv->sarea_priv->pipeB_y = y;
2359         } else {
2360                 master_priv->sarea_priv->pipeA_x = x;
2361                 master_priv->sarea_priv->pipeA_y = y;
2362         }
2363 #else
2364
2365         if (!dev_priv->sarea_priv)
2366                 return 0;
2367
2368         if (intel_crtc->pipe) {
2369                 dev_priv->sarea_priv->planeB_x = x;
2370                 dev_priv->sarea_priv->planeB_y = y;
2371         } else {
2372                 dev_priv->sarea_priv->planeA_x = x;
2373                 dev_priv->sarea_priv->planeA_y = y;
2374         }
2375 #endif
2376
2377         return 0;
2378 }
2379
2380 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2381 {
2382         struct drm_device *dev = crtc->dev;
2383         struct drm_i915_private *dev_priv = dev->dev_private;
2384         u32 dpa_ctl;
2385
2386         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2387         dpa_ctl = I915_READ(DP_A);
2388         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2389
2390         if (clock < 200000) {
2391                 u32 temp;
2392                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2393                 /* workaround for 160Mhz:
2394                    1) program 0x4600c bits 15:0 = 0x8124
2395                    2) program 0x46010 bit 0 = 1
2396                    3) program 0x46034 bit 24 = 1
2397                    4) program 0x64000 bit 14 = 1
2398                    */
2399                 temp = I915_READ(0x4600c);
2400                 temp &= 0xffff0000;
2401                 I915_WRITE(0x4600c, temp | 0x8124);
2402
2403                 temp = I915_READ(0x46010);
2404                 I915_WRITE(0x46010, temp | 1);
2405
2406                 temp = I915_READ(0x46034);
2407                 I915_WRITE(0x46034, temp | (1 << 24));
2408         } else {
2409                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2410         }
2411         I915_WRITE(DP_A, dpa_ctl);
2412
2413         POSTING_READ(DP_A);
2414         DELAY(500);
2415 }
2416
2417 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2418 {
2419         struct drm_device *dev = crtc->dev;
2420         struct drm_i915_private *dev_priv = dev->dev_private;
2421         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2422         int pipe = intel_crtc->pipe;
2423         u32 reg, temp;
2424
2425         /* enable normal train */
2426         reg = FDI_TX_CTL(pipe);
2427         temp = I915_READ(reg);
2428         if (IS_IVYBRIDGE(dev)) {
2429                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2430                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2431         } else {
2432                 temp &= ~FDI_LINK_TRAIN_NONE;
2433                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2434         }
2435         I915_WRITE(reg, temp);
2436
2437         reg = FDI_RX_CTL(pipe);
2438         temp = I915_READ(reg);
2439         if (HAS_PCH_CPT(dev)) {
2440                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2441                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2442         } else {
2443                 temp &= ~FDI_LINK_TRAIN_NONE;
2444                 temp |= FDI_LINK_TRAIN_NONE;
2445         }
2446         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2447
2448         /* wait one idle pattern time */
2449         POSTING_READ(reg);
2450         DELAY(1000);
2451
2452         /* IVB wants error correction enabled */
2453         if (IS_IVYBRIDGE(dev))
2454                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2455                            FDI_FE_ERRC_ENABLE);
2456 }
2457
2458 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2459 {
2460         struct drm_i915_private *dev_priv = dev->dev_private;
2461         u32 flags = I915_READ(SOUTH_CHICKEN1);
2462
2463         flags |= FDI_PHASE_SYNC_OVR(pipe);
2464         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2465         flags |= FDI_PHASE_SYNC_EN(pipe);
2466         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2467         POSTING_READ(SOUTH_CHICKEN1);
2468 }
2469
2470 /* The FDI link training functions for ILK/Ibexpeak. */
2471 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2472 {
2473         struct drm_device *dev = crtc->dev;
2474         struct drm_i915_private *dev_priv = dev->dev_private;
2475         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2476         int pipe = intel_crtc->pipe;
2477         int plane = intel_crtc->plane;
2478         u32 reg, temp, tries;
2479
2480         /* FDI needs bits from pipe & plane first */
2481         assert_pipe_enabled(dev_priv, pipe);
2482         assert_plane_enabled(dev_priv, plane);
2483
2484         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2485            for train result */
2486         reg = FDI_RX_IMR(pipe);
2487         temp = I915_READ(reg);
2488         temp &= ~FDI_RX_SYMBOL_LOCK;
2489         temp &= ~FDI_RX_BIT_LOCK;
2490         I915_WRITE(reg, temp);
2491         I915_READ(reg);
2492         DELAY(150);
2493
2494         /* enable CPU FDI TX and PCH FDI RX */
2495         reg = FDI_TX_CTL(pipe);
2496         temp = I915_READ(reg);
2497         temp &= ~(7 << 19);
2498         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2499         temp &= ~FDI_LINK_TRAIN_NONE;
2500         temp |= FDI_LINK_TRAIN_PATTERN_1;
2501         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2502
2503         reg = FDI_RX_CTL(pipe);
2504         temp = I915_READ(reg);
2505         temp &= ~FDI_LINK_TRAIN_NONE;
2506         temp |= FDI_LINK_TRAIN_PATTERN_1;
2507         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2508
2509         POSTING_READ(reg);
2510         DELAY(150);
2511
2512         /* Ironlake workaround, enable clock pointer after FDI enable*/
2513         if (HAS_PCH_IBX(dev)) {
2514                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2515                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2516                            FDI_RX_PHASE_SYNC_POINTER_EN);
2517         }
2518
2519         reg = FDI_RX_IIR(pipe);
2520         for (tries = 0; tries < 5; tries++) {
2521                 temp = I915_READ(reg);
2522                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2523
2524                 if ((temp & FDI_RX_BIT_LOCK)) {
2525                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2526                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2527                         break;
2528                 }
2529         }
2530         if (tries == 5)
2531                 DRM_ERROR("FDI train 1 fail!\n");
2532
2533         /* Train 2 */
2534         reg = FDI_TX_CTL(pipe);
2535         temp = I915_READ(reg);
2536         temp &= ~FDI_LINK_TRAIN_NONE;
2537         temp |= FDI_LINK_TRAIN_PATTERN_2;
2538         I915_WRITE(reg, temp);
2539
2540         reg = FDI_RX_CTL(pipe);
2541         temp = I915_READ(reg);
2542         temp &= ~FDI_LINK_TRAIN_NONE;
2543         temp |= FDI_LINK_TRAIN_PATTERN_2;
2544         I915_WRITE(reg, temp);
2545
2546         POSTING_READ(reg);
2547         DELAY(150);
2548
2549         reg = FDI_RX_IIR(pipe);
2550         for (tries = 0; tries < 5; tries++) {
2551                 temp = I915_READ(reg);
2552                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2553
2554                 if (temp & FDI_RX_SYMBOL_LOCK) {
2555                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2556                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2557                         break;
2558                 }
2559         }
2560         if (tries == 5)
2561                 DRM_ERROR("FDI train 2 fail!\n");
2562
2563         DRM_DEBUG_KMS("FDI train done\n");
2564
2565 }
2566
2567 static const int snb_b_fdi_train_param[] = {
2568         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2569         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2570         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2571         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2572 };
2573
2574 /* The FDI link training functions for SNB/Cougarpoint. */
2575 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2576 {
2577         struct drm_device *dev = crtc->dev;
2578         struct drm_i915_private *dev_priv = dev->dev_private;
2579         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2580         int pipe = intel_crtc->pipe;
2581         u32 reg, temp, i;
2582
2583         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2584            for train result */
2585         reg = FDI_RX_IMR(pipe);
2586         temp = I915_READ(reg);
2587         temp &= ~FDI_RX_SYMBOL_LOCK;
2588         temp &= ~FDI_RX_BIT_LOCK;
2589         I915_WRITE(reg, temp);
2590
2591         POSTING_READ(reg);
2592         DELAY(150);
2593
2594         /* enable CPU FDI TX and PCH FDI RX */
2595         reg = FDI_TX_CTL(pipe);
2596         temp = I915_READ(reg);
2597         temp &= ~(7 << 19);
2598         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2599         temp &= ~FDI_LINK_TRAIN_NONE;
2600         temp |= FDI_LINK_TRAIN_PATTERN_1;
2601         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2602         /* SNB-B */
2603         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2604         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2605
2606         reg = FDI_RX_CTL(pipe);
2607         temp = I915_READ(reg);
2608         if (HAS_PCH_CPT(dev)) {
2609                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2610                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2611         } else {
2612                 temp &= ~FDI_LINK_TRAIN_NONE;
2613                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2614         }
2615         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2616
2617         POSTING_READ(reg);
2618         DELAY(150);
2619
2620         if (HAS_PCH_CPT(dev))
2621                 cpt_phase_pointer_enable(dev, pipe);
2622
2623         for (i = 0; i < 4; i++) {
2624                 reg = FDI_TX_CTL(pipe);
2625                 temp = I915_READ(reg);
2626                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2627                 temp |= snb_b_fdi_train_param[i];
2628                 I915_WRITE(reg, temp);
2629
2630                 POSTING_READ(reg);
2631                 DELAY(500);
2632
2633                 reg = FDI_RX_IIR(pipe);
2634                 temp = I915_READ(reg);
2635                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2636
2637                 if (temp & FDI_RX_BIT_LOCK) {
2638                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2639                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2640                         break;
2641                 }
2642         }
2643         if (i == 4)
2644                 DRM_ERROR("FDI train 1 fail!\n");
2645
2646         /* Train 2 */
2647         reg = FDI_TX_CTL(pipe);
2648         temp = I915_READ(reg);
2649         temp &= ~FDI_LINK_TRAIN_NONE;
2650         temp |= FDI_LINK_TRAIN_PATTERN_2;
2651         if (IS_GEN6(dev)) {
2652                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2653                 /* SNB-B */
2654                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2655         }
2656         I915_WRITE(reg, temp);
2657
2658         reg = FDI_RX_CTL(pipe);
2659         temp = I915_READ(reg);
2660         if (HAS_PCH_CPT(dev)) {
2661                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2662                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2663         } else {
2664                 temp &= ~FDI_LINK_TRAIN_NONE;
2665                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2666         }
2667         I915_WRITE(reg, temp);
2668
2669         POSTING_READ(reg);
2670         DELAY(150);
2671
2672         for (i = 0; i < 4; i++) {
2673                 reg = FDI_TX_CTL(pipe);
2674                 temp = I915_READ(reg);
2675                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2676                 temp |= snb_b_fdi_train_param[i];
2677                 I915_WRITE(reg, temp);
2678
2679                 POSTING_READ(reg);
2680                 DELAY(500);
2681
2682                 reg = FDI_RX_IIR(pipe);
2683                 temp = I915_READ(reg);
2684                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2685
2686                 if (temp & FDI_RX_SYMBOL_LOCK) {
2687                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2688                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2689                         break;
2690                 }
2691         }
2692         if (i == 4)
2693                 DRM_ERROR("FDI train 2 fail!\n");
2694
2695         DRM_DEBUG_KMS("FDI train done.\n");
2696 }
2697
2698 /* Manual link training for Ivy Bridge A0 parts */
2699 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2700 {
2701         struct drm_device *dev = crtc->dev;
2702         struct drm_i915_private *dev_priv = dev->dev_private;
2703         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2704         int pipe = intel_crtc->pipe;
2705         u32 reg, temp, i;
2706
2707         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2708            for train result */
2709         reg = FDI_RX_IMR(pipe);
2710         temp = I915_READ(reg);
2711         temp &= ~FDI_RX_SYMBOL_LOCK;
2712         temp &= ~FDI_RX_BIT_LOCK;
2713         I915_WRITE(reg, temp);
2714
2715         POSTING_READ(reg);
2716         DELAY(150);
2717
2718         /* enable CPU FDI TX and PCH FDI RX */
2719         reg = FDI_TX_CTL(pipe);
2720         temp = I915_READ(reg);
2721         temp &= ~(7 << 19);
2722         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2723         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2724         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2725         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2726         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2727         temp |= FDI_COMPOSITE_SYNC;
2728         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2729
2730         reg = FDI_RX_CTL(pipe);
2731         temp = I915_READ(reg);
2732         temp &= ~FDI_LINK_TRAIN_AUTO;
2733         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2734         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2735         temp |= FDI_COMPOSITE_SYNC;
2736         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2737
2738         POSTING_READ(reg);
2739         DELAY(150);
2740
2741         for (i = 0; i < 4; i++) {
2742                 reg = FDI_TX_CTL(pipe);
2743                 temp = I915_READ(reg);
2744                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2745                 temp |= snb_b_fdi_train_param[i];
2746                 I915_WRITE(reg, temp);
2747
2748                 POSTING_READ(reg);
2749                 DELAY(500);
2750
2751                 reg = FDI_RX_IIR(pipe);
2752                 temp = I915_READ(reg);
2753                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2754
2755                 if (temp & FDI_RX_BIT_LOCK ||
2756                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2757                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2758                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2759                         break;
2760                 }
2761         }
2762         if (i == 4)
2763                 DRM_ERROR("FDI train 1 fail!\n");
2764
2765         /* Train 2 */
2766         reg = FDI_TX_CTL(pipe);
2767         temp = I915_READ(reg);
2768         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2769         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2770         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2771         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2772         I915_WRITE(reg, temp);
2773
2774         reg = FDI_RX_CTL(pipe);
2775         temp = I915_READ(reg);
2776         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2777         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2778         I915_WRITE(reg, temp);
2779
2780         POSTING_READ(reg);
2781         DELAY(150);
2782
2783         for (i = 0; i < 4; i++ ) {
2784                 reg = FDI_TX_CTL(pipe);
2785                 temp = I915_READ(reg);
2786                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2787                 temp |= snb_b_fdi_train_param[i];
2788                 I915_WRITE(reg, temp);
2789
2790                 POSTING_READ(reg);
2791                 DELAY(500);
2792
2793                 reg = FDI_RX_IIR(pipe);
2794                 temp = I915_READ(reg);
2795                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2796
2797                 if (temp & FDI_RX_SYMBOL_LOCK) {
2798                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2799                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2800                         break;
2801                 }
2802         }
2803         if (i == 4)
2804                 DRM_ERROR("FDI train 2 fail!\n");
2805
2806         DRM_DEBUG_KMS("FDI train done.\n");
2807 }
2808
2809 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2810 {
2811         struct drm_device *dev = crtc->dev;
2812         struct drm_i915_private *dev_priv = dev->dev_private;
2813         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2814         int pipe = intel_crtc->pipe;
2815         u32 reg, temp;
2816
2817         /* Write the TU size bits so error detection works */
2818         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2819                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2820
2821         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2822         reg = FDI_RX_CTL(pipe);
2823         temp = I915_READ(reg);
2824         temp &= ~((0x7 << 19) | (0x7 << 16));
2825         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2826         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2827         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2828
2829         POSTING_READ(reg);
2830         DELAY(200);
2831
2832         /* Switch from Rawclk to PCDclk */
2833         temp = I915_READ(reg);
2834         I915_WRITE(reg, temp | FDI_PCDCLK);
2835
2836         POSTING_READ(reg);
2837         DELAY(200);
2838
2839         /* Enable CPU FDI TX PLL, always on for Ironlake */
2840         reg = FDI_TX_CTL(pipe);
2841         temp = I915_READ(reg);
2842         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2843                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2844
2845                 POSTING_READ(reg);
2846                 DELAY(100);
2847         }
2848 }
2849
2850 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2851 {
2852         struct drm_i915_private *dev_priv = dev->dev_private;
2853         u32 flags = I915_READ(SOUTH_CHICKEN1);
2854
2855         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2856         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2857         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2858         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2859         POSTING_READ(SOUTH_CHICKEN1);
2860 }
2861
2862 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2863 {
2864         struct drm_device *dev = crtc->dev;
2865         struct drm_i915_private *dev_priv = dev->dev_private;
2866         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2867         int pipe = intel_crtc->pipe;
2868         u32 reg, temp;
2869
2870         /* disable CPU FDI tx and PCH FDI rx */
2871         reg = FDI_TX_CTL(pipe);
2872         temp = I915_READ(reg);
2873         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2874         POSTING_READ(reg);
2875
2876         reg = FDI_RX_CTL(pipe);
2877         temp = I915_READ(reg);
2878         temp &= ~(0x7 << 16);
2879         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2880         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2881
2882         POSTING_READ(reg);
2883         DELAY(100);
2884
2885         /* Ironlake workaround, disable clock pointer after downing FDI */
2886         if (HAS_PCH_IBX(dev)) {
2887                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2888                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2889                            I915_READ(FDI_RX_CHICKEN(pipe) &
2890                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2891         } else if (HAS_PCH_CPT(dev)) {
2892                 cpt_phase_pointer_disable(dev, pipe);
2893         }
2894
2895         /* still set train pattern 1 */
2896         reg = FDI_TX_CTL(pipe);
2897         temp = I915_READ(reg);
2898         temp &= ~FDI_LINK_TRAIN_NONE;
2899         temp |= FDI_LINK_TRAIN_PATTERN_1;
2900         I915_WRITE(reg, temp);
2901
2902         reg = FDI_RX_CTL(pipe);
2903         temp = I915_READ(reg);
2904         if (HAS_PCH_CPT(dev)) {
2905                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2906                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2907         } else {
2908                 temp &= ~FDI_LINK_TRAIN_NONE;
2909                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2910         }
2911         /* BPC in FDI rx is consistent with that in PIPECONF */
2912         temp &= ~(0x07 << 16);
2913         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2914         I915_WRITE(reg, temp);
2915
2916         POSTING_READ(reg);
2917         DELAY(100);
2918 }
2919
2920 /*
2921  * When we disable a pipe, we need to clear any pending scanline wait events
2922  * to avoid hanging the ring, which we assume we are waiting on.
2923  */
2924 static void intel_clear_scanline_wait(struct drm_device *dev)
2925 {
2926         struct drm_i915_private *dev_priv = dev->dev_private;
2927         struct intel_ring_buffer *ring;
2928         u32 tmp;
2929
2930         if (IS_GEN2(dev))
2931                 /* Can't break the hang on i8xx */
2932                 return;
2933
2934         ring = LP_RING(dev_priv);
2935         tmp = I915_READ_CTL(ring);
2936         if (tmp & RING_WAIT)
2937                 I915_WRITE_CTL(ring, tmp);
2938 }
2939
2940 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2941 {
2942         struct drm_i915_gem_object *obj;
2943         struct drm_i915_private *dev_priv;
2944         struct drm_device *dev;
2945
2946         if (crtc->fb == NULL)
2947                 return;
2948
2949         obj = to_intel_framebuffer(crtc->fb)->obj;
2950         dev = crtc->dev;
2951         dev_priv = dev->dev_private;
2952         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
2953         while (atomic_read(&obj->pending_flip) != 0)
2954                 lksleep(&obj->pending_flip, &dev->event_lock, 0, "915wfl", 0);
2955         lockmgr(&dev->event_lock, LK_RELEASE);
2956 }
2957
2958 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2959 {
2960         struct drm_device *dev = crtc->dev;
2961         struct drm_mode_config *mode_config = &dev->mode_config;
2962         struct intel_encoder *encoder;
2963
2964         /*
2965          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2966          * must be driven by its own crtc; no sharing is possible.
2967          */
2968         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2969                 if (encoder->base.crtc != crtc)
2970                         continue;
2971
2972                 switch (encoder->type) {
2973                 case INTEL_OUTPUT_EDP:
2974                         if (!intel_encoder_is_pch_edp(&encoder->base))
2975                                 return false;
2976                         continue;
2977                 }
2978         }
2979
2980         return true;
2981 }
2982
2983 /*
2984  * Enable PCH resources required for PCH ports:
2985  *   - PCH PLLs
2986  *   - FDI training & RX/TX
2987  *   - update transcoder timings
2988  *   - DP transcoding bits
2989  *   - transcoder
2990  */
2991 static void ironlake_pch_enable(struct drm_crtc *crtc)
2992 {
2993         struct drm_device *dev = crtc->dev;
2994         struct drm_i915_private *dev_priv = dev->dev_private;
2995         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2996         int pipe = intel_crtc->pipe;
2997         u32 reg, temp, transc_sel;
2998
2999         /* For PCH output, training FDI link */
3000         dev_priv->display.fdi_link_train(crtc);
3001
3002         intel_enable_pch_pll(dev_priv, pipe);
3003
3004         if (HAS_PCH_CPT(dev)) {
3005                 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
3006                         TRANSC_DPLLB_SEL;
3007
3008                 /* Be sure PCH DPLL SEL is set */
3009                 temp = I915_READ(PCH_DPLL_SEL);
3010                 if (pipe == 0) {
3011                         temp &= ~(TRANSA_DPLLB_SEL);
3012                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3013                 } else if (pipe == 1) {
3014                         temp &= ~(TRANSB_DPLLB_SEL);
3015                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3016                 } else if (pipe == 2) {
3017                         temp &= ~(TRANSC_DPLLB_SEL);
3018                         temp |= (TRANSC_DPLL_ENABLE | transc_sel);
3019                 }
3020                 I915_WRITE(PCH_DPLL_SEL, temp);
3021         }
3022
3023         /* set transcoder timing, panel must allow it */
3024         assert_panel_unlocked(dev_priv, pipe);
3025         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3026         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3027         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3028
3029         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3030         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3031         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3032         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3033
3034         intel_fdi_normal_train(crtc);
3035
3036         /* For PCH DP, enable TRANS_DP_CTL */
3037         if (HAS_PCH_CPT(dev) &&
3038             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3039              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3040                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3041                 reg = TRANS_DP_CTL(pipe);
3042                 temp = I915_READ(reg);
3043                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3044                           TRANS_DP_SYNC_MASK |
3045                           TRANS_DP_BPC_MASK);
3046                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3047                          TRANS_DP_ENH_FRAMING);
3048                 temp |= bpc << 9; /* same format but at 11:9 */
3049
3050                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3051                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3052                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3053                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3054
3055                 switch (intel_trans_dp_port_sel(crtc)) {
3056                 case PCH_DP_B:
3057                         temp |= TRANS_DP_PORT_SEL_B;
3058                         break;
3059                 case PCH_DP_C:
3060                         temp |= TRANS_DP_PORT_SEL_C;
3061                         break;
3062                 case PCH_DP_D:
3063                         temp |= TRANS_DP_PORT_SEL_D;
3064                         break;
3065                 default:
3066                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3067                         temp |= TRANS_DP_PORT_SEL_B;
3068                         break;
3069                 }
3070
3071                 I915_WRITE(reg, temp);
3072         }
3073
3074         intel_enable_transcoder(dev_priv, pipe);
3075 }
3076
3077 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3078 {
3079         struct drm_i915_private *dev_priv = dev->dev_private;
3080         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3081         u32 temp;
3082
3083         temp = I915_READ(dslreg);
3084         DELAY(500);
3085         if (_intel_wait_for(dev, I915_READ(dslreg) != temp, 5, 1, "915cp1")) {
3086                 /* Without this, mode sets may fail silently on FDI */
3087                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3088                 DELAY(250);
3089                 I915_WRITE(tc2reg, 0);
3090                 if (_intel_wait_for(dev, I915_READ(dslreg) != temp, 5, 1,
3091                     "915cp2"))
3092                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3093         }
3094 }
3095
3096 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3097 {
3098         struct drm_device *dev = crtc->dev;
3099         struct drm_i915_private *dev_priv = dev->dev_private;
3100         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3101         int pipe = intel_crtc->pipe;
3102         int plane = intel_crtc->plane;
3103         u32 temp;
3104         bool is_pch_port;
3105
3106         if (intel_crtc->active)
3107                 return;
3108
3109         intel_crtc->active = true;
3110         intel_update_watermarks(dev);
3111
3112         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3113                 temp = I915_READ(PCH_LVDS);
3114                 if ((temp & LVDS_PORT_EN) == 0)
3115                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3116         }
3117
3118         is_pch_port = intel_crtc_driving_pch(crtc);
3119
3120         if (is_pch_port)
3121                 ironlake_fdi_pll_enable(crtc);
3122         else
3123                 ironlake_fdi_disable(crtc);
3124
3125         /* Enable panel fitting for LVDS */
3126         if (dev_priv->pch_pf_size &&
3127             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3128                 /* Force use of hard-coded filter coefficients
3129                  * as some pre-programmed values are broken,
3130                  * e.g. x201.
3131                  */
3132                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3133                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3134                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3135         }
3136
3137         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3138         intel_enable_plane(dev_priv, plane, pipe);
3139
3140         if (is_pch_port)
3141                 ironlake_pch_enable(crtc);
3142
3143         intel_crtc_load_lut(crtc);
3144
3145         DRM_LOCK(dev);
3146         intel_update_fbc(dev);
3147         DRM_UNLOCK(dev);
3148
3149         intel_crtc_update_cursor(crtc, true);
3150 }
3151
3152 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3153 {
3154         struct drm_device *dev = crtc->dev;
3155         struct drm_i915_private *dev_priv = dev->dev_private;
3156         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3157         int pipe = intel_crtc->pipe;
3158         int plane = intel_crtc->plane;
3159         u32 reg, temp;
3160
3161         if (!intel_crtc->active)
3162                 return;
3163
3164         intel_crtc_wait_for_pending_flips(crtc);
3165         drm_vblank_off(dev, pipe);
3166         intel_crtc_update_cursor(crtc, false);
3167
3168         intel_disable_plane(dev_priv, plane, pipe);
3169
3170         if (dev_priv->cfb_plane == plane)
3171                 intel_disable_fbc(dev);
3172
3173         intel_disable_pipe(dev_priv, pipe);
3174
3175         /* Disable PF */
3176         I915_WRITE(PF_CTL(pipe), 0);
3177         I915_WRITE(PF_WIN_SZ(pipe), 0);
3178
3179         ironlake_fdi_disable(crtc);
3180
3181         /* This is a horrible layering violation; we should be doing this in
3182          * the connector/encoder ->prepare instead, but we don't always have
3183          * enough information there about the config to know whether it will
3184          * actually be necessary or just cause undesired flicker.
3185          */
3186         intel_disable_pch_ports(dev_priv, pipe);
3187
3188         intel_disable_transcoder(dev_priv, pipe);
3189
3190         if (HAS_PCH_CPT(dev)) {
3191                 /* disable TRANS_DP_CTL */
3192                 reg = TRANS_DP_CTL(pipe);
3193                 temp = I915_READ(reg);
3194                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3195                 temp |= TRANS_DP_PORT_SEL_NONE;
3196                 I915_WRITE(reg, temp);
3197
3198                 /* disable DPLL_SEL */
3199                 temp = I915_READ(PCH_DPLL_SEL);
3200                 switch (pipe) {
3201                 case 0:
3202                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3203                         break;
3204                 case 1:
3205                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3206                         break;
3207                 case 2:
3208                         /* C shares PLL A or B */
3209                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3210                         break;
3211                 default:
3212                         KASSERT(1, ("Wrong pipe %d", pipe)); /* wtf */
3213                 }
3214                 I915_WRITE(PCH_DPLL_SEL, temp);
3215         }
3216
3217         /* disable PCH DPLL */
3218         if (!intel_crtc->no_pll)
3219                 intel_disable_pch_pll(dev_priv, pipe);
3220
3221         /* Switch from PCDclk to Rawclk */
3222         reg = FDI_RX_CTL(pipe);
3223         temp = I915_READ(reg);
3224         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3225
3226         /* Disable CPU FDI TX PLL */
3227         reg = FDI_TX_CTL(pipe);
3228         temp = I915_READ(reg);
3229         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3230
3231         POSTING_READ(reg);
3232         DELAY(100);
3233
3234         reg = FDI_RX_CTL(pipe);
3235         temp = I915_READ(reg);
3236         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3237
3238         /* Wait for the clocks to turn off. */
3239         POSTING_READ(reg);
3240         DELAY(100);
3241
3242         intel_crtc->active = false;
3243         intel_update_watermarks(dev);
3244
3245         DRM_LOCK(dev);
3246         intel_update_fbc(dev);
3247         intel_clear_scanline_wait(dev);
3248         DRM_UNLOCK(dev);
3249 }
3250
3251 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3252 {
3253         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3254         int pipe = intel_crtc->pipe;
3255         int plane = intel_crtc->plane;
3256
3257         /* XXX: When our outputs are all unaware of DPMS modes other than off
3258          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3259          */
3260         switch (mode) {
3261         case DRM_MODE_DPMS_ON:
3262         case DRM_MODE_DPMS_STANDBY:
3263         case DRM_MODE_DPMS_SUSPEND:
3264                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3265                 ironlake_crtc_enable(crtc);
3266                 break;
3267
3268         case DRM_MODE_DPMS_OFF:
3269                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3270                 ironlake_crtc_disable(crtc);
3271                 break;
3272         }
3273 }
3274
3275 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3276 {
3277         if (!enable && intel_crtc->overlay) {
3278                 struct drm_device *dev = intel_crtc->base.dev;
3279                 struct drm_i915_private *dev_priv = dev->dev_private;
3280
3281                 DRM_LOCK(dev);
3282                 dev_priv->mm.interruptible = false;
3283                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3284                 dev_priv->mm.interruptible = true;
3285                 DRM_UNLOCK(dev);
3286         }
3287
3288         /* Let userspace switch the overlay on again. In most cases userspace
3289          * has to recompute where to put it anyway.
3290          */
3291 }
3292
3293 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3294 {
3295         struct drm_device *dev = crtc->dev;
3296         struct drm_i915_private *dev_priv = dev->dev_private;
3297         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3298         int pipe = intel_crtc->pipe;
3299         int plane = intel_crtc->plane;
3300
3301         if (intel_crtc->active)
3302                 return;
3303
3304         intel_crtc->active = true;
3305         intel_update_watermarks(dev);
3306
3307         intel_enable_pll(dev_priv, pipe);
3308         intel_enable_pipe(dev_priv, pipe, false);
3309         intel_enable_plane(dev_priv, plane, pipe);
3310
3311         intel_crtc_load_lut(crtc);
3312         intel_update_fbc(dev);
3313
3314         /* Give the overlay scaler a chance to enable if it's on this pipe */
3315         intel_crtc_dpms_overlay(intel_crtc, true);
3316         intel_crtc_update_cursor(crtc, true);
3317 }
3318
3319 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3320 {
3321         struct drm_device *dev = crtc->dev;
3322         struct drm_i915_private *dev_priv = dev->dev_private;
3323         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3324         int pipe = intel_crtc->pipe;
3325         int plane = intel_crtc->plane;
3326
3327         if (!intel_crtc->active)
3328                 return;
3329
3330         /* Give the overlay scaler a chance to disable if it's on this pipe */
3331         intel_crtc_wait_for_pending_flips(crtc);
3332         drm_vblank_off(dev, pipe);
3333         intel_crtc_dpms_overlay(intel_crtc, false);
3334         intel_crtc_update_cursor(crtc, false);
3335
3336         if (dev_priv->cfb_plane == plane)
3337                 intel_disable_fbc(dev);
3338
3339         intel_disable_plane(dev_priv, plane, pipe);
3340         intel_disable_pipe(dev_priv, pipe);
3341         intel_disable_pll(dev_priv, pipe);
3342
3343         intel_crtc->active = false;
3344         intel_update_fbc(dev);
3345         intel_update_watermarks(dev);
3346         intel_clear_scanline_wait(dev);
3347 }
3348
3349 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3350 {
3351         /* XXX: When our outputs are all unaware of DPMS modes other than off
3352          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3353          */
3354         switch (mode) {
3355         case DRM_MODE_DPMS_ON:
3356         case DRM_MODE_DPMS_STANDBY:
3357         case DRM_MODE_DPMS_SUSPEND:
3358                 i9xx_crtc_enable(crtc);
3359                 break;
3360         case DRM_MODE_DPMS_OFF:
3361                 i9xx_crtc_disable(crtc);
3362                 break;
3363         }
3364 }
3365
3366 /**
3367  * Sets the power management mode of the pipe and plane.
3368  */
3369 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3370 {
3371         struct drm_device *dev = crtc->dev;
3372         struct drm_i915_private *dev_priv = dev->dev_private;
3373 #if 0
3374         struct drm_i915_master_private *master_priv;
3375 #endif
3376         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3377         int pipe = intel_crtc->pipe;
3378         bool enabled;
3379
3380         if (intel_crtc->dpms_mode == mode)
3381                 return;
3382
3383         intel_crtc->dpms_mode = mode;
3384
3385         dev_priv->display.dpms(crtc, mode);
3386
3387 #if 0
3388         if (!dev->primary->master)
3389                 return;
3390
3391         master_priv = dev->primary->master->driver_priv;
3392         if (!master_priv->sarea_priv)
3393                 return;
3394 #else
3395         if (!dev_priv->sarea_priv)
3396                 return;
3397 #endif
3398
3399         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3400
3401         switch (pipe) {
3402         case 0:
3403 #if 0
3404                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3405                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3406 #else
3407                 dev_priv->sarea_priv->planeA_w = enabled ? crtc->mode.hdisplay : 0;
3408                 dev_priv->sarea_priv->planeA_h = enabled ? crtc->mode.vdisplay : 0;
3409 #endif
3410                 break;
3411         case 1:
3412 #if 0
3413                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3414                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3415 #else
3416                 dev_priv->sarea_priv->planeB_w = enabled ? crtc->mode.hdisplay : 0;
3417                 dev_priv->sarea_priv->planeB_h = enabled ? crtc->mode.vdisplay : 0;
3418 #endif
3419                 break;
3420         default:
3421                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3422                 break;
3423         }
3424 }
3425
3426 static void intel_crtc_disable(struct drm_crtc *crtc)
3427 {
3428         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3429         struct drm_device *dev = crtc->dev;
3430
3431         /* Flush any pending WAITs before we disable the pipe. Note that
3432          * we need to drop the struct_mutex in order to acquire it again
3433          * during the lowlevel dpms routines around a couple of the
3434          * operations. It does not look trivial nor desirable to move
3435          * that locking higher. So instead we leave a window for the
3436          * submission of further commands on the fb before we can actually
3437          * disable it. This race with userspace exists anyway, and we can
3438          * only rely on the pipe being disabled by userspace after it
3439          * receives the hotplug notification and has flushed any pending
3440          * batches.
3441          */
3442         if (crtc->fb) {
3443                 DRM_LOCK(dev);
3444                 intel_finish_fb(crtc->fb);
3445                 DRM_UNLOCK(dev);
3446         }
3447
3448         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3449         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3450         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3451
3452         if (crtc->fb) {
3453                 DRM_LOCK(dev);
3454                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3455                 DRM_UNLOCK(dev);
3456         }
3457 }
3458
3459 /* Prepare for a mode set.
3460  *
3461  * Note we could be a lot smarter here.  We need to figure out which outputs
3462  * will be enabled, which disabled (in short, how the config will changes)
3463  * and perform the minimum necessary steps to accomplish that, e.g. updating
3464  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3465  * panel fitting is in the proper state, etc.
3466  */
3467 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3468 {
3469         i9xx_crtc_disable(crtc);
3470 }
3471
3472 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3473 {
3474         i9xx_crtc_enable(crtc);
3475 }
3476
3477 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3478 {
3479         ironlake_crtc_disable(crtc);
3480 }
3481
3482 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3483 {
3484         ironlake_crtc_enable(crtc);
3485 }
3486
3487 void intel_encoder_prepare(struct drm_encoder *encoder)
3488 {
3489         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3490         /* lvds has its own version of prepare see intel_lvds_prepare */
3491         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3492 }
3493
3494 void intel_encoder_commit(struct drm_encoder *encoder)
3495 {
3496         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3497         struct drm_device *dev = encoder->dev;
3498         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3499         struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3500
3501         /* lvds has its own version of commit see intel_lvds_commit */
3502         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3503
3504         if (HAS_PCH_CPT(dev))
3505                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3506 }
3507
3508 void intel_encoder_destroy(struct drm_encoder *encoder)
3509 {
3510         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3511
3512         drm_encoder_cleanup(encoder);
3513         drm_free(intel_encoder, DRM_MEM_KMS);
3514 }
3515
3516 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3517                                   struct drm_display_mode *mode,
3518                                   struct drm_display_mode *adjusted_mode)
3519 {
3520         struct drm_device *dev = crtc->dev;
3521
3522         if (HAS_PCH_SPLIT(dev)) {
3523                 /* FDI link clock is fixed at 2.7G */
3524                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3525                         return false;
3526         }
3527
3528         /* All interlaced capable intel hw wants timings in frames. Note though
3529          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3530          * timings, so we need to be careful not to clobber these.*/
3531         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3532                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3533
3534         return true;
3535 }
3536
3537 static int i945_get_display_clock_speed(struct drm_device *dev)
3538 {
3539         return 400000;
3540 }
3541
3542 static int i915_get_display_clock_speed(struct drm_device *dev)
3543 {
3544         return 333000;
3545 }
3546
3547 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3548 {
3549         return 200000;
3550 }
3551
3552 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3553 {
3554         u16 gcfgc = 0;
3555
3556         gcfgc = pci_read_config(dev->device, GCFGC, 2);
3557
3558         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3559                 return 133000;
3560         else {
3561                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3562                 case GC_DISPLAY_CLOCK_333_MHZ:
3563                         return 333000;
3564                 default:
3565                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3566                         return 190000;
3567                 }
3568         }
3569 }
3570
3571 static int i865_get_display_clock_speed(struct drm_device *dev)
3572 {
3573         return 266000;
3574 }
3575
3576 static int i855_get_display_clock_speed(struct drm_device *dev)
3577 {
3578         u16 hpllcc = 0;
3579         /* Assume that the hardware is in the high speed state.  This
3580          * should be the default.
3581          */
3582         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3583         case GC_CLOCK_133_200:
3584         case GC_CLOCK_100_200:
3585                 return 200000;
3586         case GC_CLOCK_166_250:
3587                 return 250000;
3588         case GC_CLOCK_100_133:
3589                 return 133000;
3590         }
3591
3592         /* Shouldn't happen */
3593         return 0;
3594 }
3595
3596 static int i830_get_display_clock_speed(struct drm_device *dev)
3597 {
3598         return 133000;
3599 }
3600
3601 struct fdi_m_n {
3602         u32        tu;
3603         u32        gmch_m;
3604         u32        gmch_n;
3605         u32        link_m;
3606         u32        link_n;
3607 };
3608
3609 static void
3610 fdi_reduce_ratio(u32 *num, u32 *den)
3611 {
3612         while (*num > 0xffffff || *den > 0xffffff) {
3613                 *num >>= 1;
3614                 *den >>= 1;
3615         }
3616 }
3617
3618 static void
3619 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3620                      int link_clock, struct fdi_m_n *m_n)
3621 {
3622         m_n->tu = 64; /* default size */
3623
3624         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3625         m_n->gmch_m = bits_per_pixel * pixel_clock;
3626         m_n->gmch_n = link_clock * nlanes * 8;
3627         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3628
3629         m_n->link_m = pixel_clock;
3630         m_n->link_n = link_clock;
3631         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3632 }
3633
3634
3635 struct intel_watermark_params {
3636         unsigned long fifo_size;
3637         unsigned long max_wm;
3638         unsigned long default_wm;
3639         unsigned long guard_size;
3640         unsigned long cacheline_size;
3641 };
3642
3643 /* Pineview has different values for various configs */
3644 static const struct intel_watermark_params pineview_display_wm = {
3645         PINEVIEW_DISPLAY_FIFO,
3646         PINEVIEW_MAX_WM,
3647         PINEVIEW_DFT_WM,
3648         PINEVIEW_GUARD_WM,
3649         PINEVIEW_FIFO_LINE_SIZE
3650 };
3651 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3652         PINEVIEW_DISPLAY_FIFO,
3653         PINEVIEW_MAX_WM,
3654         PINEVIEW_DFT_HPLLOFF_WM,
3655         PINEVIEW_GUARD_WM,
3656         PINEVIEW_FIFO_LINE_SIZE
3657 };
3658 static const struct intel_watermark_params pineview_cursor_wm = {
3659         PINEVIEW_CURSOR_FIFO,
3660         PINEVIEW_CURSOR_MAX_WM,
3661         PINEVIEW_CURSOR_DFT_WM,
3662         PINEVIEW_CURSOR_GUARD_WM,
3663         PINEVIEW_FIFO_LINE_SIZE,
3664 };
3665 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3666         PINEVIEW_CURSOR_FIFO,
3667         PINEVIEW_CURSOR_MAX_WM,
3668         PINEVIEW_CURSOR_DFT_WM,
3669         PINEVIEW_CURSOR_GUARD_WM,
3670         PINEVIEW_FIFO_LINE_SIZE
3671 };
3672 static const struct intel_watermark_params g4x_wm_info = {
3673         G4X_FIFO_SIZE,
3674         G4X_MAX_WM,
3675         G4X_MAX_WM,
3676         2,
3677         G4X_FIFO_LINE_SIZE,
3678 };
3679 static const struct intel_watermark_params g4x_cursor_wm_info = {
3680         I965_CURSOR_FIFO,
3681         I965_CURSOR_MAX_WM,
3682         I965_CURSOR_DFT_WM,
3683         2,
3684         G4X_FIFO_LINE_SIZE,
3685 };
3686 static const struct intel_watermark_params i965_cursor_wm_info = {
3687         I965_CURSOR_FIFO,
3688         I965_CURSOR_MAX_WM,
3689         I965_CURSOR_DFT_WM,
3690         2,
3691         I915_FIFO_LINE_SIZE,
3692 };
3693 static const struct intel_watermark_params i945_wm_info = {
3694         I945_FIFO_SIZE,
3695         I915_MAX_WM,
3696         1,
3697         2,
3698         I915_FIFO_LINE_SIZE
3699 };
3700 static const struct intel_watermark_params i915_wm_info = {
3701         I915_FIFO_SIZE,
3702         I915_MAX_WM,
3703         1,
3704         2,
3705         I915_FIFO_LINE_SIZE
3706 };
3707 static const struct intel_watermark_params i855_wm_info = {
3708         I855GM_FIFO_SIZE,
3709         I915_MAX_WM,
3710         1,
3711         2,
3712         I830_FIFO_LINE_SIZE
3713 };
3714 static const struct intel_watermark_params i830_wm_info = {
3715         I830_FIFO_SIZE,
3716         I915_MAX_WM,
3717         1,
3718         2,
3719         I830_FIFO_LINE_SIZE
3720 };
3721
3722 static const struct intel_watermark_params ironlake_display_wm_info = {
3723         ILK_DISPLAY_FIFO,
3724         ILK_DISPLAY_MAXWM,
3725         ILK_DISPLAY_DFTWM,
3726         2,
3727         ILK_FIFO_LINE_SIZE
3728 };
3729 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3730         ILK_CURSOR_FIFO,
3731         ILK_CURSOR_MAXWM,
3732         ILK_CURSOR_DFTWM,
3733         2,
3734         ILK_FIFO_LINE_SIZE
3735 };
3736 static const struct intel_watermark_params ironlake_display_srwm_info = {
3737         ILK_DISPLAY_SR_FIFO,
3738         ILK_DISPLAY_MAX_SRWM,
3739         ILK_DISPLAY_DFT_SRWM,
3740         2,
3741         ILK_FIFO_LINE_SIZE
3742 };
3743 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3744         ILK_CURSOR_SR_FIFO,
3745         ILK_CURSOR_MAX_SRWM,
3746         ILK_CURSOR_DFT_SRWM,
3747         2,
3748         ILK_FIFO_LINE_SIZE
3749 };
3750
3751 static const struct intel_watermark_params sandybridge_display_wm_info = {
3752         SNB_DISPLAY_FIFO,
3753         SNB_DISPLAY_MAXWM,
3754         SNB_DISPLAY_DFTWM,
3755         2,
3756         SNB_FIFO_LINE_SIZE
3757 };
3758 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3759         SNB_CURSOR_FIFO,
3760         SNB_CURSOR_MAXWM,
3761         SNB_CURSOR_DFTWM,
3762         2,
3763         SNB_FIFO_LINE_SIZE
3764 };
3765 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3766         SNB_DISPLAY_SR_FIFO,
3767         SNB_DISPLAY_MAX_SRWM,
3768         SNB_DISPLAY_DFT_SRWM,
3769         2,
3770         SNB_FIFO_LINE_SIZE
3771 };
3772 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3773         SNB_CURSOR_SR_FIFO,
3774         SNB_CURSOR_MAX_SRWM,
3775         SNB_CURSOR_DFT_SRWM,
3776         2,
3777         SNB_FIFO_LINE_SIZE
3778 };
3779
3780
3781 /**
3782  * intel_calculate_wm - calculate watermark level
3783  * @clock_in_khz: pixel clock
3784  * @wm: chip FIFO params
3785  * @pixel_size: display pixel size
3786  * @latency_ns: memory latency for the platform
3787  *
3788  * Calculate the watermark level (the level at which the display plane will
3789  * start fetching from memory again).  Each chip has a different display
3790  * FIFO size and allocation, so the caller needs to figure that out and pass
3791  * in the correct intel_watermark_params structure.
3792  *
3793  * As the pixel clock runs, the FIFO will be drained at a rate that depends
3794  * on the pixel size.  When it reaches the watermark level, it'll start
3795  * fetching FIFO line sized based chunks from memory until the FIFO fills
3796  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3797  * will occur, and a display engine hang could result.
3798  */
3799 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3800                                         const struct intel_watermark_params *wm,
3801                                         int fifo_size,
3802                                         int pixel_size,
3803                                         unsigned long latency_ns)
3804 {
3805         long entries_required, wm_size;
3806
3807         /*
3808          * Note: we need to make sure we don't overflow for various clock &
3809          * latency values.
3810          * clocks go from a few thousand to several hundred thousand.
3811          * latency is usually a few thousand
3812          */
3813         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3814                 1000;
3815         entries_required = howmany(entries_required, wm->cacheline_size);
3816
3817         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3818
3819         wm_size = fifo_size - (entries_required + wm->guard_size);
3820
3821         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3822
3823         /* Don't promote wm_size to unsigned... */
3824         if (wm_size > (long)wm->max_wm)
3825                 wm_size = wm->max_wm;
3826         if (wm_size <= 0)
3827                 wm_size = wm->default_wm;
3828         return wm_size;
3829 }
3830
3831 struct cxsr_latency {
3832         int is_desktop;
3833         int is_ddr3;
3834         unsigned long fsb_freq;
3835         unsigned long mem_freq;
3836         unsigned long display_sr;
3837         unsigned long display_hpll_disable;
3838         unsigned long cursor_sr;
3839         unsigned long cursor_hpll_disable;
3840 };
3841
3842 static const struct cxsr_latency cxsr_latency_table[] = {
3843         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3844         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3845         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3846         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3847         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3848
3849         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3850         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3851         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3852         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3853         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3854
3855         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3856         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3857         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3858         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3859         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3860
3861         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3862         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3863         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3864         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3865         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3866
3867         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3868         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3869         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3870         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3871         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3872
3873         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3874         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3875         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3876         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3877         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3878 };
3879
3880 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3881                                                          int is_ddr3,
3882                                                          int fsb,
3883                                                          int mem)
3884 {
3885         const struct cxsr_latency *latency;
3886         int i;
3887
3888         if (fsb == 0 || mem == 0)
3889                 return NULL;
3890
3891         for (i = 0; i < DRM_ARRAY_SIZE(cxsr_latency_table); i++) {
3892                 latency = &cxsr_latency_table[i];
3893                 if (is_desktop == latency->is_desktop &&
3894                     is_ddr3 == latency->is_ddr3 &&
3895                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3896                         return latency;
3897         }
3898
3899         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3900
3901         return NULL;
3902 }
3903
3904 static void pineview_disable_cxsr(struct drm_device *dev)
3905 {
3906         struct drm_i915_private *dev_priv = dev->dev_private;
3907
3908         /* deactivate cxsr */
3909         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3910 }
3911
3912 /*
3913  * Latency for FIFO fetches is dependent on several factors:
3914  *   - memory configuration (speed, channels)
3915  *   - chipset
3916  *   - current MCH state
3917  * It can be fairly high in some situations, so here we assume a fairly
3918  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3919  * set this value too high, the FIFO will fetch frequently to stay full)
3920  * and power consumption (set it too low to save power and we might see
3921  * FIFO underruns and display "flicker").
3922  *
3923  * A value of 5us seems to be a good balance; safe for very low end
3924  * platforms but not overly aggressive on lower latency configs.
3925  */
3926 static const int latency_ns = 5000;
3927
3928 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3929 {
3930         struct drm_i915_private *dev_priv = dev->dev_private;
3931         uint32_t dsparb = I915_READ(DSPARB);
3932         int size;
3933
3934         size = dsparb & 0x7f;
3935         if (plane)
3936                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3937
3938         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3939                       plane ? "B" : "A", size);
3940
3941         return size;
3942 }
3943
3944 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3945 {
3946         struct drm_i915_private *dev_priv = dev->dev_private;
3947         uint32_t dsparb = I915_READ(DSPARB);
3948         int size;
3949
3950         size = dsparb & 0x1ff;
3951         if (plane)
3952                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3953         size >>= 1; /* Convert to cachelines */
3954
3955         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3956                       plane ? "B" : "A", size);
3957
3958         return size;
3959 }
3960
3961 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3962 {
3963         struct drm_i915_private *dev_priv = dev->dev_private;
3964         uint32_t dsparb = I915_READ(DSPARB);
3965         int size;
3966
3967         size = dsparb & 0x7f;
3968         size >>= 2; /* Convert to cachelines */
3969
3970         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3971                       plane ? "B" : "A",
3972                       size);
3973
3974         return size;
3975 }
3976
3977 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3978 {
3979         struct drm_i915_private *dev_priv = dev->dev_private;
3980         uint32_t dsparb = I915_READ(DSPARB);
3981         int size;
3982
3983         size = dsparb & 0x7f;
3984         size >>= 1; /* Convert to cachelines */
3985
3986         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3987                       plane ? "B" : "A", size);
3988
3989         return size;
3990 }
3991
3992 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3993 {
3994         struct drm_crtc *crtc, *enabled = NULL;
3995
3996         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3997                 if (crtc->enabled && crtc->fb) {
3998                         if (enabled)
3999                                 return NULL;
4000                         enabled = crtc;
4001                 }
4002         }
4003
4004         return enabled;
4005 }
4006
4007 static void pineview_update_wm(struct drm_device *dev)
4008 {
4009         struct drm_i915_private *dev_priv = dev->dev_private;
4010         struct drm_crtc *crtc;
4011         const struct cxsr_latency *latency;
4012         u32 reg;
4013         unsigned long wm;
4014
4015         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
4016                                          dev_priv->fsb_freq, dev_priv->mem_freq);
4017         if (!latency) {
4018                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
4019                 pineview_disable_cxsr(dev);
4020                 return;
4021         }
4022
4023         crtc = single_enabled_crtc(dev);
4024         if (crtc) {
4025                 int clock = crtc->mode.clock;
4026                 int pixel_size = crtc->fb->bits_per_pixel / 8;
4027
4028                 /* Display SR */
4029                 wm = intel_calculate_wm(clock, &pineview_display_wm,
4030                                         pineview_display_wm.fifo_size,
4031                                         pixel_size, latency->display_sr);
4032                 reg = I915_READ(DSPFW1);
4033                 reg &= ~DSPFW_SR_MASK;
4034                 reg |= wm << DSPFW_SR_SHIFT;
4035                 I915_WRITE(DSPFW1, reg);
4036                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
4037
4038                 /* cursor SR */
4039                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
4040                                         pineview_display_wm.fifo_size,
4041                                         pixel_size, latency->cursor_sr);
4042                 reg = I915_READ(DSPFW3);
4043                 reg &= ~DSPFW_CURSOR_SR_MASK;
4044                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
4045                 I915_WRITE(DSPFW3, reg);
4046
4047                 /* Display HPLL off SR */
4048                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
4049                                         pineview_display_hplloff_wm.fifo_size,
4050                                         pixel_size, latency->display_hpll_disable);
4051                 reg = I915_READ(DSPFW3);
4052                 reg &= ~DSPFW_HPLL_SR_MASK;
4053                 reg |= wm & DSPFW_HPLL_SR_MASK;
4054                 I915_WRITE(DSPFW3, reg);
4055
4056                 /* cursor HPLL off SR */
4057                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
4058                                         pineview_display_hplloff_wm.fifo_size,
4059                                         pixel_size, latency->cursor_hpll_disable);
4060                 reg = I915_READ(DSPFW3);
4061                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
4062                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
4063                 I915_WRITE(DSPFW3, reg);
4064                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
4065
4066                 /* activate cxsr */
4067                 I915_WRITE(DSPFW3,
4068                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
4069                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
4070         } else {
4071                 pineview_disable_cxsr(dev);
4072                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
4073         }
4074 }
4075
4076 static bool g4x_compute_wm0(struct drm_device *dev,
4077                             int plane,
4078                             const struct intel_watermark_params *display,
4079                             int display_latency_ns,
4080                             const struct intel_watermark_params *cursor,
4081                             int cursor_latency_ns,
4082                             int *plane_wm,
4083                             int *cursor_wm)
4084 {
4085         struct drm_crtc *crtc;
4086         int htotal, hdisplay, clock, pixel_size;
4087         int line_time_us, line_count;
4088         int entries, tlb_miss;
4089
4090         crtc = intel_get_crtc_for_plane(dev, plane);
4091         if (crtc->fb == NULL || !crtc->enabled) {
4092                 *cursor_wm = cursor->guard_size;
4093                 *plane_wm = display->guard_size;
4094                 return false;
4095         }
4096
4097         htotal = crtc->mode.htotal;
4098         hdisplay = crtc->mode.hdisplay;
4099         clock = crtc->mode.clock;
4100         pixel_size = crtc->fb->bits_per_pixel / 8;
4101
4102         /* Use the small buffer method to calculate plane watermark */
4103         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4104         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
4105         if (tlb_miss > 0)
4106                 entries += tlb_miss;
4107         entries = howmany(entries, display->cacheline_size);
4108         *plane_wm = entries + display->guard_size;
4109         if (*plane_wm > (int)display->max_wm)
4110                 *plane_wm = display->max_wm;
4111
4112         /* Use the large buffer method to calculate cursor watermark */
4113         line_time_us = ((htotal * 1000) / clock);
4114         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
4115         entries = line_count * 64 * pixel_size;
4116         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
4117         if (tlb_miss > 0)
4118                 entries += tlb_miss;
4119         entries = howmany(entries, cursor->cacheline_size);
4120         *cursor_wm = entries + cursor->guard_size;
4121         if (*cursor_wm > (int)cursor->max_wm)
4122                 *cursor_wm = (int)cursor->max_wm;
4123
4124         return true;
4125 }
4126
4127 /*
4128  * Check the wm result.
4129  *
4130  * If any calculated watermark values is larger than the maximum value that
4131  * can be programmed into the associated watermark register, that watermark
4132  * must be disabled.
4133  */
4134 static bool g4x_check_srwm(struct drm_device *dev,
4135                            int display_wm, int cursor_wm,
4136                            const struct intel_watermark_params *display,
4137                            const struct intel_watermark_params *cursor)
4138 {
4139         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4140                       display_wm, cursor_wm);
4141
4142         if (display_wm > display->max_wm) {
4143                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4144                               display_wm, display->max_wm);
4145                 return false;
4146         }
4147
4148         if (cursor_wm > cursor->max_wm) {
4149                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4150                               cursor_wm, cursor->max_wm);
4151                 return false;
4152         }
4153
4154         if (!(display_wm || cursor_wm)) {
4155                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4156                 return false;
4157         }
4158
4159         return true;
4160 }
4161
4162 static bool g4x_compute_srwm(struct drm_device *dev,
4163                              int plane,
4164                              int latency_ns,
4165                              const struct intel_watermark_params *display,
4166                              const struct intel_watermark_params *cursor,
4167                              int *display_wm, int *cursor_wm)
4168 {
4169         struct drm_crtc *crtc;
4170         int hdisplay, htotal, pixel_size, clock;
4171         unsigned long line_time_us;
4172         int line_count, line_size;
4173         int small, large;
4174         int entries;
4175
4176         if (!latency_ns) {
4177                 *display_wm = *cursor_wm = 0;
4178                 return false;
4179         }
4180
4181         crtc = intel_get_crtc_for_plane(dev, plane);
4182         hdisplay = crtc->mode.hdisplay;
4183         htotal = crtc->mode.htotal;
4184         clock = crtc->mode.clock;
4185         pixel_size = crtc->fb->bits_per_pixel / 8;
4186
4187         line_time_us = (htotal * 1000) / clock;
4188         line_count = (latency_ns / line_time_us + 1000) / 1000;
4189         line_size = hdisplay * pixel_size;
4190
4191         /* Use the minimum of the small and large buffer method for primary */
4192         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4193         large = line_count * line_size;
4194
4195         entries = howmany(min(small, large), display->cacheline_size);
4196         *display_wm = entries + display->guard_size;
4197
4198         /* calculate the self-refresh watermark for display cursor */
4199         entries = line_count * pixel_size * 64;
4200         entries = howmany(entries, cursor->cacheline_size);
4201         *cursor_wm = entries + cursor->guard_size;
4202
4203         return g4x_check_srwm(dev,
4204                               *display_wm, *cursor_wm,
4205                               display, cursor);
4206 }
4207
4208 #define single_plane_enabled(mask) ((mask) != 0 && powerof2(mask))
4209
4210 static void g4x_update_wm(struct drm_device *dev)
4211 {
4212         static const int sr_latency_ns = 12000;
4213         struct drm_i915_private *dev_priv = dev->dev_private;
4214         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4215         int plane_sr, cursor_sr;
4216         unsigned int enabled = 0;
4217
4218         if (g4x_compute_wm0(dev, 0,
4219                             &g4x_wm_info, latency_ns,
4220                             &g4x_cursor_wm_info, latency_ns,
4221                             &planea_wm, &cursora_wm))
4222                 enabled |= 1;
4223
4224         if (g4x_compute_wm0(dev, 1,
4225                             &g4x_wm_info, latency_ns,
4226                             &g4x_cursor_wm_info, latency_ns,
4227                             &planeb_wm, &cursorb_wm))
4228                 enabled |= 2;
4229
4230         plane_sr = cursor_sr = 0;
4231         if (single_plane_enabled(enabled) &&
4232             g4x_compute_srwm(dev, ffs(enabled) - 1,
4233                              sr_latency_ns,
4234                              &g4x_wm_info,
4235                              &g4x_cursor_wm_info,
4236                              &plane_sr, &cursor_sr))
4237                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4238         else
4239                 I915_WRITE(FW_BLC_SELF,
4240                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4241
4242         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4243                       planea_wm, cursora_wm,
4244                       planeb_wm, cursorb_wm,
4245                       plane_sr, cursor_sr);
4246
4247         I915_WRITE(DSPFW1,
4248                    (plane_sr << DSPFW_SR_SHIFT) |
4249                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4250                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
4251                    planea_wm);
4252         I915_WRITE(DSPFW2,
4253                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4254                    (cursora_wm << DSPFW_CURSORA_SHIFT));
4255         /* HPLL off in SR has some issues on G4x... disable it */
4256         I915_WRITE(DSPFW3,
4257                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4258                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4259 }
4260
4261 static void i965_update_wm(struct drm_device *dev)
4262 {
4263         struct drm_i915_private *dev_priv = dev->dev_private;
4264         struct drm_crtc *crtc;
4265         int srwm = 1;
4266         int cursor_sr = 16;
4267
4268         /* Calc sr entries for one plane configs */
4269         crtc = single_enabled_crtc(dev);
4270         if (crtc) {
4271                 /* self-refresh has much higher latency */
4272                 static const int sr_latency_ns = 12000;
4273                 int clock = crtc->mode.clock;
4274                 int htotal = crtc->mode.htotal;
4275                 int hdisplay = crtc->mode.hdisplay;
4276                 int pixel_size = crtc->fb->bits_per_pixel / 8;
4277                 unsigned long line_time_us;
4278                 int entries;
4279
4280                 line_time_us = ((htotal * 1000) / clock);
4281
4282                 /* Use ns/us then divide to preserve precision */
4283                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4284                         pixel_size * hdisplay;
4285                 entries = howmany(entries, I915_FIFO_LINE_SIZE);
4286                 srwm = I965_FIFO_SIZE - entries;
4287                 if (srwm < 0)
4288                         srwm = 1;
4289                 srwm &= 0x1ff;
4290                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4291                               entries, srwm);
4292
4293                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4294                         pixel_size * 64;
4295                 entries = howmany(entries, i965_cursor_wm_info.cacheline_size);
4296                 cursor_sr = i965_cursor_wm_info.fifo_size -
4297                         (entries + i965_cursor_wm_info.guard_size);
4298
4299                 if (cursor_sr > i965_cursor_wm_info.max_wm)
4300                         cursor_sr = i965_cursor_wm_info.max_wm;
4301
4302                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4303                               "cursor %d\n", srwm, cursor_sr);
4304
4305                 if (IS_CRESTLINE(dev))
4306                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4307         } else {
4308                 /* Turn off self refresh if both pipes are enabled */
4309                 if (IS_CRESTLINE(dev))
4310                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4311                                    & ~FW_BLC_SELF_EN);
4312         }
4313
4314         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4315                       srwm);
4316
4317         /* 965 has limitations... */
4318         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4319                    (8 << 16) | (8 << 8) | (8 << 0));
4320         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4321         /* update cursor SR watermark */
4322         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4323 }
4324
4325 static void i9xx_update_wm(struct drm_device *dev)
4326 {
4327         struct drm_i915_private *dev_priv = dev->dev_private;
4328         const struct intel_watermark_params *wm_info;
4329         uint32_t fwater_lo;
4330         uint32_t fwater_hi;
4331         int cwm, srwm = 1;
4332         int fifo_size;
4333         int planea_wm, planeb_wm;
4334         struct drm_crtc *crtc, *enabled = NULL;
4335
4336         if (IS_I945GM(dev))
4337                 wm_info = &i945_wm_info;
4338         else if (!IS_GEN2(dev))
4339                 wm_info = &i915_wm_info;
4340         else
4341                 wm_info = &i855_wm_info;
4342
4343         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4344         crtc = intel_get_crtc_for_plane(dev, 0);
4345         if (crtc->enabled && crtc->fb) {
4346                 planea_wm = intel_calculate_wm(crtc->mode.clock,
4347                                                wm_info, fifo_size,
4348                                                crtc->fb->bits_per_pixel / 8,
4349                                                latency_ns);
4350                 enabled = crtc;
4351         } else
4352                 planea_wm = fifo_size - wm_info->guard_size;
4353
4354         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4355         crtc = intel_get_crtc_for_plane(dev, 1);
4356         if (crtc->enabled && crtc->fb) {
4357                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4358                                                wm_info, fifo_size,
4359                                                crtc->fb->bits_per_pixel / 8,
4360                                                latency_ns);
4361                 if (enabled == NULL)
4362                         enabled = crtc;
4363                 else
4364                         enabled = NULL;
4365         } else
4366                 planeb_wm = fifo_size - wm_info->guard_size;
4367
4368         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4369
4370         /*
4371          * Overlay gets an aggressive default since video jitter is bad.
4372          */
4373         cwm = 2;
4374
4375         /* Play safe and disable self-refresh before adjusting watermarks. */
4376         if (IS_I945G(dev) || IS_I945GM(dev))
4377                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4378         else if (IS_I915GM(dev))
4379                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4380
4381         /* Calc sr entries for one plane configs */
4382         if (HAS_FW_BLC(dev) && enabled) {
4383                 /* self-refresh has much higher latency */
4384                 static const int sr_latency_ns = 6000;
4385                 int clock = enabled->mode.clock;
4386                 int htotal = enabled->mode.htotal;
4387                 int hdisplay = enabled->mode.hdisplay;
4388                 int pixel_size = enabled->fb->bits_per_pixel / 8;
4389                 unsigned long line_time_us;
4390                 int entries;
4391
4392                 line_time_us = (htotal * 1000) / clock;
4393
4394                 /* Use ns/us then divide to preserve precision */
4395                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4396                         pixel_size * hdisplay;
4397                 entries = howmany(entries, wm_info->cacheline_size);
4398                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4399                 srwm = wm_info->fifo_size - entries;
4400                 if (srwm < 0)
4401                         srwm = 1;
4402
4403                 if (IS_I945G(dev) || IS_I945GM(dev))
4404                         I915_WRITE(FW_BLC_SELF,
4405                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4406                 else if (IS_I915GM(dev))
4407                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4408         }
4409
4410         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4411                       planea_wm, planeb_wm, cwm, srwm);
4412
4413         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4414         fwater_hi = (cwm & 0x1f);
4415
4416         /* Set request length to 8 cachelines per fetch */
4417         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4418         fwater_hi = fwater_hi | (1 << 8);
4419
4420         I915_WRITE(FW_BLC, fwater_lo);
4421         I915_WRITE(FW_BLC2, fwater_hi);
4422
4423         if (HAS_FW_BLC(dev)) {
4424                 if (enabled) {
4425                         if (IS_I945G(dev) || IS_I945GM(dev))
4426                                 I915_WRITE(FW_BLC_SELF,
4427                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4428                         else if (IS_I915GM(dev))
4429                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4430                         DRM_DEBUG_KMS("memory self refresh enabled\n");
4431                 } else
4432                         DRM_DEBUG_KMS("memory self refresh disabled\n");
4433         }
4434 }
4435
4436 static void i830_update_wm(struct drm_device *dev)
4437 {
4438         struct drm_i915_private *dev_priv = dev->dev_private;
4439         struct drm_crtc *crtc;
4440         uint32_t fwater_lo;
4441         int planea_wm;
4442
4443         crtc = single_enabled_crtc(dev);
4444         if (crtc == NULL)
4445                 return;
4446
4447         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4448                                        dev_priv->display.get_fifo_size(dev, 0),
4449                                        crtc->fb->bits_per_pixel / 8,
4450                                        latency_ns);
4451         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4452         fwater_lo |= (3<<8) | planea_wm;
4453
4454         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4455
4456         I915_WRITE(FW_BLC, fwater_lo);
4457 }
4458
4459 #define ILK_LP0_PLANE_LATENCY           700
4460 #define ILK_LP0_CURSOR_LATENCY          1300
4461
4462 /*
4463  * Check the wm result.
4464  *
4465  * If any calculated watermark values is larger than the maximum value that
4466  * can be programmed into the associated watermark register, that watermark
4467  * must be disabled.
4468  */
4469 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4470                                 int fbc_wm, int display_wm, int cursor_wm,
4471                                 const struct intel_watermark_params *display,
4472                                 const struct intel_watermark_params *cursor)
4473 {
4474         struct drm_i915_private *dev_priv = dev->dev_private;
4475
4476         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4477                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4478
4479         if (fbc_wm > SNB_FBC_MAX_SRWM) {
4480                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4481                               fbc_wm, SNB_FBC_MAX_SRWM, level);
4482
4483                 /* fbc has it's own way to disable FBC WM */
4484                 I915_WRITE(DISP_ARB_CTL,
4485                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4486                 return false;
4487         }
4488
4489         if (display_wm > display->max_wm) {
4490                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4491                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
4492                 return false;
4493         }
4494
4495         if (cursor_wm > cursor->max_wm) {
4496                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4497                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4498                 return false;
4499         }
4500
4501         if (!(fbc_wm || display_wm || cursor_wm)) {
4502                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4503                 return false;
4504         }
4505
4506         return true;
4507 }
4508
4509 /*
4510  * Compute watermark values of WM[1-3],
4511  */
4512 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4513                                   int latency_ns,
4514                                   const struct intel_watermark_params *display,
4515                                   const struct intel_watermark_params *cursor,
4516                                   int *fbc_wm, int *display_wm, int *cursor_wm)
4517 {
4518         struct drm_crtc *crtc;
4519         unsigned long line_time_us;
4520         int hdisplay, htotal, pixel_size, clock;
4521         int line_count, line_size;
4522         int small, large;
4523         int entries;
4524
4525         if (!latency_ns) {
4526                 *fbc_wm = *display_wm = *cursor_wm = 0;
4527                 return false;
4528         }
4529
4530         crtc = intel_get_crtc_for_plane(dev, plane);
4531         hdisplay = crtc->mode.hdisplay;
4532         htotal = crtc->mode.htotal;
4533         clock = crtc->mode.clock;
4534         pixel_size = crtc->fb->bits_per_pixel / 8;
4535
4536         line_time_us = (htotal * 1000) / clock;
4537         line_count = (latency_ns / line_time_us + 1000) / 1000;
4538         line_size = hdisplay * pixel_size;
4539
4540         /* Use the minimum of the small and large buffer method for primary */
4541         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4542         large = line_count * line_size;
4543
4544         entries = howmany(min(small, large), display->cacheline_size);
4545         *display_wm = entries + display->guard_size;
4546
4547         /*
4548          * Spec says:
4549          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4550          */
4551         *fbc_wm = howmany(*display_wm * 64, line_size) + 2;
4552
4553         /* calculate the self-refresh watermark for display cursor */
4554         entries = line_count * pixel_size * 64;
4555         entries = howmany(entries, cursor->cacheline_size);
4556         *cursor_wm = entries + cursor->guard_size;
4557
4558         return ironlake_check_srwm(dev, level,
4559                                    *fbc_wm, *display_wm, *cursor_wm,
4560                                    display, cursor);
4561 }
4562
4563 static void ironlake_update_wm(struct drm_device *dev)
4564 {
4565         struct drm_i915_private *dev_priv = dev->dev_private;
4566         int fbc_wm, plane_wm, cursor_wm;
4567         unsigned int enabled;
4568
4569         enabled = 0;
4570         if (g4x_compute_wm0(dev, 0,
4571                             &ironlake_display_wm_info,
4572                             ILK_LP0_PLANE_LATENCY,
4573                             &ironlake_cursor_wm_info,
4574                             ILK_LP0_CURSOR_LATENCY,
4575                             &plane_wm, &cursor_wm)) {
4576                 I915_WRITE(WM0_PIPEA_ILK,
4577                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4578                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4579                               " plane %d, " "cursor: %d\n",
4580                               plane_wm, cursor_wm);
4581                 enabled |= 1;
4582         }
4583
4584         if (g4x_compute_wm0(dev, 1,
4585                             &ironlake_display_wm_info,
4586                             ILK_LP0_PLANE_LATENCY,
4587                             &ironlake_cursor_wm_info,
4588                             ILK_LP0_CURSOR_LATENCY,
4589                             &plane_wm, &cursor_wm)) {
4590                 I915_WRITE(WM0_PIPEB_ILK,
4591                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4592                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4593                               " plane %d, cursor: %d\n",
4594                               plane_wm, cursor_wm);
4595                 enabled |= 2;
4596         }
4597
4598         /*
4599          * Calculate and update the self-refresh watermark only when one
4600          * display plane is used.
4601          */
4602         I915_WRITE(WM3_LP_ILK, 0);
4603         I915_WRITE(WM2_LP_ILK, 0);
4604         I915_WRITE(WM1_LP_ILK, 0);
4605
4606         if (!single_plane_enabled(enabled))
4607                 return;
4608         enabled = ffs(enabled) - 1;
4609
4610         /* WM1 */
4611         if (!ironlake_compute_srwm(dev, 1, enabled,
4612                                    ILK_READ_WM1_LATENCY() * 500,
4613                                    &ironlake_display_srwm_info,
4614                                    &ironlake_cursor_srwm_info,
4615                                    &fbc_wm, &plane_wm, &cursor_wm))
4616                 return;
4617
4618         I915_WRITE(WM1_LP_ILK,
4619                    WM1_LP_SR_EN |
4620                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4621                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4622                    (plane_wm << WM1_LP_SR_SHIFT) |
4623                    cursor_wm);
4624
4625         /* WM2 */
4626         if (!ironlake_compute_srwm(dev, 2, enabled,
4627                                    ILK_READ_WM2_LATENCY() * 500,
4628                                    &ironlake_display_srwm_info,
4629                                    &ironlake_cursor_srwm_info,
4630                                    &fbc_wm, &plane_wm, &cursor_wm))
4631                 return;
4632
4633         I915_WRITE(WM2_LP_ILK,
4634                    WM2_LP_EN |
4635                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4636                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4637                    (plane_wm << WM1_LP_SR_SHIFT) |
4638                    cursor_wm);
4639
4640         /*
4641          * WM3 is unsupported on ILK, probably because we don't have latency
4642          * data for that power state
4643          */
4644 }
4645
4646 void sandybridge_update_wm(struct drm_device *dev)
4647 {
4648         struct drm_i915_private *dev_priv = dev->dev_private;
4649         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4650         u32 val;
4651         int fbc_wm, plane_wm, cursor_wm;
4652         unsigned int enabled;
4653
4654         enabled = 0;
4655         if (g4x_compute_wm0(dev, 0,
4656                             &sandybridge_display_wm_info, latency,
4657                             &sandybridge_cursor_wm_info, latency,
4658                             &plane_wm, &cursor_wm)) {
4659                 val = I915_READ(WM0_PIPEA_ILK);
4660                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4661                 I915_WRITE(WM0_PIPEA_ILK, val |
4662                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4663                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4664                               " plane %d, " "cursor: %d\n",
4665                               plane_wm, cursor_wm);
4666                 enabled |= 1;
4667         }
4668
4669         if (g4x_compute_wm0(dev, 1,
4670                             &sandybridge_display_wm_info, latency,
4671                             &sandybridge_cursor_wm_info, latency,
4672                             &plane_wm, &cursor_wm)) {
4673                 val = I915_READ(WM0_PIPEB_ILK);
4674                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4675                 I915_WRITE(WM0_PIPEB_ILK, val |
4676                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4677                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4678                               " plane %d, cursor: %d\n",
4679                               plane_wm, cursor_wm);
4680                 enabled |= 2;
4681         }
4682
4683         /* IVB has 3 pipes */
4684         if (IS_IVYBRIDGE(dev) &&
4685             g4x_compute_wm0(dev, 2,
4686                             &sandybridge_display_wm_info, latency,
4687                             &sandybridge_cursor_wm_info, latency,
4688                             &plane_wm, &cursor_wm)) {
4689                 val = I915_READ(WM0_PIPEC_IVB);
4690                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4691                 I915_WRITE(WM0_PIPEC_IVB, val |
4692                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4693                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4694                               " plane %d, cursor: %d\n",
4695                               plane_wm, cursor_wm);
4696                 enabled |= 3;
4697         }
4698
4699         /*
4700          * Calculate and update the self-refresh watermark only when one
4701          * display plane is used.
4702          *
4703          * SNB support 3 levels of watermark.
4704          *
4705          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4706          * and disabled in the descending order
4707          *
4708          */
4709         I915_WRITE(WM3_LP_ILK, 0);
4710         I915_WRITE(WM2_LP_ILK, 0);
4711         I915_WRITE(WM1_LP_ILK, 0);
4712
4713         if (!single_plane_enabled(enabled) ||
4714             dev_priv->sprite_scaling_enabled)
4715                 return;
4716         enabled = ffs(enabled) - 1;
4717
4718         /* WM1 */
4719         if (!ironlake_compute_srwm(dev, 1, enabled,
4720                                    SNB_READ_WM1_LATENCY() * 500,
4721                                    &sandybridge_display_srwm_info,
4722                                    &sandybridge_cursor_srwm_info,
4723                                    &fbc_wm, &plane_wm, &cursor_wm))
4724                 return;
4725
4726         I915_WRITE(WM1_LP_ILK,
4727                    WM1_LP_SR_EN |
4728                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4729                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4730                    (plane_wm << WM1_LP_SR_SHIFT) |
4731                    cursor_wm);
4732
4733         /* WM2 */
4734         if (!ironlake_compute_srwm(dev, 2, enabled,
4735                                    SNB_READ_WM2_LATENCY() * 500,
4736                                    &sandybridge_display_srwm_info,
4737                                    &sandybridge_cursor_srwm_info,
4738                                    &fbc_wm, &plane_wm, &cursor_wm))
4739                 return;
4740
4741         I915_WRITE(WM2_LP_ILK,
4742                    WM2_LP_EN |
4743                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4744                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4745                    (plane_wm << WM1_LP_SR_SHIFT) |
4746                    cursor_wm);
4747
4748         /* WM3 */
4749         if (!ironlake_compute_srwm(dev, 3, enabled,
4750                                    SNB_READ_WM3_LATENCY() * 500,
4751                                    &sandybridge_display_srwm_info,
4752                                    &sandybridge_cursor_srwm_info,
4753                                    &fbc_wm, &plane_wm, &cursor_wm))
4754                 return;
4755
4756         I915_WRITE(WM3_LP_ILK,
4757                    WM3_LP_EN |
4758                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4759                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4760                    (plane_wm << WM1_LP_SR_SHIFT) |
4761                    cursor_wm);
4762 }
4763
4764 static bool
4765 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
4766                               uint32_t sprite_width, int pixel_size,
4767                               const struct intel_watermark_params *display,
4768                               int display_latency_ns, int *sprite_wm)
4769 {
4770         struct drm_crtc *crtc;
4771         int clock;
4772         int entries, tlb_miss;
4773
4774         crtc = intel_get_crtc_for_plane(dev, plane);
4775         if (crtc->fb == NULL || !crtc->enabled) {
4776                 *sprite_wm = display->guard_size;
4777                 return false;
4778         }
4779
4780         clock = crtc->mode.clock;
4781
4782         /* Use the small buffer method to calculate the sprite watermark */
4783         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4784         tlb_miss = display->fifo_size*display->cacheline_size -
4785                 sprite_width * 8;
4786         if (tlb_miss > 0)
4787                 entries += tlb_miss;
4788         entries = howmany(entries, display->cacheline_size);
4789         *sprite_wm = entries + display->guard_size;
4790         if (*sprite_wm > (int)display->max_wm)
4791                 *sprite_wm = display->max_wm;
4792
4793         return true;
4794 }
4795
4796 static bool
4797 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
4798                                 uint32_t sprite_width, int pixel_size,
4799                                 const struct intel_watermark_params *display,
4800                                 int latency_ns, int *sprite_wm)
4801 {
4802         struct drm_crtc *crtc;
4803         unsigned long line_time_us;
4804         int clock;
4805         int line_count, line_size;
4806         int small, large;
4807         int entries;
4808
4809         if (!latency_ns) {
4810                 *sprite_wm = 0;
4811                 return false;
4812         }
4813
4814         crtc = intel_get_crtc_for_plane(dev, plane);
4815         clock = crtc->mode.clock;
4816         if (!clock) {
4817                 *sprite_wm = 0;
4818                 return false;
4819         }
4820
4821         line_time_us = (sprite_width * 1000) / clock;
4822         if (!line_time_us) {
4823                 *sprite_wm = 0;
4824                 return false;
4825         }
4826
4827         line_count = (latency_ns / line_time_us + 1000) / 1000;
4828         line_size = sprite_width * pixel_size;
4829
4830         /* Use the minimum of the small and large buffer method for primary */
4831         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4832         large = line_count * line_size;
4833
4834         entries = howmany(min(small, large), display->cacheline_size);
4835         *sprite_wm = entries + display->guard_size;
4836
4837         return *sprite_wm > 0x3ff ? false : true;
4838 }
4839
4840 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
4841                                          uint32_t sprite_width, int pixel_size)
4842 {
4843         struct drm_i915_private *dev_priv = dev->dev_private;
4844         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4845         u32 val;
4846         int sprite_wm, reg;
4847         int ret;
4848
4849         switch (pipe) {
4850         case 0:
4851                 reg = WM0_PIPEA_ILK;
4852                 break;
4853         case 1:
4854                 reg = WM0_PIPEB_ILK;
4855                 break;
4856         case 2:
4857                 reg = WM0_PIPEC_IVB;
4858                 break;
4859         default:
4860                 return; /* bad pipe */
4861         }
4862
4863         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
4864                                             &sandybridge_display_wm_info,
4865                                             latency, &sprite_wm);
4866         if (!ret) {
4867                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
4868                               pipe);
4869                 return;
4870         }
4871
4872         val = I915_READ(reg);
4873         val &= ~WM0_PIPE_SPRITE_MASK;
4874         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
4875         DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
4876
4877
4878         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4879                                               pixel_size,
4880                                               &sandybridge_display_srwm_info,
4881                                               SNB_READ_WM1_LATENCY() * 500,
4882                                               &sprite_wm);
4883         if (!ret) {
4884                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
4885                               pipe);
4886                 return;
4887         }
4888         I915_WRITE(WM1S_LP_ILK, sprite_wm);
4889
4890         /* Only IVB has two more LP watermarks for sprite */
4891         if (!IS_IVYBRIDGE(dev))
4892                 return;
4893
4894         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4895                                               pixel_size,
4896                                               &sandybridge_display_srwm_info,
4897                                               SNB_READ_WM2_LATENCY() * 500,
4898                                               &sprite_wm);
4899         if (!ret) {
4900                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
4901                               pipe);
4902                 return;
4903         }
4904         I915_WRITE(WM2S_LP_IVB, sprite_wm);
4905
4906         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4907                                               pixel_size,
4908                                               &sandybridge_display_srwm_info,
4909                                               SNB_READ_WM3_LATENCY() * 500,
4910                                               &sprite_wm);
4911         if (!ret) {
4912                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
4913                               pipe);
4914                 return;
4915         }
4916         I915_WRITE(WM3S_LP_IVB, sprite_wm);
4917 }
4918
4919 /**
4920  * intel_update_watermarks - update FIFO watermark values based on current modes
4921  *
4922  * Calculate watermark values for the various WM regs based on current mode
4923  * and plane configuration.
4924  *
4925  * There are several cases to deal with here:
4926  *   - normal (i.e. non-self-refresh)
4927  *   - self-refresh (SR) mode
4928  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4929  *   - lines are small relative to FIFO size (buffer can hold more than 2
4930  *     lines), so need to account for TLB latency
4931  *
4932  *   The normal calculation is:
4933  *     watermark = dotclock * bytes per pixel * latency
4934  *   where latency is platform & configuration dependent (we assume pessimal
4935  *   values here).
4936  *
4937  *   The SR calculation is:
4938  *     watermark = (trunc(latency/line time)+1) * surface width *
4939  *       bytes per pixel
4940  *   where
4941  *     line time = htotal / dotclock
4942  *     surface width = hdisplay for normal plane and 64 for cursor
4943  *   and latency is assumed to be high, as above.
4944  *
4945  * The final value programmed to the register should always be rounded up,
4946  * and include an extra 2 entries to account for clock crossings.
4947  *
4948  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4949  * to set the non-SR watermarks to 8.
4950  */
4951 static void intel_update_watermarks(struct drm_device *dev)
4952 {
4953         struct drm_i915_private *dev_priv = dev->dev_private;
4954
4955         if (dev_priv->display.update_wm)
4956                 dev_priv->display.update_wm(dev);
4957 }
4958
4959 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
4960                                     uint32_t sprite_width, int pixel_size)
4961 {
4962         struct drm_i915_private *dev_priv = dev->dev_private;
4963
4964         if (dev_priv->display.update_sprite_wm)
4965                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
4966                                                    pixel_size);
4967 }
4968
4969 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4970 {
4971         if (i915_panel_use_ssc >= 0)
4972                 return i915_panel_use_ssc != 0;
4973         return dev_priv->lvds_use_ssc
4974                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4975 }
4976
4977 /**
4978  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4979  * @crtc: CRTC structure
4980  * @mode: requested mode
4981  *
4982  * A pipe may be connected to one or more outputs.  Based on the depth of the
4983  * attached framebuffer, choose a good color depth to use on the pipe.
4984  *
4985  * If possible, match the pipe depth to the fb depth.  In some cases, this
4986  * isn't ideal, because the connected output supports a lesser or restricted
4987  * set of depths.  Resolve that here:
4988  *    LVDS typically supports only 6bpc, so clamp down in that case
4989  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4990  *    Displays may support a restricted set as well, check EDID and clamp as
4991  *      appropriate.
4992  *    DP may want to dither down to 6bpc to fit larger modes
4993  *
4994  * RETURNS:
4995  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4996  * true if they don't match).
4997  */
4998 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4999                                          unsigned int *pipe_bpp,
5000                                          struct drm_display_mode *mode)
5001 {
5002         struct drm_device *dev = crtc->dev;
5003         struct drm_i915_private *dev_priv = dev->dev_private;
5004         struct drm_encoder *encoder;
5005         struct drm_connector *connector;
5006         unsigned int display_bpc = UINT_MAX, bpc;
5007
5008         /* Walk the encoders & connectors on this crtc, get min bpc */
5009         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5010                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5011
5012                 if (encoder->crtc != crtc)
5013                         continue;
5014
5015                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
5016                         unsigned int lvds_bpc;
5017
5018                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
5019                             LVDS_A3_POWER_UP)
5020                                 lvds_bpc = 8;
5021                         else
5022                                 lvds_bpc = 6;
5023
5024                         if (lvds_bpc < display_bpc) {
5025                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5026                                 display_bpc = lvds_bpc;
5027                         }
5028                         continue;
5029                 }
5030
5031                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
5032                         /* Use VBT settings if we have an eDP panel */
5033                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
5034
5035                         if (edp_bpc < display_bpc) {
5036                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
5037                                 display_bpc = edp_bpc;
5038                         }
5039                         continue;
5040                 }
5041
5042                 /* Not one of the known troublemakers, check the EDID */
5043                 list_for_each_entry(connector, &dev->mode_config.connector_list,
5044                                     head) {
5045                         if (connector->encoder != encoder)
5046                                 continue;
5047
5048                         /* Don't use an invalid EDID bpc value */
5049                         if (connector->display_info.bpc &&
5050                             connector->display_info.bpc < display_bpc) {
5051                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5052                                 display_bpc = connector->display_info.bpc;
5053                         }
5054                 }
5055
5056                 /*
5057                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
5058                  * through, clamp it down.  (Note: >12bpc will be caught below.)
5059                  */
5060                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
5061                         if (display_bpc > 8 && display_bpc < 12) {
5062                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5063                                 display_bpc = 12;
5064                         } else {
5065                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5066                                 display_bpc = 8;
5067                         }
5068                 }
5069         }
5070
5071         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5072                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
5073                 display_bpc = 6;
5074         }
5075
5076         /*
5077          * We could just drive the pipe at the highest bpc all the time and
5078          * enable dithering as needed, but that costs bandwidth.  So choose
5079          * the minimum value that expresses the full color range of the fb but
5080          * also stays within the max display bpc discovered above.
5081          */
5082
5083         switch (crtc->fb->depth) {
5084         case 8:
5085                 bpc = 8; /* since we go through a colormap */
5086                 break;
5087         case 15:
5088         case 16:
5089                 bpc = 6; /* min is 18bpp */
5090                 break;
5091         case 24:
5092                 bpc = 8;
5093                 break;
5094         case 30:
5095                 bpc = 10;
5096                 break;
5097         case 48:
5098                 bpc = 12;
5099                 break;
5100         default:
5101                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
5102                 bpc = min((unsigned int)8, display_bpc);
5103                 break;
5104         }
5105
5106         display_bpc = min(display_bpc, bpc);
5107
5108         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
5109                          bpc, display_bpc);
5110
5111         *pipe_bpp = display_bpc * 3;
5112
5113         return display_bpc != bpc;
5114 }
5115
5116 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5117 {
5118         struct drm_device *dev = crtc->dev;
5119         struct drm_i915_private *dev_priv = dev->dev_private;
5120         int refclk;
5121
5122         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5123             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5124                 refclk = dev_priv->lvds_ssc_freq * 1000;
5125                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5126                               refclk / 1000);
5127         } else if (!IS_GEN2(dev)) {
5128                 refclk = 96000;
5129         } else {
5130                 refclk = 48000;
5131         }
5132
5133         return refclk;
5134 }
5135
5136 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
5137                                       intel_clock_t *clock)
5138 {
5139         /* SDVO TV has fixed PLL values depend on its clock range,
5140            this mirrors vbios setting. */
5141         if (adjusted_mode->clock >= 100000
5142             && adjusted_mode->clock < 140500) {
5143                 clock->p1 = 2;
5144                 clock->p2 = 10;
5145                 clock->n = 3;
5146                 clock->m1 = 16;
5147                 clock->m2 = 8;
5148         } else if (adjusted_mode->clock >= 140500
5149                    && adjusted_mode->clock <= 200000) {
5150                 clock->p1 = 1;
5151                 clock->p2 = 10;
5152                 clock->n = 6;
5153                 clock->m1 = 12;
5154                 clock->m2 = 8;
5155         }
5156 }
5157
5158 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
5159                                      intel_clock_t *clock,
5160                                      intel_clock_t *reduced_clock)
5161 {
5162         struct drm_device *dev = crtc->dev;
5163         struct drm_i915_private *dev_priv = dev->dev_private;
5164         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5165         int pipe = intel_crtc->pipe;
5166         u32 fp, fp2 = 0;
5167
5168         if (IS_PINEVIEW(dev)) {
5169                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
5170                 if (reduced_clock)
5171                         fp2 = (1 << reduced_clock->n) << 16 |
5172                                 reduced_clock->m1 << 8 | reduced_clock->m2;
5173         } else {
5174                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
5175                 if (reduced_clock)
5176                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
5177                                 reduced_clock->m2;
5178         }
5179
5180         I915_WRITE(FP0(pipe), fp);
5181
5182         intel_crtc->lowfreq_avail = false;
5183         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5184             reduced_clock && i915_powersave) {
5185                 I915_WRITE(FP1(pipe), fp2);
5186                 intel_crtc->lowfreq_avail = true;
5187         } else {
5188                 I915_WRITE(FP1(pipe), fp);
5189         }
5190 }
5191
5192 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5193                               struct drm_display_mode *mode,
5194                               struct drm_display_mode *adjusted_mode,
5195                               int x, int y,
5196                               struct drm_framebuffer *old_fb)
5197 {
5198         struct drm_device *dev = crtc->dev;
5199         struct drm_i915_private *dev_priv = dev->dev_private;
5200         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5201         int pipe = intel_crtc->pipe;
5202         int plane = intel_crtc->plane;
5203         int refclk, num_connectors = 0;
5204         intel_clock_t clock, reduced_clock;
5205         u32 dpll, dspcntr, pipeconf, vsyncshift;
5206         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
5207         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5208         struct drm_mode_config *mode_config = &dev->mode_config;
5209         struct intel_encoder *encoder;
5210         const intel_limit_t *limit;
5211         int ret;
5212         u32 temp;
5213         u32 lvds_sync = 0;
5214
5215         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5216                 if (encoder->base.crtc != crtc)
5217                         continue;
5218
5219                 switch (encoder->type) {
5220                 case INTEL_OUTPUT_LVDS:
5221                         is_lvds = true;
5222                         break;
5223                 case INTEL_OUTPUT_SDVO:
5224                 case INTEL_OUTPUT_HDMI:
5225                         is_sdvo = true;
5226                         if (encoder->needs_tv_clock)
5227                                 is_tv = true;
5228                         break;
5229                 case INTEL_OUTPUT_DVO:
5230                         is_dvo = true;
5231                         break;
5232                 case INTEL_OUTPUT_TVOUT:
5233                         is_tv = true;
5234                         break;
5235                 case INTEL_OUTPUT_ANALOG:
5236                         is_crt = true;
5237                         break;
5238                 case INTEL_OUTPUT_DISPLAYPORT:
5239                         is_dp = true;
5240                         break;
5241                 }
5242
5243                 num_connectors++;
5244         }
5245
5246         refclk = i9xx_get_refclk(crtc, num_connectors);
5247
5248         /*
5249          * Returns a set of divisors for the desired target clock with the given
5250          * refclk, or false.  The returned values represent the clock equation:
5251          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5252          */
5253         limit = intel_limit(crtc, refclk);
5254         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5255                              &clock);
5256         if (!ok) {
5257                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5258                 return -EINVAL;
5259         }
5260
5261         /* Ensure that the cursor is valid for the new mode before changing... */
5262         intel_crtc_update_cursor(crtc, true);
5263
5264         if (is_lvds && dev_priv->lvds_downclock_avail) {
5265                 /*
5266                  * Ensure we match the reduced clock's P to the target clock.
5267                  * If the clocks don't match, we can't switch the display clock
5268                  * by using the FP0/FP1. In such case we will disable the LVDS
5269                  * downclock feature.
5270                 */
5271                 has_reduced_clock = limit->find_pll(limit, crtc,
5272                                                     dev_priv->lvds_downclock,
5273                                                     refclk,
5274                                                     &clock,
5275                                                     &reduced_clock);
5276         }
5277
5278         if (is_sdvo && is_tv)
5279                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
5280
5281         i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
5282                                  &reduced_clock : NULL);
5283
5284         dpll = DPLL_VGA_MODE_DIS;
5285
5286         if (!IS_GEN2(dev)) {
5287                 if (is_lvds)
5288                         dpll |= DPLLB_MODE_LVDS;
5289                 else
5290                         dpll |= DPLLB_MODE_DAC_SERIAL;
5291                 if (is_sdvo) {
5292                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5293                         if (pixel_multiplier > 1) {
5294                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5295                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
5296                         }
5297                         dpll |= DPLL_DVO_HIGH_SPEED;
5298                 }
5299                 if (is_dp)
5300                         dpll |= DPLL_DVO_HIGH_SPEED;
5301
5302                 /* compute bitmask from p1 value */
5303                 if (IS_PINEVIEW(dev))
5304                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5305                 else {
5306                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5307                         if (IS_G4X(dev) && has_reduced_clock)
5308                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5309                 }
5310                 switch (clock.p2) {
5311                 case 5:
5312                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5313                         break;
5314                 case 7:
5315                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5316                         break;
5317                 case 10:
5318                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5319                         break;
5320                 case 14:
5321                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5322                         break;
5323                 }
5324                 if (INTEL_INFO(dev)->gen >= 4)
5325                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5326         } else {
5327                 if (is_lvds) {
5328                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5329                 } else {
5330                         if (clock.p1 == 2)
5331                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
5332                         else
5333                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5334                         if (clock.p2 == 4)
5335                                 dpll |= PLL_P2_DIVIDE_BY_4;
5336                 }
5337         }
5338
5339         if (is_sdvo && is_tv)
5340                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5341         else if (is_tv)
5342                 /* XXX: just matching BIOS for now */
5343                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5344                 dpll |= 3;
5345         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5346                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5347         else
5348                 dpll |= PLL_REF_INPUT_DREFCLK;
5349
5350         /* setup pipeconf */
5351         pipeconf = I915_READ(PIPECONF(pipe));
5352
5353         /* Set up the display plane register */
5354         dspcntr = DISPPLANE_GAMMA_ENABLE;
5355
5356         if (pipe == 0)
5357                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5358         else
5359                 dspcntr |= DISPPLANE_SEL_PIPE_B;
5360
5361         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5362                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5363                  * core speed.
5364                  *
5365                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5366                  * pipe == 0 check?
5367                  */
5368                 if (mode->clock >
5369                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5370                         pipeconf |= PIPECONF_DOUBLE_WIDE;
5371                 else
5372                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5373         }
5374
5375         /* default to 8bpc */
5376         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5377         if (is_dp) {
5378                 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5379                         pipeconf |= PIPECONF_BPP_6 |
5380                                     PIPECONF_DITHER_EN |
5381                                     PIPECONF_DITHER_TYPE_SP;
5382                 }
5383         }
5384
5385         dpll |= DPLL_VCO_ENABLE;
5386
5387         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5388         drm_mode_debug_printmodeline(mode);
5389
5390         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5391
5392         POSTING_READ(DPLL(pipe));
5393         DELAY(150);
5394
5395         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5396          * This is an exception to the general rule that mode_set doesn't turn
5397          * things on.
5398          */
5399         if (is_lvds) {
5400                 temp = I915_READ(LVDS);
5401                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5402                 if (pipe == 1) {
5403                         temp |= LVDS_PIPEB_SELECT;
5404                 } else {
5405                         temp &= ~LVDS_PIPEB_SELECT;
5406                 }
5407                 /* set the corresponsding LVDS_BORDER bit */
5408                 temp |= dev_priv->lvds_border_bits;
5409                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5410                  * set the DPLLs for dual-channel mode or not.
5411                  */
5412                 if (clock.p2 == 7)
5413                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5414                 else
5415                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5416
5417                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5418                  * appropriately here, but we need to look more thoroughly into how
5419                  * panels behave in the two modes.
5420                  */
5421                 /* set the dithering flag on LVDS as needed */
5422                 if (INTEL_INFO(dev)->gen >= 4) {
5423                         if (dev_priv->lvds_dither)
5424                                 temp |= LVDS_ENABLE_DITHER;
5425                         else
5426                                 temp &= ~LVDS_ENABLE_DITHER;
5427                 }
5428                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5429                         lvds_sync |= LVDS_HSYNC_POLARITY;
5430                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5431                         lvds_sync |= LVDS_VSYNC_POLARITY;
5432                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5433                     != lvds_sync) {
5434                         char flags[2] = "-+";
5435                         DRM_INFO("Changing LVDS panel from "
5436                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5437                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5438                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5439                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5440                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5441                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5442                         temp |= lvds_sync;
5443                 }
5444                 I915_WRITE(LVDS, temp);
5445         }
5446
5447         if (is_dp) {
5448                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5449         }
5450
5451         I915_WRITE(DPLL(pipe), dpll);
5452
5453         /* Wait for the clocks to stabilize. */
5454         POSTING_READ(DPLL(pipe));
5455         DELAY(150);
5456
5457         if (INTEL_INFO(dev)->gen >= 4) {
5458                 temp = 0;
5459                 if (is_sdvo) {
5460                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5461                         if (temp > 1)
5462                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5463                         else
5464                                 temp = 0;
5465                 }
5466                 I915_WRITE(DPLL_MD(pipe), temp);
5467         } else {
5468                 /* The pixel multiplier can only be updated once the
5469                  * DPLL is enabled and the clocks are stable.
5470                  *
5471                  * So write it again.
5472                  */
5473                 I915_WRITE(DPLL(pipe), dpll);
5474         }
5475
5476         if (HAS_PIPE_CXSR(dev)) {
5477                 if (intel_crtc->lowfreq_avail) {
5478                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5479                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5480                 } else {
5481                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5482                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5483                 }
5484         }
5485
5486         pipeconf &= ~PIPECONF_INTERLACE_MASK;
5487         if (!IS_GEN2(dev) &&
5488             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5489                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5490                 /* the chip adds 2 halflines automatically */
5491                 adjusted_mode->crtc_vtotal -= 1;
5492                 adjusted_mode->crtc_vblank_end -= 1;
5493                 vsyncshift = adjusted_mode->crtc_hsync_start
5494                              - adjusted_mode->crtc_htotal/2;
5495         } else {
5496                 pipeconf |= PIPECONF_PROGRESSIVE;
5497                 vsyncshift = 0;
5498         }
5499
5500         if (!IS_GEN3(dev))
5501                 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
5502
5503         I915_WRITE(HTOTAL(pipe),
5504                    (adjusted_mode->crtc_hdisplay - 1) |
5505                    ((adjusted_mode->crtc_htotal - 1) << 16));
5506         I915_WRITE(HBLANK(pipe),
5507                    (adjusted_mode->crtc_hblank_start - 1) |
5508                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5509         I915_WRITE(HSYNC(pipe),
5510                    (adjusted_mode->crtc_hsync_start - 1) |
5511                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5512
5513         I915_WRITE(VTOTAL(pipe),
5514                    (adjusted_mode->crtc_vdisplay - 1) |
5515                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5516         I915_WRITE(VBLANK(pipe),
5517                    (adjusted_mode->crtc_vblank_start - 1) |
5518                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5519         I915_WRITE(VSYNC(pipe),
5520                    (adjusted_mode->crtc_vsync_start - 1) |
5521                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5522
5523         /* pipesrc and dspsize control the size that is scaled from,
5524          * which should always be the user's requested size.
5525          */
5526         I915_WRITE(DSPSIZE(plane),
5527                    ((mode->vdisplay - 1) << 16) |
5528                    (mode->hdisplay - 1));
5529         I915_WRITE(DSPPOS(plane), 0);
5530         I915_WRITE(PIPESRC(pipe),
5531                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5532
5533         I915_WRITE(PIPECONF(pipe), pipeconf);
5534         POSTING_READ(PIPECONF(pipe));
5535         intel_enable_pipe(dev_priv, pipe, false);
5536
5537         intel_wait_for_vblank(dev, pipe);
5538
5539         I915_WRITE(DSPCNTR(plane), dspcntr);
5540         POSTING_READ(DSPCNTR(plane));
5541         intel_enable_plane(dev_priv, plane, pipe);
5542
5543         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5544
5545         intel_update_watermarks(dev);
5546
5547         return ret;
5548 }
5549
5550 /*
5551  * Initialize reference clocks when the driver loads
5552  */
5553 void ironlake_init_pch_refclk(struct drm_device *dev)
5554 {
5555         struct drm_i915_private *dev_priv = dev->dev_private;
5556         struct drm_mode_config *mode_config = &dev->mode_config;
5557         struct intel_encoder *encoder;
5558         u32 temp;
5559         bool has_lvds = false;
5560         bool has_cpu_edp = false;
5561         bool has_pch_edp = false;
5562         bool has_panel = false;
5563         bool has_ck505 = false;
5564         bool can_ssc = false;
5565
5566         /* We need to take the global config into account */
5567         list_for_each_entry(encoder, &mode_config->encoder_list,
5568                             base.head) {
5569                 switch (encoder->type) {
5570                 case INTEL_OUTPUT_LVDS:
5571                         has_panel = true;
5572                         has_lvds = true;
5573                         break;
5574                 case INTEL_OUTPUT_EDP:
5575                         has_panel = true;
5576                         if (intel_encoder_is_pch_edp(&encoder->base))
5577                                 has_pch_edp = true;
5578                         else
5579                                 has_cpu_edp = true;
5580                         break;
5581                 }
5582         }
5583
5584         if (HAS_PCH_IBX(dev)) {
5585                 has_ck505 = dev_priv->display_clock_mode;
5586                 can_ssc = has_ck505;
5587         } else {
5588                 has_ck505 = false;
5589                 can_ssc = true;
5590         }
5591
5592         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5593                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5594                       has_ck505);
5595
5596         /* Ironlake: try to setup display ref clock before DPLL
5597          * enabling. This is only under driver's control after
5598          * PCH B stepping, previous chipset stepping should be
5599          * ignoring this setting.
5600          */
5601         temp = I915_READ(PCH_DREF_CONTROL);
5602         /* Always enable nonspread source */
5603         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5604
5605         if (has_ck505)
5606                 temp |= DREF_NONSPREAD_CK505_ENABLE;
5607         else
5608                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5609
5610         if (has_panel) {
5611                 temp &= ~DREF_SSC_SOURCE_MASK;
5612                 temp |= DREF_SSC_SOURCE_ENABLE;
5613
5614                 /* SSC must be turned on before enabling the CPU output  */
5615                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5616                         DRM_DEBUG_KMS("Using SSC on panel\n");
5617                         temp |= DREF_SSC1_ENABLE;
5618                 } else
5619                         temp &= ~DREF_SSC1_ENABLE;
5620
5621                 /* Get SSC going before enabling the outputs */
5622                 I915_WRITE(PCH_DREF_CONTROL, temp);
5623                 POSTING_READ(PCH_DREF_CONTROL);
5624                 DELAY(200);
5625
5626                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5627
5628                 /* Enable CPU source on CPU attached eDP */
5629                 if (has_cpu_edp) {
5630                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5631                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5632                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5633                         }
5634                         else
5635                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5636                 } else
5637                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5638
5639                 I915_WRITE(PCH_DREF_CONTROL, temp);
5640                 POSTING_READ(PCH_DREF_CONTROL);
5641                 DELAY(200);
5642         } else {
5643                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5644
5645                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5646
5647                 /* Turn off CPU output */
5648                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5649
5650                 I915_WRITE(PCH_DREF_CONTROL, temp);
5651                 POSTING_READ(PCH_DREF_CONTROL);
5652                 DELAY(200);
5653
5654                 /* Turn off the SSC source */
5655                 temp &= ~DREF_SSC_SOURCE_MASK;
5656                 temp |= DREF_SSC_SOURCE_DISABLE;
5657
5658                 /* Turn off SSC1 */
5659                 temp &= ~ DREF_SSC1_ENABLE;
5660
5661                 I915_WRITE(PCH_DREF_CONTROL, temp);
5662                 POSTING_READ(PCH_DREF_CONTROL);
5663                 DELAY(200);
5664         }
5665 }
5666
5667 static int ironlake_get_refclk(struct drm_crtc *crtc)
5668 {
5669         struct drm_device *dev = crtc->dev;
5670         struct drm_i915_private *dev_priv = dev->dev_private;
5671         struct intel_encoder *encoder;
5672         struct drm_mode_config *mode_config = &dev->mode_config;
5673         struct intel_encoder *edp_encoder = NULL;
5674         int num_connectors = 0;
5675         bool is_lvds = false;
5676
5677         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5678                 if (encoder->base.crtc != crtc)
5679                         continue;
5680
5681                 switch (encoder->type) {
5682                 case INTEL_OUTPUT_LVDS:
5683                         is_lvds = true;
5684                         break;
5685                 case INTEL_OUTPUT_EDP:
5686                         edp_encoder = encoder;
5687                         break;
5688                 }
5689                 num_connectors++;
5690         }
5691
5692         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5693                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5694                               dev_priv->lvds_ssc_freq);
5695                 return dev_priv->lvds_ssc_freq * 1000;
5696         }
5697
5698         return 120000;
5699 }
5700
5701 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5702                                   struct drm_display_mode *mode,
5703                                   struct drm_display_mode *adjusted_mode,
5704                                   int x, int y,
5705                                   struct drm_framebuffer *old_fb)
5706 {
5707         struct drm_device *dev = crtc->dev;
5708         struct drm_i915_private *dev_priv = dev->dev_private;
5709         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5710         int pipe = intel_crtc->pipe;
5711         int plane = intel_crtc->plane;
5712         int refclk, num_connectors = 0;
5713         intel_clock_t clock, reduced_clock;
5714         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5715         bool ok, has_reduced_clock = false, is_sdvo = false;
5716         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5717         struct intel_encoder *has_edp_encoder = NULL;
5718         struct drm_mode_config *mode_config = &dev->mode_config;
5719         struct intel_encoder *encoder;
5720         const intel_limit_t *limit;
5721         int ret;
5722         struct fdi_m_n m_n = {0};
5723         u32 temp;
5724         u32 lvds_sync = 0;
5725         int target_clock, pixel_multiplier, lane, link_bw, factor;
5726         unsigned int pipe_bpp;
5727         bool dither;
5728
5729         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5730                 if (encoder->base.crtc != crtc)
5731                         continue;
5732
5733                 switch (encoder->type) {
5734                 case INTEL_OUTPUT_LVDS:
5735                         is_lvds = true;
5736                         break;
5737                 case INTEL_OUTPUT_SDVO:
5738                 case INTEL_OUTPUT_HDMI:
5739                         is_sdvo = true;
5740                         if (encoder->needs_tv_clock)
5741                                 is_tv = true;
5742                         break;
5743                 case INTEL_OUTPUT_TVOUT:
5744                         is_tv = true;
5745                         break;
5746                 case INTEL_OUTPUT_ANALOG:
5747                         is_crt = true;
5748                         break;
5749                 case INTEL_OUTPUT_DISPLAYPORT:
5750                         is_dp = true;
5751                         break;
5752                 case INTEL_OUTPUT_EDP:
5753                         has_edp_encoder = encoder;
5754                         break;
5755                 }
5756
5757                 num_connectors++;
5758         }
5759
5760         refclk = ironlake_get_refclk(crtc);
5761
5762         /*
5763          * Returns a set of divisors for the desired target clock with the given
5764          * refclk, or false.  The returned values represent the clock equation:
5765          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5766          */
5767         limit = intel_limit(crtc, refclk);
5768         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5769                              &clock);
5770         if (!ok) {
5771                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5772                 return -EINVAL;
5773         }
5774
5775         /* Ensure that the cursor is valid for the new mode before changing... */
5776         intel_crtc_update_cursor(crtc, true);
5777
5778         if (is_lvds && dev_priv->lvds_downclock_avail) {
5779                 /*
5780                  * Ensure we match the reduced clock's P to the target clock.
5781                  * If the clocks don't match, we can't switch the display clock
5782                  * by using the FP0/FP1. In such case we will disable the LVDS
5783                  * downclock feature.
5784                 */
5785                 has_reduced_clock = limit->find_pll(limit, crtc,
5786                                                     dev_priv->lvds_downclock,
5787                                                     refclk,
5788                                                     &clock,
5789                                                     &reduced_clock);
5790         }
5791         /* SDVO TV has fixed PLL values depend on its clock range,
5792            this mirrors vbios setting. */
5793         if (is_sdvo && is_tv) {
5794                 if (adjusted_mode->clock >= 100000
5795                     && adjusted_mode->clock < 140500) {
5796                         clock.p1 = 2;
5797                         clock.p2 = 10;
5798                         clock.n = 3;
5799                         clock.m1 = 16;
5800                         clock.m2 = 8;
5801                 } else if (adjusted_mode->clock >= 140500
5802                            && adjusted_mode->clock <= 200000) {
5803                         clock.p1 = 1;
5804                         clock.p2 = 10;
5805                         clock.n = 6;
5806                         clock.m1 = 12;
5807                         clock.m2 = 8;
5808                 }
5809         }
5810
5811         /* FDI link */
5812         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5813         lane = 0;
5814         /* CPU eDP doesn't require FDI link, so just set DP M/N
5815            according to current link config */
5816         if (has_edp_encoder &&
5817             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5818                 target_clock = mode->clock;
5819                 intel_edp_link_config(has_edp_encoder,
5820                                       &lane, &link_bw);
5821         } else {
5822                 /* [e]DP over FDI requires target mode clock
5823                    instead of link clock */
5824                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5825                         target_clock = mode->clock;
5826                 else
5827                         target_clock = adjusted_mode->clock;
5828
5829                 /* FDI is a binary signal running at ~2.7GHz, encoding
5830                  * each output octet as 10 bits. The actual frequency
5831                  * is stored as a divider into a 100MHz clock, and the
5832                  * mode pixel clock is stored in units of 1KHz.
5833                  * Hence the bw of each lane in terms of the mode signal
5834                  * is:
5835                  */
5836                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5837         }
5838
5839         /* determine panel color depth */
5840         temp = I915_READ(PIPECONF(pipe));
5841         temp &= ~PIPE_BPC_MASK;
5842         dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
5843         switch (pipe_bpp) {
5844         case 18:
5845                 temp |= PIPE_6BPC;
5846                 break;
5847         case 24:
5848                 temp |= PIPE_8BPC;
5849                 break;
5850         case 30:
5851                 temp |= PIPE_10BPC;
5852                 break;
5853         case 36:
5854                 temp |= PIPE_12BPC;
5855                 break;
5856         default:
5857                 kprintf("intel_choose_pipe_bpp returned invalid value %d\n",
5858                         pipe_bpp);
5859                 temp |= PIPE_8BPC;
5860                 pipe_bpp = 24;
5861                 break;
5862         }
5863
5864         intel_crtc->bpp = pipe_bpp;
5865         I915_WRITE(PIPECONF(pipe), temp);
5866
5867         if (!lane) {
5868                 /*
5869                  * Account for spread spectrum to avoid
5870                  * oversubscribing the link. Max center spread
5871                  * is 2.5%; use 5% for safety's sake.
5872                  */
5873                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5874                 lane = bps / (link_bw * 8) + 1;
5875         }
5876
5877         intel_crtc->fdi_lanes = lane;
5878
5879         if (pixel_multiplier > 1)
5880                 link_bw *= pixel_multiplier;
5881         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5882                              &m_n);
5883
5884         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5885         if (has_reduced_clock)
5886                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5887                         reduced_clock.m2;
5888
5889         /* Enable autotuning of the PLL clock (if permissible) */
5890         factor = 21;
5891         if (is_lvds) {
5892                 if ((intel_panel_use_ssc(dev_priv) &&
5893                      dev_priv->lvds_ssc_freq == 100) ||
5894                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5895                         factor = 25;
5896         } else if (is_sdvo && is_tv)
5897                 factor = 20;
5898
5899         if (clock.m < factor * clock.n)
5900                 fp |= FP_CB_TUNE;
5901
5902         dpll = 0;
5903
5904         if (is_lvds)
5905                 dpll |= DPLLB_MODE_LVDS;
5906         else
5907                 dpll |= DPLLB_MODE_DAC_SERIAL;
5908         if (is_sdvo) {
5909                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5910                 if (pixel_multiplier > 1) {
5911                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5912                 }
5913                 dpll |= DPLL_DVO_HIGH_SPEED;
5914         }
5915         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5916                 dpll |= DPLL_DVO_HIGH_SPEED;
5917
5918         /* compute bitmask from p1 value */
5919         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5920         /* also FPA1 */
5921         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5922
5923         switch (clock.p2) {
5924         case 5:
5925                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5926                 break;
5927         case 7:
5928                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5929                 break;
5930         case 10:
5931                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5932                 break;
5933         case 14:
5934                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5935                 break;
5936         }
5937
5938         if (is_sdvo && is_tv)
5939                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5940         else if (is_tv)
5941                 /* XXX: just matching BIOS for now */
5942                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5943                 dpll |= 3;
5944         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5945                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5946         else
5947                 dpll |= PLL_REF_INPUT_DREFCLK;
5948
5949         /* setup pipeconf */
5950         pipeconf = I915_READ(PIPECONF(pipe));
5951
5952         /* Set up the display plane register */
5953         dspcntr = DISPPLANE_GAMMA_ENABLE;
5954
5955         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5956         drm_mode_debug_printmodeline(mode);
5957
5958         /* PCH eDP needs FDI, but CPU eDP does not */
5959         if (!intel_crtc->no_pll) {
5960                 if (!has_edp_encoder ||
5961                     intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5962                         I915_WRITE(PCH_FP0(pipe), fp);
5963                         I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5964
5965                         POSTING_READ(PCH_DPLL(pipe));
5966                         DELAY(150);
5967                 }
5968         } else {
5969                 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5970                     fp == I915_READ(PCH_FP0(0))) {
5971                         intel_crtc->use_pll_a = true;
5972                         DRM_DEBUG_KMS("using pipe a dpll\n");
5973                 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5974                            fp == I915_READ(PCH_FP0(1))) {
5975                         intel_crtc->use_pll_a = false;
5976                         DRM_DEBUG_KMS("using pipe b dpll\n");
5977                 } else {
5978                         DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5979                         return -EINVAL;
5980                 }
5981         }
5982
5983         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5984          * This is an exception to the general rule that mode_set doesn't turn
5985          * things on.
5986          */
5987         if (is_lvds) {
5988                 temp = I915_READ(PCH_LVDS);
5989                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5990                 if (HAS_PCH_CPT(dev)) {
5991                         temp &= ~PORT_TRANS_SEL_MASK;
5992                         temp |= PORT_TRANS_SEL_CPT(pipe);
5993                 } else {
5994                         if (pipe == 1)
5995                                 temp |= LVDS_PIPEB_SELECT;
5996                         else
5997                                 temp &= ~LVDS_PIPEB_SELECT;
5998                 }
5999
6000                 /* set the corresponsding LVDS_BORDER bit */
6001                 temp |= dev_priv->lvds_border_bits;
6002                 /* Set the B0-B3 data pairs corresponding to whether we're going to
6003                  * set the DPLLs for dual-channel mode or not.
6004                  */
6005                 if (clock.p2 == 7)
6006                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
6007                 else
6008                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
6009
6010                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
6011                  * appropriately here, but we need to look more thoroughly into how
6012                  * panels behave in the two modes.
6013                  */
6014                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
6015                         lvds_sync |= LVDS_HSYNC_POLARITY;
6016                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
6017                         lvds_sync |= LVDS_VSYNC_POLARITY;
6018                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
6019                     != lvds_sync) {
6020                         char flags[2] = "-+";
6021                         DRM_INFO("Changing LVDS panel from "
6022                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
6023                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
6024                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
6025                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
6026                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
6027                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
6028                         temp |= lvds_sync;
6029                 }
6030                 I915_WRITE(PCH_LVDS, temp);
6031         }
6032
6033         pipeconf &= ~PIPECONF_DITHER_EN;
6034         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
6035         if ((is_lvds && dev_priv->lvds_dither) || dither) {
6036                 pipeconf |= PIPECONF_DITHER_EN;
6037                 pipeconf |= PIPECONF_DITHER_TYPE_SP;
6038         }
6039         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6040                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
6041         } else {
6042                 /* For non-DP output, clear any trans DP clock recovery setting.*/
6043                 I915_WRITE(TRANSDATA_M1(pipe), 0);
6044                 I915_WRITE(TRANSDATA_N1(pipe), 0);
6045                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
6046                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
6047         }
6048
6049         if (!intel_crtc->no_pll &&
6050             (!has_edp_encoder ||
6051              intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
6052                 I915_WRITE(PCH_DPLL(pipe), dpll);
6053
6054                 /* Wait for the clocks to stabilize. */
6055                 POSTING_READ(PCH_DPLL(pipe));
6056                 DELAY(150);
6057
6058                 /* The pixel multiplier can only be updated once the
6059                  * DPLL is enabled and the clocks are stable.
6060                  *
6061                  * So write it again.
6062                  */
6063                 I915_WRITE(PCH_DPLL(pipe), dpll);
6064         }
6065
6066         intel_crtc->lowfreq_avail = false;
6067         if (!intel_crtc->no_pll) {
6068                 if (is_lvds && has_reduced_clock && i915_powersave) {
6069                         I915_WRITE(PCH_FP1(pipe), fp2);
6070                         intel_crtc->lowfreq_avail = true;
6071                         if (HAS_PIPE_CXSR(dev)) {
6072                                 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6073                                 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6074                         }
6075                 } else {
6076                         I915_WRITE(PCH_FP1(pipe), fp);
6077                         if (HAS_PIPE_CXSR(dev)) {
6078                                 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6079                                 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
6080                         }
6081                 }
6082         }
6083
6084         pipeconf &= ~PIPECONF_INTERLACE_MASK;
6085         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6086                 pipeconf |= PIPECONF_INTERLACED_ILK;
6087                 /* the chip adds 2 halflines automatically */
6088                 adjusted_mode->crtc_vtotal -= 1;
6089                 adjusted_mode->crtc_vblank_end -= 1;
6090                 I915_WRITE(VSYNCSHIFT(pipe),
6091                            adjusted_mode->crtc_hsync_start
6092                            - adjusted_mode->crtc_htotal/2);
6093         } else {
6094                 pipeconf |= PIPECONF_PROGRESSIVE;
6095                 I915_WRITE(VSYNCSHIFT(pipe), 0);
6096         }
6097
6098         I915_WRITE(HTOTAL(pipe),
6099                    (adjusted_mode->crtc_hdisplay - 1) |
6100                    ((adjusted_mode->crtc_htotal - 1) << 16));
6101         I915_WRITE(HBLANK(pipe),
6102                    (adjusted_mode->crtc_hblank_start - 1) |
6103                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6104         I915_WRITE(HSYNC(pipe),
6105                    (adjusted_mode->crtc_hsync_start - 1) |
6106                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6107
6108         I915_WRITE(VTOTAL(pipe),
6109                    (adjusted_mode->crtc_vdisplay - 1) |
6110                    ((adjusted_mode->crtc_vtotal - 1) << 16));
6111         I915_WRITE(VBLANK(pipe),
6112                    (adjusted_mode->crtc_vblank_start - 1) |
6113                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
6114         I915_WRITE(VSYNC(pipe),
6115                    (adjusted_mode->crtc_vsync_start - 1) |
6116                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6117
6118         /* pipesrc controls the size that is scaled from, which should
6119          * always be the user's requested size.
6120          */
6121         I915_WRITE(PIPESRC(pipe),
6122                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
6123
6124         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
6125         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
6126         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
6127         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
6128
6129         if (has_edp_encoder &&
6130             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6131                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
6132         }
6133
6134         I915_WRITE(PIPECONF(pipe), pipeconf);
6135         POSTING_READ(PIPECONF(pipe));
6136
6137         intel_wait_for_vblank(dev, pipe);
6138
6139         I915_WRITE(DSPCNTR(plane), dspcntr);
6140         POSTING_READ(DSPCNTR(plane));
6141
6142         ret = intel_pipe_set_base(crtc, x, y, old_fb);
6143
6144         intel_update_watermarks(dev);
6145
6146         return ret;
6147 }
6148
6149 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6150                                struct drm_display_mode *mode,
6151                                struct drm_display_mode *adjusted_mode,
6152                                int x, int y,
6153                                struct drm_framebuffer *old_fb)
6154 {
6155         struct drm_device *dev = crtc->dev;
6156         struct drm_i915_private *dev_priv = dev->dev_private;
6157         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6158         int pipe = intel_crtc->pipe;
6159         int ret;
6160
6161         drm_vblank_pre_modeset(dev, pipe);
6162
6163         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
6164                                               x, y, old_fb);
6165         drm_vblank_post_modeset(dev, pipe);
6166
6167         if (ret)
6168                 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
6169         else
6170                 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
6171
6172         return ret;
6173 }
6174
6175 static bool intel_eld_uptodate(struct drm_connector *connector,
6176                                int reg_eldv, uint32_t bits_eldv,
6177                                int reg_elda, uint32_t bits_elda,
6178                                int reg_edid)
6179 {
6180         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6181         uint8_t *eld = connector->eld;
6182         uint32_t i;
6183
6184         i = I915_READ(reg_eldv);
6185         i &= bits_eldv;
6186
6187         if (!eld[0])
6188                 return !i;
6189
6190         if (!i)
6191                 return false;
6192
6193         i = I915_READ(reg_elda);
6194         i &= ~bits_elda;
6195         I915_WRITE(reg_elda, i);
6196
6197         for (i = 0; i < eld[2]; i++)
6198                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6199                         return false;
6200
6201         return true;
6202 }
6203
6204 static void g4x_write_eld(struct drm_connector *connector,
6205                           struct drm_crtc *crtc)
6206 {
6207         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6208         uint8_t *eld = connector->eld;
6209         uint32_t eldv;
6210         uint32_t len;
6211         uint32_t i;
6212
6213         i = I915_READ(G4X_AUD_VID_DID);
6214
6215         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6216                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6217         else
6218                 eldv = G4X_ELDV_DEVCTG;
6219
6220         if (intel_eld_uptodate(connector,
6221                                G4X_AUD_CNTL_ST, eldv,
6222                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6223                                G4X_HDMIW_HDMIEDID))
6224                 return;
6225
6226         i = I915_READ(G4X_AUD_CNTL_ST);
6227         i &= ~(eldv | G4X_ELD_ADDR);
6228         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6229         I915_WRITE(G4X_AUD_CNTL_ST, i);
6230
6231         if (!eld[0])
6232                 return;
6233
6234         if (eld[2] < (uint8_t)len)
6235                 len = eld[2];
6236         DRM_DEBUG_KMS("ELD size %d\n", len);
6237         for (i = 0; i < len; i++)
6238                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6239
6240         i = I915_READ(G4X_AUD_CNTL_ST);
6241         i |= eldv;
6242         I915_WRITE(G4X_AUD_CNTL_ST, i);
6243 }
6244
6245 static void ironlake_write_eld(struct drm_connector *connector,
6246                                      struct drm_crtc *crtc)
6247 {
6248         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6249         uint8_t *eld = connector->eld;
6250         uint32_t eldv;
6251         uint32_t i;
6252         int len;
6253         int hdmiw_hdmiedid;
6254         int aud_config;
6255         int aud_cntl_st;
6256         int aud_cntrl_st2;
6257
6258         if (HAS_PCH_IBX(connector->dev)) {
6259                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
6260                 aud_config = IBX_AUD_CONFIG_A;
6261                 aud_cntl_st = IBX_AUD_CNTL_ST_A;
6262                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6263         } else {
6264                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
6265                 aud_config = CPT_AUD_CONFIG_A;
6266                 aud_cntl_st = CPT_AUD_CNTL_ST_A;
6267                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6268         }
6269
6270         i = to_intel_crtc(crtc)->pipe;
6271         hdmiw_hdmiedid += i * 0x100;
6272         aud_cntl_st += i * 0x100;
6273         aud_config += i * 0x100;
6274
6275         DRM_DEBUG_KMS("ELD on pipe %c\n", pipe_name(i));
6276
6277         i = I915_READ(aud_cntl_st);
6278         i = (i >> 29) & 0x3;            /* DIP_Port_Select, 0x1 = PortB */
6279         if (!i) {
6280                 DRM_DEBUG_KMS("Audio directed to unknown port\n");
6281                 /* operate blindly on all ports */
6282                 eldv = IBX_ELD_VALIDB;
6283                 eldv |= IBX_ELD_VALIDB << 4;
6284                 eldv |= IBX_ELD_VALIDB << 8;
6285         } else {
6286                 DRM_DEBUG_KMS("ELD on port %c\n", 'A' + i);
6287                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6288         }
6289
6290         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6291                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6292                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6293                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6294         } else
6295                 I915_WRITE(aud_config, 0);
6296
6297         if (intel_eld_uptodate(connector,
6298                                aud_cntrl_st2, eldv,
6299                                aud_cntl_st, IBX_ELD_ADDRESS,
6300                                hdmiw_hdmiedid))
6301                 return;
6302
6303         i = I915_READ(aud_cntrl_st2);
6304         i &= ~eldv;
6305         I915_WRITE(aud_cntrl_st2, i);
6306
6307         if (!eld[0])
6308                 return;
6309
6310         i = I915_READ(aud_cntl_st);
6311         i &= ~IBX_ELD_ADDRESS;
6312         I915_WRITE(aud_cntl_st, i);
6313
6314         /* 84 bytes of hw ELD buffer */
6315         len = 21;
6316         if (eld[2] < (uint8_t)len)
6317                 len = eld[2];
6318         DRM_DEBUG_KMS("ELD size %d\n", len);
6319         for (i = 0; i < len; i++)
6320                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6321
6322         i = I915_READ(aud_cntrl_st2);
6323         i |= eldv;
6324         I915_WRITE(aud_cntrl_st2, i);
6325 }
6326
6327 void intel_write_eld(struct drm_encoder *encoder,
6328                      struct drm_display_mode *mode)
6329 {
6330         struct drm_crtc *crtc = encoder->crtc;
6331         struct drm_connector *connector;
6332         struct drm_device *dev = encoder->dev;
6333         struct drm_i915_private *dev_priv = dev->dev_private;
6334
6335         connector = drm_select_eld(encoder, mode);
6336         if (!connector)
6337                 return;
6338
6339         DRM_DEBUG_KMS("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6340                          connector->base.id,
6341                          drm_get_connector_name(connector),
6342                          connector->encoder->base.id,
6343                          drm_get_encoder_name(connector->encoder));
6344
6345         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6346
6347         if (dev_priv->display.write_eld)
6348                 dev_priv->display.write_eld(connector, crtc);
6349 }
6350
6351 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6352 void intel_crtc_load_lut(struct drm_crtc *crtc)
6353 {
6354         struct drm_device *dev = crtc->dev;
6355         struct drm_i915_private *dev_priv = dev->dev_private;
6356         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6357         int palreg = PALETTE(intel_crtc->pipe);
6358         int i;
6359
6360         /* The clocks have to be on to load the palette. */
6361         if (!crtc->enabled || !intel_crtc->active)
6362                 return;
6363
6364         /* use legacy palette for Ironlake */
6365         if (HAS_PCH_SPLIT(dev))
6366                 palreg = LGC_PALETTE(intel_crtc->pipe);
6367
6368         for (i = 0; i < 256; i++) {
6369                 I915_WRITE(palreg + 4 * i,
6370                            (intel_crtc->lut_r[i] << 16) |
6371                            (intel_crtc->lut_g[i] << 8) |
6372                            intel_crtc->lut_b[i]);
6373         }
6374 }
6375
6376 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6377 {
6378         struct drm_device *dev = crtc->dev;
6379         struct drm_i915_private *dev_priv = dev->dev_private;
6380         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6381         bool visible = base != 0;
6382         u32 cntl;
6383
6384         if (intel_crtc->cursor_visible == visible)
6385                 return;
6386
6387         cntl = I915_READ(_CURACNTR);
6388         if (visible) {
6389                 /* On these chipsets we can only modify the base whilst
6390                  * the cursor is disabled.
6391                  */
6392                 I915_WRITE(_CURABASE, base);
6393
6394                 cntl &= ~(CURSOR_FORMAT_MASK);
6395                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6396                 cntl |= CURSOR_ENABLE |
6397                         CURSOR_GAMMA_ENABLE |
6398                         CURSOR_FORMAT_ARGB;
6399         } else
6400                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6401         I915_WRITE(_CURACNTR, cntl);
6402
6403         intel_crtc->cursor_visible = visible;
6404 }
6405
6406 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6407 {
6408         struct drm_device *dev = crtc->dev;
6409         struct drm_i915_private *dev_priv = dev->dev_private;
6410         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6411         int pipe = intel_crtc->pipe;
6412         bool visible = base != 0;
6413
6414         if (intel_crtc->cursor_visible != visible) {
6415                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6416                 if (base) {
6417                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6418                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6419                         cntl |= pipe << 28; /* Connect to correct pipe */
6420                 } else {
6421                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6422                         cntl |= CURSOR_MODE_DISABLE;
6423                 }
6424                 I915_WRITE(CURCNTR(pipe), cntl);
6425
6426                 intel_crtc->cursor_visible = visible;
6427         }
6428         /* and commit changes on next vblank */
6429         I915_WRITE(CURBASE(pipe), base);
6430 }
6431
6432 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6433 {
6434         struct drm_device *dev = crtc->dev;
6435         struct drm_i915_private *dev_priv = dev->dev_private;
6436         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6437         int pipe = intel_crtc->pipe;
6438         bool visible = base != 0;
6439
6440         if (intel_crtc->cursor_visible != visible) {
6441                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6442                 if (base) {
6443                         cntl &= ~CURSOR_MODE;
6444                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6445                 } else {
6446                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6447                         cntl |= CURSOR_MODE_DISABLE;
6448                 }
6449                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6450
6451                 intel_crtc->cursor_visible = visible;
6452         }
6453         /* and commit changes on next vblank */
6454         I915_WRITE(CURBASE_IVB(pipe), base);
6455 }
6456
6457 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6458 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6459                                      bool on)
6460 {
6461         struct drm_device *dev = crtc->dev;
6462         struct drm_i915_private *dev_priv = dev->dev_private;
6463         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6464         int pipe = intel_crtc->pipe;
6465         int x = intel_crtc->cursor_x;
6466         int y = intel_crtc->cursor_y;
6467         u32 base, pos;
6468         bool visible;
6469
6470         pos = 0;
6471
6472         if (on && crtc->enabled && crtc->fb) {
6473                 base = intel_crtc->cursor_addr;
6474                 if (x > (int) crtc->fb->width)
6475                         base = 0;
6476
6477                 if (y > (int) crtc->fb->height)
6478                         base = 0;
6479         } else
6480                 base = 0;
6481
6482         if (x < 0) {
6483                 if (x + intel_crtc->cursor_width < 0)
6484                         base = 0;
6485
6486                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6487                 x = -x;
6488         }
6489         pos |= x << CURSOR_X_SHIFT;
6490
6491         if (y < 0) {
6492                 if (y + intel_crtc->cursor_height < 0)
6493                         base = 0;
6494
6495                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6496                 y = -y;
6497         }
6498         pos |= y << CURSOR_Y_SHIFT;
6499
6500         visible = base != 0;
6501         if (!visible && !intel_crtc->cursor_visible)
6502                 return;
6503
6504         if (IS_IVYBRIDGE(dev)) {
6505                 I915_WRITE(CURPOS_IVB(pipe), pos);
6506                 ivb_update_cursor(crtc, base);
6507         } else {
6508                 I915_WRITE(CURPOS(pipe), pos);
6509                 if (IS_845G(dev) || IS_I865G(dev))
6510                         i845_update_cursor(crtc, base);
6511                 else
6512                         i9xx_update_cursor(crtc, base);
6513         }
6514
6515         if (visible)
6516                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6517 }
6518
6519 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6520                                  struct drm_file *file,
6521                                  uint32_t handle,
6522                                  uint32_t width, uint32_t height)
6523 {
6524         struct drm_device *dev = crtc->dev;
6525         struct drm_i915_private *dev_priv = dev->dev_private;
6526         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6527         struct drm_i915_gem_object *obj;
6528         uint32_t addr;
6529         int ret;
6530
6531         DRM_DEBUG_KMS("\n");
6532
6533         /* if we want to turn off the cursor ignore width and height */
6534         if (!handle) {
6535                 DRM_DEBUG_KMS("cursor off\n");
6536                 addr = 0;
6537                 obj = NULL;
6538                 DRM_LOCK(dev);
6539                 goto finish;
6540         }
6541
6542         /* Currently we only support 64x64 cursors */
6543         if (width != 64 || height != 64) {
6544                 DRM_ERROR("we currently only support 64x64 cursors\n");
6545                 return -EINVAL;
6546         }
6547
6548         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6549         if (&obj->base == NULL)
6550                 return -ENOENT;
6551
6552         if (obj->base.size < width * height * 4) {
6553                 DRM_ERROR("buffer is to small\n");
6554                 ret = -ENOMEM;
6555                 goto fail;
6556         }
6557
6558         /* we only need to pin inside GTT if cursor is non-phy */
6559         DRM_LOCK(dev);
6560         if (!dev_priv->info->cursor_needs_physical) {
6561                 if (obj->tiling_mode) {
6562                         DRM_ERROR("cursor cannot be tiled\n");
6563                         ret = -EINVAL;
6564                         goto fail_locked;
6565                 }
6566
6567                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6568                 if (ret) {
6569                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6570                         goto fail_locked;
6571                 }
6572
6573                 ret = i915_gem_object_put_fence(obj);
6574                 if (ret) {
6575                         DRM_ERROR("failed to release fence for cursor\n");
6576                         goto fail_unpin;
6577                 }
6578
6579                 addr = obj->gtt_offset;
6580         } else {
6581                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6582                 ret = i915_gem_attach_phys_object(dev, obj,
6583                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6584                                                   align);
6585                 if (ret) {
6586                         DRM_ERROR("failed to attach phys object\n");
6587                         goto fail_locked;
6588                 }
6589                 addr = obj->phys_obj->handle->busaddr;
6590         }
6591
6592         if (IS_GEN2(dev))
6593                 I915_WRITE(CURSIZE, (height << 12) | width);
6594
6595  finish:
6596         if (intel_crtc->cursor_bo) {
6597                 if (dev_priv->info->cursor_needs_physical) {
6598                         if (intel_crtc->cursor_bo != obj)
6599                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6600                 } else
6601                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6602                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6603         }
6604
6605         DRM_UNLOCK(dev);
6606
6607         intel_crtc->cursor_addr = addr;
6608         intel_crtc->cursor_bo = obj;
6609         intel_crtc->cursor_width = width;
6610         intel_crtc->cursor_height = height;
6611
6612         intel_crtc_update_cursor(crtc, true);
6613
6614         return 0;
6615 fail_unpin:
6616         i915_gem_object_unpin(obj);
6617 fail_locked:
6618         DRM_UNLOCK(dev);
6619 fail:
6620         drm_gem_object_unreference_unlocked(&obj->base);
6621         return ret;
6622 }
6623
6624 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6625 {
6626         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6627
6628         intel_crtc->cursor_x = x;
6629         intel_crtc->cursor_y = y;
6630
6631         intel_crtc_update_cursor(crtc, true);
6632
6633         return 0;
6634 }
6635
6636 /** Sets the color ramps on behalf of RandR */
6637 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6638                                  u16 blue, int regno)
6639 {
6640         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6641
6642         intel_crtc->lut_r[regno] = red >> 8;
6643         intel_crtc->lut_g[regno] = green >> 8;
6644         intel_crtc->lut_b[regno] = blue >> 8;
6645 }
6646
6647 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6648                              u16 *blue, int regno)
6649 {
6650         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6651
6652         *red = intel_crtc->lut_r[regno] << 8;
6653         *green = intel_crtc->lut_g[regno] << 8;
6654         *blue = intel_crtc->lut_b[regno] << 8;
6655 }
6656
6657 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6658                                  u16 *blue, uint32_t start, uint32_t size)
6659 {
6660         int end = (start + size > 256) ? 256 : start + size, i;
6661         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6662
6663         for (i = start; i < end; i++) {
6664                 intel_crtc->lut_r[i] = red[i] >> 8;
6665                 intel_crtc->lut_g[i] = green[i] >> 8;
6666                 intel_crtc->lut_b[i] = blue[i] >> 8;
6667         }
6668
6669         intel_crtc_load_lut(crtc);
6670 }
6671
6672 /**
6673  * Get a pipe with a simple mode set on it for doing load-based monitor
6674  * detection.
6675  *
6676  * It will be up to the load-detect code to adjust the pipe as appropriate for
6677  * its requirements.  The pipe will be connected to no other encoders.
6678  *
6679  * Currently this code will only succeed if there is a pipe with no encoders
6680  * configured for it.  In the future, it could choose to temporarily disable
6681  * some outputs to free up a pipe for its use.
6682  *
6683  * \return crtc, or NULL if no pipes are available.
6684  */
6685
6686 /* VESA 640x480x72Hz mode to set on the pipe */
6687 static struct drm_display_mode load_detect_mode = {
6688         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6689                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6690 };
6691
6692 static int
6693 intel_framebuffer_create(struct drm_device *dev,
6694     struct drm_mode_fb_cmd2 *mode_cmd, struct drm_i915_gem_object *obj,
6695      struct drm_framebuffer **res)
6696 {
6697         struct intel_framebuffer *intel_fb;
6698         int ret;
6699
6700         intel_fb = kmalloc(sizeof(*intel_fb), DRM_MEM_KMS, M_WAITOK | M_ZERO);
6701         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6702         if (ret) {
6703                 drm_gem_object_unreference_unlocked(&obj->base);
6704                 drm_free(intel_fb, DRM_MEM_KMS);
6705                 return (ret);
6706         }
6707
6708         *res = &intel_fb->base;
6709         return (0);
6710 }
6711
6712 static u32
6713 intel_framebuffer_pitch_for_width(int width, int bpp)
6714 {
6715         u32 pitch = howmany(width * bpp, 8);
6716         return roundup2(pitch, 64);
6717 }
6718
6719 static u32
6720 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6721 {
6722         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6723         return roundup2(pitch * mode->vdisplay, PAGE_SIZE);
6724 }
6725
6726 static int
6727 intel_framebuffer_create_for_mode(struct drm_device *dev,
6728     struct drm_display_mode *mode, int depth, int bpp,
6729     struct drm_framebuffer **res)
6730 {
6731         struct drm_i915_gem_object *obj;
6732         struct drm_mode_fb_cmd2 mode_cmd;
6733
6734         obj = i915_gem_alloc_object(dev,
6735                                     intel_framebuffer_size_for_mode(mode, bpp));
6736         if (obj == NULL)
6737                 return (-ENOMEM);
6738
6739         mode_cmd.width = mode->hdisplay;
6740         mode_cmd.height = mode->vdisplay;
6741         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6742                                                                 bpp);
6743         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6744
6745         return (intel_framebuffer_create(dev, &mode_cmd, obj, res));
6746 }
6747
6748 static int
6749 mode_fits_in_fbdev(struct drm_device *dev,
6750     struct drm_display_mode *mode, struct drm_framebuffer **res)
6751 {
6752         struct drm_i915_private *dev_priv = dev->dev_private;
6753         struct drm_i915_gem_object *obj;
6754         struct drm_framebuffer *fb;
6755
6756         if (dev_priv->fbdev == NULL) {
6757                 *res = NULL;
6758                 return (0);
6759         }
6760
6761         obj = dev_priv->fbdev->ifb.obj;
6762         if (obj == NULL) {
6763                 *res = NULL;
6764                 return (0);
6765         }
6766
6767         fb = &dev_priv->fbdev->ifb.base;
6768         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6769             fb->bits_per_pixel)) {
6770                 *res = NULL;
6771                 return (0);
6772         }
6773
6774         if (obj->base.size < mode->vdisplay * fb->pitches[0]) {
6775                 *res = NULL;
6776                 return (0);
6777         }
6778
6779         *res = fb;
6780         return (0);
6781 }
6782
6783 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6784                                 struct drm_connector *connector,
6785                                 struct drm_display_mode *mode,
6786                                 struct intel_load_detect_pipe *old)
6787 {
6788         struct intel_crtc *intel_crtc;
6789         struct drm_crtc *possible_crtc;
6790         struct drm_encoder *encoder = &intel_encoder->base;
6791         struct drm_crtc *crtc = NULL;
6792         struct drm_device *dev = encoder->dev;
6793         struct drm_framebuffer *old_fb;
6794         int i = -1, r;
6795
6796         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6797                       connector->base.id, drm_get_connector_name(connector),
6798                       encoder->base.id, drm_get_encoder_name(encoder));
6799
6800         /*
6801          * Algorithm gets a little messy:
6802          *
6803          *   - if the connector already has an assigned crtc, use it (but make
6804          *     sure it's on first)
6805          *
6806          *   - try to find the first unused crtc that can drive this connector,
6807          *     and use that if we find one
6808          */
6809
6810         /* See if we already have a CRTC for this connector */
6811         if (encoder->crtc) {
6812                 crtc = encoder->crtc;
6813
6814                 intel_crtc = to_intel_crtc(crtc);
6815                 old->dpms_mode = intel_crtc->dpms_mode;
6816                 old->load_detect_temp = false;
6817
6818                 /* Make sure the crtc and connector are running */
6819                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6820                         struct drm_encoder_helper_funcs *encoder_funcs;
6821                         struct drm_crtc_helper_funcs *crtc_funcs;
6822
6823                         crtc_funcs = crtc->helper_private;
6824                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6825
6826                         encoder_funcs = encoder->helper_private;
6827                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6828                 }
6829
6830                 return true;
6831         }
6832
6833         /* Find an unused one (if possible) */
6834         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6835                 i++;
6836                 if (!(encoder->possible_crtcs & (1 << i)))
6837                         continue;
6838                 if (!possible_crtc->enabled) {
6839                         crtc = possible_crtc;
6840                         break;
6841                 }
6842         }
6843
6844         /*
6845          * If we didn't find an unused CRTC, don't use any.
6846          */
6847         if (!crtc) {
6848                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6849                 return false;
6850         }
6851
6852         encoder->crtc = crtc;
6853         connector->encoder = encoder;
6854
6855         intel_crtc = to_intel_crtc(crtc);
6856         old->dpms_mode = intel_crtc->dpms_mode;
6857         old->load_detect_temp = true;
6858         old->release_fb = NULL;
6859
6860         if (!mode)
6861                 mode = &load_detect_mode;
6862
6863         old_fb = crtc->fb;
6864
6865         /* We need a framebuffer large enough to accommodate all accesses
6866          * that the plane may generate whilst we perform load detection.
6867          * We can not rely on the fbcon either being present (we get called
6868          * during its initialisation to detect all boot displays, or it may
6869          * not even exist) or that it is large enough to satisfy the
6870          * requested mode.
6871          */
6872         r = mode_fits_in_fbdev(dev, mode, &crtc->fb);
6873         if (crtc->fb == NULL) {
6874                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6875                 r = intel_framebuffer_create_for_mode(dev, mode, 24, 32,
6876                     &crtc->fb);
6877                 old->release_fb = crtc->fb;
6878         } else
6879                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6880         if (r != 0) {
6881                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6882                 crtc->fb = old_fb;
6883                 return false;
6884         }
6885
6886         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6887                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6888                 if (old->release_fb)
6889                         old->release_fb->funcs->destroy(old->release_fb);
6890                 crtc->fb = old_fb;
6891                 return false;
6892         }
6893
6894         /* let the connector get through one full cycle before testing */
6895         intel_wait_for_vblank(dev, intel_crtc->pipe);
6896
6897         return true;
6898 }
6899
6900 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6901                                     struct drm_connector *connector,
6902                                     struct intel_load_detect_pipe *old)
6903 {
6904         struct drm_encoder *encoder = &intel_encoder->base;
6905         struct drm_device *dev = encoder->dev;
6906         struct drm_crtc *crtc = encoder->crtc;
6907         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6908         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6909
6910         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6911                       connector->base.id, drm_get_connector_name(connector),
6912                       encoder->base.id, drm_get_encoder_name(encoder));
6913
6914         if (old->load_detect_temp) {
6915                 connector->encoder = NULL;
6916                 drm_helper_disable_unused_functions(dev);
6917
6918                 if (old->release_fb)
6919                         old->release_fb->funcs->destroy(old->release_fb);
6920
6921                 return;
6922         }
6923
6924         /* Switch crtc and encoder back off if necessary */
6925         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6926                 encoder_funcs->dpms(encoder, old->dpms_mode);
6927                 crtc_funcs->dpms(crtc, old->dpms_mode);
6928         }
6929 }
6930
6931 /* Returns the clock of the currently programmed mode of the given pipe. */
6932 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6933 {
6934         struct drm_i915_private *dev_priv = dev->dev_private;
6935         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6936         int pipe = intel_crtc->pipe;
6937         u32 dpll = I915_READ(DPLL(pipe));
6938         u32 fp;
6939         intel_clock_t clock;
6940
6941         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6942                 fp = I915_READ(FP0(pipe));
6943         else
6944                 fp = I915_READ(FP1(pipe));
6945
6946         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6947         if (IS_PINEVIEW(dev)) {
6948                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6949                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6950         } else {
6951                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6952                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6953         }
6954
6955         if (!IS_GEN2(dev)) {
6956                 if (IS_PINEVIEW(dev))
6957                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6958                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6959                 else
6960                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6961                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6962
6963                 switch (dpll & DPLL_MODE_MASK) {
6964                 case DPLLB_MODE_DAC_SERIAL:
6965                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6966                                 5 : 10;
6967                         break;
6968                 case DPLLB_MODE_LVDS:
6969                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6970                                 7 : 14;
6971                         break;
6972                 default:
6973                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6974                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6975                         return 0;
6976                 }
6977
6978                 /* XXX: Handle the 100Mhz refclk */
6979                 intel_clock(dev, 96000, &clock);
6980         } else {
6981                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6982
6983                 if (is_lvds) {
6984                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6985                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6986                         clock.p2 = 14;
6987
6988                         if ((dpll & PLL_REF_INPUT_MASK) ==
6989                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6990                                 /* XXX: might not be 66MHz */
6991                                 intel_clock(dev, 66000, &clock);
6992                         } else
6993                                 intel_clock(dev, 48000, &clock);
6994                 } else {
6995                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6996                                 clock.p1 = 2;
6997                         else {
6998                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6999                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7000                         }
7001                         if (dpll & PLL_P2_DIVIDE_BY_4)
7002                                 clock.p2 = 4;
7003                         else
7004                                 clock.p2 = 2;
7005
7006                         intel_clock(dev, 48000, &clock);
7007                 }
7008         }
7009
7010         /* XXX: It would be nice to validate the clocks, but we can't reuse
7011          * i830PllIsValid() because it relies on the xf86_config connector
7012          * configuration being accurate, which it isn't necessarily.
7013          */
7014
7015         return clock.dot;
7016 }
7017
7018 /** Returns the currently programmed mode of the given pipe. */
7019 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7020                                              struct drm_crtc *crtc)
7021 {
7022         struct drm_i915_private *dev_priv = dev->dev_private;
7023         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7024         int pipe = intel_crtc->pipe;
7025         struct drm_display_mode *mode;
7026         int htot = I915_READ(HTOTAL(pipe));
7027         int hsync = I915_READ(HSYNC(pipe));
7028         int vtot = I915_READ(VTOTAL(pipe));
7029         int vsync = I915_READ(VSYNC(pipe));
7030
7031         mode = kmalloc(sizeof(*mode), DRM_MEM_KMS, M_WAITOK | M_ZERO);
7032
7033         mode->clock = intel_crtc_clock_get(dev, crtc);
7034         mode->hdisplay = (htot & 0xffff) + 1;
7035         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7036         mode->hsync_start = (hsync & 0xffff) + 1;
7037         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7038         mode->vdisplay = (vtot & 0xffff) + 1;
7039         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7040         mode->vsync_start = (vsync & 0xffff) + 1;
7041         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7042
7043         drm_mode_set_name(mode);
7044         drm_mode_set_crtcinfo(mode, 0);
7045
7046         return mode;
7047 }
7048
7049 #define GPU_IDLE_TIMEOUT (500 /* ms */ * 1000 / hz)
7050
7051 /* When this timer fires, we've been idle for awhile */
7052 static void intel_gpu_idle_timer(void *arg)
7053 {
7054         struct drm_device *dev = arg;
7055         drm_i915_private_t *dev_priv = dev->dev_private;
7056
7057         if (!list_empty(&dev_priv->mm.active_list)) {
7058                 /* Still processing requests, so just re-arm the timer. */
7059                 callout_reset(&dev_priv->idle_callout, GPU_IDLE_TIMEOUT,
7060                     i915_hangcheck_elapsed, dev);
7061                 return;
7062         }
7063
7064         dev_priv->busy = false;
7065         taskqueue_enqueue(dev_priv->tq, &dev_priv->idle_task);
7066 }
7067
7068 #define CRTC_IDLE_TIMEOUT (1000 /* ms */ * 1000 / hz)
7069
7070 static void intel_crtc_idle_timer(void *arg)
7071 {
7072         struct intel_crtc *intel_crtc = arg;
7073         struct drm_crtc *crtc = &intel_crtc->base;
7074         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
7075         struct intel_framebuffer *intel_fb;
7076
7077         intel_fb = to_intel_framebuffer(crtc->fb);
7078         if (intel_fb && intel_fb->obj->active) {
7079                 /* The framebuffer is still being accessed by the GPU. */
7080                 callout_reset(&intel_crtc->idle_callout, CRTC_IDLE_TIMEOUT,
7081                     i915_hangcheck_elapsed, crtc->dev);
7082                 return;
7083         }
7084
7085         intel_crtc->busy = false;
7086         taskqueue_enqueue(dev_priv->tq, &dev_priv->idle_task);
7087 }
7088
7089 static void intel_increase_pllclock(struct drm_crtc *crtc)
7090 {
7091         struct drm_device *dev = crtc->dev;
7092         drm_i915_private_t *dev_priv = dev->dev_private;
7093         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7094         int pipe = intel_crtc->pipe;
7095         int dpll_reg = DPLL(pipe);
7096         int dpll;
7097
7098         if (HAS_PCH_SPLIT(dev))
7099                 return;
7100
7101         if (!dev_priv->lvds_downclock_avail)
7102                 return;
7103
7104         dpll = I915_READ(dpll_reg);
7105         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7106                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7107
7108                 assert_panel_unlocked(dev_priv, pipe);
7109
7110                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7111                 I915_WRITE(dpll_reg, dpll);
7112                 intel_wait_for_vblank(dev, pipe);
7113
7114                 dpll = I915_READ(dpll_reg);
7115                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7116                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7117         }
7118
7119         /* Schedule downclock */
7120         callout_reset(&intel_crtc->idle_callout, CRTC_IDLE_TIMEOUT,
7121             intel_crtc_idle_timer, intel_crtc);
7122 }
7123
7124 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7125 {
7126         struct drm_device *dev = crtc->dev;
7127         drm_i915_private_t *dev_priv = dev->dev_private;
7128         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7129
7130         if (HAS_PCH_SPLIT(dev))
7131                 return;
7132
7133         if (!dev_priv->lvds_downclock_avail)
7134                 return;
7135
7136         /*
7137          * Since this is called by a timer, we should never get here in
7138          * the manual case.
7139          */
7140         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7141                 int pipe = intel_crtc->pipe;
7142                 int dpll_reg = DPLL(pipe);
7143                 u32 dpll;
7144
7145                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7146
7147                 assert_panel_unlocked(dev_priv, pipe);
7148
7149                 dpll = I915_READ(dpll_reg);
7150                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7151                 I915_WRITE(dpll_reg, dpll);
7152                 intel_wait_for_vblank(dev, pipe);
7153                 dpll = I915_READ(dpll_reg);
7154                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7155                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7156         }
7157 }
7158
7159 /**
7160  * intel_idle_update - adjust clocks for idleness
7161  * @work: work struct
7162  *
7163  * Either the GPU or display (or both) went idle.  Check the busy status
7164  * here and adjust the CRTC and GPU clocks as necessary.
7165  */
7166 static void intel_idle_update(void *arg, int pending)
7167 {
7168         drm_i915_private_t *dev_priv = arg;
7169         struct drm_device *dev = dev_priv->dev;
7170         struct drm_crtc *crtc;
7171         struct intel_crtc *intel_crtc;
7172
7173         if (!i915_powersave)
7174                 return;
7175
7176         DRM_LOCK(dev);
7177
7178         i915_update_gfx_val(dev_priv);
7179
7180         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7181                 /* Skip inactive CRTCs */
7182                 if (!crtc->fb)
7183                         continue;
7184
7185                 intel_crtc = to_intel_crtc(crtc);
7186                 if (!intel_crtc->busy)
7187                         intel_decrease_pllclock(crtc);
7188         }
7189
7190         DRM_UNLOCK(dev);
7191 }
7192
7193 /**
7194  * intel_mark_busy - mark the GPU and possibly the display busy
7195  * @dev: drm device
7196  * @obj: object we're operating on
7197  *
7198  * Callers can use this function to indicate that the GPU is busy processing
7199  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
7200  * buffer), we'll also mark the display as busy, so we know to increase its
7201  * clock frequency.
7202  */
7203 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
7204 {
7205         drm_i915_private_t *dev_priv = dev->dev_private;
7206         struct drm_crtc *crtc = NULL;
7207         struct intel_framebuffer *intel_fb;
7208         struct intel_crtc *intel_crtc;
7209
7210         if (!drm_core_check_feature(dev, DRIVER_MODESET))
7211                 return;
7212
7213         if (!dev_priv->busy)
7214                 dev_priv->busy = true;
7215         else
7216                 callout_reset(&dev_priv->idle_callout, GPU_IDLE_TIMEOUT,
7217                     intel_gpu_idle_timer, dev);
7218
7219         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7220                 if (!crtc->fb)
7221                         continue;
7222
7223                 intel_crtc = to_intel_crtc(crtc);
7224                 intel_fb = to_intel_framebuffer(crtc->fb);
7225                 if (intel_fb->obj == obj) {
7226                         if (!intel_crtc->busy) {
7227                                 /* Non-busy -> busy, upclock */
7228                                 intel_increase_pllclock(crtc);
7229                                 intel_crtc->busy = true;
7230                         } else {
7231                                 /* Busy -> busy, put off timer */
7232                                 callout_reset(&intel_crtc->idle_callout, 
7233                                     CRTC_IDLE_TIMEOUT, intel_crtc_idle_timer,
7234                                     intel_crtc);
7235                         }
7236                 }
7237         }
7238 }
7239
7240 static void intel_crtc_destroy(struct drm_crtc *crtc)
7241 {
7242         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7243         struct drm_device *dev = crtc->dev;
7244         struct drm_i915_private *dev_priv = dev->dev_private;
7245         struct intel_unpin_work *work;
7246
7247         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
7248         work = intel_crtc->unpin_work;
7249         intel_crtc->unpin_work = NULL;
7250         lockmgr(&dev->event_lock, LK_RELEASE);
7251
7252         if (work) {
7253                 taskqueue_cancel(dev_priv->tq, &work->task, NULL);
7254                 taskqueue_drain(dev_priv->tq, &work->task);
7255                 drm_free(work, DRM_MEM_KMS);
7256         }
7257
7258         drm_crtc_cleanup(crtc);
7259
7260         drm_free(intel_crtc, DRM_MEM_KMS);
7261 }
7262
7263 static void intel_unpin_work_fn(void *arg, int pending)
7264 {
7265         struct intel_unpin_work *work = arg;
7266         struct drm_device *dev;
7267
7268         dev = work->dev;
7269         DRM_LOCK(dev);
7270         intel_unpin_fb_obj(work->old_fb_obj);
7271         drm_gem_object_unreference(&work->pending_flip_obj->base);
7272         drm_gem_object_unreference(&work->old_fb_obj->base);
7273
7274         intel_update_fbc(work->dev);
7275         DRM_UNLOCK(dev);
7276         drm_free(work, DRM_MEM_KMS);
7277 }
7278
7279 static void do_intel_finish_page_flip(struct drm_device *dev,
7280                                       struct drm_crtc *crtc)
7281 {
7282         drm_i915_private_t *dev_priv = dev->dev_private;
7283         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7284         struct intel_unpin_work *work;
7285         struct drm_i915_gem_object *obj;
7286         struct drm_pending_vblank_event *e;
7287         struct timeval tnow, tvbl;
7288
7289         /* Ignore early vblank irqs */
7290         if (intel_crtc == NULL)
7291                 return;
7292
7293         microtime(&tnow);
7294
7295         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
7296         work = intel_crtc->unpin_work;
7297         if (work == NULL || !work->pending) {
7298                 lockmgr(&dev->event_lock, LK_RELEASE);
7299                 return;
7300         }
7301
7302         intel_crtc->unpin_work = NULL;
7303
7304         if (work->event) {
7305                 e = work->event;
7306                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
7307
7308                 /* Called before vblank count and timestamps have
7309                  * been updated for the vblank interval of flip
7310                  * completion? Need to increment vblank count and
7311                  * add one videorefresh duration to returned timestamp
7312                  * to account for this. We assume this happened if we
7313                  * get called over 0.9 frame durations after the last
7314                  * timestamped vblank.
7315                  *
7316                  * This calculation can not be used with vrefresh rates
7317                  * below 5Hz (10Hz to be on the safe side) without
7318                  * promoting to 64 integers.
7319                  */
7320                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
7321                     9 * crtc->framedur_ns) {
7322                         e->event.sequence++;
7323                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
7324                                              crtc->framedur_ns);
7325                 }
7326
7327                 e->event.tv_sec = tvbl.tv_sec;
7328                 e->event.tv_usec = tvbl.tv_usec;
7329
7330                 list_add_tail(&e->base.link,
7331                               &e->base.file_priv->event_list);
7332                 drm_event_wakeup(&e->base);
7333         }
7334
7335         drm_vblank_put(dev, intel_crtc->pipe);
7336
7337         obj = work->old_fb_obj;
7338
7339         atomic_clear_int(&obj->pending_flip, 1 << intel_crtc->plane);
7340         if (atomic_read(&obj->pending_flip) == 0)
7341                 wakeup(&obj->pending_flip);
7342         lockmgr(&dev->event_lock, LK_RELEASE);
7343
7344         taskqueue_enqueue(dev_priv->tq, &work->task);
7345 }
7346
7347 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7348 {
7349         drm_i915_private_t *dev_priv = dev->dev_private;
7350         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7351
7352         do_intel_finish_page_flip(dev, crtc);
7353 }
7354
7355 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7356 {
7357         drm_i915_private_t *dev_priv = dev->dev_private;
7358         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7359
7360         do_intel_finish_page_flip(dev, crtc);
7361 }
7362
7363 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7364 {
7365         drm_i915_private_t *dev_priv = dev->dev_private;
7366         struct intel_crtc *intel_crtc =
7367                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7368
7369         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
7370         if (intel_crtc->unpin_work) {
7371                 if ((++intel_crtc->unpin_work->pending) > 1)
7372                         DRM_ERROR("Prepared flip multiple times\n");
7373         } else {
7374                 DRM_DEBUG("preparing flip with no unpin work?\n");
7375         }
7376         lockmgr(&dev->event_lock, LK_RELEASE);
7377 }
7378
7379 static int intel_gen2_queue_flip(struct drm_device *dev,
7380                                  struct drm_crtc *crtc,
7381                                  struct drm_framebuffer *fb,
7382                                  struct drm_i915_gem_object *obj)
7383 {
7384         struct drm_i915_private *dev_priv = dev->dev_private;
7385         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7386         unsigned long offset;
7387         u32 flip_mask;
7388         int ret;
7389
7390         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7391         if (ret)
7392                 goto out;
7393
7394         /* Offset into the new buffer for cases of shared fbs between CRTCs */
7395         offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7396
7397         ret = BEGIN_LP_RING(6);
7398         if (ret)
7399                 goto out;
7400
7401         /* Can't queue multiple flips, so wait for the previous
7402          * one to finish before executing the next.
7403          */
7404         if (intel_crtc->plane)
7405                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7406         else
7407                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7408         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7409         OUT_RING(MI_NOOP);
7410         OUT_RING(MI_DISPLAY_FLIP |
7411                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7412         OUT_RING(fb->pitches[0]);
7413         OUT_RING(obj->gtt_offset + offset);
7414         OUT_RING(0); /* aux display base address, unused */
7415         ADVANCE_LP_RING();
7416 out:
7417         return ret;
7418 }
7419
7420 static int intel_gen3_queue_flip(struct drm_device *dev,
7421                                  struct drm_crtc *crtc,
7422                                  struct drm_framebuffer *fb,
7423                                  struct drm_i915_gem_object *obj)
7424 {
7425         struct drm_i915_private *dev_priv = dev->dev_private;
7426         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7427         unsigned long offset;
7428         u32 flip_mask;
7429         int ret;
7430
7431         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7432         if (ret)
7433                 goto out;
7434
7435         /* Offset into the new buffer for cases of shared fbs between CRTCs */
7436         offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7437
7438         ret = BEGIN_LP_RING(6);
7439         if (ret)
7440                 goto out;
7441
7442         if (intel_crtc->plane)
7443                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7444         else
7445                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7446         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7447         OUT_RING(MI_NOOP);
7448         OUT_RING(MI_DISPLAY_FLIP_I915 |
7449                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7450         OUT_RING(fb->pitches[0]);
7451         OUT_RING(obj->gtt_offset + offset);
7452         OUT_RING(MI_NOOP);
7453
7454         ADVANCE_LP_RING();
7455 out:
7456         return ret;
7457 }
7458
7459 static int intel_gen4_queue_flip(struct drm_device *dev,
7460                                  struct drm_crtc *crtc,
7461                                  struct drm_framebuffer *fb,
7462                                  struct drm_i915_gem_object *obj)
7463 {
7464         struct drm_i915_private *dev_priv = dev->dev_private;
7465         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7466         uint32_t pf, pipesrc;
7467         int ret;
7468
7469         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7470         if (ret)
7471                 goto out;
7472
7473         ret = BEGIN_LP_RING(4);
7474         if (ret)
7475                 goto out;
7476
7477         /* i965+ uses the linear or tiled offsets from the
7478          * Display Registers (which do not change across a page-flip)
7479          * so we need only reprogram the base address.
7480          */
7481         OUT_RING(MI_DISPLAY_FLIP |
7482                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7483         OUT_RING(fb->pitches[0]);
7484         OUT_RING(obj->gtt_offset | obj->tiling_mode);
7485
7486         /* XXX Enabling the panel-fitter across page-flip is so far
7487          * untested on non-native modes, so ignore it for now.
7488          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7489          */
7490         pf = 0;
7491         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7492         OUT_RING(pf | pipesrc);
7493         ADVANCE_LP_RING();
7494 out:
7495         return ret;
7496 }
7497
7498 static int intel_gen6_queue_flip(struct drm_device *dev,
7499                                  struct drm_crtc *crtc,
7500                                  struct drm_framebuffer *fb,
7501                                  struct drm_i915_gem_object *obj)
7502 {
7503         struct drm_i915_private *dev_priv = dev->dev_private;
7504         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7505         uint32_t pf, pipesrc;
7506         int ret;
7507
7508         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7509         if (ret)
7510                 goto out;
7511
7512         ret = BEGIN_LP_RING(4);
7513         if (ret)
7514                 goto out;
7515
7516         OUT_RING(MI_DISPLAY_FLIP |
7517                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7518         OUT_RING(fb->pitches[0] | obj->tiling_mode);
7519         OUT_RING(obj->gtt_offset);
7520
7521         /* Contrary to the suggestions in the documentation,
7522          * "Enable Panel Fitter" does not seem to be required when page
7523          * flipping with a non-native mode, and worse causes a normal
7524          * modeset to fail.
7525          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7526          */
7527         pf = 0;
7528         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7529         OUT_RING(pf | pipesrc);
7530         ADVANCE_LP_RING();
7531 out:
7532         return ret;
7533 }
7534
7535 /*
7536  * On gen7 we currently use the blit ring because (in early silicon at least)
7537  * the render ring doesn't give us interrpts for page flip completion, which
7538  * means clients will hang after the first flip is queued.  Fortunately the
7539  * blit ring generates interrupts properly, so use it instead.
7540  */
7541 static int intel_gen7_queue_flip(struct drm_device *dev,
7542                                  struct drm_crtc *crtc,
7543                                  struct drm_framebuffer *fb,
7544                                  struct drm_i915_gem_object *obj)
7545 {
7546         struct drm_i915_private *dev_priv = dev->dev_private;
7547         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7548         struct intel_ring_buffer *ring = &dev_priv->rings[BCS];
7549         int ret;
7550
7551         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7552         if (ret)
7553                 goto out;
7554
7555         ret = intel_ring_begin(ring, 4);
7556         if (ret)
7557                 goto out;
7558
7559         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7560         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7561         intel_ring_emit(ring, (obj->gtt_offset));
7562         intel_ring_emit(ring, (MI_NOOP));
7563         intel_ring_advance(ring);
7564 out:
7565         return ret;
7566 }
7567
7568 static int intel_default_queue_flip(struct drm_device *dev,
7569                                     struct drm_crtc *crtc,
7570                                     struct drm_framebuffer *fb,
7571                                     struct drm_i915_gem_object *obj)
7572 {
7573         return -ENODEV;
7574 }
7575
7576 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7577                                 struct drm_framebuffer *fb,
7578                                 struct drm_pending_vblank_event *event)
7579 {
7580         struct drm_device *dev = crtc->dev;
7581         struct drm_i915_private *dev_priv = dev->dev_private;
7582         struct intel_framebuffer *intel_fb;
7583         struct drm_i915_gem_object *obj;
7584         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7585         struct intel_unpin_work *work;
7586         int ret;
7587
7588         work = kmalloc(sizeof *work, DRM_MEM_KMS, M_WAITOK | M_ZERO);
7589
7590         work->event = event;
7591         work->dev = crtc->dev;
7592         intel_fb = to_intel_framebuffer(crtc->fb);
7593         work->old_fb_obj = intel_fb->obj;
7594         TASK_INIT(&work->task, 0, intel_unpin_work_fn, work);
7595
7596         ret = drm_vblank_get(dev, intel_crtc->pipe);
7597         if (ret)
7598                 goto free_work;
7599
7600         /* We borrow the event spin lock for protecting unpin_work */
7601         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
7602         if (intel_crtc->unpin_work) {
7603                 lockmgr(&dev->event_lock, LK_RELEASE);
7604                 drm_free(work, DRM_MEM_KMS);
7605                 drm_vblank_put(dev, intel_crtc->pipe);
7606
7607                 DRM_DEBUG("flip queue: crtc already busy\n");
7608                 return -EBUSY;
7609         }
7610         intel_crtc->unpin_work = work;
7611         lockmgr(&dev->event_lock, LK_RELEASE);
7612
7613         intel_fb = to_intel_framebuffer(fb);
7614         obj = intel_fb->obj;
7615
7616         DRM_LOCK(dev);
7617
7618         /* Reference the objects for the scheduled work. */
7619         drm_gem_object_reference(&work->old_fb_obj->base);
7620         drm_gem_object_reference(&obj->base);
7621
7622         crtc->fb = fb;
7623
7624         work->pending_flip_obj = obj;
7625
7626         work->enable_stall_check = true;
7627
7628         /* Block clients from rendering to the new back buffer until
7629          * the flip occurs and the object is no longer visible.
7630          */
7631         atomic_set_int(&work->old_fb_obj->pending_flip, 1 << intel_crtc->plane);
7632
7633         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7634         if (ret)
7635                 goto cleanup_pending;
7636         intel_disable_fbc(dev);
7637         DRM_UNLOCK(dev);
7638
7639         return 0;
7640
7641 cleanup_pending:
7642         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7643         drm_gem_object_unreference(&work->old_fb_obj->base);
7644         drm_gem_object_unreference(&obj->base);
7645         DRM_UNLOCK(dev);
7646
7647         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
7648         intel_crtc->unpin_work = NULL;
7649         lockmgr(&dev->event_lock, LK_RELEASE);
7650
7651         drm_vblank_put(dev, intel_crtc->pipe);
7652 free_work:
7653         drm_free(work, DRM_MEM_KMS);
7654
7655         return ret;
7656 }
7657
7658 static void intel_sanitize_modesetting(struct drm_device *dev,
7659                                        int pipe, int plane)
7660 {
7661         struct drm_i915_private *dev_priv = dev->dev_private;
7662         u32 reg, val;
7663
7664         /* Clear any frame start delays used for debugging left by the BIOS */
7665         for_each_pipe(pipe) {
7666                 reg = PIPECONF(pipe);
7667                 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
7668         }
7669
7670         if (HAS_PCH_SPLIT(dev))
7671                 return;
7672
7673         /* Who knows what state these registers were left in by the BIOS or
7674          * grub?
7675          *
7676          * If we leave the registers in a conflicting state (e.g. with the
7677          * display plane reading from the other pipe than the one we intend
7678          * to use) then when we attempt to teardown the active mode, we will
7679          * not disable the pipes and planes in the correct order -- leaving
7680          * a plane reading from a disabled pipe and possibly leading to
7681          * undefined behaviour.
7682          */
7683
7684         reg = DSPCNTR(plane);
7685         val = I915_READ(reg);
7686
7687         if ((val & DISPLAY_PLANE_ENABLE) == 0)
7688                 return;
7689         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7690                 return;
7691
7692         /* This display plane is active and attached to the other CPU pipe. */
7693         pipe = !pipe;
7694
7695         /* Disable the plane and wait for it to stop reading from the pipe. */
7696         intel_disable_plane(dev_priv, plane, pipe);
7697         intel_disable_pipe(dev_priv, pipe);
7698 }
7699
7700 static void intel_crtc_reset(struct drm_crtc *crtc)
7701 {
7702         struct drm_device *dev = crtc->dev;
7703         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7704
7705         /* Reset flags back to the 'unknown' status so that they
7706          * will be correctly set on the initial modeset.
7707          */
7708         intel_crtc->dpms_mode = -1;
7709
7710         /* We need to fix up any BIOS configuration that conflicts with
7711          * our expectations.
7712          */
7713         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7714 }
7715
7716 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7717         .dpms = intel_crtc_dpms,
7718         .mode_fixup = intel_crtc_mode_fixup,
7719         .mode_set = intel_crtc_mode_set,
7720         .mode_set_base = intel_pipe_set_base,
7721         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7722         .load_lut = intel_crtc_load_lut,
7723         .disable = intel_crtc_disable,
7724 };
7725
7726 static const struct drm_crtc_funcs intel_crtc_funcs = {
7727         .reset = intel_crtc_reset,
7728         .cursor_set = intel_crtc_cursor_set,
7729         .cursor_move = intel_crtc_cursor_move,
7730         .gamma_set = intel_crtc_gamma_set,
7731         .set_config = drm_crtc_helper_set_config,
7732         .destroy = intel_crtc_destroy,
7733         .page_flip = intel_crtc_page_flip,
7734 };
7735
7736 static void intel_crtc_init(struct drm_device *dev, int pipe)
7737 {
7738         drm_i915_private_t *dev_priv = dev->dev_private;
7739         struct intel_crtc *intel_crtc;
7740         int i;
7741
7742         intel_crtc = kmalloc(sizeof(struct intel_crtc) +
7743             (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
7744             DRM_MEM_KMS, M_WAITOK | M_ZERO);
7745
7746         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7747
7748         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7749         for (i = 0; i < 256; i++) {
7750                 intel_crtc->lut_r[i] = i;
7751                 intel_crtc->lut_g[i] = i;
7752                 intel_crtc->lut_b[i] = i;
7753         }
7754
7755         /* Swap pipes & planes for FBC on pre-965 */
7756         intel_crtc->pipe = pipe;
7757         intel_crtc->plane = pipe;
7758         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7759                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7760                 intel_crtc->plane = !pipe;
7761         }
7762
7763         KASSERT(pipe < DRM_ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) &&
7764             dev_priv->plane_to_crtc_mapping[intel_crtc->plane] == NULL,
7765             ("plane_to_crtc is already initialized"));
7766         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7767         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7768
7769         intel_crtc_reset(&intel_crtc->base);
7770         intel_crtc->active = true; /* force the pipe off on setup_init_config */
7771         intel_crtc->bpp = 24; /* default for pre-Ironlake */
7772
7773         if (HAS_PCH_SPLIT(dev)) {
7774                 if (pipe == 2 && IS_IVYBRIDGE(dev))
7775                         intel_crtc->no_pll = true;
7776                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7777                 intel_helper_funcs.commit = ironlake_crtc_commit;
7778         } else {
7779                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7780                 intel_helper_funcs.commit = i9xx_crtc_commit;
7781         }
7782
7783         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7784
7785         intel_crtc->busy = false;
7786
7787         callout_init_mp(&intel_crtc->idle_callout);
7788 }
7789
7790 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7791                                 struct drm_file *file)
7792 {
7793         drm_i915_private_t *dev_priv = dev->dev_private;
7794         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7795         struct drm_mode_object *drmmode_obj;
7796         struct intel_crtc *crtc;
7797
7798         if (!dev_priv) {
7799                 DRM_ERROR("called with no initialization\n");
7800                 return -EINVAL;
7801         }
7802
7803         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7804                         DRM_MODE_OBJECT_CRTC);
7805
7806         if (!drmmode_obj) {
7807                 DRM_ERROR("no such CRTC id\n");
7808                 return -EINVAL;
7809         }
7810
7811         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7812         pipe_from_crtc_id->pipe = crtc->pipe;
7813
7814         return 0;
7815 }
7816
7817 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7818 {
7819         struct intel_encoder *encoder;
7820         int index_mask = 0;
7821         int entry = 0;
7822
7823         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7824                 if (type_mask & encoder->clone_mask)
7825                         index_mask |= (1 << entry);
7826                 entry++;
7827         }
7828
7829         return index_mask;
7830 }
7831
7832 static bool has_edp_a(struct drm_device *dev)
7833 {
7834         struct drm_i915_private *dev_priv = dev->dev_private;
7835
7836         if (!IS_MOBILE(dev))
7837                 return false;
7838
7839         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7840                 return false;
7841
7842         if (IS_GEN5(dev) &&
7843             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7844                 return false;
7845
7846         return true;
7847 }
7848
7849 static void intel_setup_outputs(struct drm_device *dev)
7850 {
7851         struct drm_i915_private *dev_priv = dev->dev_private;
7852         struct intel_encoder *encoder;
7853         bool dpd_is_edp = false;
7854         bool has_lvds;
7855
7856         has_lvds = intel_lvds_init(dev);
7857         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7858                 /* disable the panel fitter on everything but LVDS */
7859                 I915_WRITE(PFIT_CONTROL, 0);
7860         }
7861
7862         if (HAS_PCH_SPLIT(dev)) {
7863                 dpd_is_edp = intel_dpd_is_edp(dev);
7864
7865                 if (has_edp_a(dev))
7866                         intel_dp_init(dev, DP_A);
7867
7868                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7869                         intel_dp_init(dev, PCH_DP_D);
7870         }
7871
7872         intel_crt_init(dev);
7873
7874         if (HAS_PCH_SPLIT(dev)) {
7875                 int found;
7876
7877                 DRM_DEBUG_KMS(
7878 "HDMIB %d PCH_DP_B %d HDMIC %d HDMID %d PCH_DP_C %d PCH_DP_D %d LVDS %d\n",
7879                     (I915_READ(HDMIB) & PORT_DETECTED) != 0,
7880                     (I915_READ(PCH_DP_B) & DP_DETECTED) != 0,
7881                     (I915_READ(HDMIC) & PORT_DETECTED) != 0,
7882                     (I915_READ(HDMID) & PORT_DETECTED) != 0,
7883                     (I915_READ(PCH_DP_C) & DP_DETECTED) != 0,
7884                     (I915_READ(PCH_DP_D) & DP_DETECTED) != 0,
7885                     (I915_READ(PCH_LVDS) & LVDS_DETECTED) != 0);
7886
7887                 if (I915_READ(HDMIB) & PORT_DETECTED) {
7888                         /* PCH SDVOB multiplex with HDMIB */
7889                         found = intel_sdvo_init(dev, PCH_SDVOB);
7890                         if (!found)
7891                                 intel_hdmi_init(dev, HDMIB);
7892                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7893                                 intel_dp_init(dev, PCH_DP_B);
7894                 }
7895
7896                 if (I915_READ(HDMIC) & PORT_DETECTED)
7897                         intel_hdmi_init(dev, HDMIC);
7898
7899                 if (I915_READ(HDMID) & PORT_DETECTED)
7900                         intel_hdmi_init(dev, HDMID);
7901
7902                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7903                         intel_dp_init(dev, PCH_DP_C);
7904
7905                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7906                         intel_dp_init(dev, PCH_DP_D);
7907
7908         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7909                 bool found = false;
7910
7911                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7912                         DRM_DEBUG_KMS("probing SDVOB\n");
7913                         found = intel_sdvo_init(dev, SDVOB);
7914                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7915                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7916                                 intel_hdmi_init(dev, SDVOB);
7917                         }
7918
7919                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7920                                 DRM_DEBUG_KMS("probing DP_B\n");
7921                                 intel_dp_init(dev, DP_B);
7922                         }
7923                 }
7924
7925                 /* Before G4X SDVOC doesn't have its own detect register */
7926
7927                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7928                         DRM_DEBUG_KMS("probing SDVOC\n");
7929                         found = intel_sdvo_init(dev, SDVOC);
7930                 }
7931
7932                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7933
7934                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7935                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7936                                 intel_hdmi_init(dev, SDVOC);
7937                         }
7938                         if (SUPPORTS_INTEGRATED_DP(dev)) {
7939                                 DRM_DEBUG_KMS("probing DP_C\n");
7940                                 intel_dp_init(dev, DP_C);
7941                         }
7942                 }
7943
7944                 if (SUPPORTS_INTEGRATED_DP(dev) &&
7945                     (I915_READ(DP_D) & DP_DETECTED)) {
7946                         DRM_DEBUG_KMS("probing DP_D\n");
7947                         intel_dp_init(dev, DP_D);
7948                 }
7949         } else if (IS_GEN2(dev)) {
7950 #if 1
7951                 KIB_NOTYET();
7952 #else
7953                 intel_dvo_init(dev);
7954 #endif
7955         }
7956
7957         if (SUPPORTS_TV(dev))
7958                 intel_tv_init(dev);
7959
7960         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7961                 encoder->base.possible_crtcs = encoder->crtc_mask;
7962                 encoder->base.possible_clones =
7963                         intel_encoder_clones(dev, encoder->clone_mask);
7964         }
7965
7966         /* disable all the possible outputs/crtcs before entering KMS mode */
7967         drm_helper_disable_unused_functions(dev);
7968
7969         if (HAS_PCH_SPLIT(dev))
7970                 ironlake_init_pch_refclk(dev);
7971 }
7972
7973 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7974 {
7975         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7976
7977         drm_framebuffer_cleanup(fb);
7978         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7979
7980         drm_free(intel_fb, DRM_MEM_KMS);
7981 }
7982
7983 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7984                                                 struct drm_file *file,
7985                                                 unsigned int *handle)
7986 {
7987         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7988         struct drm_i915_gem_object *obj = intel_fb->obj;
7989
7990         return drm_gem_handle_create(file, &obj->base, handle);
7991 }
7992
7993 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7994         .destroy = intel_user_framebuffer_destroy,
7995         .create_handle = intel_user_framebuffer_create_handle,
7996 };
7997
7998 int intel_framebuffer_init(struct drm_device *dev,
7999                            struct intel_framebuffer *intel_fb,
8000                            struct drm_mode_fb_cmd2 *mode_cmd,
8001                            struct drm_i915_gem_object *obj)
8002 {
8003         int ret;
8004
8005         if (obj->tiling_mode == I915_TILING_Y)
8006                 return -EINVAL;
8007
8008         if (mode_cmd->pitches[0] & 63)
8009                 return -EINVAL;
8010
8011         switch (mode_cmd->pixel_format) {
8012         case DRM_FORMAT_RGB332:
8013         case DRM_FORMAT_RGB565:
8014         case DRM_FORMAT_XRGB8888:
8015         case DRM_FORMAT_XBGR8888:
8016         case DRM_FORMAT_ARGB8888:
8017         case DRM_FORMAT_XRGB2101010:
8018         case DRM_FORMAT_ARGB2101010:
8019                 /* RGB formats are common across chipsets */
8020                 break;
8021         case DRM_FORMAT_YUYV:
8022         case DRM_FORMAT_UYVY:
8023         case DRM_FORMAT_YVYU:
8024         case DRM_FORMAT_VYUY:
8025                 break;
8026         default:
8027                 DRM_DEBUG_KMS("unsupported pixel format %u\n",
8028                                 mode_cmd->pixel_format);
8029                 return -EINVAL;
8030         }
8031
8032         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8033         if (ret) {
8034                 DRM_ERROR("framebuffer init failed %d\n", ret);
8035                 return ret;
8036         }
8037
8038         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8039         intel_fb->obj = obj;
8040         return 0;
8041 }
8042
8043 static int
8044 intel_user_framebuffer_create(struct drm_device *dev,
8045     struct drm_file *filp, struct drm_mode_fb_cmd2 *mode_cmd,
8046     struct drm_framebuffer **res)
8047 {
8048         struct drm_i915_gem_object *obj;
8049
8050         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8051                                                 mode_cmd->handles[0]));
8052         if (&obj->base == NULL)
8053                 return (-ENOENT);
8054
8055         return (intel_framebuffer_create(dev, mode_cmd, obj, res));
8056 }
8057
8058 static const struct drm_mode_config_funcs intel_mode_funcs = {
8059         .fb_create = intel_user_framebuffer_create,
8060         .output_poll_changed = intel_fb_output_poll_changed,
8061 };
8062
8063 static struct drm_i915_gem_object *
8064 intel_alloc_context_page(struct drm_device *dev)
8065 {
8066         struct drm_i915_gem_object *ctx;
8067         int ret;
8068
8069         DRM_LOCK_ASSERT(dev);
8070
8071         ctx = i915_gem_alloc_object(dev, 4096);
8072         if (!ctx) {
8073                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
8074                 return NULL;
8075         }
8076
8077         ret = i915_gem_object_pin(ctx, 4096, true);
8078         if (ret) {
8079                 DRM_ERROR("failed to pin power context: %d\n", ret);
8080                 goto err_unref;
8081         }
8082
8083         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
8084         if (ret) {
8085                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
8086                 goto err_unpin;
8087         }
8088
8089         return ctx;
8090
8091 err_unpin:
8092         i915_gem_object_unpin(ctx);
8093 err_unref:
8094         drm_gem_object_unreference(&ctx->base);
8095         DRM_UNLOCK(dev);
8096         return NULL;
8097 }
8098
8099 bool ironlake_set_drps(struct drm_device *dev, u8 val)
8100 {
8101         struct drm_i915_private *dev_priv = dev->dev_private;
8102         u16 rgvswctl;
8103
8104         rgvswctl = I915_READ16(MEMSWCTL);
8105         if (rgvswctl & MEMCTL_CMD_STS) {
8106                 DRM_DEBUG("gpu busy, RCS change rejected\n");
8107                 return false; /* still busy with another command */
8108         }
8109
8110         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
8111                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
8112         I915_WRITE16(MEMSWCTL, rgvswctl);
8113         POSTING_READ16(MEMSWCTL);
8114
8115         rgvswctl |= MEMCTL_CMD_STS;
8116         I915_WRITE16(MEMSWCTL, rgvswctl);
8117
8118         return true;
8119 }
8120
8121 void ironlake_enable_drps(struct drm_device *dev)
8122 {
8123         struct drm_i915_private *dev_priv = dev->dev_private;
8124         u32 rgvmodectl = I915_READ(MEMMODECTL);
8125         u8 fmax, fmin, fstart, vstart;
8126
8127         /* Enable temp reporting */
8128         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
8129         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
8130
8131         /* 100ms RC evaluation intervals */
8132         I915_WRITE(RCUPEI, 100000);
8133         I915_WRITE(RCDNEI, 100000);
8134
8135         /* Set max/min thresholds to 90ms and 80ms respectively */
8136         I915_WRITE(RCBMAXAVG, 90000);
8137         I915_WRITE(RCBMINAVG, 80000);
8138
8139         I915_WRITE(MEMIHYST, 1);
8140
8141         /* Set up min, max, and cur for interrupt handling */
8142         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
8143         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
8144         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
8145                 MEMMODE_FSTART_SHIFT;
8146
8147         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
8148                 PXVFREQ_PX_SHIFT;
8149
8150         dev_priv->fmax = fmax; /* IPS callback will increase this */
8151         dev_priv->fstart = fstart;
8152
8153         dev_priv->max_delay = fstart;
8154         dev_priv->min_delay = fmin;
8155         dev_priv->cur_delay = fstart;
8156
8157         DRM_DEBUG("fmax: %d, fmin: %d, fstart: %d\n",
8158                          fmax, fmin, fstart);
8159
8160         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
8161
8162         /*
8163          * Interrupts will be enabled in ironlake_irq_postinstall
8164          */
8165
8166         I915_WRITE(VIDSTART, vstart);
8167         POSTING_READ(VIDSTART);
8168
8169         rgvmodectl |= MEMMODE_SWMODE_EN;
8170         I915_WRITE(MEMMODECTL, rgvmodectl);
8171
8172         if (_intel_wait_for(dev,
8173             (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10,
8174             1, "915per"))
8175                 DRM_ERROR("stuck trying to change perf mode\n");
8176         DELAY(1000);
8177
8178         ironlake_set_drps(dev, fstart);
8179
8180         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
8181                 I915_READ(0x112e0);
8182         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
8183         dev_priv->last_count2 = I915_READ(0x112f4);
8184         nanotime(&dev_priv->last_time2);
8185 }
8186
8187 void ironlake_disable_drps(struct drm_device *dev)
8188 {
8189         struct drm_i915_private *dev_priv = dev->dev_private;
8190         u16 rgvswctl = I915_READ16(MEMSWCTL);
8191
8192         /* Ack interrupts, disable EFC interrupt */
8193         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
8194         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
8195         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
8196         I915_WRITE(DEIIR, DE_PCU_EVENT);
8197         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
8198
8199         /* Go back to the starting frequency */
8200         ironlake_set_drps(dev, dev_priv->fstart);
8201         DELAY(1000);
8202         rgvswctl |= MEMCTL_CMD_STS;
8203         I915_WRITE(MEMSWCTL, rgvswctl);
8204         DELAY(1000);
8205
8206 }
8207
8208 void gen6_set_rps(struct drm_device *dev, u8 val)
8209 {
8210         struct drm_i915_private *dev_priv = dev->dev_private;
8211         u32 swreq;
8212
8213         swreq = (val & 0x3ff) << 25;
8214         I915_WRITE(GEN6_RPNSWREQ, swreq);
8215 }
8216
8217 void gen6_disable_rps(struct drm_device *dev)
8218 {
8219         struct drm_i915_private *dev_priv = dev->dev_private;
8220
8221         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
8222         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
8223         I915_WRITE(GEN6_PMIER, 0);
8224         /* Complete PM interrupt masking here doesn't race with the rps work
8225          * item again unmasking PM interrupts because that is using a different
8226          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
8227          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
8228
8229         lockmgr(&dev_priv->rps_lock, LK_EXCLUSIVE);
8230         dev_priv->pm_iir = 0;
8231         lockmgr(&dev_priv->rps_lock, LK_RELEASE);
8232
8233         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
8234 }
8235
8236 static unsigned long intel_pxfreq(u32 vidfreq)
8237 {
8238         unsigned long freq;
8239         int div = (vidfreq & 0x3f0000) >> 16;
8240         int post = (vidfreq & 0x3000) >> 12;
8241         int pre = (vidfreq & 0x7);
8242
8243         if (!pre)
8244                 return 0;
8245
8246         freq = ((div * 133333) / ((1<<post) * pre));
8247
8248         return freq;
8249 }
8250
8251 void intel_init_emon(struct drm_device *dev)
8252 {
8253         struct drm_i915_private *dev_priv = dev->dev_private;
8254         u32 lcfuse;
8255         u8 pxw[16];
8256         int i;
8257
8258         /* Disable to program */
8259         I915_WRITE(ECR, 0);
8260         POSTING_READ(ECR);
8261
8262         /* Program energy weights for various events */
8263         I915_WRITE(SDEW, 0x15040d00);
8264         I915_WRITE(CSIEW0, 0x007f0000);
8265         I915_WRITE(CSIEW1, 0x1e220004);
8266         I915_WRITE(CSIEW2, 0x04000004);
8267
8268         for (i = 0; i < 5; i++)
8269                 I915_WRITE(PEW + (i * 4), 0);
8270         for (i = 0; i < 3; i++)
8271                 I915_WRITE(DEW + (i * 4), 0);
8272
8273         /* Program P-state weights to account for frequency power adjustment */
8274         for (i = 0; i < 16; i++) {
8275                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
8276                 unsigned long freq = intel_pxfreq(pxvidfreq);
8277                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8278                         PXVFREQ_PX_SHIFT;
8279                 unsigned long val;
8280
8281                 val = vid * vid;
8282                 val *= (freq / 1000);
8283                 val *= 255;
8284                 val /= (127*127*900);
8285                 if (val > 0xff)
8286                         DRM_ERROR("bad pxval: %ld\n", val);
8287                 pxw[i] = val;
8288         }
8289         /* Render standby states get 0 weight */
8290         pxw[14] = 0;
8291         pxw[15] = 0;
8292
8293         for (i = 0; i < 4; i++) {
8294                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8295                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8296                 I915_WRITE(PXW + (i * 4), val);
8297         }
8298
8299         /* Adjust magic regs to magic values (more experimental results) */
8300         I915_WRITE(OGW0, 0);
8301         I915_WRITE(OGW1, 0);
8302         I915_WRITE(EG0, 0x00007f00);
8303         I915_WRITE(EG1, 0x0000000e);
8304         I915_WRITE(EG2, 0x000e0000);
8305         I915_WRITE(EG3, 0x68000300);
8306         I915_WRITE(EG4, 0x42000000);
8307         I915_WRITE(EG5, 0x00140031);
8308         I915_WRITE(EG6, 0);
8309         I915_WRITE(EG7, 0);
8310
8311         for (i = 0; i < 8; i++)
8312                 I915_WRITE(PXWL + (i * 4), 0);
8313
8314         /* Enable PMON + select events */
8315         I915_WRITE(ECR, 0x80000019);
8316
8317         lcfuse = I915_READ(LCFUSE02);
8318
8319         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
8320 }
8321
8322 static int intel_enable_rc6(struct drm_device *dev)
8323 {
8324         /*
8325          * Respect the kernel parameter if it is set
8326          */
8327         if (i915_enable_rc6 >= 0)
8328                 return i915_enable_rc6;
8329
8330         /*
8331          * Disable RC6 on Ironlake
8332          */
8333         if (INTEL_INFO(dev)->gen == 5)
8334                 return 0;
8335
8336         /*
8337          * Enable rc6 on Sandybridge if DMA remapping is disabled
8338          */
8339         if (INTEL_INFO(dev)->gen == 6) {
8340                 DRM_DEBUG_DRIVER(
8341                     "Sandybridge: intel_iommu_enabled %s -- RC6 %sabled\n",
8342                      intel_iommu_enabled ? "true" : "false",
8343                      !intel_iommu_enabled ? "en" : "dis");
8344                 return (intel_iommu_enabled ? 0 : INTEL_RC6_ENABLE);
8345         }
8346         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
8347         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
8348 }
8349
8350 void gen6_enable_rps(struct drm_i915_private *dev_priv)
8351 {
8352         struct drm_device *dev = dev_priv->dev;
8353         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
8354         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
8355         u32 pcu_mbox, rc6_mask = 0;
8356         u32 gtfifodbg;
8357         int cur_freq, min_freq, max_freq;
8358         int rc6_mode;
8359         int i;
8360
8361         /* Here begins a magic sequence of register writes to enable
8362          * auto-downclocking.
8363          *
8364          * Perhaps there might be some value in exposing these to
8365          * userspace...
8366          */
8367         I915_WRITE(GEN6_RC_STATE, 0);
8368         DRM_LOCK(dev);
8369
8370         /* Clear the DBG now so we don't confuse earlier errors */
8371         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
8372                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
8373                 I915_WRITE(GTFIFODBG, gtfifodbg);
8374         }
8375
8376         gen6_gt_force_wake_get(dev_priv);
8377
8378         /* disable the counters and set deterministic thresholds */
8379         I915_WRITE(GEN6_RC_CONTROL, 0);
8380
8381         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
8382         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
8383         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
8384         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8385         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8386
8387         for (i = 0; i < I915_NUM_RINGS; i++)
8388                 I915_WRITE(RING_MAX_IDLE(dev_priv->rings[i].mmio_base), 10);
8389
8390         I915_WRITE(GEN6_RC_SLEEP, 0);
8391         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
8392         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
8393         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
8394         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
8395
8396         rc6_mode = intel_enable_rc6(dev_priv->dev);
8397         if (rc6_mode & INTEL_RC6_ENABLE)
8398                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
8399
8400         if (rc6_mode & INTEL_RC6p_ENABLE)
8401                 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
8402
8403         if (rc6_mode & INTEL_RC6pp_ENABLE)
8404                 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
8405
8406         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
8407                         (rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
8408                         (rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
8409                         (rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
8410
8411         I915_WRITE(GEN6_RC_CONTROL,
8412                    rc6_mask |
8413                    GEN6_RC_CTL_EI_MODE(1) |
8414                    GEN6_RC_CTL_HW_ENABLE);
8415
8416         I915_WRITE(GEN6_RPNSWREQ,
8417                    GEN6_FREQUENCY(10) |
8418                    GEN6_OFFSET(0) |
8419                    GEN6_AGGRESSIVE_TURBO);
8420         I915_WRITE(GEN6_RC_VIDEO_FREQ,
8421                    GEN6_FREQUENCY(12));
8422
8423         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8424         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
8425                    18 << 24 |
8426                    6 << 16);
8427         I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
8428         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8429         I915_WRITE(GEN6_RP_UP_EI, 100000);
8430         I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8431         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8432         I915_WRITE(GEN6_RP_CONTROL,
8433                    GEN6_RP_MEDIA_TURBO |
8434                    GEN6_RP_MEDIA_HW_MODE |
8435                    GEN6_RP_MEDIA_IS_GFX |
8436                    GEN6_RP_ENABLE |
8437                    GEN6_RP_UP_BUSY_AVG |
8438                    GEN6_RP_DOWN_IDLE_CONT);
8439
8440         if (_intel_wait_for(dev,
8441             (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
8442             1, "915pr1"))
8443                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8444
8445         I915_WRITE(GEN6_PCODE_DATA, 0);
8446         I915_WRITE(GEN6_PCODE_MAILBOX,
8447                    GEN6_PCODE_READY |
8448                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8449         if (_intel_wait_for(dev,
8450             (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
8451             1, "915pr2"))
8452                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8453
8454         min_freq = (rp_state_cap & 0xff0000) >> 16;
8455         max_freq = rp_state_cap & 0xff;
8456         cur_freq = (gt_perf_status & 0xff00) >> 8;
8457
8458         /* Check for overclock support */
8459         if (_intel_wait_for(dev,
8460             (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
8461             1, "915pr3"))
8462                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8463         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8464         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8465         if (_intel_wait_for(dev,
8466             (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
8467             1, "915pr4"))
8468                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8469         if (pcu_mbox & (1<<31)) { /* OC supported */
8470                 max_freq = pcu_mbox & 0xff;
8471                 DRM_DEBUG("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8472         }
8473
8474         /* In units of 100MHz */
8475         dev_priv->max_delay = max_freq;
8476         dev_priv->min_delay = min_freq;
8477         dev_priv->cur_delay = cur_freq;
8478
8479         /* requires MSI enabled */
8480         I915_WRITE(GEN6_PMIER,
8481                    GEN6_PM_MBOX_EVENT |
8482                    GEN6_PM_THERMAL_EVENT |
8483                    GEN6_PM_RP_DOWN_TIMEOUT |
8484                    GEN6_PM_RP_UP_THRESHOLD |
8485                    GEN6_PM_RP_DOWN_THRESHOLD |
8486                    GEN6_PM_RP_UP_EI_EXPIRED |
8487                    GEN6_PM_RP_DOWN_EI_EXPIRED);
8488         lockmgr(&dev_priv->rps_lock, LK_EXCLUSIVE);
8489         if (dev_priv->pm_iir != 0)
8490                 kprintf("pm_iir %x\n", dev_priv->pm_iir);
8491         I915_WRITE(GEN6_PMIMR, 0);
8492         lockmgr(&dev_priv->rps_lock, LK_RELEASE);
8493         /* enable all PM interrupts */
8494         I915_WRITE(GEN6_PMINTRMSK, 0);
8495
8496         gen6_gt_force_wake_put(dev_priv);
8497         DRM_UNLOCK(dev);
8498 }
8499
8500 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8501 {
8502         struct drm_device *dev;
8503         int min_freq = 15;
8504         int gpu_freq, ia_freq, max_ia_freq;
8505         int scaling_factor = 180;
8506         uint64_t tsc_freq;
8507
8508         dev = dev_priv->dev;
8509 #if 0
8510         max_ia_freq = cpufreq_quick_get_max(0);
8511         /*
8512          * Default to measured freq if none found, PCU will ensure we don't go
8513          * over
8514          */
8515         if (!max_ia_freq)
8516                 max_ia_freq = tsc_freq;
8517
8518         /* Convert from Hz to MHz */
8519         max_ia_freq /= 1000;
8520 #else
8521         tsc_freq = atomic_load_acq_64(&tsc_freq);
8522         max_ia_freq = tsc_freq / 1000 / 1000;
8523 #endif
8524
8525         DRM_LOCK(dev);
8526
8527         /*
8528          * For each potential GPU frequency, load a ring frequency we'd like
8529          * to use for memory access.  We do this by specifying the IA frequency
8530          * the PCU should use as a reference to determine the ring frequency.
8531          */
8532         for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8533              gpu_freq--) {
8534                 int diff = dev_priv->max_delay - gpu_freq;
8535                 int d;
8536
8537                 /*
8538                  * For GPU frequencies less than 750MHz, just use the lowest
8539                  * ring freq.
8540                  */
8541                 if (gpu_freq < min_freq)
8542                         ia_freq = 800;
8543                 else
8544                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8545                 d = 100;
8546                 ia_freq = (ia_freq + d / 2) / d;
8547
8548                 I915_WRITE(GEN6_PCODE_DATA,
8549                            (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8550                            gpu_freq);
8551                 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8552                            GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8553                 if (_intel_wait_for(dev,
8554                     (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8555                     10, 1, "915frq")) {
8556                         DRM_ERROR("pcode write of freq table timed out\n");
8557                         continue;
8558                 }
8559         }
8560
8561         DRM_UNLOCK(dev);
8562 }
8563
8564 static void ironlake_init_clock_gating(struct drm_device *dev)
8565 {
8566         struct drm_i915_private *dev_priv = dev->dev_private;
8567         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8568
8569         /* Required for FBC */
8570         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8571                 DPFCRUNIT_CLOCK_GATE_DISABLE |
8572                 DPFDUNIT_CLOCK_GATE_DISABLE;
8573         /* Required for CxSR */
8574         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8575
8576         I915_WRITE(PCH_3DCGDIS0,
8577                    MARIUNIT_CLOCK_GATE_DISABLE |
8578                    SVSMUNIT_CLOCK_GATE_DISABLE);
8579         I915_WRITE(PCH_3DCGDIS1,
8580                    VFMUNIT_CLOCK_GATE_DISABLE);
8581
8582         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8583
8584         /*
8585          * According to the spec the following bits should be set in
8586          * order to enable memory self-refresh
8587          * The bit 22/21 of 0x42004
8588          * The bit 5 of 0x42020
8589          * The bit 15 of 0x45000
8590          */
8591         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8592                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
8593                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8594         I915_WRITE(ILK_DSPCLK_GATE,
8595                    (I915_READ(ILK_DSPCLK_GATE) |
8596                     ILK_DPARB_CLK_GATE));
8597         I915_WRITE(DISP_ARB_CTL,
8598                    (I915_READ(DISP_ARB_CTL) |
8599                     DISP_FBC_WM_DIS));
8600         I915_WRITE(WM3_LP_ILK, 0);
8601         I915_WRITE(WM2_LP_ILK, 0);
8602         I915_WRITE(WM1_LP_ILK, 0);
8603
8604         /*
8605          * Based on the document from hardware guys the following bits
8606          * should be set unconditionally in order to enable FBC.
8607          * The bit 22 of 0x42000
8608          * The bit 22 of 0x42004
8609          * The bit 7,8,9 of 0x42020.
8610          */
8611         if (IS_IRONLAKE_M(dev)) {
8612                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8613                            I915_READ(ILK_DISPLAY_CHICKEN1) |
8614                            ILK_FBCQ_DIS);
8615                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8616                            I915_READ(ILK_DISPLAY_CHICKEN2) |
8617                            ILK_DPARB_GATE);
8618                 I915_WRITE(ILK_DSPCLK_GATE,
8619                            I915_READ(ILK_DSPCLK_GATE) |
8620                            ILK_DPFC_DIS1 |
8621                            ILK_DPFC_DIS2 |
8622                            ILK_CLK_FBC);
8623         }
8624
8625         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8626                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8627                    ILK_ELPIN_409_SELECT);
8628         I915_WRITE(_3D_CHICKEN2,
8629                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8630                    _3D_CHICKEN2_WM_READ_PIPELINED);
8631 }
8632
8633 static void gen6_init_clock_gating(struct drm_device *dev)
8634 {
8635         struct drm_i915_private *dev_priv = dev->dev_private;
8636         int pipe;
8637         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8638
8639         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8640
8641         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8642                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8643                    ILK_ELPIN_409_SELECT);
8644
8645         I915_WRITE(WM3_LP_ILK, 0);
8646         I915_WRITE(WM2_LP_ILK, 0);
8647         I915_WRITE(WM1_LP_ILK, 0);
8648
8649         I915_WRITE(GEN6_UCGCTL1,
8650                    I915_READ(GEN6_UCGCTL1) |
8651                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE);
8652
8653         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8654          * gating disable must be set.  Failure to set it results in
8655          * flickering pixels due to Z write ordering failures after
8656          * some amount of runtime in the Mesa "fire" demo, and Unigine
8657          * Sanctuary and Tropics, and apparently anything else with
8658          * alpha test or pixel discard.
8659          *
8660          * According to the spec, bit 11 (RCCUNIT) must also be set,
8661          * but we didn't debug actual testcases to find it out.
8662          */
8663         I915_WRITE(GEN6_UCGCTL2,
8664                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8665                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8666
8667         /*
8668          * According to the spec the following bits should be
8669          * set in order to enable memory self-refresh and fbc:
8670          * The bit21 and bit22 of 0x42000
8671          * The bit21 and bit22 of 0x42004
8672          * The bit5 and bit7 of 0x42020
8673          * The bit14 of 0x70180
8674          * The bit14 of 0x71180
8675          */
8676         I915_WRITE(ILK_DISPLAY_CHICKEN1,
8677                    I915_READ(ILK_DISPLAY_CHICKEN1) |
8678                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8679         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8680                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8681                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8682         I915_WRITE(ILK_DSPCLK_GATE,
8683                    I915_READ(ILK_DSPCLK_GATE) |
8684                    ILK_DPARB_CLK_GATE  |
8685                    ILK_DPFD_CLK_GATE);
8686
8687         for_each_pipe(pipe) {
8688                 I915_WRITE(DSPCNTR(pipe),
8689                            I915_READ(DSPCNTR(pipe)) |
8690                            DISPPLANE_TRICKLE_FEED_DISABLE);
8691                 intel_flush_display_plane(dev_priv, pipe);
8692         }
8693 }
8694
8695 static void ivybridge_init_clock_gating(struct drm_device *dev)
8696 {
8697         struct drm_i915_private *dev_priv = dev->dev_private;
8698         int pipe;
8699         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8700
8701         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8702
8703         I915_WRITE(WM3_LP_ILK, 0);
8704         I915_WRITE(WM2_LP_ILK, 0);
8705         I915_WRITE(WM1_LP_ILK, 0);
8706
8707         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8708          * This implements the WaDisableRCZUnitClockGating workaround.
8709          */
8710         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8711
8712         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8713
8714         I915_WRITE(IVB_CHICKEN3,
8715                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8716                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
8717
8718         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
8719         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8720                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8721
8722         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
8723         I915_WRITE(GEN7_L3CNTLREG1,
8724                         GEN7_WA_FOR_GEN7_L3_CONTROL);
8725         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8726                         GEN7_WA_L3_CHICKEN_MODE);
8727
8728         /* This is required by WaCatErrorRejectionIssue */
8729         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8730                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8731                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8732
8733         for_each_pipe(pipe) {
8734                 I915_WRITE(DSPCNTR(pipe),
8735                            I915_READ(DSPCNTR(pipe)) |
8736                            DISPPLANE_TRICKLE_FEED_DISABLE);
8737                 intel_flush_display_plane(dev_priv, pipe);
8738         }
8739 }
8740
8741 static void g4x_init_clock_gating(struct drm_device *dev)
8742 {
8743         struct drm_i915_private *dev_priv = dev->dev_private;
8744         uint32_t dspclk_gate;
8745
8746         I915_WRITE(RENCLK_GATE_D1, 0);
8747         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8748                    GS_UNIT_CLOCK_GATE_DISABLE |
8749                    CL_UNIT_CLOCK_GATE_DISABLE);
8750         I915_WRITE(RAMCLK_GATE_D, 0);
8751         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8752                 OVRUNIT_CLOCK_GATE_DISABLE |
8753                 OVCUNIT_CLOCK_GATE_DISABLE;
8754         if (IS_GM45(dev))
8755                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8756         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8757 }
8758
8759 static void crestline_init_clock_gating(struct drm_device *dev)
8760 {
8761         struct drm_i915_private *dev_priv = dev->dev_private;
8762
8763         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8764         I915_WRITE(RENCLK_GATE_D2, 0);
8765         I915_WRITE(DSPCLK_GATE_D, 0);
8766         I915_WRITE(RAMCLK_GATE_D, 0);
8767         I915_WRITE16(DEUC, 0);
8768 }
8769
8770 static void broadwater_init_clock_gating(struct drm_device *dev)
8771 {
8772         struct drm_i915_private *dev_priv = dev->dev_private;
8773
8774         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8775                    I965_RCC_CLOCK_GATE_DISABLE |
8776                    I965_RCPB_CLOCK_GATE_DISABLE |
8777                    I965_ISC_CLOCK_GATE_DISABLE |
8778                    I965_FBC_CLOCK_GATE_DISABLE);
8779         I915_WRITE(RENCLK_GATE_D2, 0);
8780 }
8781
8782 static void gen3_init_clock_gating(struct drm_device *dev)
8783 {
8784         struct drm_i915_private *dev_priv = dev->dev_private;
8785         u32 dstate = I915_READ(D_STATE);
8786
8787         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8788                 DSTATE_DOT_CLOCK_GATING;
8789         I915_WRITE(D_STATE, dstate);
8790 }
8791
8792 static void i85x_init_clock_gating(struct drm_device *dev)
8793 {
8794         struct drm_i915_private *dev_priv = dev->dev_private;
8795
8796         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8797 }
8798
8799 static void i830_init_clock_gating(struct drm_device *dev)
8800 {
8801         struct drm_i915_private *dev_priv = dev->dev_private;
8802
8803         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8804 }
8805
8806 static void ibx_init_clock_gating(struct drm_device *dev)
8807 {
8808         struct drm_i915_private *dev_priv = dev->dev_private;
8809
8810         /*
8811          * On Ibex Peak and Cougar Point, we need to disable clock
8812          * gating for the panel power sequencer or it will fail to
8813          * start up when no ports are active.
8814          */
8815         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8816 }
8817
8818 static void cpt_init_clock_gating(struct drm_device *dev)
8819 {
8820         struct drm_i915_private *dev_priv = dev->dev_private;
8821         int pipe;
8822
8823         /*
8824          * On Ibex Peak and Cougar Point, we need to disable clock
8825          * gating for the panel power sequencer or it will fail to
8826          * start up when no ports are active.
8827          */
8828         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8829         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8830                    DPLS_EDP_PPS_FIX_DIS);
8831         /* Without this, mode sets may fail silently on FDI */
8832         for_each_pipe(pipe)
8833                 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
8834 }
8835
8836 static void ironlake_teardown_rc6(struct drm_device *dev)
8837 {
8838         struct drm_i915_private *dev_priv = dev->dev_private;
8839
8840         if (dev_priv->renderctx) {
8841                 i915_gem_object_unpin(dev_priv->renderctx);
8842                 drm_gem_object_unreference(&dev_priv->renderctx->base);
8843                 dev_priv->renderctx = NULL;
8844         }
8845
8846         if (dev_priv->pwrctx) {
8847                 i915_gem_object_unpin(dev_priv->pwrctx);
8848                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8849                 dev_priv->pwrctx = NULL;
8850         }
8851 }
8852
8853 static void ironlake_disable_rc6(struct drm_device *dev)
8854 {
8855         struct drm_i915_private *dev_priv = dev->dev_private;
8856
8857         if (I915_READ(PWRCTXA)) {
8858                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8859                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8860                 (void)_intel_wait_for(dev,
8861                     ((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8862                     50, 1, "915pro");
8863
8864                 I915_WRITE(PWRCTXA, 0);
8865                 POSTING_READ(PWRCTXA);
8866
8867                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8868                 POSTING_READ(RSTDBYCTL);
8869         }
8870
8871         ironlake_teardown_rc6(dev);
8872 }
8873
8874 static int ironlake_setup_rc6(struct drm_device *dev)
8875 {
8876         struct drm_i915_private *dev_priv = dev->dev_private;
8877
8878         if (dev_priv->renderctx == NULL)
8879                 dev_priv->renderctx = intel_alloc_context_page(dev);
8880         if (!dev_priv->renderctx)
8881                 return -ENOMEM;
8882
8883         if (dev_priv->pwrctx == NULL)
8884                 dev_priv->pwrctx = intel_alloc_context_page(dev);
8885         if (!dev_priv->pwrctx) {
8886                 ironlake_teardown_rc6(dev);
8887                 return -ENOMEM;
8888         }
8889
8890         return 0;
8891 }
8892
8893 void ironlake_enable_rc6(struct drm_device *dev)
8894 {
8895         struct drm_i915_private *dev_priv = dev->dev_private;
8896         int ret;
8897
8898         /* rc6 disabled by default due to repeated reports of hanging during
8899          * boot and resume.
8900          */
8901         if (!intel_enable_rc6(dev))
8902                 return;
8903
8904         DRM_LOCK(dev);
8905         ret = ironlake_setup_rc6(dev);
8906         if (ret) {
8907                 DRM_UNLOCK(dev);
8908                 return;
8909         }
8910
8911         /*
8912          * GPU can automatically power down the render unit if given a page
8913          * to save state.
8914          */
8915         ret = BEGIN_LP_RING(6);
8916         if (ret) {
8917                 ironlake_teardown_rc6(dev);
8918                 DRM_UNLOCK(dev);
8919                 return;
8920         }
8921
8922         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8923         OUT_RING(MI_SET_CONTEXT);
8924         OUT_RING(dev_priv->renderctx->gtt_offset |
8925                  MI_MM_SPACE_GTT |
8926                  MI_SAVE_EXT_STATE_EN |
8927                  MI_RESTORE_EXT_STATE_EN |
8928                  MI_RESTORE_INHIBIT);
8929         OUT_RING(MI_SUSPEND_FLUSH);
8930         OUT_RING(MI_NOOP);
8931         OUT_RING(MI_FLUSH);
8932         ADVANCE_LP_RING();
8933
8934         /*
8935          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8936          * does an implicit flush, combined with MI_FLUSH above, it should be
8937          * safe to assume that renderctx is valid
8938          */
8939         ret = intel_wait_ring_idle(LP_RING(dev_priv));
8940         if (ret) {
8941                 DRM_ERROR("failed to enable ironlake power power savings\n");
8942                 ironlake_teardown_rc6(dev);
8943                 DRM_UNLOCK(dev);
8944                 return;
8945         }
8946
8947         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8948         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8949         DRM_UNLOCK(dev);
8950 }
8951
8952 void intel_init_clock_gating(struct drm_device *dev)
8953 {
8954         struct drm_i915_private *dev_priv = dev->dev_private;
8955
8956         dev_priv->display.init_clock_gating(dev);
8957
8958         if (dev_priv->display.init_pch_clock_gating)
8959                 dev_priv->display.init_pch_clock_gating(dev);
8960 }
8961
8962 /* Set up chip specific display functions */
8963 static void intel_init_display(struct drm_device *dev)
8964 {
8965         struct drm_i915_private *dev_priv = dev->dev_private;
8966
8967         /* We always want a DPMS function */
8968         if (HAS_PCH_SPLIT(dev)) {
8969                 dev_priv->display.dpms = ironlake_crtc_dpms;
8970                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8971                 dev_priv->display.update_plane = ironlake_update_plane;
8972         } else {
8973                 dev_priv->display.dpms = i9xx_crtc_dpms;
8974                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8975                 dev_priv->display.update_plane = i9xx_update_plane;
8976         }
8977
8978         if (I915_HAS_FBC(dev)) {
8979                 if (HAS_PCH_SPLIT(dev)) {
8980                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8981                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
8982                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
8983                 } else if (IS_GM45(dev)) {
8984                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8985                         dev_priv->display.enable_fbc = g4x_enable_fbc;
8986                         dev_priv->display.disable_fbc = g4x_disable_fbc;
8987                 } else if (IS_CRESTLINE(dev)) {
8988                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8989                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
8990                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
8991                 }
8992                 /* 855GM needs testing */
8993         }
8994
8995         /* Returns the core display clock speed */
8996         if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8997                 dev_priv->display.get_display_clock_speed =
8998                         i945_get_display_clock_speed;
8999         else if (IS_I915G(dev))
9000                 dev_priv->display.get_display_clock_speed =
9001                         i915_get_display_clock_speed;
9002         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
9003                 dev_priv->display.get_display_clock_speed =
9004                         i9xx_misc_get_display_clock_speed;
9005         else if (IS_I915GM(dev))
9006                 dev_priv->display.get_display_clock_speed =
9007                         i915gm_get_display_clock_speed;
9008         else if (IS_I865G(dev))
9009                 dev_priv->display.get_display_clock_speed =
9010                         i865_get_display_clock_speed;
9011         else if (IS_I85X(dev))
9012                 dev_priv->display.get_display_clock_speed =
9013                         i855_get_display_clock_speed;
9014         else /* 852, 830 */
9015                 dev_priv->display.get_display_clock_speed =
9016                         i830_get_display_clock_speed;
9017
9018         /* For FIFO watermark updates */
9019         if (HAS_PCH_SPLIT(dev)) {
9020                 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
9021                 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
9022
9023                 /* IVB configs may use multi-threaded forcewake */
9024                 if (IS_IVYBRIDGE(dev)) {
9025                         u32     ecobus;
9026
9027                         /* A small trick here - if the bios hasn't configured MT forcewake,
9028                          * and if the device is in RC6, then force_wake_mt_get will not wake
9029                          * the device and the ECOBUS read will return zero. Which will be
9030                          * (correctly) interpreted by the test below as MT forcewake being
9031                          * disabled.
9032                          */
9033                         DRM_LOCK(dev);
9034                         __gen6_gt_force_wake_mt_get(dev_priv);
9035                         ecobus = I915_READ_NOTRACE(ECOBUS);
9036                         __gen6_gt_force_wake_mt_put(dev_priv);
9037                         DRM_UNLOCK(dev);
9038
9039                         if (ecobus & FORCEWAKE_MT_ENABLE) {
9040                                 DRM_DEBUG_KMS("Using MT version of forcewake\n");
9041                                 dev_priv->display.force_wake_get =
9042                                         __gen6_gt_force_wake_mt_get;
9043                                 dev_priv->display.force_wake_put =
9044                                         __gen6_gt_force_wake_mt_put;
9045                         }
9046                 }
9047
9048                 if (HAS_PCH_IBX(dev))
9049                         dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
9050                 else if (HAS_PCH_CPT(dev))
9051                         dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
9052
9053                 if (IS_GEN5(dev)) {
9054                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
9055                                 dev_priv->display.update_wm = ironlake_update_wm;
9056                         else {
9057                                 DRM_DEBUG_KMS("Failed to get proper latency. "
9058                                               "Disable CxSR\n");
9059                                 dev_priv->display.update_wm = NULL;
9060                         }
9061                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9062                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
9063                         dev_priv->display.write_eld = ironlake_write_eld;
9064                 } else if (IS_GEN6(dev)) {
9065                         if (SNB_READ_WM0_LATENCY()) {
9066                                 dev_priv->display.update_wm = sandybridge_update_wm;
9067                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
9068                         } else {
9069                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
9070                                               "Disable CxSR\n");
9071                                 dev_priv->display.update_wm = NULL;
9072                         }
9073                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9074                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9075                         dev_priv->display.write_eld = ironlake_write_eld;
9076                 } else if (IS_IVYBRIDGE(dev)) {
9077                         /* FIXME: detect B0+ stepping and use auto training */
9078                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9079                         if (SNB_READ_WM0_LATENCY()) {
9080                                 dev_priv->display.update_wm = sandybridge_update_wm;
9081                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
9082                         } else {
9083                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
9084                                               "Disable CxSR\n");
9085                                 dev_priv->display.update_wm = NULL;
9086                         }
9087                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
9088                         dev_priv->display.write_eld = ironlake_write_eld;
9089                 } else
9090                         dev_priv->display.update_wm = NULL;
9091         } else if (IS_PINEVIEW(dev)) {
9092                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
9093                                             dev_priv->is_ddr3,
9094                                             dev_priv->fsb_freq,
9095                                             dev_priv->mem_freq)) {
9096                         DRM_INFO("failed to find known CxSR latency "
9097                                  "(found ddr%s fsb freq %d, mem freq %d), "
9098                                  "disabling CxSR\n",
9099                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
9100                                  dev_priv->fsb_freq, dev_priv->mem_freq);
9101                         /* Disable CxSR and never update its watermark again */
9102                         pineview_disable_cxsr(dev);
9103                         dev_priv->display.update_wm = NULL;
9104                 } else
9105                         dev_priv->display.update_wm = pineview_update_wm;
9106                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9107         } else if (IS_G4X(dev)) {
9108                 dev_priv->display.write_eld = g4x_write_eld;
9109                 dev_priv->display.update_wm = g4x_update_wm;
9110                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9111         } else if (IS_GEN4(dev)) {
9112                 dev_priv->display.update_wm = i965_update_wm;
9113                 if (IS_CRESTLINE(dev))
9114                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
9115                 else if (IS_BROADWATER(dev))
9116                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
9117         } else if (IS_GEN3(dev)) {
9118                 dev_priv->display.update_wm = i9xx_update_wm;
9119                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9120                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9121         } else if (IS_I865G(dev)) {
9122                 dev_priv->display.update_wm = i830_update_wm;
9123                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9124                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9125         } else if (IS_I85X(dev)) {
9126                 dev_priv->display.update_wm = i9xx_update_wm;
9127                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
9128                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9129         } else {
9130                 dev_priv->display.update_wm = i830_update_wm;
9131                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9132                 if (IS_845G(dev))
9133                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
9134                 else
9135                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
9136         }
9137
9138         /* Default just returns -ENODEV to indicate unsupported */
9139         dev_priv->display.queue_flip = intel_default_queue_flip;
9140
9141         switch (INTEL_INFO(dev)->gen) {
9142         case 2:
9143                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9144                 break;
9145
9146         case 3:
9147                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9148                 break;
9149
9150         case 4:
9151         case 5:
9152                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9153                 break;
9154
9155         case 6:
9156                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9157                 break;
9158         case 7:
9159                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9160                 break;
9161         }
9162 }
9163
9164 /*
9165  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9166  * resume, or other times.  This quirk makes sure that's the case for
9167  * affected systems.
9168  */
9169 static void quirk_pipea_force(struct drm_device *dev)
9170 {
9171         struct drm_i915_private *dev_priv = dev->dev_private;
9172
9173         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9174         DRM_DEBUG("applying pipe a force quirk\n");
9175 }
9176
9177 /*
9178  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9179  */
9180 static void quirk_ssc_force_disable(struct drm_device *dev)
9181 {
9182         struct drm_i915_private *dev_priv = dev->dev_private;
9183         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9184 }
9185
9186 struct intel_quirk {
9187         int device;
9188         int subsystem_vendor;
9189         int subsystem_device;
9190         void (*hook)(struct drm_device *dev);
9191 };
9192
9193 #define PCI_ANY_ID      (~0u)
9194
9195 struct intel_quirk intel_quirks[] = {
9196         /* HP Mini needs pipe A force quirk (LP: #322104) */
9197         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9198
9199         /* Thinkpad R31 needs pipe A force quirk */
9200         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
9201         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9202         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9203
9204         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
9205         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
9206         /* ThinkPad X40 needs pipe A force quirk */
9207
9208         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9209         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9210
9211         /* 855 & before need to leave pipe A & dpll A up */
9212         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9213         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9214
9215         /* Lenovo U160 cannot use SSC on LVDS */
9216         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9217
9218         /* Sony Vaio Y cannot use SSC on LVDS */
9219         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9220 };
9221
9222 static void intel_init_quirks(struct drm_device *dev)
9223 {
9224         struct intel_quirk *q;
9225         device_t d;
9226         int i;
9227
9228         d = dev->device;
9229         for (i = 0; i < DRM_ARRAY_SIZE(intel_quirks); i++) {
9230                 q = &intel_quirks[i];
9231                 if (pci_get_device(d) == q->device &&
9232                     (pci_get_subvendor(d) == q->subsystem_vendor ||
9233                      q->subsystem_vendor == PCI_ANY_ID) &&
9234                     (pci_get_subdevice(d) == q->subsystem_device ||
9235                      q->subsystem_device == PCI_ANY_ID))
9236                         q->hook(dev);
9237         }
9238 }
9239
9240 /* Disable the VGA plane that we never use */
9241 static void i915_disable_vga(struct drm_device *dev)
9242 {
9243         struct drm_i915_private *dev_priv = dev->dev_private;
9244         u8 sr1;
9245         u32 vga_reg;
9246
9247         if (HAS_PCH_SPLIT(dev))
9248                 vga_reg = CPU_VGACNTRL;
9249         else
9250                 vga_reg = VGACNTRL;
9251
9252 #if 0
9253         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9254 #endif
9255         outb(VGA_SR_INDEX, 1);
9256         sr1 = inb(VGA_SR_DATA);
9257         outb(VGA_SR_DATA, sr1 | 1 << 5);
9258 #if 0
9259         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9260 #endif
9261         DELAY(300);
9262
9263         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9264         POSTING_READ(vga_reg);
9265 }
9266
9267 void intel_modeset_init(struct drm_device *dev)
9268 {
9269         struct drm_i915_private *dev_priv = dev->dev_private;
9270         int i, ret;
9271
9272         drm_mode_config_init(dev);
9273
9274         dev->mode_config.min_width = 0;
9275         dev->mode_config.min_height = 0;
9276
9277         dev->mode_config.preferred_depth = 24;
9278         dev->mode_config.prefer_shadow = 1;
9279
9280         dev->mode_config.funcs = __DECONST(struct drm_mode_config_funcs *,
9281             &intel_mode_funcs);
9282
9283         intel_init_quirks(dev);
9284
9285         intel_init_display(dev);
9286
9287         if (IS_GEN2(dev)) {
9288                 dev->mode_config.max_width = 2048;
9289                 dev->mode_config.max_height = 2048;
9290         } else if (IS_GEN3(dev)) {
9291                 dev->mode_config.max_width = 4096;
9292                 dev->mode_config.max_height = 4096;
9293         } else {
9294                 dev->mode_config.max_width = 8192;
9295                 dev->mode_config.max_height = 8192;
9296         }
9297         dev->mode_config.fb_base = dev->agp->base;
9298
9299         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9300                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
9301
9302         for (i = 0; i < dev_priv->num_pipe; i++) {
9303                 intel_crtc_init(dev, i);
9304                 ret = intel_plane_init(dev, i);
9305                 if (ret)
9306                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
9307         }
9308
9309         /* Just disable it once at startup */
9310         i915_disable_vga(dev);
9311         intel_setup_outputs(dev);
9312
9313         intel_init_clock_gating(dev);
9314
9315         if (IS_IRONLAKE_M(dev)) {
9316                 ironlake_enable_drps(dev);
9317                 intel_init_emon(dev);
9318         }
9319
9320         if (IS_GEN6(dev)) {
9321                 gen6_enable_rps(dev_priv);
9322                 gen6_update_ring_freq(dev_priv);
9323         }
9324
9325         TASK_INIT(&dev_priv->idle_task, 0, intel_idle_update, dev_priv);
9326         callout_init_mp(&dev_priv->idle_callout);
9327 }
9328
9329 void intel_modeset_gem_init(struct drm_device *dev)
9330 {
9331         if (IS_IRONLAKE_M(dev))
9332                 ironlake_enable_rc6(dev);
9333
9334         intel_setup_overlay(dev);
9335 }
9336
9337 void intel_modeset_cleanup(struct drm_device *dev)
9338 {
9339         struct drm_i915_private *dev_priv = dev->dev_private;
9340         struct drm_crtc *crtc;
9341         struct intel_crtc *intel_crtc;
9342
9343         drm_kms_helper_poll_fini(dev);
9344         DRM_LOCK(dev);
9345
9346 #if 0
9347         intel_unregister_dsm_handler();
9348 #endif
9349
9350         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9351                 /* Skip inactive CRTCs */
9352                 if (!crtc->fb)
9353                         continue;
9354
9355                 intel_crtc = to_intel_crtc(crtc);
9356                 intel_increase_pllclock(crtc);
9357         }
9358
9359         intel_disable_fbc(dev);
9360
9361         if (IS_IRONLAKE_M(dev))
9362                 ironlake_disable_drps(dev);
9363         if (IS_GEN6(dev))
9364                 gen6_disable_rps(dev);
9365
9366         if (IS_IRONLAKE_M(dev))
9367                 ironlake_disable_rc6(dev);
9368
9369         /* Disable the irq before mode object teardown, for the irq might
9370          * enqueue unpin/hotplug work. */
9371         drm_irq_uninstall(dev);
9372         DRM_UNLOCK(dev);
9373
9374         if (taskqueue_cancel(dev_priv->tq, &dev_priv->hotplug_task, NULL))
9375                 taskqueue_drain(dev_priv->tq, &dev_priv->hotplug_task);
9376         if (taskqueue_cancel(dev_priv->tq, &dev_priv->rps_task, NULL))
9377                 taskqueue_drain(dev_priv->tq, &dev_priv->rps_task);
9378
9379         /* Shut off idle work before the crtcs get freed. */
9380         if (taskqueue_cancel(dev_priv->tq, &dev_priv->idle_task, NULL))
9381                 taskqueue_drain(dev_priv->tq, &dev_priv->idle_task);
9382
9383         drm_mode_config_cleanup(dev);
9384 }
9385
9386 /*
9387  * Return which encoder is currently attached for connector.
9388  */
9389 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9390 {
9391         return &intel_attached_encoder(connector)->base;
9392 }
9393
9394 void intel_connector_attach_encoder(struct intel_connector *connector,
9395                                     struct intel_encoder *encoder)
9396 {
9397         connector->encoder = encoder;
9398         drm_mode_connector_attach_encoder(&connector->base,
9399                                           &encoder->base);
9400 }
9401
9402 /*
9403  * set vga decode state - true == enable VGA decode
9404  */
9405 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9406 {
9407         struct drm_i915_private *dev_priv;
9408         device_t bridge_dev;
9409         u16 gmch_ctrl;
9410
9411         dev_priv = dev->dev_private;
9412         bridge_dev = intel_gtt_get_bridge_device();
9413         gmch_ctrl = pci_read_config(bridge_dev, INTEL_GMCH_CTRL, 2);
9414         if (state)
9415                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9416         else
9417                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9418         pci_write_config(bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl, 2);
9419         return (0);
9420 }
9421
9422 struct intel_display_error_state {
9423         struct intel_cursor_error_state {
9424                 u32 control;
9425                 u32 position;
9426                 u32 base;
9427                 u32 size;
9428         } cursor[2];
9429
9430         struct intel_pipe_error_state {
9431                 u32 conf;
9432                 u32 source;
9433
9434                 u32 htotal;
9435                 u32 hblank;
9436                 u32 hsync;
9437                 u32 vtotal;
9438                 u32 vblank;
9439                 u32 vsync;
9440         } pipe[2];
9441
9442         struct intel_plane_error_state {
9443                 u32 control;
9444                 u32 stride;
9445                 u32 size;
9446                 u32 pos;
9447                 u32 addr;
9448                 u32 surface;
9449                 u32 tile_offset;
9450         } plane[2];
9451 };
9452
9453 struct intel_display_error_state *
9454 intel_display_capture_error_state(struct drm_device *dev)
9455 {
9456         drm_i915_private_t *dev_priv = dev->dev_private;
9457         struct intel_display_error_state *error;
9458         int i;
9459
9460         error = kmalloc(sizeof(*error), DRM_MEM_KMS, M_NOWAIT);
9461         if (error == NULL)
9462                 return NULL;
9463
9464         for (i = 0; i < 2; i++) {
9465                 error->cursor[i].control = I915_READ(CURCNTR(i));
9466                 error->cursor[i].position = I915_READ(CURPOS(i));
9467                 error->cursor[i].base = I915_READ(CURBASE(i));
9468
9469                 error->plane[i].control = I915_READ(DSPCNTR(i));
9470                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9471                 error->plane[i].size = I915_READ(DSPSIZE(i));
9472                 error->plane[i].pos = I915_READ(DSPPOS(i));
9473                 error->plane[i].addr = I915_READ(DSPADDR(i));
9474                 if (INTEL_INFO(dev)->gen >= 4) {
9475                         error->plane[i].surface = I915_READ(DSPSURF(i));
9476                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9477                 }
9478
9479                 error->pipe[i].conf = I915_READ(PIPECONF(i));
9480                 error->pipe[i].source = I915_READ(PIPESRC(i));
9481                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
9482                 error->pipe[i].hblank = I915_READ(HBLANK(i));
9483                 error->pipe[i].hsync = I915_READ(HSYNC(i));
9484                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
9485                 error->pipe[i].vblank = I915_READ(VBLANK(i));
9486                 error->pipe[i].vsync = I915_READ(VSYNC(i));
9487         }
9488
9489         return error;
9490 }
9491
9492 void
9493 intel_display_print_error_state(struct sbuf *m,
9494                                 struct drm_device *dev,
9495                                 struct intel_display_error_state *error)
9496 {
9497         int i;
9498
9499         for (i = 0; i < 2; i++) {
9500                 sbuf_printf(m, "Pipe [%d]:\n", i);
9501                 sbuf_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9502                 sbuf_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9503                 sbuf_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9504                 sbuf_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9505                 sbuf_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9506                 sbuf_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9507                 sbuf_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9508                 sbuf_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9509
9510                 sbuf_printf(m, "Plane [%d]:\n", i);
9511                 sbuf_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9512                 sbuf_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9513                 sbuf_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9514                 sbuf_printf(m, "  POS: %08x\n", error->plane[i].pos);
9515                 sbuf_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9516                 if (INTEL_INFO(dev)->gen >= 4) {
9517                         sbuf_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9518                         sbuf_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9519                 }
9520
9521                 sbuf_printf(m, "Cursor [%d]:\n", i);
9522                 sbuf_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9523                 sbuf_printf(m, "  POS: %08x\n", error->cursor[i].position);
9524                 sbuf_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9525         }
9526 }