clock/tsc: Detect invariant TSC
[dragonfly.git] / sys / platform / pc64 / isa / clock.c
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * Copyright (c) 2008 The DragonFly Project.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * William Jolitz and Don Ahn.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
38  * $FreeBSD: src/sys/i386/isa/clock.c,v 1.149.2.6 2002/11/02 04:41:50 iwasaki Exp $
39  */
40
41 /*
42  * Routines to handle clock hardware.
43  */
44
45 /*
46  * inittodr, settodr and support routines written
47  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
48  *
49  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
50  */
51
52 #if 0
53 #include "opt_clock.h"
54 #endif
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/eventhandler.h>
59 #include <sys/time.h>
60 #include <sys/kernel.h>
61 #include <sys/bus.h>
62 #include <sys/sysctl.h>
63 #include <sys/cons.h>
64 #include <sys/systimer.h>
65 #include <sys/globaldata.h>
66 #include <sys/thread2.h>
67 #include <sys/systimer.h>
68 #include <sys/machintr.h>
69 #include <sys/interrupt.h>
70
71 #include <machine/clock.h>
72 #include <machine/cputypes.h>
73 #include <machine/frame.h>
74 #include <machine/ipl.h>
75 #include <machine/limits.h>
76 #include <machine/md_var.h>
77 #include <machine/psl.h>
78 #include <machine/segments.h>
79 #include <machine/smp.h>
80 #include <machine/specialreg.h>
81 #include <machine/intr_machdep.h>
82
83 #include <machine_base/apic/ioapic.h>
84 #include <machine_base/apic/ioapic_abi.h>
85 #include <machine_base/icu/icu.h>
86 #include <bus/isa/isa.h>
87 #include <bus/isa/rtc.h>
88 #include <machine_base/isa/timerreg.h>
89
90 static void i8254_restore(void);
91 static void resettodr_on_shutdown(void *arg __unused);
92
93 /*
94  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
95  * can use a simple formula for leap years.
96  */
97 #define LEAPYEAR(y) ((u_int)(y) % 4 == 0)
98 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
99
100 #ifndef TIMER_FREQ
101 #define TIMER_FREQ   1193182
102 #endif
103
104 static uint8_t i8254_walltimer_sel;
105 static uint16_t i8254_walltimer_cntr;
106
107 int     adjkerntz;              /* local offset from GMT in seconds */
108 int     disable_rtc_set;        /* disable resettodr() if != 0 */
109 int     tsc_present;
110 int     tsc_invariant;
111 int64_t tsc_frequency;
112 int     tsc_is_broken;
113 int     wall_cmos_clock;        /* wall CMOS clock assumed if != 0 */
114 int     timer0_running;
115 enum tstate { RELEASED, ACQUIRED };
116 enum tstate timer0_state;
117 enum tstate timer1_state;
118 enum tstate timer2_state;
119
120 static  int     beeping = 0;
121 static  const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
122 static  u_char  rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
123 static  u_char  rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
124 static  int     rtc_loaded;
125
126 static int i8254_cputimer_div;
127
128 static int i8254_nointr;
129 static int i8254_intr_disable = 1;
130 TUNABLE_INT("hw.i8254.intr_disable", &i8254_intr_disable);
131
132 static struct callout sysbeepstop_ch;
133
134 static sysclock_t i8254_cputimer_count(void);
135 static void i8254_cputimer_construct(struct cputimer *cputimer, sysclock_t last);
136 static void i8254_cputimer_destruct(struct cputimer *cputimer);
137
138 static struct cputimer  i8254_cputimer = {
139     SLIST_ENTRY_INITIALIZER,
140     "i8254",
141     CPUTIMER_PRI_8254,
142     0,
143     i8254_cputimer_count,
144     cputimer_default_fromhz,
145     cputimer_default_fromus,
146     i8254_cputimer_construct,
147     i8254_cputimer_destruct,
148     TIMER_FREQ,
149     0, 0, 0
150 };
151
152 static void i8254_intr_reload(struct cputimer_intr *, sysclock_t);
153 static void i8254_intr_config(struct cputimer_intr *, const struct cputimer *);
154 static void i8254_intr_initclock(struct cputimer_intr *, boolean_t);
155
156 static struct cputimer_intr i8254_cputimer_intr = {
157     .freq = TIMER_FREQ,
158     .reload = i8254_intr_reload,
159     .enable = cputimer_intr_default_enable,
160     .config = i8254_intr_config,
161     .restart = cputimer_intr_default_restart,
162     .pmfixup = cputimer_intr_default_pmfixup,
163     .initclock = i8254_intr_initclock,
164     .next = SLIST_ENTRY_INITIALIZER,
165     .name = "i8254",
166     .type = CPUTIMER_INTR_8254,
167     .prio = CPUTIMER_INTR_PRIO_8254,
168     .caps = CPUTIMER_INTR_CAP_PS
169 };
170
171 /*
172  * timer0 clock interrupt.  Timer0 is in one-shot mode and has stopped
173  * counting as of this interrupt.  We use timer1 in free-running mode (not
174  * generating any interrupts) as our main counter.  Each cpu has timeouts
175  * pending.
176  *
177  * This code is INTR_MPSAFE and may be called without the BGL held.
178  */
179 static void
180 clkintr(void *dummy, void *frame_arg)
181 {
182         static sysclock_t sysclock_count;       /* NOTE! Must be static */
183         struct globaldata *gd = mycpu;
184         struct globaldata *gscan;
185         int n;
186
187         /*
188          * SWSTROBE mode is a one-shot, the timer is no longer running
189          */
190         timer0_running = 0;
191
192         /*
193          * XXX the dispatcher needs work.  right now we call systimer_intr()
194          * directly or via IPI for any cpu with systimers queued, which is
195          * usually *ALL* of them.  We need to use the LAPIC timer for this.
196          */
197         sysclock_count = sys_cputimer->count();
198         for (n = 0; n < ncpus; ++n) {
199             gscan = globaldata_find(n);
200             if (TAILQ_FIRST(&gscan->gd_systimerq) == NULL)
201                 continue;
202             if (gscan != gd) {
203                 lwkt_send_ipiq3(gscan, (ipifunc3_t)systimer_intr, 
204                                 &sysclock_count, 1);
205             } else {
206                 systimer_intr(&sysclock_count, 0, frame_arg);
207             }
208         }
209 }
210
211
212 /*
213  * NOTE! not MP safe.
214  */
215 int
216 acquire_timer2(int mode)
217 {
218         if (timer2_state != RELEASED)
219                 return (-1);
220         timer2_state = ACQUIRED;
221
222         /*
223          * This access to the timer registers is as atomic as possible
224          * because it is a single instruction.  We could do better if we
225          * knew the rate.
226          */
227         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
228         return (0);
229 }
230
231 int
232 release_timer2(void)
233 {
234         if (timer2_state != ACQUIRED)
235                 return (-1);
236         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
237         timer2_state = RELEASED;
238         return (0);
239 }
240
241 #include "opt_ddb.h"
242 #ifdef DDB
243 #include <ddb/ddb.h>
244
245 DB_SHOW_COMMAND(rtc, rtc)
246 {
247         kprintf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
248                rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
249                rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
250                rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
251 }
252 #endif /* DDB */
253
254 /*
255  * Return the current cpu timer count as a 32 bit integer.
256  */
257 static
258 sysclock_t
259 i8254_cputimer_count(void)
260 {
261         static __uint16_t cputimer_last;
262         __uint16_t count;
263         sysclock_t ret;
264
265         clock_lock();
266         outb(TIMER_MODE, i8254_walltimer_sel | TIMER_LATCH);
267         count = (__uint8_t)inb(i8254_walltimer_cntr);           /* get countdown */
268         count |= ((__uint8_t)inb(i8254_walltimer_cntr) << 8);
269         count = -count;                                 /* -> countup */
270         if (count < cputimer_last)                      /* rollover */
271                 i8254_cputimer.base += 0x00010000;
272         ret = i8254_cputimer.base | count;
273         cputimer_last = count;
274         clock_unlock();
275         return(ret);
276 }
277
278 /*
279  * This function is called whenever the system timebase changes, allowing
280  * us to calculate what is needed to convert a system timebase tick 
281  * into an 8254 tick for the interrupt timer.  If we can convert to a
282  * simple shift, multiplication, or division, we do so.  Otherwise 64
283  * bit arithmatic is required every time the interrupt timer is reloaded.
284  */
285 static void
286 i8254_intr_config(struct cputimer_intr *cti, const struct cputimer *timer)
287 {
288     int freq;
289     int div;
290
291     /*
292      * Will a simple divide do the trick?
293      */
294     div = (timer->freq + (cti->freq / 2)) / cti->freq;
295     freq = cti->freq * div;
296
297     if (freq >= timer->freq - 1 && freq <= timer->freq + 1)
298         i8254_cputimer_div = div;
299     else
300         i8254_cputimer_div = 0;
301 }
302
303 /*
304  * Reload for the next timeout.  It is possible for the reload value
305  * to be 0 or negative, indicating that an immediate timer interrupt
306  * is desired.  For now make the minimum 2 ticks.
307  *
308  * We may have to convert from the system timebase to the 8254 timebase.
309  */
310 static void
311 i8254_intr_reload(struct cputimer_intr *cti, sysclock_t reload)
312 {
313     __uint16_t count;
314
315     if (i8254_cputimer_div)
316         reload /= i8254_cputimer_div;
317     else
318         reload = (int64_t)reload * cti->freq / sys_cputimer->freq;
319
320     if ((int)reload < 2)
321         reload = 2;
322
323     clock_lock();
324     if (timer0_running) {
325         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);     /* count-down timer */
326         count = (__uint8_t)inb(TIMER_CNTR0);            /* lsb */
327         count |= ((__uint8_t)inb(TIMER_CNTR0) << 8);    /* msb */
328         if (reload < count) {
329             outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
330             outb(TIMER_CNTR0, (__uint8_t)reload);       /* lsb */
331             outb(TIMER_CNTR0, (__uint8_t)(reload >> 8)); /* msb */
332         }
333     } else {
334         timer0_running = 1;
335         if (reload > 0xFFFF)
336             reload = 0;         /* full count */
337         outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
338         outb(TIMER_CNTR0, (__uint8_t)reload);           /* lsb */
339         outb(TIMER_CNTR0, (__uint8_t)(reload >> 8));    /* msb */
340     }
341     clock_unlock();
342 }
343
344 /*
345  * DELAY(usec)       - Spin for the specified number of microseconds.
346  * DRIVERSLEEP(usec) - Spin for the specified number of microseconds,
347  *                     but do a thread switch in the loop
348  *
349  * Relies on timer 1 counting down from (cputimer_freq / hz)
350  * Note: timer had better have been programmed before this is first used!
351  */
352 static void
353 DODELAY(int n, int doswitch)
354 {
355         ssysclock_t delta, ticks_left;
356         sysclock_t prev_tick, tick;
357
358 #ifdef DELAYDEBUG
359         int getit_calls = 1;
360         int n1;
361         static int state = 0;
362
363         if (state == 0) {
364                 state = 1;
365                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
366                         DELAY(n1);
367                 state = 2;
368         }
369         if (state == 1)
370                 kprintf("DELAY(%d)...", n);
371 #endif
372         /*
373          * Guard against the timer being uninitialized if we are called
374          * early for console i/o.
375          */
376         if (timer0_state == RELEASED)
377                 i8254_restore();
378
379         /*
380          * Read the counter first, so that the rest of the setup overhead is
381          * counted.  Then calculate the number of hardware timer ticks
382          * required, rounding up to be sure we delay at least the requested
383          * number of microseconds.
384          */
385         prev_tick = sys_cputimer->count();
386         ticks_left = ((u_int)n * (int64_t)sys_cputimer->freq + 999999) /
387                      1000000;
388
389         /*
390          * Loop until done.
391          */
392         while (ticks_left > 0) {
393                 tick = sys_cputimer->count();
394 #ifdef DELAYDEBUG
395                 ++getit_calls;
396 #endif
397                 delta = tick - prev_tick;
398                 prev_tick = tick;
399                 if (delta < 0)
400                         delta = 0;
401                 ticks_left -= delta;
402                 if (doswitch && ticks_left > 0)
403                         lwkt_switch();
404                 cpu_pause();
405         }
406 #ifdef DELAYDEBUG
407         if (state == 1)
408                 kprintf(" %d calls to getit() at %d usec each\n",
409                        getit_calls, (n + 5) / getit_calls);
410 #endif
411 }
412
413 /*
414  * DELAY() never switches.
415  */
416 void
417 DELAY(int n)
418 {
419         DODELAY(n, 0);
420 }
421
422 /*
423  * Returns non-zero if the specified time period has elapsed.  Call
424  * first with last_clock set to 0.
425  */
426 int
427 CHECKTIMEOUT(TOTALDELAY *tdd)
428 {
429         sysclock_t delta;
430         int us;
431
432         if (tdd->started == 0) {
433                 if (timer0_state == RELEASED)
434                         i8254_restore();
435                 tdd->last_clock = sys_cputimer->count();
436                 tdd->started = 1;
437                 return(0);
438         }
439         delta = sys_cputimer->count() - tdd->last_clock;
440         us = (u_int64_t)delta * (u_int64_t)1000000 /
441              (u_int64_t)sys_cputimer->freq;
442         tdd->last_clock += (u_int64_t)us * (u_int64_t)sys_cputimer->freq /
443                            1000000;
444         tdd->us -= us;
445         return (tdd->us < 0);
446 }
447
448
449 /*
450  * DRIVERSLEEP() does not switch if called with a spinlock held or
451  * from a hard interrupt.
452  */
453 void
454 DRIVERSLEEP(int usec)
455 {
456         globaldata_t gd = mycpu;
457
458         if (gd->gd_intr_nesting_level || gd->gd_spinlocks) {
459                 DODELAY(usec, 0);
460         } else {
461                 DODELAY(usec, 1);
462         }
463 }
464
465 static void
466 sysbeepstop(void *chan)
467 {
468         outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
469         beeping = 0;
470         release_timer2();
471 }
472
473 int
474 sysbeep(int pitch, int period)
475 {
476         if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
477                 return(-1);
478         if (sysbeep_enable == 0)
479                 return(-1);
480         /*
481          * Nobody else is using timer2, we do not need the clock lock
482          */
483         outb(TIMER_CNTR2, pitch);
484         outb(TIMER_CNTR2, (pitch>>8));
485         if (!beeping) {
486                 /* enable counter2 output to speaker */
487                 outb(IO_PPI, inb(IO_PPI) | 3);
488                 beeping = period;
489                 callout_reset(&sysbeepstop_ch, period, sysbeepstop, NULL);
490         }
491         return (0);
492 }
493
494 /*
495  * RTC support routines
496  */
497
498 int
499 rtcin(int reg)
500 {
501         u_char val;
502
503         crit_enter();
504         outb(IO_RTC, reg);
505         inb(0x84);
506         val = inb(IO_RTC + 1);
507         inb(0x84);
508         crit_exit();
509         return (val);
510 }
511
512 static __inline void
513 writertc(u_char reg, u_char val)
514 {
515         crit_enter();
516         inb(0x84);
517         outb(IO_RTC, reg);
518         inb(0x84);
519         outb(IO_RTC + 1, val);
520         inb(0x84);              /* XXX work around wrong order in rtcin() */
521         crit_exit();
522 }
523
524 static __inline int
525 readrtc(int port)
526 {
527         return(bcd2bin(rtcin(port)));
528 }
529
530 static u_int
531 calibrate_clocks(void)
532 {
533         u_int64_t old_tsc;
534         u_int tot_count;
535         sysclock_t count, prev_count;
536         int sec, start_sec, timeout;
537
538         if (bootverbose)
539                 kprintf("Calibrating clock(s) ...\n");
540         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
541                 goto fail;
542         timeout = 100000000;
543
544         /* Read the mc146818A seconds counter. */
545         for (;;) {
546                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
547                         sec = rtcin(RTC_SEC);
548                         break;
549                 }
550                 if (--timeout == 0)
551                         goto fail;
552         }
553
554         /* Wait for the mC146818A seconds counter to change. */
555         start_sec = sec;
556         for (;;) {
557                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
558                         sec = rtcin(RTC_SEC);
559                         if (sec != start_sec)
560                                 break;
561                 }
562                 if (--timeout == 0)
563                         goto fail;
564         }
565
566         /* Start keeping track of the i8254 counter. */
567         prev_count = sys_cputimer->count();
568         tot_count = 0;
569
570         if (tsc_present) 
571                 old_tsc = rdtsc();
572         else
573                 old_tsc = 0;            /* shut up gcc */
574
575         /*
576          * Wait for the mc146818A seconds counter to change.  Read the i8254
577          * counter for each iteration since this is convenient and only
578          * costs a few usec of inaccuracy. The timing of the final reads
579          * of the counters almost matches the timing of the initial reads,
580          * so the main cause of inaccuracy is the varying latency from 
581          * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
582          * rtcin(RTC_SEC) that returns a changed seconds count.  The
583          * maximum inaccuracy from this cause is < 10 usec on 486's.
584          */
585         start_sec = sec;
586         for (;;) {
587                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
588                         sec = rtcin(RTC_SEC);
589                 count = sys_cputimer->count();
590                 tot_count += (int)(count - prev_count);
591                 prev_count = count;
592                 if (sec != start_sec)
593                         break;
594                 if (--timeout == 0)
595                         goto fail;
596         }
597
598         /*
599          * Read the cpu cycle counter.  The timing considerations are
600          * similar to those for the i8254 clock.
601          */
602         if (tsc_present) {
603                 tsc_frequency = rdtsc() - old_tsc;
604         }
605
606         if (tsc_present) {
607                 kprintf("TSC%s clock: %llu Hz, ",
608                     tsc_invariant ? " invariant" : "",
609                     (long long)tsc_frequency);
610         }
611         kprintf("i8254 clock: %u Hz\n", tot_count);
612         return (tot_count);
613
614 fail:
615         kprintf("failed, using default i8254 clock of %u Hz\n",
616                 i8254_cputimer.freq);
617         return (i8254_cputimer.freq);
618 }
619
620 static void
621 i8254_restore(void)
622 {
623         timer0_state = ACQUIRED;
624
625         clock_lock();
626
627         /*
628          * Timer0 is our fine-grained variable clock interrupt
629          */
630         outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
631         outb(TIMER_CNTR0, 2);   /* lsb */
632         outb(TIMER_CNTR0, 0);   /* msb */
633         clock_unlock();
634
635         if (!i8254_nointr) {
636                 cputimer_intr_register(&i8254_cputimer_intr);
637                 cputimer_intr_select(&i8254_cputimer_intr, 0);
638         }
639
640         /*
641          * Timer1 or timer2 is our free-running clock, but only if another
642          * has not been selected.
643          */
644         cputimer_register(&i8254_cputimer);
645         cputimer_select(&i8254_cputimer, 0);
646 }
647
648 static void
649 i8254_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
650 {
651         int which;
652
653         /*
654          * Should we use timer 1 or timer 2 ?
655          */
656         which = 0;
657         TUNABLE_INT_FETCH("hw.i8254.walltimer", &which);
658         if (which != 1 && which != 2)
659                 which = 2;
660
661         switch(which) {
662         case 1:
663                 timer->name = "i8254_timer1";
664                 timer->type = CPUTIMER_8254_SEL1;
665                 i8254_walltimer_sel = TIMER_SEL1;
666                 i8254_walltimer_cntr = TIMER_CNTR1;
667                 timer1_state = ACQUIRED;
668                 break;
669         case 2:
670                 timer->name = "i8254_timer2";
671                 timer->type = CPUTIMER_8254_SEL2;
672                 i8254_walltimer_sel = TIMER_SEL2;
673                 i8254_walltimer_cntr = TIMER_CNTR2;
674                 timer2_state = ACQUIRED;
675                 break;
676         }
677
678         timer->base = (oldclock + 0xFFFF) & ~0xFFFF;
679
680         clock_lock();
681         outb(TIMER_MODE, i8254_walltimer_sel | TIMER_RATEGEN | TIMER_16BIT);
682         outb(i8254_walltimer_cntr, 0);  /* lsb */
683         outb(i8254_walltimer_cntr, 0);  /* msb */
684         outb(IO_PPI, inb(IO_PPI) | 1);  /* bit 0: enable gate, bit 1: spkr */
685         clock_unlock();
686 }
687
688 static void
689 i8254_cputimer_destruct(struct cputimer *timer)
690 {
691         switch(timer->type) {
692         case CPUTIMER_8254_SEL1:
693             timer1_state = RELEASED;
694             break;
695         case CPUTIMER_8254_SEL2:
696             timer2_state = RELEASED;
697             break;
698         default:
699             break;
700         }
701         timer->type = 0;
702 }
703
704 static void
705 rtc_restore(void)
706 {
707         /* Restore all of the RTC's "status" (actually, control) registers. */
708         writertc(RTC_STATUSB, RTCSB_24HR);
709         writertc(RTC_STATUSA, rtc_statusa);
710         writertc(RTC_STATUSB, rtc_statusb);
711 }
712
713 /*
714  * Restore all the timers.
715  *
716  * This function is called to resynchronize our core timekeeping after a
717  * long halt, e.g. from apm_default_resume() and friends.  It is also 
718  * called if after a BIOS call we have detected munging of the 8254.
719  * It is necessary because cputimer_count() counter's delta may have grown
720  * too large for nanouptime() and friends to handle, or (in the case of 8254
721  * munging) might cause the SYSTIMER code to prematurely trigger.
722  */
723 void
724 timer_restore(void)
725 {
726         crit_enter();
727         i8254_restore();                /* restore timer_freq and hz */
728         rtc_restore();                  /* reenable RTC interrupts */
729         crit_exit();
730 }
731
732 /*
733  * Initialize 8254 timer 0 early so that it can be used in DELAY().
734  */
735 void
736 startrtclock(void)
737 {
738         u_int delta, freq;
739
740         /* 
741          * Can we use the TSC?
742          */
743         if (cpu_feature & CPUID_TSC) {
744                 tsc_present = 1;
745                 if ((cpu_vendor_id == CPU_VENDOR_INTEL ||
746                      cpu_vendor_id == CPU_VENDOR_AMD) &&
747                     cpu_exthigh >= 0x80000007) {
748                         u_int regs[4];
749
750                         do_cpuid(0x80000007, regs);
751                         if (regs[3] & 0x100)
752                                 tsc_invariant = 1;
753                 }
754         } else {
755                 tsc_present = 0;
756         }
757
758         /*
759          * Initial RTC state, don't do anything unexpected
760          */
761         writertc(RTC_STATUSA, rtc_statusa);
762         writertc(RTC_STATUSB, RTCSB_24HR);
763
764         /*
765          * Set the 8254 timer0 in TIMER_SWSTROBE mode and cause it to 
766          * generate an interrupt, which we will ignore for now.
767          *
768          * Set the 8254 timer1 in TIMER_RATEGEN mode and load 0x0000
769          * (so it counts a full 2^16 and repeats).  We will use this timer
770          * for our counting.
771          */
772         i8254_restore();
773         freq = calibrate_clocks();
774 #ifdef CLK_CALIBRATION_LOOP
775         if (bootverbose) {
776                 kprintf(
777                 "Press a key on the console to abort clock calibration\n");
778                 while (cncheckc() == -1)
779                         calibrate_clocks();
780         }
781 #endif
782
783         /*
784          * Use the calibrated i8254 frequency if it seems reasonable.
785          * Otherwise use the default, and don't use the calibrated i586
786          * frequency.
787          */
788         delta = freq > i8254_cputimer.freq ? 
789                         freq - i8254_cputimer.freq : i8254_cputimer.freq - freq;
790         if (delta < i8254_cputimer.freq / 100) {
791 #ifndef CLK_USE_I8254_CALIBRATION
792                 if (bootverbose)
793                         kprintf(
794 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
795                 freq = i8254_cputimer.freq;
796 #endif
797                 /*
798                  * NOTE:
799                  * Interrupt timer's freq must be adjusted
800                  * before we change the cuptimer's frequency.
801                  */
802                 i8254_cputimer_intr.freq = freq;
803                 cputimer_set_frequency(&i8254_cputimer, freq);
804         } else {
805                 if (bootverbose)
806                         kprintf(
807                     "%d Hz differs from default of %d Hz by more than 1%%\n",
808                                freq, i8254_cputimer.freq);
809                 tsc_frequency = 0;
810         }
811
812 #ifndef CLK_USE_TSC_CALIBRATION
813         if (tsc_frequency != 0) {
814                 if (bootverbose)
815                         kprintf(
816 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
817                 tsc_frequency = 0;
818         }
819 #endif
820         if (tsc_present && tsc_frequency == 0) {
821                 /*
822                  * Calibration of the i586 clock relative to the mc146818A
823                  * clock failed.  Do a less accurate calibration relative
824                  * to the i8254 clock.
825                  */
826                 u_int64_t old_tsc = rdtsc();
827
828                 DELAY(1000000);
829                 tsc_frequency = rdtsc() - old_tsc;
830 #ifdef CLK_USE_TSC_CALIBRATION
831                 if (bootverbose) {
832                         kprintf("TSC clock: %llu Hz (Method B)\n",
833                                 tsc_frequency);
834                 }
835 #endif
836         }
837
838         EVENTHANDLER_REGISTER(shutdown_post_sync, resettodr_on_shutdown, NULL, SHUTDOWN_PRI_LAST);
839 }
840
841 /*
842  * Sync the time of day back to the RTC on shutdown, but only if
843  * we have already loaded it and have not crashed.
844  */
845 static void
846 resettodr_on_shutdown(void *arg __unused)
847 {
848         if (rtc_loaded && panicstr == NULL) {
849                 resettodr();
850         }
851 }
852
853 /*
854  * Initialize the time of day register, based on the time base which is, e.g.
855  * from a filesystem.
856  */
857 void
858 inittodr(time_t base)
859 {
860         unsigned long   sec, days;
861         int             year, month;
862         int             y, m;
863         struct timespec ts;
864
865         if (base) {
866                 ts.tv_sec = base;
867                 ts.tv_nsec = 0;
868                 set_timeofday(&ts);
869         }
870
871         /* Look if we have a RTC present and the time is valid */
872         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
873                 goto wrong_time;
874
875         /* wait for time update to complete */
876         /* If RTCSA_TUP is zero, we have at least 244us before next update */
877         crit_enter();
878         while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
879                 crit_exit();
880                 crit_enter();
881         }
882
883         days = 0;
884 #ifdef USE_RTC_CENTURY
885         year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
886 #else
887         year = readrtc(RTC_YEAR) + 1900;
888         if (year < 1970)
889                 year += 100;
890 #endif
891         if (year < 1970) {
892                 crit_exit();
893                 goto wrong_time;
894         }
895         month = readrtc(RTC_MONTH);
896         for (m = 1; m < month; m++)
897                 days += daysinmonth[m-1];
898         if ((month > 2) && LEAPYEAR(year))
899                 days ++;
900         days += readrtc(RTC_DAY) - 1;
901         for (y = 1970; y < year; y++)
902                 days += DAYSPERYEAR + LEAPYEAR(y);
903         sec = ((( days * 24 +
904                   readrtc(RTC_HRS)) * 60 +
905                   readrtc(RTC_MIN)) * 60 +
906                   readrtc(RTC_SEC));
907         /* sec now contains the number of seconds, since Jan 1 1970,
908            in the local time zone */
909
910         sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
911
912         y = time_second - sec;
913         if (y <= -2 || y >= 2) {
914                 /* badly off, adjust it */
915                 ts.tv_sec = sec;
916                 ts.tv_nsec = 0;
917                 set_timeofday(&ts);
918         }
919         rtc_loaded = 1;
920         crit_exit();
921         return;
922
923 wrong_time:
924         kprintf("Invalid time in real time clock.\n");
925         kprintf("Check and reset the date immediately!\n");
926 }
927
928 /*
929  * Write system time back to RTC
930  */
931 void
932 resettodr(void)
933 {
934         struct timeval tv;
935         unsigned long tm;
936         int m;
937         int y;
938
939         if (disable_rtc_set)
940                 return;
941
942         microtime(&tv);
943         tm = tv.tv_sec;
944
945         crit_enter();
946         /* Disable RTC updates and interrupts. */
947         writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
948
949         /* Calculate local time to put in RTC */
950
951         tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
952
953         writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;    /* Write back Seconds */
954         writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;    /* Write back Minutes */
955         writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;    /* Write back Hours   */
956
957         /* We have now the days since 01-01-1970 in tm */
958         writertc(RTC_WDAY, (tm+4)%7);                   /* Write back Weekday */
959         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
960              tm >= m;
961              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
962              tm -= m;
963
964         /* Now we have the years in y and the day-of-the-year in tm */
965         writertc(RTC_YEAR, bin2bcd(y%100));             /* Write back Year    */
966 #ifdef USE_RTC_CENTURY
967         writertc(RTC_CENTURY, bin2bcd(y/100));          /* ... and Century    */
968 #endif
969         for (m = 0; ; m++) {
970                 int ml;
971
972                 ml = daysinmonth[m];
973                 if (m == 1 && LEAPYEAR(y))
974                         ml++;
975                 if (tm < ml)
976                         break;
977                 tm -= ml;
978         }
979
980         writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
981         writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
982
983         /* Reenable RTC updates and interrupts. */
984         writertc(RTC_STATUSB, rtc_statusb);
985         crit_exit();
986 }
987
988 static int
989 i8254_ioapic_trial(int irq, struct cputimer_intr *cti)
990 {
991         sysclock_t base;
992         long lastcnt;
993
994         /*
995          * Following code assumes the 8254 is the cpu timer,
996          * so make sure it is.
997          */
998         KKASSERT(sys_cputimer == &i8254_cputimer);
999         KKASSERT(cti == &i8254_cputimer_intr);
1000
1001         lastcnt = get_interrupt_counter(irq, mycpuid);
1002
1003         /*
1004          * Force an 8254 Timer0 interrupt and wait 1/100s for
1005          * it to happen, then see if we got it.
1006          */
1007         kprintf("IOAPIC: testing 8254 interrupt delivery\n");
1008
1009         i8254_intr_reload(cti, 2);
1010         base = sys_cputimer->count();
1011         while (sys_cputimer->count() - base < sys_cputimer->freq / 100)
1012                 ; /* nothing */
1013
1014         if (get_interrupt_counter(irq, mycpuid) - lastcnt == 0)
1015                 return ENOENT;
1016         return 0;
1017 }
1018
1019 /*
1020  * Start both clocks running.  DragonFly note: the stat clock is no longer
1021  * used.  Instead, 8254 based systimers are used for all major clock
1022  * interrupts.
1023  */
1024 static void
1025 i8254_intr_initclock(struct cputimer_intr *cti, boolean_t selected)
1026 {
1027         void *clkdesc = NULL;
1028         int irq = 0, mixed_mode = 0, error;
1029
1030         KKASSERT(mycpuid == 0);
1031         callout_init_mp(&sysbeepstop_ch);
1032
1033         if (!selected && i8254_intr_disable)
1034                 goto nointr;
1035
1036         /*
1037          * The stat interrupt mask is different without the
1038          * statistics clock.  Also, don't set the interrupt
1039          * flag which would normally cause the RTC to generate
1040          * interrupts.
1041          */
1042         rtc_statusb = RTCSB_24HR;
1043
1044         /* Finish initializing 8254 timer 0. */
1045         if (ioapic_enable) {
1046                 irq = machintr_legacy_intr_find(0, INTR_TRIGGER_EDGE,
1047                         INTR_POLARITY_HIGH);
1048                 if (irq < 0) {
1049 mixed_mode_setup:
1050                         error = ioapic_conf_legacy_extint(0);
1051                         if (!error) {
1052                                 irq = machintr_legacy_intr_find(0,
1053                                     INTR_TRIGGER_EDGE, INTR_POLARITY_HIGH);
1054                                 if (irq < 0)
1055                                         error = ENOENT;
1056                         }
1057
1058                         if (error) {
1059                                 if (!selected) {
1060                                         kprintf("IOAPIC: setup mixed mode for "
1061                                                 "irq 0 failed: %d\n", error);
1062                                         goto nointr;
1063                                 } else {
1064                                         panic("IOAPIC: setup mixed mode for "
1065                                               "irq 0 failed: %d\n", error);
1066                                 }
1067                         }
1068                         mixed_mode = 1;
1069                 }
1070                 clkdesc = register_int(irq, clkintr, NULL, "clk",
1071                                        NULL,
1072                                        INTR_EXCL | INTR_CLOCK |
1073                                        INTR_NOPOLL | INTR_MPSAFE |
1074                                        INTR_NOENTROPY, 0);
1075         } else {
1076                 register_int(0, clkintr, NULL, "clk", NULL,
1077                              INTR_EXCL | INTR_CLOCK |
1078                              INTR_NOPOLL | INTR_MPSAFE |
1079                              INTR_NOENTROPY, 0);
1080         }
1081
1082         /* Initialize RTC. */
1083         writertc(RTC_STATUSA, rtc_statusa);
1084         writertc(RTC_STATUSB, RTCSB_24HR);
1085
1086         if (ioapic_enable) {
1087                 error = i8254_ioapic_trial(irq, cti);
1088                 if (error) {
1089                         if (mixed_mode) {
1090                                 if (!selected) {
1091                                         kprintf("IOAPIC: mixed mode for irq %d "
1092                                                 "trial failed: %d\n",
1093                                                 irq, error);
1094                                         goto nointr;
1095                                 } else {
1096                                         panic("IOAPIC: mixed mode for irq %d "
1097                                               "trial failed: %d\n", irq, error);
1098                                 }
1099                         } else {
1100                                 kprintf("IOAPIC: warning 8254 is not connected "
1101                                         "to the correct pin, try mixed mode\n");
1102                                 unregister_int(clkdesc, 0);
1103                                 goto mixed_mode_setup;
1104                         }
1105                 }
1106         }
1107         return;
1108
1109 nointr:
1110         i8254_nointr = 1; /* don't try to register again */
1111         cputimer_intr_deregister(cti);
1112 }
1113
1114 void
1115 setstatclockrate(int newhz)
1116 {
1117         if (newhz == RTC_PROFRATE)
1118                 rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1119         else
1120                 rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1121         writertc(RTC_STATUSA, rtc_statusa);
1122 }
1123
1124 #if 0
1125 static unsigned
1126 tsc_get_timecount(struct timecounter *tc)
1127 {
1128         return (rdtsc());
1129 }
1130 #endif
1131
1132 #ifdef KERN_TIMESTAMP
1133 #define KERN_TIMESTAMP_SIZE 16384
1134 static u_long tsc[KERN_TIMESTAMP_SIZE] ;
1135 SYSCTL_OPAQUE(_debug, OID_AUTO, timestamp, CTLFLAG_RD, tsc,
1136         sizeof(tsc), "LU", "Kernel timestamps");
1137 void  
1138 _TSTMP(u_int32_t x)
1139 {
1140         static int i;
1141
1142         tsc[i] = (u_int32_t)rdtsc();
1143         tsc[i+1] = x;
1144         i = i + 2;
1145         if (i >= KERN_TIMESTAMP_SIZE)
1146                 i = 0;
1147         tsc[i] = 0; /* mark last entry */
1148 }
1149 #endif /* KERN_TIMESTAMP */
1150
1151 /*
1152  *
1153  */
1154
1155 static int
1156 hw_i8254_timestamp(SYSCTL_HANDLER_ARGS)
1157 {
1158     sysclock_t count;
1159     __uint64_t tscval;
1160     char buf[32];
1161
1162     crit_enter();
1163     if (sys_cputimer == &i8254_cputimer)
1164         count = sys_cputimer->count();
1165     else
1166         count = 0;
1167     if (tsc_present)
1168         tscval = rdtsc();
1169     else
1170         tscval = 0;
1171     crit_exit();
1172     ksnprintf(buf, sizeof(buf), "%08x %016llx", count, (long long)tscval);
1173     return(SYSCTL_OUT(req, buf, strlen(buf) + 1));
1174 }
1175
1176 SYSCTL_NODE(_hw, OID_AUTO, i8254, CTLFLAG_RW, 0, "I8254");
1177 SYSCTL_UINT(_hw_i8254, OID_AUTO, freq, CTLFLAG_RD, &i8254_cputimer.freq, 0,
1178             "frequency");
1179 SYSCTL_PROC(_hw_i8254, OID_AUTO, timestamp, CTLTYPE_STRING|CTLFLAG_RD,
1180             0, 0, hw_i8254_timestamp, "A", "");
1181
1182 SYSCTL_INT(_hw, OID_AUTO, tsc_present, CTLFLAG_RD,
1183             &tsc_present, 0, "TSC Available");
1184 SYSCTL_INT(_hw, OID_AUTO, tsc_invariant, CTLFLAG_RD,
1185             &tsc_invariant, 0, "Invariant TSC");
1186 SYSCTL_QUAD(_hw, OID_AUTO, tsc_frequency, CTLFLAG_RD,
1187             &tsc_frequency, 0, "TSC Frequency");