Merge branch 'vendor/OPENSSH'
[dragonfly.git] / sys / dev / netif / wpi / if_wpi.c
1 /*-
2  * Copyright (c) 2006,2007
3  *      Damien Bergamini <damien.bergamini@free.fr>
4  *      Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $
19  */
20
21 #define VERSION "20071127"
22
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  *
26  * The 3945ABG network adapter doesn't use traditional hardware as
27  * many other adaptors do. Instead at run time the eeprom is set into a known
28  * state and told to load boot firmware. The boot firmware loads an init and a
29  * main  binary firmware image into SRAM on the card via DMA.
30  * Once the firmware is loaded, the driver/hw then
31  * communicate by way of circular dma rings via the the SRAM to the firmware.
32  *
33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34  * The 4 tx data rings allow for prioritization QoS.
35  *
36  * The rx data ring consists of 32 dma buffers. Two registers are used to
37  * indicate where in the ring the driver and the firmware are up to. The
38  * driver sets the initial read index (reg1) and the initial write index (reg2),
39  * the firmware updates the read index (reg1) on rx of a packet and fires an
40  * interrupt. The driver then processes the buffers starting at reg1 indicating
41  * to the firmware which buffers have been accessed by updating reg2. At the
42  * same time allocating new memory for the processed buffer.
43  *
44  * A similar thing happens with the tx rings. The difference is the firmware
45  * stop processing buffers once the queue is full and until confirmation
46  * of a successful transmition (tx_intr) has occurred.
47  *
48  * The command ring operates in the same manner as the tx queues.
49  *
50  * All communication direct to the card (ie eeprom) is classed as Stage1
51  * communication
52  *
53  * All communication via the firmware to the card is classed as State2.
54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55  * firmware. The bootstrap firmware and runtime firmware are loaded
56  * from host memory via dma to the card then told to execute. From this point
57  * on the majority of communications between the driver and the card goes
58  * via the firmware.
59  */
60
61 #include <sys/param.h>
62 #include <sys/sysctl.h>
63 #include <sys/sockio.h>
64 #include <sys/mbuf.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/systm.h>
68 #include <sys/malloc.h>
69 #include <sys/queue.h>
70 #include <sys/taskqueue.h>
71 #include <sys/module.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74 #include <sys/linker.h>
75 #include <sys/firmware.h>
76
77 #include <sys/bus.h>
78 #include <sys/resource.h>
79 #include <sys/rman.h>
80
81 #include <bus/pci/pcireg.h>
82 #include <bus/pci/pcivar.h>
83
84 #include <net/bpf.h>
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ifq_var.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92
93 #include <netproto/802_11/ieee80211_var.h>
94 #include <netproto/802_11/ieee80211_radiotap.h>
95 #include <netproto/802_11/ieee80211_regdomain.h>
96 #include <netproto/802_11/ieee80211_ratectl.h>
97
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/if_ether.h>
103
104 /* XXX: move elsewhere */
105 #define abs(x) (((x) < 0) ? -(x) : (x))
106
107 #include "if_wpireg.h"
108 #include "if_wpivar.h"
109
110 #define WPI_DEBUG
111
112 #ifdef WPI_DEBUG
113 #define DPRINTF(x)      do { if (wpi_debug != 0) kprintf x; } while (0)
114 #define DPRINTFN(n, x)  do { if (wpi_debug & n) kprintf x; } while (0)
115 #define WPI_DEBUG_SET   (wpi_debug != 0)
116
117 enum {
118         WPI_DEBUG_UNUSED        = 0x00000001,   /* Unused */
119         WPI_DEBUG_HW            = 0x00000002,   /* Stage 1 (eeprom) debugging */
120         WPI_DEBUG_TX            = 0x00000004,   /* Stage 2 TX intrp debugging*/
121         WPI_DEBUG_RX            = 0x00000008,   /* Stage 2 RX intrp debugging */
122         WPI_DEBUG_CMD           = 0x00000010,   /* Stage 2 CMD intrp debugging*/
123         WPI_DEBUG_FIRMWARE      = 0x00000020,   /* firmware(9) loading debug  */
124         WPI_DEBUG_DMA           = 0x00000040,   /* DMA (de)allocations/syncs  */
125         WPI_DEBUG_SCANNING      = 0x00000080,   /* Stage 2 Scanning debugging */
126         WPI_DEBUG_NOTIFY        = 0x00000100,   /* State 2 Noftif intr debug */
127         WPI_DEBUG_TEMP          = 0x00000200,   /* TXPower/Temp Calibration */
128         WPI_DEBUG_OPS           = 0x00000400,   /* wpi_ops taskq debug */
129         WPI_DEBUG_WATCHDOG      = 0x00000800,   /* Watch dog debug */
130         WPI_DEBUG_ANY           = 0xffffffff
131 };
132
133 static int wpi_debug = 1;
134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
135 TUNABLE_INT("debug.wpi", &wpi_debug);
136
137 #else
138 #define DPRINTF(x)
139 #define DPRINTFN(n, x)
140 #define WPI_DEBUG_SET   0
141 #endif
142
143 struct wpi_ident {
144         uint16_t        vendor;
145         uint16_t        device;
146         uint16_t        subdevice;
147         const char      *name;
148 };
149
150 static const struct wpi_ident wpi_ident_table[] = {
151         /* The below entries support ABG regardless of the subid */
152         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
154         /* The below entries only support BG */
155         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
156         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
157         { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
158         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
159         { 0, 0, 0, NULL }
160 };
161
162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
163                     const char name[IFNAMSIZ], int unit, int opmode,
164                     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
165                     const uint8_t mac[IEEE80211_ADDR_LEN]);
166 static void     wpi_vap_delete(struct ieee80211vap *);
167 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
168                     void **, bus_size_t, bus_size_t, int);
169 static void     wpi_dma_contig_free(struct wpi_dma_info *);
170 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
171 static int      wpi_alloc_shared(struct wpi_softc *);
172 static void     wpi_free_shared(struct wpi_softc *);
173 static int      wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174 static void     wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175 static void     wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
176 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
177                     int, int);
178 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
181                             const uint8_t mac[IEEE80211_ADDR_LEN]);
182 static int      wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
183 static void     wpi_mem_lock(struct wpi_softc *);
184 static void     wpi_mem_unlock(struct wpi_softc *);
185 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
186 static void     wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
187 static void     wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
188                     const uint32_t *, int);
189 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
190 static int      wpi_alloc_fwmem(struct wpi_softc *);
191 static void     wpi_free_fwmem(struct wpi_softc *);
192 static int      wpi_load_firmware(struct wpi_softc *);
193 static void     wpi_unload_firmware(struct wpi_softc *);
194 static int      wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
195 static void     wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
196                     struct wpi_rx_data *);
197 static void     wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
198 static void     wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
199 static void     wpi_notif_intr(struct wpi_softc *);
200 static void     wpi_intr(void *);
201 static uint8_t  wpi_plcp_signal(int);
202 static void     wpi_watchdog_callout(void *);
203 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
204                     struct ieee80211_node *, int);
205 static void     wpi_start(struct ifnet *);
206 static void     wpi_start_locked(struct ifnet *);
207 static int      wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
208                     const struct ieee80211_bpf_params *);
209 static void     wpi_scan_start(struct ieee80211com *);
210 static void     wpi_scan_end(struct ieee80211com *);
211 static void     wpi_set_channel(struct ieee80211com *);
212 static void     wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
213 static void     wpi_scan_mindwell(struct ieee80211_scan_state *);
214 static int      wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
215 static void     wpi_read_eeprom(struct wpi_softc *,
216                     uint8_t macaddr[IEEE80211_ADDR_LEN]);
217 static void     wpi_read_eeprom_channels(struct wpi_softc *, int);
218 static void     wpi_read_eeprom_group(struct wpi_softc *, int);
219 static int      wpi_cmd(struct wpi_softc *, int, const void *, int, int);
220 static int      wpi_wme_update(struct ieee80211com *);
221 static int      wpi_mrr_setup(struct wpi_softc *);
222 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
223 static void     wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
224 #if 0
225 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
226 #endif
227 static int      wpi_auth(struct wpi_softc *, struct ieee80211vap *);
228 static int      wpi_run(struct wpi_softc *, struct ieee80211vap *);
229 static int      wpi_scan(struct wpi_softc *);
230 static int      wpi_config(struct wpi_softc *);
231 static void     wpi_stop_master(struct wpi_softc *);
232 static int      wpi_power_up(struct wpi_softc *);
233 static int      wpi_reset(struct wpi_softc *);
234 static void     wpi_hwreset_task(void *, int);
235 static void     wpi_rfreset_task(void *, int);
236 static void     wpi_hw_config(struct wpi_softc *);
237 static void     wpi_init(void *);
238 static void     wpi_init_locked(struct wpi_softc *, int);
239 static void     wpi_stop(struct wpi_softc *);
240 static void     wpi_stop_locked(struct wpi_softc *);
241
242 static void     wpi_newassoc(struct ieee80211_node *, int);
243 static int      wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
244                     int);
245 static void     wpi_calib_timeout_callout(void *);
246 static void     wpi_power_calibration(struct wpi_softc *, int);
247 static int      wpi_get_power_index(struct wpi_softc *,
248                     struct wpi_power_group *, struct ieee80211_channel *, int);
249 #ifdef WPI_DEBUG
250 static const char *wpi_cmd_str(int);
251 #endif
252 static int wpi_probe(device_t);
253 static int wpi_attach(device_t);
254 static int wpi_detach(device_t);
255 static int wpi_shutdown(device_t);
256 static int wpi_suspend(device_t);
257 static int wpi_resume(device_t);
258
259
260 static device_method_t wpi_methods[] = {
261         /* Device interface */
262         DEVMETHOD(device_probe,         wpi_probe),
263         DEVMETHOD(device_attach,        wpi_attach),
264         DEVMETHOD(device_detach,        wpi_detach),
265         DEVMETHOD(device_shutdown,      wpi_shutdown),
266         DEVMETHOD(device_suspend,       wpi_suspend),
267         DEVMETHOD(device_resume,        wpi_resume),
268
269         { 0, 0 }
270 };
271
272 static driver_t wpi_driver = {
273         "wpi",
274         wpi_methods,
275         sizeof (struct wpi_softc)
276 };
277
278 static devclass_t wpi_devclass;
279
280 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
281
282 static const uint8_t wpi_ridx_to_plcp[] = {
283         /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
284         /* R1-R4 (ral/ural is R4-R1) */
285         0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
286         /* CCK: device-dependent */
287         10, 20, 55, 110
288 };
289 static const uint8_t wpi_ridx_to_rate[] = {
290         12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
291         2, 4, 11, 22 /*CCK */
292 };
293
294
295 static int
296 wpi_probe(device_t dev)
297 {
298         const struct wpi_ident *ident;
299
300         wlan_serialize_enter();
301         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
302                 if (pci_get_vendor(dev) == ident->vendor &&
303                     pci_get_device(dev) == ident->device) {
304                         device_set_desc(dev, ident->name);
305                         wlan_serialize_exit();
306                         return 0;
307                 }
308         }
309         wlan_serialize_exit();
310         return ENXIO;
311 }
312
313 /**
314  * Load the firmare image from disk to the allocated dma buffer.
315  * we also maintain the reference to the firmware pointer as there
316  * is times where we may need to reload the firmware but we are not
317  * in a context that can access the filesystem (ie taskq cause by restart)
318  *
319  * @return 0 on success, an errno on failure
320  */
321 static int
322 wpi_load_firmware(struct wpi_softc *sc)
323 {
324         const struct firmware *fp;
325         struct wpi_dma_info *dma = &sc->fw_dma;
326         const struct wpi_firmware_hdr *hdr;
327         const uint8_t *itext, *idata, *rtext, *rdata, *btext;
328         uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
329         int error;
330
331         DPRINTFN(WPI_DEBUG_FIRMWARE,
332             ("Attempting Loading Firmware from wpi_fw module\n"));
333
334         wlan_assert_serialized();
335         wlan_serialize_exit();
336         if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
337                 device_printf(sc->sc_dev,
338                     "could not load firmware image 'wpifw_fw'\n");
339                 error = ENOENT;
340                 wlan_serialize_enter();
341                 goto fail;
342         }
343         wlan_serialize_enter();
344
345         fp = sc->fw_fp;
346
347         /* Validate the firmware is minimum a particular version */
348         if (fp->version < WPI_FW_MINVERSION) {
349             device_printf(sc->sc_dev,
350                            "firmware version is too old. Need %d, got %d\n",
351                            WPI_FW_MINVERSION,
352                            fp->version);
353             error = ENXIO;
354             goto fail;
355         }
356
357         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
358                 device_printf(sc->sc_dev,
359                     "firmware file too short: %zu bytes\n", fp->datasize);
360                 error = ENXIO;
361                 goto fail;
362         }
363
364         hdr = (const struct wpi_firmware_hdr *)fp->data;
365
366         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
367            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
368
369         rtextsz = le32toh(hdr->rtextsz);
370         rdatasz = le32toh(hdr->rdatasz);
371         itextsz = le32toh(hdr->itextsz);
372         idatasz = le32toh(hdr->idatasz);
373         btextsz = le32toh(hdr->btextsz);
374
375         /* check that all firmware segments are present */
376         if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
377                 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
378                 device_printf(sc->sc_dev,
379                     "firmware file too short: %zu bytes\n", fp->datasize);
380                 error = ENXIO; /* XXX appropriate error code? */
381                 goto fail;
382         }
383
384         /* get pointers to firmware segments */
385         rtext = (const uint8_t *)(hdr + 1);
386         rdata = rtext + rtextsz;
387         itext = rdata + rdatasz;
388         idata = itext + itextsz;
389         btext = idata + idatasz;
390
391         DPRINTFN(WPI_DEBUG_FIRMWARE,
392             ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
393              "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
394              (le32toh(hdr->version) & 0xff000000) >> 24,
395              (le32toh(hdr->version) & 0x00ff0000) >> 16,
396              (le32toh(hdr->version) & 0x0000ffff),
397              rtextsz, rdatasz,
398              itextsz, idatasz, btextsz));
399
400         DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
401         DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
402         DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
403         DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
404         DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
405
406         /* sanity checks */
407         if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
408             rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
409             itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
410             idatasz > WPI_FW_INIT_DATA_MAXSZ ||
411             btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
412             (btextsz & 3) != 0) {
413                 device_printf(sc->sc_dev, "firmware invalid\n");
414                 error = EINVAL;
415                 goto fail;
416         }
417
418         /* copy initialization images into pre-allocated DMA-safe memory */
419         memcpy(dma->vaddr, idata, idatasz);
420         memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
421
422         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
423
424         /* tell adapter where to find initialization images */
425         wpi_mem_lock(sc);
426         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
427         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
428         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
429             dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
430         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
431         wpi_mem_unlock(sc);
432
433         /* load firmware boot code */
434         if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
435             device_printf(sc->sc_dev, "Failed to load microcode\n");
436             goto fail;
437         }
438
439         /* now press "execute" */
440         WPI_WRITE(sc, WPI_RESET, 0);
441
442         /* wait at most one second for the first alive notification */
443         if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
444                 device_printf(sc->sc_dev,
445                     "timeout waiting for adapter to initialize\n");
446                 goto fail;
447         }
448
449         /* copy runtime images into pre-allocated DMA-sage memory */
450         memcpy(dma->vaddr, rdata, rdatasz);
451         memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
452         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
453
454         /* tell adapter where to find runtime images */
455         wpi_mem_lock(sc);
456         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
457         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
458         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
459             dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
460         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
461         wpi_mem_unlock(sc);
462
463         /* wait at most one second for the first alive notification */
464         if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
465                 device_printf(sc->sc_dev,
466                     "timeout waiting for adapter to initialize2\n");
467                 goto fail;
468         }
469
470         DPRINTFN(WPI_DEBUG_FIRMWARE,
471             ("Firmware loaded to driver successfully\n"));
472         return error;
473 fail:
474         wpi_unload_firmware(sc);
475         return error;
476 }
477
478 /**
479  * Free the referenced firmware image
480  */
481 static void
482 wpi_unload_firmware(struct wpi_softc *sc)
483 {
484         struct ifnet *ifp;
485         ifp = sc->sc_ifp;
486
487         if (sc->fw_fp) {
488                 wlan_assert_serialized();
489                 wlan_serialize_exit();
490                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
491                 wlan_serialize_enter();
492                 sc->fw_fp = NULL;
493         }
494 }
495
496 static int
497 wpi_attach(device_t dev)
498 {
499         struct wpi_softc *sc;
500         struct ifnet *ifp;
501         struct ieee80211com *ic;
502         int ac, error, supportsa = 1;
503         uint32_t tmp;
504         const struct wpi_ident *ident;
505         uint8_t macaddr[IEEE80211_ADDR_LEN];
506
507         wlan_serialize_enter();
508         sc = device_get_softc(dev);
509         sc->sc_dev = dev;
510
511         if (bootverbose || WPI_DEBUG_SET)
512             device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
513
514         /*
515          * Some card's only support 802.11b/g not a, check to see if
516          * this is one such card. A 0x0 in the subdevice table indicates
517          * the entire subdevice range is to be ignored.
518          */
519         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
520                 if (ident->subdevice &&
521                     pci_get_subdevice(dev) == ident->subdevice) {
522                     supportsa = 0;
523                     break;
524                 }
525         }
526
527         /* Create the tasks that can be queued */
528         TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset_task, sc);
529         TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset_task, sc);
530
531         callout_init(&sc->calib_to_callout);
532         callout_init(&sc->watchdog_to_callout);
533
534         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
535                 device_printf(dev, "chip is in D%d power mode "
536                     "-- setting to D0\n", pci_get_powerstate(dev));
537                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
538         }
539
540         /* disable the retry timeout register */
541         pci_write_config(dev, 0x41, 0, 1);
542
543         /* enable bus-mastering */
544         pci_enable_busmaster(dev);
545
546         sc->mem_rid = PCIR_BAR(0);
547         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
548             RF_ACTIVE);
549         if (sc->mem == NULL) {
550                 device_printf(dev, "could not allocate memory resource\n");
551                 error = ENOMEM;
552                 goto fail;
553         }
554
555         sc->sc_st = rman_get_bustag(sc->mem);
556         sc->sc_sh = rman_get_bushandle(sc->mem);
557
558         sc->irq_rid = 0;
559         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
560             RF_ACTIVE | RF_SHAREABLE);
561         if (sc->irq == NULL) {
562                 device_printf(dev, "could not allocate interrupt resource\n");
563                 error = ENOMEM;
564                 goto fail;
565         }
566
567         /*
568          * Allocate DMA memory for firmware transfers.
569          */
570         if ((error = wpi_alloc_fwmem(sc)) != 0) {
571                 kprintf(": could not allocate firmware memory\n");
572                 error = ENOMEM;
573                 goto fail;
574         }
575
576         /*
577          * Put adapter into a known state.
578          */
579         if ((error = wpi_reset(sc)) != 0) {
580                 device_printf(dev, "could not reset adapter\n");
581                 goto fail;
582         }
583
584         wpi_mem_lock(sc);
585         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
586         if (bootverbose || WPI_DEBUG_SET)
587             device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
588
589         wpi_mem_unlock(sc);
590
591         /* Allocate shared page */
592         if ((error = wpi_alloc_shared(sc)) != 0) {
593                 device_printf(dev, "could not allocate shared page\n");
594                 goto fail;
595         }
596
597         /* tx data queues  - 4 for QoS purposes */
598         for (ac = 0; ac < WME_NUM_AC; ac++) {
599                 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
600                 if (error != 0) {
601                     device_printf(dev, "could not allocate Tx ring %d\n",ac);
602                     goto fail;
603                 }
604         }
605
606         /* command queue to talk to the card's firmware */
607         error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
608         if (error != 0) {
609                 device_printf(dev, "could not allocate command ring\n");
610                 goto fail;
611         }
612
613         /* receive data queue */
614         error = wpi_alloc_rx_ring(sc, &sc->rxq);
615         if (error != 0) {
616                 device_printf(dev, "could not allocate Rx ring\n");
617                 goto fail;
618         }
619
620         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
621         if (ifp == NULL) {
622                 device_printf(dev, "can not if_alloc()\n");
623                 error = ENOMEM;
624                 goto fail;
625         }
626         ic = ifp->if_l2com;
627
628         ic->ic_ifp = ifp;
629         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
630         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
631
632         /* set device capabilities */
633         ic->ic_caps =
634                   IEEE80211_C_STA               /* station mode supported */
635                 | IEEE80211_C_MONITOR           /* monitor mode supported */
636                 | IEEE80211_C_TXPMGT            /* tx power management */
637                 | IEEE80211_C_SHSLOT            /* short slot time supported */
638                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
639                 | IEEE80211_C_WPA               /* 802.11i */
640 /* XXX looks like WME is partly supported? */
641 #if 0
642                 | IEEE80211_C_IBSS              /* IBSS mode support */
643                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
644                 | IEEE80211_C_WME               /* 802.11e */
645                 | IEEE80211_C_HOSTAP            /* Host access point mode */
646 #endif
647                 ;
648
649         /*
650          * Read in the eeprom and also setup the channels for
651          * net80211. We don't set the rates as net80211 does this for us
652          */
653         wpi_read_eeprom(sc, macaddr);
654
655         if (bootverbose || WPI_DEBUG_SET) {
656             device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
657             device_printf(sc->sc_dev, "Hardware Type: %c\n",
658                           sc->type > 1 ? 'B': '?');
659             device_printf(sc->sc_dev, "Hardware Revision: %c\n",
660                           ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
661             device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
662                           supportsa ? "does" : "does not");
663
664             /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
665                what sc->rev really represents - benjsc 20070615 */
666         }
667
668         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
669         ifp->if_softc = sc;
670         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
671         ifp->if_init = wpi_init;
672         ifp->if_ioctl = wpi_ioctl;
673         ifp->if_start = wpi_start;
674         ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
675         ifq_set_ready(&ifp->if_snd);
676
677         ieee80211_ifattach(ic, macaddr);
678         /* override default methods */
679         ic->ic_node_alloc = wpi_node_alloc;
680         ic->ic_newassoc = wpi_newassoc;
681         ic->ic_raw_xmit = wpi_raw_xmit;
682         ic->ic_wme.wme_update = wpi_wme_update;
683         ic->ic_scan_start = wpi_scan_start;
684         ic->ic_scan_end = wpi_scan_end;
685         ic->ic_set_channel = wpi_set_channel;
686         ic->ic_scan_curchan = wpi_scan_curchan;
687         ic->ic_scan_mindwell = wpi_scan_mindwell;
688
689         ic->ic_vap_create = wpi_vap_create;
690         ic->ic_vap_delete = wpi_vap_delete;
691
692         ieee80211_radiotap_attach(ic,
693             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
694                 WPI_TX_RADIOTAP_PRESENT,
695             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
696                 WPI_RX_RADIOTAP_PRESENT);
697
698         /*
699          * Hook our interrupt after all initialization is complete.
700          */
701         error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
702             wpi_intr, sc, &sc->sc_ih, &wlan_global_serializer);
703         if (error != 0) {
704                 device_printf(dev, "could not set up interrupt\n");
705                 goto fail;
706         }
707
708         if (bootverbose)
709                 ieee80211_announce(ic);
710 #ifdef XXX_DEBUG
711         ieee80211_announce_channels(ic);
712 #endif
713         wlan_serialize_exit();
714         return 0;
715
716 fail:
717         wlan_serialize_exit();
718         wpi_detach(dev);
719         return ENXIO;
720 }
721
722 static int
723 wpi_detach(device_t dev)
724 {
725         struct wpi_softc *sc;
726         struct ifnet *ifp;
727         struct ieee80211com *ic;
728         int ac;
729
730         wlan_serialize_enter();
731         sc = device_get_softc(dev);
732         ifp = sc->sc_ifp;
733         if (ifp != NULL) {
734                 ic = ifp->if_l2com;
735
736                 ieee80211_draintask(ic, &sc->sc_restarttask);
737                 ieee80211_draintask(ic, &sc->sc_radiotask);
738                 wpi_stop(sc);
739                 callout_stop(&sc->watchdog_to_callout);
740                 callout_stop(&sc->calib_to_callout);
741                 ieee80211_ifdetach(ic);
742         }
743
744         if (sc->txq[0].data_dmat) {
745                 for (ac = 0; ac < WME_NUM_AC; ac++)
746                         wpi_free_tx_ring(sc, &sc->txq[ac]);
747
748                 wpi_free_tx_ring(sc, &sc->cmdq);
749                 wpi_free_rx_ring(sc, &sc->rxq);
750                 wpi_free_shared(sc);
751         }
752
753         if (sc->fw_fp != NULL) {
754                 wpi_unload_firmware(sc);
755         }
756
757         if (sc->fw_dma.tag)
758                 wpi_free_fwmem(sc);
759
760         if (sc->irq != NULL) {
761                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
762                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
763         }
764
765         if (sc->mem != NULL)
766                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
767
768         if (ifp != NULL)
769                 if_free(ifp);
770
771         wlan_serialize_exit();
772         return 0;
773 }
774
775 static struct ieee80211vap *
776 wpi_vap_create(struct ieee80211com *ic,
777         const char name[IFNAMSIZ], int unit, int opmode, int flags,
778         const uint8_t bssid[IEEE80211_ADDR_LEN],
779         const uint8_t mac[IEEE80211_ADDR_LEN])
780 {
781         struct wpi_vap *wvp;
782         struct ieee80211vap *vap;
783
784         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
785                 return NULL;
786         wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap),
787             M_80211_VAP, M_INTWAIT | M_ZERO);
788         if (wvp == NULL)
789                 return NULL;
790         vap = &wvp->vap;
791         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
792         /* override with driver methods */
793         wvp->newstate = vap->iv_newstate;
794         vap->iv_newstate = wpi_newstate;
795
796         ieee80211_ratectl_init(vap);
797
798         /* complete setup */
799         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
800         ic->ic_opmode = opmode;
801         return vap;
802 }
803
804 static void
805 wpi_vap_delete(struct ieee80211vap *vap)
806 {
807         struct wpi_vap *wvp = WPI_VAP(vap);
808
809         ieee80211_ratectl_deinit(vap);
810         ieee80211_vap_detach(vap);
811         kfree(wvp, M_80211_VAP);
812 }
813
814 static void
815 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
816 {
817         if (error != 0)
818                 return;
819
820         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
821
822         *(bus_addr_t *)arg = segs[0].ds_addr;
823 }
824
825 /*
826  * Allocates a contiguous block of dma memory of the requested size and
827  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
828  * allocations greater than 4096 may fail. Hence if the requested alignment is
829  * greater we allocate 'alignment' size extra memory and shift the vaddr and
830  * paddr after the dma load. This bypasses the problem at the cost of a little
831  * more memory.
832  */
833 static int
834 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
835     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
836 {
837         int error;
838         bus_size_t align;
839         bus_size_t reqsize;
840
841         DPRINTFN(WPI_DEBUG_DMA,
842             ("Size: %zd - alignment %zd\n", size, alignment));
843
844         dma->size = size;
845         dma->tag = NULL;
846
847         if (alignment > 4096) {
848                 align = PAGE_SIZE;
849                 reqsize = size + alignment;
850         } else {
851                 align = alignment;
852                 reqsize = size;
853         }
854         error = bus_dma_tag_create(dma->tag, align,
855             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
856             NULL, NULL, reqsize,
857             1, reqsize, flags,
858             &dma->tag);
859         if (error != 0) {
860                 device_printf(sc->sc_dev,
861                     "could not create shared page DMA tag\n");
862                 goto fail;
863         }
864         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
865             flags | BUS_DMA_ZERO, &dma->map);
866         if (error != 0) {
867                 device_printf(sc->sc_dev,
868                     "could not allocate shared page DMA memory\n");
869                 goto fail;
870         }
871
872         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
873             reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
874
875         /* Save the original pointers so we can free all the memory */
876         dma->paddr = dma->paddr_start;
877         dma->vaddr = dma->vaddr_start;
878
879         /*
880          * Check the alignment and increment by 4096 until we get the
881          * requested alignment. Fail if can't obtain the alignment
882          * we requested.
883          */
884         if ((dma->paddr & (alignment -1 )) != 0) {
885                 int i;
886
887                 for (i = 0; i < alignment / 4096; i++) {
888                         if ((dma->paddr & (alignment - 1 )) == 0)
889                                 break;
890                         dma->paddr += 4096;
891                         dma->vaddr += 4096;
892                 }
893                 if (i == alignment / 4096) {
894                         device_printf(sc->sc_dev,
895                             "alignment requirement was not satisfied\n");
896                         goto fail;
897                 }
898         }
899
900         if (error != 0) {
901                 device_printf(sc->sc_dev,
902                     "could not load shared page DMA map\n");
903                 goto fail;
904         }
905
906         if (kvap != NULL)
907                 *kvap = dma->vaddr;
908
909         return 0;
910
911 fail:
912         wpi_dma_contig_free(dma);
913         return error;
914 }
915
916 static void
917 wpi_dma_contig_free(struct wpi_dma_info *dma)
918 {
919         if (dma->tag) {
920                 if (dma->map != NULL) {
921                         if (dma->paddr_start != 0) {
922                                 bus_dmamap_sync(dma->tag, dma->map,
923                                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
924                                 bus_dmamap_unload(dma->tag, dma->map);
925                         }
926                         bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
927                 }
928                 bus_dma_tag_destroy(dma->tag);
929         }
930 }
931
932 /*
933  * Allocate a shared page between host and NIC.
934  */
935 static int
936 wpi_alloc_shared(struct wpi_softc *sc)
937 {
938         int error;
939
940         error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
941             (void **)&sc->shared, sizeof (struct wpi_shared),
942             PAGE_SIZE,
943             BUS_DMA_NOWAIT);
944
945         if (error != 0) {
946                 device_printf(sc->sc_dev,
947                     "could not allocate shared area DMA memory\n");
948         }
949
950         return error;
951 }
952
953 static void
954 wpi_free_shared(struct wpi_softc *sc)
955 {
956         wpi_dma_contig_free(&sc->shared_dma);
957 }
958
959 static int
960 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
961 {
962
963         int i, error;
964
965         ring->cur = 0;
966
967         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
968             (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
969             WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
970
971         if (error != 0) {
972                 device_printf(sc->sc_dev,
973                     "%s: could not allocate rx ring DMA memory, error %d\n",
974                     __func__, error);
975                 goto fail;
976         }
977
978         error = bus_dma_tag_create(ring->data_dmat, 1, 0,
979             BUS_SPACE_MAXADDR_32BIT,
980             BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
981             MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat);
982         if (error != 0) {
983                 device_printf(sc->sc_dev,
984                     "%s: bus_dma_tag_create_failed, error %d\n",
985                     __func__, error);
986                 goto fail;
987         }
988
989         /*
990          * Setup Rx buffers.
991          */
992         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
993                 struct wpi_rx_data *data = &ring->data[i];
994                 struct mbuf *m;
995                 bus_addr_t paddr;
996
997                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
998                 if (error != 0) {
999                         device_printf(sc->sc_dev,
1000                             "%s: bus_dmamap_create failed, error %d\n",
1001                             __func__, error);
1002                         goto fail;
1003                 }
1004                 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1005                 if (m == NULL) {
1006                         device_printf(sc->sc_dev,
1007                            "%s: could not allocate rx mbuf\n", __func__);
1008                         error = ENOMEM;
1009                         goto fail;
1010                 }
1011                 /* map page */
1012                 error = bus_dmamap_load(ring->data_dmat, data->map,
1013                     mtod(m, caddr_t), MCLBYTES,
1014                     wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1015                 if (error != 0 && error != EFBIG) {
1016                         device_printf(sc->sc_dev,
1017                             "%s: bus_dmamap_load failed, error %d\n",
1018                             __func__, error);
1019                         m_freem(m);
1020                         error = ENOMEM; /* XXX unique code */
1021                         goto fail;
1022                 }
1023                 bus_dmamap_sync(ring->data_dmat, data->map,
1024                     BUS_DMASYNC_PREWRITE);
1025
1026                 data->m = m;
1027                 ring->desc[i] = htole32(paddr);
1028         }
1029         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1030             BUS_DMASYNC_PREWRITE);
1031         return 0;
1032 fail:
1033         wpi_free_rx_ring(sc, ring);
1034         return error;
1035 }
1036
1037 static void
1038 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1039 {
1040         int ntries;
1041
1042         wpi_mem_lock(sc);
1043
1044         WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1045
1046         for (ntries = 0; ntries < 100; ntries++) {
1047                 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1048                         break;
1049                 DELAY(10);
1050         }
1051
1052         wpi_mem_unlock(sc);
1053
1054 #ifdef WPI_DEBUG
1055         if (ntries == 100 && wpi_debug > 0)
1056                 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1057 #endif
1058
1059         ring->cur = 0;
1060 }
1061
1062 static void
1063 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1064 {
1065         int i;
1066
1067         wpi_dma_contig_free(&ring->desc_dma);
1068
1069         for (i = 0; i < WPI_RX_RING_COUNT; i++)
1070                 if (ring->data[i].m != NULL)
1071                         m_freem(ring->data[i].m);
1072 }
1073
1074 static int
1075 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1076         int qid)
1077 {
1078         struct wpi_tx_data *data;
1079         int i, error;
1080
1081         ring->qid = qid;
1082         ring->count = count;
1083         ring->queued = 0;
1084         ring->cur = 0;
1085         ring->data = NULL;
1086
1087         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1088                 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1089                 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1090
1091         if (error != 0) {
1092             device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1093             goto fail;
1094         }
1095
1096         /* update shared page with ring's base address */
1097         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1098
1099         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1100                 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1101                 BUS_DMA_NOWAIT);
1102
1103         if (error != 0) {
1104                 device_printf(sc->sc_dev,
1105                     "could not allocate tx command DMA memory\n");
1106                 goto fail;
1107         }
1108
1109         ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1110             M_INTWAIT | M_ZERO);
1111         if (ring->data == NULL) {
1112                 device_printf(sc->sc_dev,
1113                     "could not allocate tx data slots\n");
1114                 goto fail;
1115         }
1116
1117         error = bus_dma_tag_create(ring->data_dmat, 1, 0,
1118             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1119             WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT,
1120             &ring->data_dmat);
1121         if (error != 0) {
1122                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
1123                 goto fail;
1124         }
1125
1126         for (i = 0; i < count; i++) {
1127                 data = &ring->data[i];
1128
1129                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1130                 if (error != 0) {
1131                         device_printf(sc->sc_dev,
1132                             "could not create tx buf DMA map\n");
1133                         goto fail;
1134                 }
1135                 bus_dmamap_sync(ring->data_dmat, data->map,
1136                     BUS_DMASYNC_PREWRITE);
1137         }
1138
1139         return 0;
1140
1141 fail:
1142         wpi_free_tx_ring(sc, ring);
1143         return error;
1144 }
1145
1146 static void
1147 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1148 {
1149         struct wpi_tx_data *data;
1150         int i, ntries;
1151
1152         wpi_mem_lock(sc);
1153
1154         WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1155         for (ntries = 0; ntries < 100; ntries++) {
1156                 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1157                         break;
1158                 DELAY(10);
1159         }
1160 #ifdef WPI_DEBUG
1161         if (ntries == 100 && wpi_debug > 0)
1162                 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1163                     ring->qid);
1164 #endif
1165         wpi_mem_unlock(sc);
1166
1167         for (i = 0; i < ring->count; i++) {
1168                 data = &ring->data[i];
1169
1170                 if (data->m != NULL) {
1171                         bus_dmamap_unload(ring->data_dmat, data->map);
1172                         m_freem(data->m);
1173                         data->m = NULL;
1174                 }
1175         }
1176
1177         ring->queued = 0;
1178         ring->cur = 0;
1179 }
1180
1181 static void
1182 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1183 {
1184         struct wpi_tx_data *data;
1185         int i;
1186
1187         wpi_dma_contig_free(&ring->desc_dma);
1188         wpi_dma_contig_free(&ring->cmd_dma);
1189
1190         if (ring->data != NULL) {
1191                 for (i = 0; i < ring->count; i++) {
1192                         data = &ring->data[i];
1193
1194                         if (data->m != NULL) {
1195                                 bus_dmamap_sync(ring->data_dmat, data->map,
1196                                     BUS_DMASYNC_POSTWRITE);
1197                                 bus_dmamap_unload(ring->data_dmat, data->map);
1198                                 m_freem(data->m);
1199                                 data->m = NULL;
1200                         }
1201                 }
1202                 kfree(ring->data, M_DEVBUF);
1203         }
1204
1205         if (ring->data_dmat != NULL)
1206                 bus_dma_tag_destroy(ring->data_dmat);
1207 }
1208
1209 static int
1210 wpi_shutdown(device_t dev)
1211 {
1212         struct wpi_softc *sc;
1213
1214         wlan_serialize_enter();
1215         sc = device_get_softc(dev);
1216         wpi_stop_locked(sc);
1217         wpi_unload_firmware(sc);
1218         wlan_serialize_exit();
1219
1220         return 0;
1221 }
1222
1223 static int
1224 wpi_suspend(device_t dev)
1225 {
1226         struct wpi_softc *sc;
1227
1228         wlan_serialize_enter();
1229         sc = device_get_softc(dev);
1230         wpi_stop(sc);
1231         wlan_serialize_exit();
1232         return 0;
1233 }
1234
1235 static int
1236 wpi_resume(device_t dev)
1237 {
1238         struct wpi_softc *sc;
1239         struct ifnet *ifp;
1240
1241         wlan_serialize_enter();
1242         sc = device_get_softc(dev);
1243         ifp = sc->sc_ifp;
1244         pci_write_config(dev, 0x41, 0, 1);
1245
1246         if (ifp->if_flags & IFF_UP) {
1247                 wpi_init(ifp->if_softc);
1248                 if (ifp->if_flags & IFF_RUNNING)
1249                         wpi_start(ifp);
1250         }
1251         wlan_serialize_exit();
1252         return 0;
1253 }
1254
1255 /* ARGSUSED */
1256 static struct ieee80211_node *
1257 wpi_node_alloc(struct ieee80211vap *vap __unused,
1258         const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1259 {
1260         struct wpi_node *wn;
1261
1262         wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_INTWAIT | M_ZERO);
1263
1264         return &wn->ni;
1265 }
1266
1267 /**
1268  * Called by net80211 when ever there is a change to 80211 state machine
1269  */
1270 static int
1271 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1272 {
1273         struct wpi_vap *wvp = WPI_VAP(vap);
1274         struct ieee80211com *ic = vap->iv_ic;
1275         struct ifnet *ifp = ic->ic_ifp;
1276         struct wpi_softc *sc = ifp->if_softc;
1277         int error;
1278
1279         DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1280                 ieee80211_state_name[vap->iv_state],
1281                 ieee80211_state_name[nstate], sc->flags));
1282
1283         if (nstate == IEEE80211_S_AUTH) {
1284                 /* The node must be registered in the firmware before auth */
1285                 error = wpi_auth(sc, vap);
1286                 if (error != 0) {
1287                         device_printf(sc->sc_dev,
1288                             "%s: could not move to auth state, error %d\n",
1289                             __func__, error);
1290                 }
1291         }
1292         if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1293                 error = wpi_run(sc, vap);
1294                 if (error != 0) {
1295                         device_printf(sc->sc_dev,
1296                             "%s: could not move to run state, error %d\n",
1297                             __func__, error);
1298                 }
1299         }
1300         if (nstate == IEEE80211_S_RUN) {
1301                 /* RUN -> RUN transition; just restart the timers */
1302                 wpi_calib_timeout_callout(sc);
1303                 /* XXX split out rate control timer */
1304         }
1305         return wvp->newstate(vap, nstate, arg);
1306 }
1307
1308 /*
1309  * Grab exclusive access to NIC memory.
1310  */
1311 static void
1312 wpi_mem_lock(struct wpi_softc *sc)
1313 {
1314         int ntries;
1315         uint32_t tmp;
1316
1317         tmp = WPI_READ(sc, WPI_GPIO_CTL);
1318         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1319
1320         /* spin until we actually get the lock */
1321         for (ntries = 0; ntries < 100; ntries++) {
1322                 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1323                         (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1324                         break;
1325                 DELAY(10);
1326         }
1327         if (ntries == 100)
1328                 device_printf(sc->sc_dev, "could not lock memory\n");
1329 }
1330
1331 /*
1332  * Release lock on NIC memory.
1333  */
1334 static void
1335 wpi_mem_unlock(struct wpi_softc *sc)
1336 {
1337         uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1338         WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1339 }
1340
1341 static uint32_t
1342 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1343 {
1344         WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1345         return WPI_READ(sc, WPI_READ_MEM_DATA);
1346 }
1347
1348 static void
1349 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1350 {
1351         WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1352         WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1353 }
1354
1355 static void
1356 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1357     const uint32_t *data, int wlen)
1358 {
1359         for (; wlen > 0; wlen--, data++, addr+=4)
1360                 wpi_mem_write(sc, addr, *data);
1361 }
1362
1363 /*
1364  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1365  * using the traditional bit-bang method. Data is read up until len bytes have
1366  * been obtained.
1367  */
1368 static uint16_t
1369 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1370 {
1371         int ntries;
1372         uint32_t val;
1373         uint8_t *out = data;
1374
1375         wpi_mem_lock(sc);
1376
1377         for (; len > 0; len -= 2, addr++) {
1378                 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1379
1380                 for (ntries = 0; ntries < 10; ntries++) {
1381                         if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1382                                 break;
1383                         DELAY(5);
1384                 }
1385
1386                 if (ntries == 10) {
1387                         device_printf(sc->sc_dev, "could not read EEPROM\n");
1388                         return ETIMEDOUT;
1389                 }
1390
1391                 *out++= val >> 16;
1392                 if (len > 1)
1393                         *out ++= val >> 24;
1394         }
1395
1396         wpi_mem_unlock(sc);
1397
1398         return 0;
1399 }
1400
1401 /*
1402  * The firmware text and data segments are transferred to the NIC using DMA.
1403  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1404  * where to find it.  Once the NIC has copied the firmware into its internal
1405  * memory, we can free our local copy in the driver.
1406  */
1407 static int
1408 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1409 {
1410         int error, ntries;
1411
1412         DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1413
1414         size /= sizeof(uint32_t);
1415
1416         wpi_mem_lock(sc);
1417
1418         wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1419             (const uint32_t *)fw, size);
1420
1421         wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1422         wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1423         wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1424
1425         /* run microcode */
1426         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1427
1428         /* wait while the adapter is busy copying the firmware */
1429         for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1430                 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1431                 DPRINTFN(WPI_DEBUG_HW,
1432                     ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1433                      WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1434                 if (status & WPI_TX_IDLE(6)) {
1435                         DPRINTFN(WPI_DEBUG_HW,
1436                             ("Status Match! - ntries = %d\n", ntries));
1437                         break;
1438                 }
1439                 DELAY(10);
1440         }
1441         if (ntries == 1000) {
1442                 device_printf(sc->sc_dev, "timeout transferring firmware\n");
1443                 error = ETIMEDOUT;
1444         }
1445
1446         /* start the microcode executing */
1447         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1448
1449         wpi_mem_unlock(sc);
1450
1451         return (error);
1452 }
1453
1454 static void
1455 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1456         struct wpi_rx_data *data)
1457 {
1458         struct ifnet *ifp = sc->sc_ifp;
1459         struct ieee80211com *ic = ifp->if_l2com;
1460         struct wpi_rx_ring *ring = &sc->rxq;
1461         struct wpi_rx_stat *stat;
1462         struct wpi_rx_head *head;
1463         struct wpi_rx_tail *tail;
1464         struct ieee80211_node *ni;
1465         struct mbuf *m, *mnew;
1466         bus_addr_t paddr;
1467         int error;
1468
1469         stat = (struct wpi_rx_stat *)(desc + 1);
1470
1471         if (stat->len > WPI_STAT_MAXLEN) {
1472                 device_printf(sc->sc_dev, "invalid rx statistic header\n");
1473                 ifp->if_ierrors++;
1474                 return;
1475         }
1476
1477         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1478         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1479
1480         DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1481             "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1482             le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1483             (uintmax_t)le64toh(tail->tstamp)));
1484
1485         /* discard Rx frames with bad CRC early */
1486         if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1487                 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1488                     le32toh(tail->flags)));
1489                 ifp->if_ierrors++;
1490                 return;
1491         }
1492         if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1493                 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1494                     le16toh(head->len)));
1495                 ifp->if_ierrors++;
1496                 return;
1497         }
1498
1499         /* XXX don't need mbuf, just dma buffer */
1500         mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1501         if (mnew == NULL) {
1502                 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1503                     __func__));
1504                 ifp->if_ierrors++;
1505                 return;
1506         }
1507         error = bus_dmamap_load(ring->data_dmat, data->map,
1508             mtod(mnew, caddr_t), MCLBYTES,
1509             wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1510         if (error != 0 && error != EFBIG) {
1511                 device_printf(sc->sc_dev,
1512                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1513                 m_freem(mnew);
1514                 ifp->if_ierrors++;
1515                 return;
1516         }
1517         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1518
1519         /* finalize mbuf and swap in new one */
1520         m = data->m;
1521         m->m_pkthdr.rcvif = ifp;
1522         m->m_data = (caddr_t)(head + 1);
1523         m->m_pkthdr.len = m->m_len = le16toh(head->len);
1524
1525         data->m = mnew;
1526         /* update Rx descriptor */
1527         ring->desc[ring->cur] = htole32(paddr);
1528
1529         if (ieee80211_radiotap_active(ic)) {
1530                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1531
1532                 tap->wr_flags = 0;
1533                 tap->wr_chan_freq =
1534                         htole16(ic->ic_channels[head->chan].ic_freq);
1535                 tap->wr_chan_flags =
1536                         htole16(ic->ic_channels[head->chan].ic_flags);
1537                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1538                 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1539                 tap->wr_tsft = tail->tstamp;
1540                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1541                 switch (head->rate) {
1542                 /* CCK rates */
1543                 case  10: tap->wr_rate =   2; break;
1544                 case  20: tap->wr_rate =   4; break;
1545                 case  55: tap->wr_rate =  11; break;
1546                 case 110: tap->wr_rate =  22; break;
1547                 /* OFDM rates */
1548                 case 0xd: tap->wr_rate =  12; break;
1549                 case 0xf: tap->wr_rate =  18; break;
1550                 case 0x5: tap->wr_rate =  24; break;
1551                 case 0x7: tap->wr_rate =  36; break;
1552                 case 0x9: tap->wr_rate =  48; break;
1553                 case 0xb: tap->wr_rate =  72; break;
1554                 case 0x1: tap->wr_rate =  96; break;
1555                 case 0x3: tap->wr_rate = 108; break;
1556                 /* unknown rate: should not happen */
1557                 default:  tap->wr_rate =   0;
1558                 }
1559                 if (le16toh(head->flags) & 0x4)
1560                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1561         }
1562
1563         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1564         if (ni != NULL) {
1565                 (void) ieee80211_input(ni, m, stat->rssi, 0);
1566                 ieee80211_free_node(ni);
1567         } else
1568                 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
1569 }
1570
1571 static void
1572 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1573 {
1574         struct ifnet *ifp = sc->sc_ifp;
1575         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1576         struct wpi_tx_data *txdata = &ring->data[desc->idx];
1577         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1578         struct ieee80211_node *ni = txdata->ni;
1579         struct ieee80211vap *vap = ni->ni_vap;
1580         int retrycnt = 0;
1581
1582         DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1583             "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1584             stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1585             le32toh(stat->status)));
1586
1587         /*
1588          * Update rate control statistics for the node.
1589          * XXX we should not count mgmt frames since they're always sent at
1590          * the lowest available bit-rate.
1591          * XXX frames w/o ACK shouldn't be used either
1592          */
1593         if (stat->ntries > 0) {
1594                 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1595                 retrycnt = 1;
1596         }
1597         ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1598                 &retrycnt, NULL);
1599
1600         /* XXX oerrors should only count errors !maxtries */
1601         if ((le32toh(stat->status) & 0xff) != 1)
1602                 ifp->if_oerrors++;
1603         else
1604                 ifp->if_opackets++;
1605
1606         bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1607         bus_dmamap_unload(ring->data_dmat, txdata->map);
1608         /* XXX handle M_TXCB? */
1609         m_freem(txdata->m);
1610         txdata->m = NULL;
1611         ieee80211_free_node(txdata->ni);
1612         txdata->ni = NULL;
1613
1614         ring->queued--;
1615
1616         sc->sc_tx_timer = 0;
1617         ifp->if_flags &= ~IFF_OACTIVE;
1618         wpi_start_locked(ifp);
1619 }
1620
1621 static void
1622 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1623 {
1624         struct wpi_tx_ring *ring = &sc->cmdq;
1625         struct wpi_tx_data *data;
1626
1627         DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1628                                  "type=%s len=%d\n", desc->qid, desc->idx,
1629                                  desc->flags, wpi_cmd_str(desc->type),
1630                                  le32toh(desc->len)));
1631
1632         if ((desc->qid & 7) != 4)
1633                 return; /* not a command ack */
1634
1635         data = &ring->data[desc->idx];
1636
1637         /* if the command was mapped in a mbuf, free it */
1638         if (data->m != NULL) {
1639                 bus_dmamap_unload(ring->data_dmat, data->map);
1640                 m_freem(data->m);
1641                 data->m = NULL;
1642         }
1643
1644         sc->flags &= ~WPI_FLAG_BUSY;
1645         wakeup(&ring->cmd[desc->idx]);
1646 }
1647
1648 static void
1649 wpi_notif_intr(struct wpi_softc *sc)
1650 {
1651         struct ifnet *ifp = sc->sc_ifp;
1652         struct ieee80211com *ic = ifp->if_l2com;
1653         struct wpi_rx_desc *desc;
1654         struct wpi_rx_data *data;
1655         uint32_t hw;
1656
1657         hw = le32toh(sc->shared->next);
1658         while (sc->rxq.cur != hw) {
1659                 data = &sc->rxq.data[sc->rxq.cur];
1660                 desc = (void *)data->m->m_ext.ext_buf;
1661
1662                 DPRINTFN(WPI_DEBUG_NOTIFY,
1663                          ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1664                           desc->qid,
1665                           desc->idx,
1666                           desc->flags,
1667                           desc->type,
1668                           le32toh(desc->len)));
1669
1670                 if (!(desc->qid & 0x80))        /* reply to a command */
1671                         wpi_cmd_intr(sc, desc);
1672
1673                 switch (desc->type) {
1674                 case WPI_RX_DONE:
1675                         /* a 802.11 frame was received */
1676                         wpi_rx_intr(sc, desc, data);
1677                         break;
1678
1679                 case WPI_TX_DONE:
1680                         /* a 802.11 frame has been transmitted */
1681                         wpi_tx_intr(sc, desc);
1682                         break;
1683
1684                 case WPI_UC_READY:
1685                 {
1686                         struct wpi_ucode_info *uc =
1687                                 (struct wpi_ucode_info *)(desc + 1);
1688
1689                         /* the microcontroller is ready */
1690                         DPRINTF(("microcode alive notification version %x "
1691                                 "alive %x\n", le32toh(uc->version),
1692                                 le32toh(uc->valid)));
1693
1694                         if (le32toh(uc->valid) != 1) {
1695                                 device_printf(sc->sc_dev,
1696                                     "microcontroller initialization failed\n");
1697                                 wpi_stop_locked(sc);
1698                         }
1699                         break;
1700                 }
1701                 case WPI_STATE_CHANGED:
1702                 {
1703                         uint32_t *status = (uint32_t *)(desc + 1);
1704
1705                         /* enabled/disabled notification */
1706                         DPRINTF(("state changed to %x\n", le32toh(*status)));
1707
1708                         if (le32toh(*status) & 1) {
1709                                 device_printf(sc->sc_dev,
1710                                     "Radio transmitter is switched off\n");
1711                                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1712                                 ifp->if_flags &= ~IFF_RUNNING;
1713                                 /* Disable firmware commands */
1714                                 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1715                         }
1716                         break;
1717                 }
1718                 case WPI_START_SCAN:
1719                 {
1720 #ifdef WPI_DEBUG
1721                         struct wpi_start_scan *scan =
1722                                 (struct wpi_start_scan *)(desc + 1);
1723 #endif
1724
1725                         DPRINTFN(WPI_DEBUG_SCANNING,
1726                                  ("scanning channel %d status %x\n",
1727                             scan->chan, le32toh(scan->status)));
1728                         break;
1729                 }
1730                 case WPI_STOP_SCAN:
1731                 {
1732 #ifdef WPI_DEBUG
1733                         struct wpi_stop_scan *scan =
1734                                 (struct wpi_stop_scan *)(desc + 1);
1735 #endif
1736                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1737
1738                         DPRINTFN(WPI_DEBUG_SCANNING,
1739                             ("scan finished nchan=%d status=%d chan=%d\n",
1740                              scan->nchan, scan->status, scan->chan));
1741
1742                         sc->sc_scan_timer = 0;
1743                         ieee80211_scan_next(vap);
1744                         break;
1745                 }
1746                 case WPI_MISSED_BEACON:
1747                 {
1748                         struct wpi_missed_beacon *beacon =
1749                                 (struct wpi_missed_beacon *)(desc + 1);
1750                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1751
1752                         if (le32toh(beacon->consecutive) >=
1753                             vap->iv_bmissthreshold) {
1754                                 DPRINTF(("Beacon miss: %u >= %u\n",
1755                                          le32toh(beacon->consecutive),
1756                                          vap->iv_bmissthreshold));
1757                                 ieee80211_beacon_miss(ic);
1758                         }
1759                         break;
1760                 }
1761                 }
1762
1763                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1764         }
1765
1766         /* tell the firmware what we have processed */
1767         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1768         WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1769 }
1770
1771 static void
1772 wpi_intr(void *arg)
1773 {
1774         struct wpi_softc *sc = arg;
1775         uint32_t r;
1776
1777         r = WPI_READ(sc, WPI_INTR);
1778         if (r == 0 || r == 0xffffffff) {
1779                 return;
1780         }
1781
1782         /* disable interrupts */
1783         WPI_WRITE(sc, WPI_MASK, 0);
1784         /* ack interrupts */
1785         WPI_WRITE(sc, WPI_INTR, r);
1786
1787         if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1788                 struct ifnet *ifp = sc->sc_ifp;
1789                 struct ieee80211com *ic = ifp->if_l2com;
1790                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1791
1792                 device_printf(sc->sc_dev, "fatal firmware error\n");
1793                 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1794                                 "(Hardware Error)"));
1795                 if (vap != NULL)
1796                         ieee80211_cancel_scan(vap);
1797                 ieee80211_runtask(ic, &sc->sc_restarttask);
1798                 sc->flags &= ~WPI_FLAG_BUSY;
1799                 return;
1800         }
1801
1802         if (r & WPI_RX_INTR)
1803                 wpi_notif_intr(sc);
1804
1805         if (r & WPI_ALIVE_INTR) /* firmware initialized */
1806                 wakeup(sc);
1807
1808         /* re-enable interrupts */
1809         if (sc->sc_ifp->if_flags & IFF_UP)
1810                 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1811
1812 }
1813
1814 static uint8_t
1815 wpi_plcp_signal(int rate)
1816 {
1817         switch (rate) {
1818         /* CCK rates (returned values are device-dependent) */
1819         case 2:         return 10;
1820         case 4:         return 20;
1821         case 11:        return 55;
1822         case 22:        return 110;
1823
1824         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1825         /* R1-R4 (ral/ural is R4-R1) */
1826         case 12:        return 0xd;
1827         case 18:        return 0xf;
1828         case 24:        return 0x5;
1829         case 36:        return 0x7;
1830         case 48:        return 0x9;
1831         case 72:        return 0xb;
1832         case 96:        return 0x1;
1833         case 108:       return 0x3;
1834
1835         /* unsupported rates (should not get there) */
1836         default:        return 0;
1837         }
1838 }
1839
1840 /* quickly determine if a given rate is CCK or OFDM */
1841 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1842
1843 /*
1844  * Construct the data packet for a transmit buffer and acutally put
1845  * the buffer onto the transmit ring, kicking the card to process the
1846  * the buffer.
1847  */
1848 static int
1849 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1850         int ac)
1851 {
1852         struct ieee80211vap *vap = ni->ni_vap;
1853         struct ifnet *ifp = sc->sc_ifp;
1854         struct ieee80211com *ic = ifp->if_l2com;
1855         const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1856         struct wpi_tx_ring *ring = &sc->txq[ac];
1857         struct wpi_tx_desc *desc;
1858         struct wpi_tx_data *data;
1859         struct wpi_tx_cmd *cmd;
1860         struct wpi_cmd_data *tx;
1861         struct ieee80211_frame *wh;
1862         const struct ieee80211_txparam *tp;
1863         struct ieee80211_key *k;
1864         struct mbuf *mnew;
1865         int i, error, nsegs, rate, hdrlen, ismcast;
1866         bus_dma_segment_t segs[WPI_MAX_SCATTER];
1867
1868         desc = &ring->desc[ring->cur];
1869         data = &ring->data[ring->cur];
1870
1871         wh = mtod(m0, struct ieee80211_frame *);
1872
1873         hdrlen = ieee80211_hdrsize(wh);
1874         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1875
1876         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1877                 k = ieee80211_crypto_encap(ni, m0);
1878                 if (k == NULL) {
1879                         m_freem(m0);
1880                         return ENOBUFS;
1881                 }
1882                 /* packet header may have moved, reset our local pointer */
1883                 wh = mtod(m0, struct ieee80211_frame *);
1884         }
1885
1886         cmd = &ring->cmd[ring->cur];
1887         cmd->code = WPI_CMD_TX_DATA;
1888         cmd->flags = 0;
1889         cmd->qid = ring->qid;
1890         cmd->idx = ring->cur;
1891
1892         tx = (struct wpi_cmd_data *)cmd->data;
1893         tx->flags = htole32(WPI_TX_AUTO_SEQ);
1894         tx->timeout = htole16(0);
1895         tx->ofdm_mask = 0xff;
1896         tx->cck_mask = 0x0f;
1897         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1898         tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1899         tx->len = htole16(m0->m_pkthdr.len);
1900
1901         if (!ismcast) {
1902                 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1903                     !cap->cap_wmeParams[ac].wmep_noackPolicy)
1904                         tx->flags |= htole32(WPI_TX_NEED_ACK);
1905                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1906                         tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1907                         tx->rts_ntries = 7;
1908                 }
1909         }
1910         /* pick a rate */
1911         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1912         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1913                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1914                 /* tell h/w to set timestamp in probe responses */
1915                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1916                         tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1917                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1918                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1919                         tx->timeout = htole16(3);
1920                 else
1921                         tx->timeout = htole16(2);
1922                 rate = tp->mgmtrate;
1923         } else if (ismcast) {
1924                 rate = tp->mcastrate;
1925         } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1926                 rate = tp->ucastrate;
1927         } else {
1928                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
1929                 rate = ni->ni_txrate;
1930         }
1931         tx->rate = wpi_plcp_signal(rate);
1932
1933         /* be very persistant at sending frames out */
1934 #if 0
1935         tx->data_ntries = tp->maxretry;
1936 #else
1937         tx->data_ntries = 30;           /* XXX way too high */
1938 #endif
1939
1940         if (ieee80211_radiotap_active_vap(vap)) {
1941                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1942                 tap->wt_flags = 0;
1943                 tap->wt_rate = rate;
1944                 tap->wt_hwqueue = ac;
1945                 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1946                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1947
1948                 ieee80211_radiotap_tx(vap, m0);
1949         }
1950
1951         /* save and trim IEEE802.11 header */
1952         m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1953         m_adj(m0, hdrlen);
1954
1955         error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs,
1956             1, &nsegs, BUS_DMA_NOWAIT);
1957         if (error != 0 && error != EFBIG) {
1958                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1959                     error);
1960                 m_freem(m0);
1961                 return error;
1962         }
1963         if (error != 0) {
1964                 /* XXX use m_collapse */
1965                 mnew = m_defrag(m0, MB_DONTWAIT);
1966                 if (mnew == NULL) {
1967                         device_printf(sc->sc_dev,
1968                             "could not defragment mbuf\n");
1969                         m_freem(m0);
1970                         return ENOBUFS;
1971                 }
1972                 m0 = mnew;
1973
1974                 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
1975                     m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1976                 if (error != 0) {
1977                         device_printf(sc->sc_dev,
1978                             "could not map mbuf (error %d)\n", error);
1979                         m_freem(m0);
1980                         return error;
1981                 }
1982         }
1983
1984         data->m = m0;
1985         data->ni = ni;
1986
1987         DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1988             ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1989
1990         /* first scatter/gather segment is used by the tx data command */
1991         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1992             (1 + nsegs) << 24);
1993         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1994             ring->cur * sizeof (struct wpi_tx_cmd));
1995         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1996         for (i = 1; i <= nsegs; i++) {
1997                 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1998                 desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1999         }
2000
2001         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2002         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2003             BUS_DMASYNC_PREWRITE);
2004
2005         ring->queued++;
2006
2007         /* kick ring */
2008         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2009         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2010
2011         return 0;
2012 }
2013
2014 /**
2015  * Process data waiting to be sent on the IFNET output queue
2016  */
2017 static void
2018 wpi_start(struct ifnet *ifp)
2019 {
2020         wpi_start_locked(ifp);
2021 }
2022
2023 static void
2024 wpi_start_locked(struct ifnet *ifp)
2025 {
2026         struct wpi_softc *sc = ifp->if_softc;
2027         struct ieee80211_node *ni;
2028         struct mbuf *m;
2029         int ac;
2030
2031         if ((ifp->if_flags & IFF_RUNNING) == 0) {
2032                 ifq_purge(&ifp->if_snd);
2033                 return;
2034         }
2035
2036         for (;;) {
2037                 IF_DEQUEUE(&ifp->if_snd, m);
2038                 if (m == NULL)
2039                         break;
2040                 ac = M_WME_GETAC(m);
2041                 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2042                         /* there is no place left in this ring */
2043                         ifq_prepend(&ifp->if_snd, m);
2044                         ifp->if_flags |= IFF_OACTIVE;
2045                         break;
2046                 }
2047                 ni = ieee80211_ref_node((struct ieee80211_node *)m->m_pkthdr.rcvif);
2048                 if (wpi_tx_data(sc, m, ni, ac) != 0) {
2049                         ieee80211_free_node(ni);
2050                         ifp->if_oerrors++;
2051                         break;
2052                 }
2053                 sc->sc_tx_timer = 5;
2054         }
2055 }
2056
2057 static int
2058 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2059         const struct ieee80211_bpf_params *params)
2060 {
2061         struct ieee80211com *ic = ni->ni_ic;
2062         struct ifnet *ifp = ic->ic_ifp;
2063         struct wpi_softc *sc = ifp->if_softc;
2064
2065         /* prevent management frames from being sent if we're not ready */
2066         if (!(ifp->if_flags & IFF_RUNNING)) {
2067                 m_freem(m);
2068                 ieee80211_free_node(ni);
2069                 return ENETDOWN;
2070         }
2071
2072         /* management frames go into ring 0 */
2073         if (sc->txq[0].queued > sc->txq[0].count - 8) {
2074                 ifp->if_flags |= IFF_OACTIVE;
2075                 m_freem(m);
2076                 ieee80211_free_node(ni);
2077                 return ENOBUFS;         /* XXX */
2078         }
2079
2080         ifp->if_opackets++;
2081         if (wpi_tx_data(sc, m, ni, 0) != 0)
2082                 goto bad;
2083         sc->sc_tx_timer = 5;
2084         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
2085
2086         return 0;
2087 bad:
2088         ifp->if_oerrors++;
2089         ieee80211_free_node(ni);
2090         return EIO;             /* XXX */
2091 }
2092
2093 static int
2094 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred)
2095 {
2096         struct wpi_softc *sc = ifp->if_softc;
2097         struct ieee80211com *ic = ifp->if_l2com;
2098         struct ifreq *ifr = (struct ifreq *) data;
2099         int error = 0, startall = 0;
2100
2101         switch (cmd) {
2102         case SIOCSIFFLAGS:
2103                 if ((ifp->if_flags & IFF_UP)) {
2104                         if (!(ifp->if_flags & IFF_RUNNING)) {
2105                                 wpi_init_locked(sc, 0);
2106                                 startall = 1;
2107                         }
2108                 } else if ((ifp->if_flags & IFF_RUNNING) ||
2109                            (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2110                         wpi_stop_locked(sc);
2111                 if (startall)
2112                         ieee80211_start_all(ic);
2113                 break;
2114         case SIOCGIFMEDIA:
2115                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2116                 break;
2117         case SIOCGIFADDR:
2118                 error = ether_ioctl(ifp, cmd, data);
2119                 break;
2120         default:
2121                 error = EINVAL;
2122                 break;
2123         }
2124         return error;
2125 }
2126
2127 /*
2128  * Extract various information from EEPROM.
2129  */
2130 static void
2131 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2132 {
2133         int i;
2134
2135         /* read the hardware capabilities, revision and SKU type */
2136         wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2137         wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2138         wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2139
2140         /* read the regulatory domain */
2141         wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2142
2143         /* read in the hw MAC address */
2144         wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2145
2146         /* read the list of authorized channels */
2147         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2148                 wpi_read_eeprom_channels(sc,i);
2149
2150         /* read the power level calibration info for each group */
2151         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2152                 wpi_read_eeprom_group(sc,i);
2153 }
2154
2155 /*
2156  * Send a command to the firmware.
2157  */
2158 static int
2159 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2160 {
2161         struct wpi_tx_ring *ring = &sc->cmdq;
2162         struct wpi_tx_desc *desc;
2163         struct wpi_tx_cmd *cmd;
2164
2165 #ifdef WPI_DEBUG
2166         if (!async) {
2167                 wlan_assert_serialized();
2168         }
2169 #endif
2170
2171         DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2172                     async));
2173
2174         if (sc->flags & WPI_FLAG_BUSY) {
2175                 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2176                     __func__, code);
2177                 return EAGAIN;
2178         }
2179         sc->flags|= WPI_FLAG_BUSY;
2180
2181         KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2182             code, size));
2183
2184         desc = &ring->desc[ring->cur];
2185         cmd = &ring->cmd[ring->cur];
2186
2187         cmd->code = code;
2188         cmd->flags = 0;
2189         cmd->qid = ring->qid;
2190         cmd->idx = ring->cur;
2191         memcpy(cmd->data, buf, size);
2192
2193         desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2194         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2195                 ring->cur * sizeof (struct wpi_tx_cmd));
2196         desc->segs[0].len  = htole32(4 + size);
2197
2198         /* kick cmd ring */
2199         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2200         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2201
2202         if (async) {
2203                 sc->flags &= ~ WPI_FLAG_BUSY;
2204                 return 0;
2205         }
2206
2207         return zsleep(cmd, &wlan_global_serializer, 0, "wpicmd", hz);
2208 }
2209
2210 static int
2211 wpi_wme_update(struct ieee80211com *ic)
2212 {
2213 #define WPI_EXP2(v)     htole16((1 << (v)) - 1)
2214 #define WPI_USEC(v)     htole16(IEEE80211_TXOP_TO_US(v))
2215         struct wpi_softc *sc = ic->ic_ifp->if_softc;
2216         const struct wmeParams *wmep;
2217         struct wpi_wme_setup wme;
2218         int ac;
2219
2220         /* don't override default WME values if WME is not actually enabled */
2221         if (!(ic->ic_flags & IEEE80211_F_WME))
2222                 return 0;
2223
2224         wme.flags = 0;
2225         for (ac = 0; ac < WME_NUM_AC; ac++) {
2226                 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2227                 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2228                 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2229                 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2230                 wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2231
2232                 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2233                     "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2234                     wme.ac[ac].cwmax, wme.ac[ac].txop));
2235         }
2236         return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2237 #undef WPI_USEC
2238 #undef WPI_EXP2
2239 }
2240
2241 /*
2242  * Configure h/w multi-rate retries.
2243  */
2244 static int
2245 wpi_mrr_setup(struct wpi_softc *sc)
2246 {
2247         struct ifnet *ifp = sc->sc_ifp;
2248         struct ieee80211com *ic = ifp->if_l2com;
2249         struct wpi_mrr_setup mrr;
2250         int i, error;
2251
2252         memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2253
2254         /* CCK rates (not used with 802.11a) */
2255         for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2256                 mrr.rates[i].flags = 0;
2257                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2258                 /* fallback to the immediate lower CCK rate (if any) */
2259                 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2260                 /* try one time at this rate before falling back to "next" */
2261                 mrr.rates[i].ntries = 1;
2262         }
2263
2264         /* OFDM rates (not used with 802.11b) */
2265         for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2266                 mrr.rates[i].flags = 0;
2267                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2268                 /* fallback to the immediate lower OFDM rate (if any) */
2269                 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2270                 mrr.rates[i].next = (i == WPI_OFDM6) ?
2271                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2272                         WPI_OFDM6 : WPI_CCK2) :
2273                     i - 1;
2274                 /* try one time at this rate before falling back to "next" */
2275                 mrr.rates[i].ntries = 1;
2276         }
2277
2278         /* setup MRR for control frames */
2279         mrr.which = htole32(WPI_MRR_CTL);
2280         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2281         if (error != 0) {
2282                 device_printf(sc->sc_dev,
2283                     "could not setup MRR for control frames\n");
2284                 return error;
2285         }
2286
2287         /* setup MRR for data frames */
2288         mrr.which = htole32(WPI_MRR_DATA);
2289         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2290         if (error != 0) {
2291                 device_printf(sc->sc_dev,
2292                     "could not setup MRR for data frames\n");
2293                 return error;
2294         }
2295
2296         return 0;
2297 }
2298
2299 static void
2300 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2301 {
2302         struct wpi_cmd_led led;
2303
2304         led.which = which;
2305         led.unit = htole32(100000);     /* on/off in unit of 100ms */
2306         led.off = off;
2307         led.on = on;
2308
2309         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2310 }
2311
2312 static void
2313 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2314 {
2315         struct wpi_cmd_tsf tsf;
2316         uint64_t val, mod;
2317
2318         memset(&tsf, 0, sizeof tsf);
2319         memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2320         tsf.bintval = htole16(ni->ni_intval);
2321         tsf.lintval = htole16(10);
2322
2323         /* compute remaining time until next beacon */
2324         val = (uint64_t)ni->ni_intval  * 1024;  /* msec -> usec */
2325         mod = le64toh(tsf.tstamp) % val;
2326         tsf.binitval = htole32((uint32_t)(val - mod));
2327
2328         if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2329                 device_printf(sc->sc_dev, "could not enable TSF\n");
2330 }
2331
2332 #if 0
2333 /*
2334  * Build a beacon frame that the firmware will broadcast periodically in
2335  * IBSS or HostAP modes.
2336  */
2337 static int
2338 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2339 {
2340         struct ifnet *ifp = sc->sc_ifp;
2341         struct ieee80211com *ic = ifp->if_l2com;
2342         struct wpi_tx_ring *ring = &sc->cmdq;
2343         struct wpi_tx_desc *desc;
2344         struct wpi_tx_data *data;
2345         struct wpi_tx_cmd *cmd;
2346         struct wpi_cmd_beacon *bcn;
2347         struct ieee80211_beacon_offsets bo;
2348         struct mbuf *m0;
2349         bus_addr_t physaddr;
2350         int error;
2351
2352         desc = &ring->desc[ring->cur];
2353         data = &ring->data[ring->cur];
2354
2355         m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2356         if (m0 == NULL) {
2357                 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2358                 return ENOMEM;
2359         }
2360
2361         cmd = &ring->cmd[ring->cur];
2362         cmd->code = WPI_CMD_SET_BEACON;
2363         cmd->flags = 0;
2364         cmd->qid = ring->qid;
2365         cmd->idx = ring->cur;
2366
2367         bcn = (struct wpi_cmd_beacon *)cmd->data;
2368         memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2369         bcn->id = WPI_ID_BROADCAST;
2370         bcn->ofdm_mask = 0xff;
2371         bcn->cck_mask = 0x0f;
2372         bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2373         bcn->len = htole16(m0->m_pkthdr.len);
2374         bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2375                 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2376         bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2377
2378         /* save and trim IEEE802.11 header */
2379         m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2380         m_adj(m0, sizeof (struct ieee80211_frame));
2381
2382         /* assume beacon frame is contiguous */
2383         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2384             m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2385         if (error != 0) {
2386                 device_printf(sc->sc_dev, "could not map beacon\n");
2387                 m_freem(m0);
2388                 return error;
2389         }
2390
2391         data->m = m0;
2392
2393         /* first scatter/gather segment is used by the beacon command */
2394         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2395         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2396                 ring->cur * sizeof (struct wpi_tx_cmd));
2397         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2398         desc->segs[1].addr = htole32(physaddr);
2399         desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2400
2401         /* kick cmd ring */
2402         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2403         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2404
2405         return 0;
2406 }
2407 #endif
2408
2409 static int
2410 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2411 {
2412         struct ieee80211com *ic = vap->iv_ic;
2413         struct ieee80211_node *ni;
2414         struct wpi_node_info node;
2415         int error;
2416
2417
2418         /* update adapter's configuration */
2419         sc->config.associd = 0;
2420         sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2421         ni = ieee80211_ref_node(vap->iv_bss);
2422         IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2423         sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2424         if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2425                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2426                     WPI_CONFIG_24GHZ);
2427         }
2428         if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2429                 sc->config.cck_mask  = 0;
2430                 sc->config.ofdm_mask = 0x15;
2431         } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2432                 sc->config.cck_mask  = 0x03;
2433                 sc->config.ofdm_mask = 0;
2434         } else {
2435                 /* XXX assume 802.11b/g */
2436                 sc->config.cck_mask  = 0x0f;
2437                 sc->config.ofdm_mask = 0x15;
2438         }
2439
2440         DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2441                 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2442         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2443                 sizeof (struct wpi_config), 1);
2444         if (error != 0) {
2445                 device_printf(sc->sc_dev, "could not configure\n");
2446                 ieee80211_free_node(ni);
2447                 return error;
2448         }
2449
2450         /* configuration has changed, set Tx power accordingly */
2451         if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2452                 device_printf(sc->sc_dev, "could not set Tx power\n");
2453                 ieee80211_free_node(ni);
2454                 return error;
2455         }
2456
2457         /* add default node */
2458         memset(&node, 0, sizeof node);
2459         IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2460         ieee80211_free_node(ni);
2461         node.id = WPI_ID_BSS;
2462         node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2463             wpi_plcp_signal(12) : wpi_plcp_signal(2);
2464         node.action = htole32(WPI_ACTION_SET_RATE);
2465         node.antenna = WPI_ANTENNA_BOTH;
2466         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2467         if (error != 0)
2468                 device_printf(sc->sc_dev, "could not add BSS node\n");
2469
2470         return (error);
2471 }
2472
2473 static int
2474 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2475 {
2476         struct ieee80211com *ic = vap->iv_ic;
2477         struct ieee80211_node *ni;
2478         int error;
2479
2480         if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2481                 /* link LED blinks while monitoring */
2482                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2483                 return 0;
2484         }
2485
2486         ni = ieee80211_ref_node(vap->iv_bss);
2487         wpi_enable_tsf(sc, ni);
2488
2489         /* update adapter's configuration */
2490         sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2491         /* short preamble/slot time are negotiated when associating */
2492         sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2493             WPI_CONFIG_SHSLOT);
2494         if (ic->ic_flags & IEEE80211_F_SHSLOT)
2495                 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2496         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2497                 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2498         sc->config.filter |= htole32(WPI_FILTER_BSS);
2499
2500         /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2501
2502         DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2503                     sc->config.flags));
2504         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2505                     wpi_config), 1);
2506         if (error != 0) {
2507                 device_printf(sc->sc_dev, "could not update configuration\n");
2508                 ieee80211_free_node(ni);
2509                 return error;
2510         }
2511
2512         error = wpi_set_txpower(sc, ni->ni_chan, 1);
2513         ieee80211_free_node(ni);
2514         if (error != 0) {
2515                 device_printf(sc->sc_dev, "could set txpower\n");
2516                 return error;
2517         }
2518
2519         /* link LED always on while associated */
2520         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2521
2522         /* start automatic rate control timer */
2523         callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
2524
2525         return (error);
2526 }
2527
2528 /*
2529  * Send a scan request to the firmware.  Since this command is huge, we map it
2530  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2531  * much of this code is similar to that in wpi_cmd but because we must manually
2532  * construct the probe & channels, we duplicate what's needed here. XXX In the
2533  * future, this function should be modified to use wpi_cmd to help cleanup the
2534  * code base.
2535  */
2536 static int
2537 wpi_scan(struct wpi_softc *sc)
2538 {
2539         struct ifnet *ifp = sc->sc_ifp;
2540         struct ieee80211com *ic = ifp->if_l2com;
2541         struct ieee80211_scan_state *ss = ic->ic_scan;
2542         struct wpi_tx_ring *ring = &sc->cmdq;
2543         struct wpi_tx_desc *desc;
2544         struct wpi_tx_data *data;
2545         struct wpi_tx_cmd *cmd;
2546         struct wpi_scan_hdr *hdr;
2547         struct wpi_scan_chan *chan;
2548         struct ieee80211_frame *wh;
2549         struct ieee80211_rateset *rs;
2550         struct ieee80211_channel *c;
2551         enum ieee80211_phymode mode;
2552         uint8_t *frm;
2553         int nrates, pktlen, error, i, nssid;
2554         bus_addr_t physaddr;
2555
2556         desc = &ring->desc[ring->cur];
2557         data = &ring->data[ring->cur];
2558
2559         data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2560         if (data->m == NULL) {
2561                 device_printf(sc->sc_dev,
2562                     "could not allocate mbuf for scan command\n");
2563                 return ENOMEM;
2564         }
2565
2566         cmd = mtod(data->m, struct wpi_tx_cmd *);
2567         cmd->code = WPI_CMD_SCAN;
2568         cmd->flags = 0;
2569         cmd->qid = ring->qid;
2570         cmd->idx = ring->cur;
2571
2572         hdr = (struct wpi_scan_hdr *)cmd->data;
2573         memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2574
2575         /*
2576          * Move to the next channel if no packets are received within 5 msecs
2577          * after sending the probe request (this helps to reduce the duration
2578          * of active scans).
2579          */
2580         hdr->quiet = htole16(5);
2581         hdr->threshold = htole16(1);
2582
2583         if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2584                 /* send probe requests at 6Mbps */
2585                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2586
2587                 /* Enable crc checking */
2588                 hdr->promotion = htole16(1);
2589         } else {
2590                 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2591                 /* send probe requests at 1Mbps */
2592                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2593         }
2594         hdr->tx.id = WPI_ID_BROADCAST;
2595         hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2596         hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2597
2598         memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2599         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2600         for (i = 0; i < nssid; i++) {
2601                 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2602                 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2603                 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2604                     hdr->scan_essids[i].esslen);
2605 #ifdef WPI_DEBUG
2606                 if (wpi_debug & WPI_DEBUG_SCANNING) {
2607                         kprintf("Scanning Essid: ");
2608                         ieee80211_print_essid(hdr->scan_essids[i].essid,
2609                             hdr->scan_essids[i].esslen);
2610                         kprintf("\n");
2611                 }
2612 #endif
2613         }
2614
2615         /*
2616          * Build a probe request frame.  Most of the following code is a
2617          * copy & paste of what is done in net80211.
2618          */
2619         wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2620         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2621                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2622         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2623         IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2624         IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2625         IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2626         *(u_int16_t *)&wh->i_dur[0] = 0;        /* filled by h/w */
2627         *(u_int16_t *)&wh->i_seq[0] = 0;        /* filled by h/w */
2628
2629         frm = (uint8_t *)(wh + 1);
2630
2631         /* add essid IE, the hardware will fill this in for us */
2632         *frm++ = IEEE80211_ELEMID_SSID;
2633         *frm++ = 0;
2634
2635         mode = ieee80211_chan2mode(ic->ic_curchan);
2636         rs = &ic->ic_sup_rates[mode];
2637
2638         /* add supported rates IE */
2639         *frm++ = IEEE80211_ELEMID_RATES;
2640         nrates = rs->rs_nrates;
2641         if (nrates > IEEE80211_RATE_SIZE)
2642                 nrates = IEEE80211_RATE_SIZE;
2643         *frm++ = nrates;
2644         memcpy(frm, rs->rs_rates, nrates);
2645         frm += nrates;
2646
2647         /* add supported xrates IE */
2648         if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2649                 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2650                 *frm++ = IEEE80211_ELEMID_XRATES;
2651                 *frm++ = nrates;
2652                 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2653                 frm += nrates;
2654         }
2655
2656         /* setup length of probe request */
2657         hdr->tx.len = htole16(frm - (uint8_t *)wh);
2658
2659         /*
2660          * Construct information about the channel that we
2661          * want to scan. The firmware expects this to be directly
2662          * after the scan probe request
2663          */
2664         c = ic->ic_curchan;
2665         chan = (struct wpi_scan_chan *)frm;
2666         chan->chan = ieee80211_chan2ieee(ic, c);
2667         chan->flags = 0;
2668         if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2669                 chan->flags |= WPI_CHAN_ACTIVE;
2670                 if (nssid != 0)
2671                         chan->flags |= WPI_CHAN_DIRECT;
2672         }
2673         chan->gain_dsp = 0x6e; /* Default level */
2674         if (IEEE80211_IS_CHAN_5GHZ(c)) {
2675                 chan->active = htole16(10);
2676                 chan->passive = htole16(ss->ss_maxdwell);
2677                 chan->gain_radio = 0x3b;
2678         } else {
2679                 chan->active = htole16(20);
2680                 chan->passive = htole16(ss->ss_maxdwell);
2681                 chan->gain_radio = 0x28;
2682         }
2683
2684         DPRINTFN(WPI_DEBUG_SCANNING,
2685             ("Scanning %u Passive: %d\n",
2686              chan->chan,
2687              c->ic_flags & IEEE80211_CHAN_PASSIVE));
2688
2689         hdr->nchan++;
2690         chan++;
2691
2692         frm += sizeof (struct wpi_scan_chan);
2693 #if 0
2694         // XXX All Channels....
2695         for (c  = &ic->ic_channels[1];
2696              c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2697                 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2698                         continue;
2699
2700                 chan->chan = ieee80211_chan2ieee(ic, c);
2701                 chan->flags = 0;
2702                 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2703                     chan->flags |= WPI_CHAN_ACTIVE;
2704                     if (ic->ic_des_ssid[0].len != 0)
2705                         chan->flags |= WPI_CHAN_DIRECT;
2706                 }
2707                 chan->gain_dsp = 0x6e; /* Default level */
2708                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2709                         chan->active = htole16(10);
2710                         chan->passive = htole16(110);
2711                         chan->gain_radio = 0x3b;
2712                 } else {
2713                         chan->active = htole16(20);
2714                         chan->passive = htole16(120);
2715                         chan->gain_radio = 0x28;
2716                 }
2717
2718                 DPRINTFN(WPI_DEBUG_SCANNING,
2719                          ("Scanning %u Passive: %d\n",
2720                           chan->chan,
2721                           c->ic_flags & IEEE80211_CHAN_PASSIVE));
2722
2723                 hdr->nchan++;
2724                 chan++;
2725
2726                 frm += sizeof (struct wpi_scan_chan);
2727         }
2728 #endif
2729
2730         hdr->len = htole16(frm - (uint8_t *)hdr);
2731         pktlen = frm - (uint8_t *)cmd;
2732
2733         error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2734             wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2735         if (error != 0) {
2736                 device_printf(sc->sc_dev, "could not map scan command\n");
2737                 m_freem(data->m);
2738                 data->m = NULL;
2739                 return error;
2740         }
2741
2742         desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2743         desc->segs[0].addr = htole32(physaddr);
2744         desc->segs[0].len  = htole32(pktlen);
2745
2746         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2747             BUS_DMASYNC_PREWRITE);
2748         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2749
2750         /* kick cmd ring */
2751         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2752         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2753
2754         sc->sc_scan_timer = 5;
2755         return 0;       /* will be notified async. of failure/success */
2756 }
2757
2758 /**
2759  * Configure the card to listen to a particular channel, this transisions the
2760  * card in to being able to receive frames from remote devices.
2761  */
2762 static int
2763 wpi_config(struct wpi_softc *sc)
2764 {
2765         struct ifnet *ifp = sc->sc_ifp;
2766         struct ieee80211com *ic = ifp->if_l2com;
2767         struct wpi_power power;
2768         struct wpi_bluetooth bluetooth;
2769         struct wpi_node_info node;
2770         int error;
2771
2772         /* set power mode */
2773         memset(&power, 0, sizeof power);
2774         power.flags = htole32(WPI_POWER_CAM|0x8);
2775         error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2776         if (error != 0) {
2777                 device_printf(sc->sc_dev, "could not set power mode\n");
2778                 return error;
2779         }
2780
2781         /* configure bluetooth coexistence */
2782         memset(&bluetooth, 0, sizeof bluetooth);
2783         bluetooth.flags = 3;
2784         bluetooth.lead = 0xaa;
2785         bluetooth.kill = 1;
2786         error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2787             0);
2788         if (error != 0) {
2789                 device_printf(sc->sc_dev,
2790                     "could not configure bluetooth coexistence\n");
2791                 return error;
2792         }
2793
2794         /* configure adapter */
2795         memset(&sc->config, 0, sizeof (struct wpi_config));
2796         IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2797         /*set default channel*/
2798         sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2799         sc->config.flags = htole32(WPI_CONFIG_TSF);
2800         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2801                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2802                     WPI_CONFIG_24GHZ);
2803         }
2804         sc->config.filter = 0;
2805         switch (ic->ic_opmode) {
2806         case IEEE80211_M_STA:
2807         case IEEE80211_M_WDS:   /* No know setup, use STA for now */
2808                 sc->config.mode = WPI_MODE_STA;
2809                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2810                 break;
2811         case IEEE80211_M_IBSS:
2812         case IEEE80211_M_AHDEMO:
2813                 sc->config.mode = WPI_MODE_IBSS;
2814                 sc->config.filter |= htole32(WPI_FILTER_BEACON |
2815                                              WPI_FILTER_MULTICAST);
2816                 break;
2817         case IEEE80211_M_HOSTAP:
2818                 sc->config.mode = WPI_MODE_HOSTAP;
2819                 break;
2820         case IEEE80211_M_MONITOR:
2821                 sc->config.mode = WPI_MODE_MONITOR;
2822                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2823                         WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2824                 break;
2825         default:
2826                 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2827                 return EINVAL;
2828         }
2829         sc->config.cck_mask  = 0x0f;    /* not yet negotiated */
2830         sc->config.ofdm_mask = 0xff;    /* not yet negotiated */
2831         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2832                 sizeof (struct wpi_config), 0);
2833         if (error != 0) {
2834                 device_printf(sc->sc_dev, "configure command failed\n");
2835                 return error;
2836         }
2837
2838         /* configuration has changed, set Tx power accordingly */
2839         if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2840             device_printf(sc->sc_dev, "could not set Tx power\n");
2841             return error;
2842         }
2843
2844         /* add broadcast node */
2845         memset(&node, 0, sizeof node);
2846         IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2847         node.id = WPI_ID_BROADCAST;
2848         node.rate = wpi_plcp_signal(2);
2849         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2850         if (error != 0) {
2851                 device_printf(sc->sc_dev, "could not add broadcast node\n");
2852                 return error;
2853         }
2854
2855         /* Setup rate scalling */
2856         error = wpi_mrr_setup(sc);
2857         if (error != 0) {
2858                 device_printf(sc->sc_dev, "could not setup MRR\n");
2859                 return error;
2860         }
2861
2862         return 0;
2863 }
2864
2865 static void
2866 wpi_stop_master(struct wpi_softc *sc)
2867 {
2868         uint32_t tmp;
2869         int ntries;
2870
2871         DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2872
2873         tmp = WPI_READ(sc, WPI_RESET);
2874         WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2875
2876         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2877         if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2878                 return; /* already asleep */
2879
2880         for (ntries = 0; ntries < 100; ntries++) {
2881                 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2882                         break;
2883                 DELAY(10);
2884         }
2885         if (ntries == 100) {
2886                 device_printf(sc->sc_dev, "timeout waiting for master\n");
2887         }
2888 }
2889
2890 static int
2891 wpi_power_up(struct wpi_softc *sc)
2892 {
2893         uint32_t tmp;
2894         int ntries;
2895
2896         wpi_mem_lock(sc);
2897         tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2898         wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2899         wpi_mem_unlock(sc);
2900
2901         for (ntries = 0; ntries < 5000; ntries++) {
2902                 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2903                         break;
2904                 DELAY(10);
2905         }
2906         if (ntries == 5000) {
2907                 device_printf(sc->sc_dev,
2908                     "timeout waiting for NIC to power up\n");
2909                 return ETIMEDOUT;
2910         }
2911         return 0;
2912 }
2913
2914 static int
2915 wpi_reset(struct wpi_softc *sc)
2916 {
2917         uint32_t tmp;
2918         int ntries;
2919
2920         DPRINTFN(WPI_DEBUG_HW,
2921             ("Resetting the card - clearing any uploaded firmware\n"));
2922
2923         /* clear any pending interrupts */
2924         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2925
2926         tmp = WPI_READ(sc, WPI_PLL_CTL);
2927         WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2928
2929         tmp = WPI_READ(sc, WPI_CHICKEN);
2930         WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2931
2932         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2933         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2934
2935         /* wait for clock stabilization */
2936         for (ntries = 0; ntries < 25000; ntries++) {
2937                 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2938                         break;
2939                 DELAY(10);
2940         }
2941         if (ntries == 25000) {
2942                 device_printf(sc->sc_dev,
2943                     "timeout waiting for clock stabilization\n");
2944                 return ETIMEDOUT;
2945         }
2946
2947         /* initialize EEPROM */
2948         tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2949
2950         if ((tmp & WPI_EEPROM_VERSION) == 0) {
2951                 device_printf(sc->sc_dev, "EEPROM not found\n");
2952                 return EIO;
2953         }
2954         WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2955
2956         return 0;
2957 }
2958
2959 static void
2960 wpi_hw_config(struct wpi_softc *sc)
2961 {
2962         uint32_t rev, hw;
2963
2964         /* voodoo from the Linux "driver".. */
2965         hw = WPI_READ(sc, WPI_HWCONFIG);
2966
2967         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2968         if ((rev & 0xc0) == 0x40)
2969                 hw |= WPI_HW_ALM_MB;
2970         else if (!(rev & 0x80))
2971                 hw |= WPI_HW_ALM_MM;
2972
2973         if (sc->cap == 0x80)
2974                 hw |= WPI_HW_SKU_MRC;
2975
2976         hw &= ~WPI_HW_REV_D;
2977         if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2978                 hw |= WPI_HW_REV_D;
2979
2980         if (sc->type > 1)
2981                 hw |= WPI_HW_TYPE_B;
2982
2983         WPI_WRITE(sc, WPI_HWCONFIG, hw);
2984 }
2985
2986 static void
2987 wpi_rfkill_resume(struct wpi_softc *sc)
2988 {
2989         struct ifnet *ifp = sc->sc_ifp;
2990         struct ieee80211com *ic = ifp->if_l2com;
2991         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2992         int ntries;
2993
2994         /* enable firmware again */
2995         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2996         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2997
2998         /* wait for thermal sensors to calibrate */
2999         for (ntries = 0; ntries < 1000; ntries++) {
3000                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3001                         break;
3002                 DELAY(10);
3003         }
3004
3005         if (ntries == 1000) {
3006                 device_printf(sc->sc_dev,
3007                     "timeout waiting for thermal calibration\n");
3008                 return;
3009         }
3010         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3011
3012         if (wpi_config(sc) != 0) {
3013                 device_printf(sc->sc_dev, "device config failed\n");
3014                 return;
3015         }
3016
3017         ifp->if_flags &= ~IFF_OACTIVE;
3018         ifp->if_flags |= IFF_RUNNING;
3019         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3020
3021         if (vap != NULL) {
3022                 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3023                         if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3024                                 ieee80211_beacon_miss(ic);
3025                                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3026                         } else
3027                                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3028                 } else {
3029                         ieee80211_scan_next(vap);
3030                         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3031                 }
3032         }
3033
3034         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3035 }
3036
3037 static void
3038 wpi_init_locked(struct wpi_softc *sc, int force)
3039 {
3040         struct ifnet *ifp = sc->sc_ifp;
3041         uint32_t tmp;
3042         int ntries, qid;
3043
3044         wpi_stop_locked(sc);
3045         (void)wpi_reset(sc);
3046
3047         wpi_mem_lock(sc);
3048         wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3049         DELAY(20);
3050         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3051         wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3052         wpi_mem_unlock(sc);
3053
3054         (void)wpi_power_up(sc);
3055         wpi_hw_config(sc);
3056
3057         /* init Rx ring */
3058         wpi_mem_lock(sc);
3059         WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3060         WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3061             offsetof(struct wpi_shared, next));
3062         WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3063         WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3064         wpi_mem_unlock(sc);
3065
3066         /* init Tx rings */
3067         wpi_mem_lock(sc);
3068         wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3069         wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3070         wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3071         wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3072         wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3073         wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3074         wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3075
3076         WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3077         WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3078
3079         for (qid = 0; qid < 6; qid++) {
3080                 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3081                 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3082                 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3083         }
3084         wpi_mem_unlock(sc);
3085
3086         /* clear "radio off" and "disable command" bits (reversed logic) */
3087         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3088         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3089         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3090
3091         /* clear any pending interrupts */
3092         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3093
3094         /* enable interrupts */
3095         WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3096
3097         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3098         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3099
3100         if ((wpi_load_firmware(sc)) != 0) {
3101             device_printf(sc->sc_dev,
3102                 "A problem occurred loading the firmware to the driver\n");
3103             return;
3104         }
3105
3106         /* At this point the firmware is up and running. If the hardware
3107          * RF switch is turned off thermal calibration will fail, though
3108          * the card is still happy to continue to accept commands, catch
3109          * this case and schedule a task to watch for it to be turned on.
3110          */
3111         wpi_mem_lock(sc);
3112         tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3113         wpi_mem_unlock(sc);
3114
3115         if (!(tmp & 0x1)) {
3116                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3117                 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3118                 goto out;
3119         }
3120
3121         /* wait for thermal sensors to calibrate */
3122         for (ntries = 0; ntries < 1000; ntries++) {
3123                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3124                         break;
3125                 DELAY(10);
3126         }
3127
3128         if (ntries == 1000) {
3129                 device_printf(sc->sc_dev,
3130                     "timeout waiting for thermal sensors calibration\n");
3131                 return;
3132         }
3133         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3134
3135         if (wpi_config(sc) != 0) {
3136                 device_printf(sc->sc_dev, "device config failed\n");
3137                 return;
3138         }
3139
3140         ifp->if_flags &= ~IFF_OACTIVE;
3141         ifp->if_flags |= IFF_RUNNING;
3142 out:
3143         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3144 }
3145
3146 static void
3147 wpi_init(void *arg)
3148 {
3149         struct wpi_softc *sc = arg;
3150         struct ifnet *ifp = sc->sc_ifp;
3151         struct ieee80211com *ic = ifp->if_l2com;
3152
3153         wpi_init_locked(sc, 0);
3154
3155         if (ifp->if_flags & IFF_RUNNING)
3156                 ieee80211_start_all(ic);                /* start all vaps */
3157 }
3158
3159 static void
3160 wpi_stop_locked(struct wpi_softc *sc)
3161 {
3162         struct ifnet *ifp = sc->sc_ifp;
3163         uint32_t tmp;
3164         int ac;
3165
3166         sc->sc_tx_timer = 0;
3167         sc->sc_scan_timer = 0;
3168         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3169         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3170         callout_stop(&sc->watchdog_to_callout);
3171         callout_stop(&sc->calib_to_callout);
3172
3173
3174         /* disable interrupts */
3175         WPI_WRITE(sc, WPI_MASK, 0);
3176         WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3177         WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3178         WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3179
3180         wpi_mem_lock(sc);
3181         wpi_mem_write(sc, WPI_MEM_MODE, 0);
3182         wpi_mem_unlock(sc);
3183
3184         /* reset all Tx rings */
3185         for (ac = 0; ac < 4; ac++)
3186                 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3187         wpi_reset_tx_ring(sc, &sc->cmdq);
3188
3189         /* reset Rx ring */
3190         wpi_reset_rx_ring(sc, &sc->rxq);
3191
3192         wpi_mem_lock(sc);
3193         wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3194         wpi_mem_unlock(sc);
3195
3196         DELAY(5);
3197
3198         wpi_stop_master(sc);
3199
3200         tmp = WPI_READ(sc, WPI_RESET);
3201         WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3202         sc->flags &= ~WPI_FLAG_BUSY;
3203 }
3204
3205 static void
3206 wpi_stop(struct wpi_softc *sc)
3207 {
3208         wpi_stop_locked(sc);
3209 }
3210
3211 static void
3212 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3213 {
3214         /* XXX move */
3215         ieee80211_ratectl_node_init(ni);
3216 }
3217
3218 static void
3219 wpi_calib_timeout_callout(void *arg)
3220 {
3221         struct wpi_softc *sc = arg;
3222         struct ifnet *ifp = sc->sc_ifp;
3223         struct ieee80211com *ic = ifp->if_l2com;
3224         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3225         int temp;
3226
3227         if (vap->iv_state != IEEE80211_S_RUN)
3228                 return;
3229
3230         /* update sensor data */
3231         temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3232         DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3233
3234         wpi_power_calibration(sc, temp);
3235
3236         callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
3237 }
3238
3239 /*
3240  * This function is called periodically (every 60 seconds) to adjust output
3241  * power to temperature changes.
3242  */
3243 static void
3244 wpi_power_calibration(struct wpi_softc *sc, int temp)
3245 {
3246         struct ifnet *ifp = sc->sc_ifp;
3247         struct ieee80211com *ic = ifp->if_l2com;
3248         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3249
3250         /* sanity-check read value */
3251         if (temp < -260 || temp > 25) {
3252                 /* this can't be correct, ignore */
3253                 DPRINTFN(WPI_DEBUG_TEMP,
3254                     ("out-of-range temperature reported: %d\n", temp));
3255                 return;
3256         }
3257
3258         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3259
3260         /* adjust Tx power if need be */
3261         if (abs(temp - sc->temp) <= 6)
3262                 return;
3263
3264         sc->temp = temp;
3265
3266         if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3267                 /* just warn, too bad for the automatic calibration... */
3268                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
3269         }
3270 }
3271
3272 /**
3273  * Read the eeprom to find out what channels are valid for the given
3274  * band and update net80211 with what we find.
3275  */
3276 static void
3277 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3278 {
3279         struct ifnet *ifp = sc->sc_ifp;
3280         struct ieee80211com *ic = ifp->if_l2com;
3281         const struct wpi_chan_band *band = &wpi_bands[n];
3282         struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3283         struct ieee80211_channel *c;
3284         int chan, i, passive;
3285
3286         wpi_read_prom_data(sc, band->addr, channels,
3287             band->nchan * sizeof (struct wpi_eeprom_chan));
3288
3289         for (i = 0; i < band->nchan; i++) {
3290                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3291                         DPRINTFN(WPI_DEBUG_HW,
3292                             ("Channel Not Valid: %d, band %d\n",
3293                              band->chan[i],n));
3294                         continue;
3295                 }
3296
3297                 passive = 0;
3298                 chan = band->chan[i];
3299                 c = &ic->ic_channels[ic->ic_nchans++];
3300
3301                 /* is active scan allowed on this channel? */
3302                 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3303                         passive = IEEE80211_CHAN_PASSIVE;
3304                 }
3305
3306                 if (n == 0) {   /* 2GHz band */
3307                         c->ic_ieee = chan;
3308                         c->ic_freq = ieee80211_ieee2mhz(chan,
3309                             IEEE80211_CHAN_2GHZ);
3310                         c->ic_flags = IEEE80211_CHAN_B | passive;
3311
3312                         c = &ic->ic_channels[ic->ic_nchans++];
3313                         c->ic_ieee = chan;
3314                         c->ic_freq = ieee80211_ieee2mhz(chan,
3315                             IEEE80211_CHAN_2GHZ);
3316                         c->ic_flags = IEEE80211_CHAN_G | passive;
3317
3318                 } else {        /* 5GHz band */
3319                         /*
3320                          * Some 3945ABG adapters support channels 7, 8, 11
3321                          * and 12 in the 2GHz *and* 5GHz bands.
3322                          * Because of limitations in our net80211(9) stack,
3323                          * we can't support these channels in 5GHz band.
3324                          * XXX not true; just need to map to proper frequency
3325                          */
3326                         if (chan <= 14)
3327                                 continue;
3328
3329                         c->ic_ieee = chan;
3330                         c->ic_freq = ieee80211_ieee2mhz(chan,
3331                             IEEE80211_CHAN_5GHZ);
3332                         c->ic_flags = IEEE80211_CHAN_A | passive;
3333                 }
3334
3335                 /* save maximum allowed power for this channel */
3336                 sc->maxpwr[chan] = channels[i].maxpwr;
3337
3338 #if 0
3339                 // XXX We can probably use this an get rid of maxpwr - ben 20070617
3340                 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3341                 //ic->ic_channels[chan].ic_minpower...
3342                 //ic->ic_channels[chan].ic_maxregtxpower...
3343 #endif
3344
3345                 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3346                     " passive=%d, offset %d\n", chan, c->ic_freq,
3347                     channels[i].flags, sc->maxpwr[chan],
3348                     (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3349                     ic->ic_nchans));
3350         }
3351 }
3352
3353 static void
3354 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3355 {
3356         struct wpi_power_group *group = &sc->groups[n];
3357         struct wpi_eeprom_group rgroup;
3358         int i;
3359
3360         wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3361             sizeof rgroup);
3362
3363         /* save power group information */
3364         group->chan   = rgroup.chan;
3365         group->maxpwr = rgroup.maxpwr;
3366         /* temperature at which the samples were taken */
3367         group->temp   = (int16_t)le16toh(rgroup.temp);
3368
3369         DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3370                     group->chan, group->maxpwr, group->temp));
3371
3372         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3373                 group->samples[i].index = rgroup.samples[i].index;
3374                 group->samples[i].power = rgroup.samples[i].power;
3375
3376                 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3377                             group->samples[i].index, group->samples[i].power));
3378         }
3379 }
3380
3381 /*
3382  * Update Tx power to match what is defined for channel `c'.
3383  */
3384 static int
3385 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3386 {
3387         struct ifnet *ifp = sc->sc_ifp;
3388         struct ieee80211com *ic = ifp->if_l2com;
3389         struct wpi_power_group *group;
3390         struct wpi_cmd_txpower txpower;
3391         u_int chan;
3392         int i;
3393
3394         /* get channel number */
3395         chan = ieee80211_chan2ieee(ic, c);
3396
3397         /* find the power group to which this channel belongs */
3398         if (IEEE80211_IS_CHAN_5GHZ(c)) {
3399                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3400                         if (chan <= group->chan)
3401                                 break;
3402         } else
3403                 group = &sc->groups[0];
3404
3405         memset(&txpower, 0, sizeof txpower);
3406         txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3407         txpower.channel = htole16(chan);
3408
3409         /* set Tx power for all OFDM and CCK rates */
3410         for (i = 0; i <= 11 ; i++) {
3411                 /* retrieve Tx power for this channel/rate combination */
3412                 int idx = wpi_get_power_index(sc, group, c,
3413                     wpi_ridx_to_rate[i]);
3414
3415                 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3416
3417                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3418                         txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3419                         txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3420                 } else {
3421                         txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3422                         txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3423                 }
3424                 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3425                             chan, wpi_ridx_to_rate[i], idx));
3426         }
3427
3428         return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3429 }
3430
3431 /*
3432  * Determine Tx power index for a given channel/rate combination.
3433  * This takes into account the regulatory information from EEPROM and the
3434  * current temperature.
3435  */
3436 static int
3437 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3438     struct ieee80211_channel *c, int rate)
3439 {
3440 /* fixed-point arithmetic division using a n-bit fractional part */
3441 #define fdivround(a, b, n)      \
3442         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3443
3444 /* linear interpolation */
3445 #define interpolate(x, x1, y1, x2, y2, n)       \
3446         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3447
3448         struct ifnet *ifp = sc->sc_ifp;
3449         struct ieee80211com *ic = ifp->if_l2com;
3450         struct wpi_power_sample *sample;
3451         int pwr, idx;
3452         u_int chan;
3453
3454         /* get channel number */
3455         chan = ieee80211_chan2ieee(ic, c);
3456
3457         /* default power is group's maximum power - 3dB */
3458         pwr = group->maxpwr / 2;
3459
3460         /* decrease power for highest OFDM rates to reduce distortion */
3461         switch (rate) {
3462                 case 72:        /* 36Mb/s */
3463                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3464                         break;
3465                 case 96:        /* 48Mb/s */
3466                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3467                         break;
3468                 case 108:       /* 54Mb/s */
3469                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3470                         break;
3471         }
3472
3473         /* never exceed channel's maximum allowed Tx power */
3474         pwr = min(pwr, sc->maxpwr[chan]);
3475
3476         /* retrieve power index into gain tables from samples */
3477         for (sample = group->samples; sample < &group->samples[3]; sample++)
3478                 if (pwr > sample[1].power)
3479                         break;
3480         /* fixed-point linear interpolation using a 19-bit fractional part */
3481         idx = interpolate(pwr, sample[0].power, sample[0].index,
3482             sample[1].power, sample[1].index, 19);
3483
3484         /*
3485          *  Adjust power index based on current temperature
3486          *      - if colder than factory-calibrated: decreate output power
3487          *      - if warmer than factory-calibrated: increase output power
3488          */
3489         idx -= (sc->temp - group->temp) * 11 / 100;
3490
3491         /* decrease power for CCK rates (-5dB) */
3492         if (!WPI_RATE_IS_OFDM(rate))
3493                 idx += 10;
3494
3495         /* keep power index in a valid range */
3496         if (idx < 0)
3497                 return 0;
3498         if (idx > WPI_MAX_PWR_INDEX)
3499                 return WPI_MAX_PWR_INDEX;
3500         return idx;
3501
3502 #undef interpolate
3503 #undef fdivround
3504 }
3505
3506 /**
3507  * Called by net80211 framework to indicate that a scan
3508  * is starting. This function doesn't actually do the scan,
3509  * wpi_scan_curchan starts things off. This function is more
3510  * of an early warning from the framework we should get ready
3511  * for the scan.
3512  */
3513 static void
3514 wpi_scan_start(struct ieee80211com *ic)
3515 {
3516         struct ifnet *ifp = ic->ic_ifp;
3517         struct wpi_softc *sc = ifp->if_softc;
3518
3519         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3520 }
3521
3522 /**
3523  * Called by the net80211 framework, indicates that the
3524  * scan has ended. If there is a scan in progress on the card
3525  * then it should be aborted.
3526  */
3527 static void
3528 wpi_scan_end(struct ieee80211com *ic)
3529 {
3530         /* XXX ignore */
3531 }
3532
3533 /**
3534  * Called by the net80211 framework to indicate to the driver
3535  * that the channel should be changed
3536  */
3537 static void
3538 wpi_set_channel(struct ieee80211com *ic)
3539 {
3540         struct ifnet *ifp = ic->ic_ifp;
3541         struct wpi_softc *sc = ifp->if_softc;
3542         int error;
3543
3544         /*
3545          * Only need to set the channel in Monitor mode. AP scanning and auth
3546          * are already taken care of by their respective firmware commands.
3547          */
3548         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3549                 error = wpi_config(sc);
3550                 if (error != 0)
3551                         device_printf(sc->sc_dev,
3552                             "error %d settting channel\n", error);
3553         }
3554 }
3555
3556 /**
3557  * Called by net80211 to indicate that we need to scan the current
3558  * channel. The channel is previously be set via the wpi_set_channel
3559  * callback.
3560  */
3561 static void
3562 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3563 {
3564         struct ieee80211vap *vap = ss->ss_vap;
3565         struct ifnet *ifp = vap->iv_ic->ic_ifp;
3566         struct wpi_softc *sc = ifp->if_softc;
3567
3568         if (wpi_scan(sc))
3569                 ieee80211_cancel_scan(vap);
3570 }
3571
3572 /**
3573  * Called by the net80211 framework to indicate
3574  * the minimum dwell time has been met, terminate the scan.
3575  * We don't actually terminate the scan as the firmware will notify
3576  * us when it's finished and we have no way to interrupt it.
3577  */
3578 static void
3579 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3580 {
3581         /* NB: don't try to abort scan; wait for firmware to finish */
3582 }
3583
3584 static void
3585 wpi_hwreset_task(void *arg, int pending)
3586 {
3587         struct wpi_softc *sc;
3588
3589         wlan_serialize_enter();
3590         sc = arg;
3591         wpi_init_locked(sc, 0);
3592         wlan_serialize_exit();
3593 }
3594
3595 static void
3596 wpi_rfreset_task(void *arg, int pending)
3597 {
3598         struct wpi_softc *sc;
3599
3600         wlan_serialize_enter();
3601         sc = arg;
3602         wpi_rfkill_resume(sc);
3603         wlan_serialize_exit();
3604 }
3605
3606 /*
3607  * Allocate DMA-safe memory for firmware transfer.
3608  */
3609 static int
3610 wpi_alloc_fwmem(struct wpi_softc *sc)
3611 {
3612         /* allocate enough contiguous space to store text and data */
3613         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3614             WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3615             BUS_DMA_NOWAIT);
3616 }
3617
3618 static void
3619 wpi_free_fwmem(struct wpi_softc *sc)
3620 {
3621         wpi_dma_contig_free(&sc->fw_dma);
3622 }
3623
3624 /**
3625  * Called every second, wpi_watchdog_callout used by the watch dog timer
3626  * to check that the card is still alive
3627  */
3628 static void
3629 wpi_watchdog_callout(void *arg)
3630 {
3631         struct wpi_softc *sc;
3632         struct ifnet *ifp;
3633         struct ieee80211com *ic;
3634         uint32_t tmp;
3635
3636         wlan_serialize_enter();
3637         sc = arg;
3638         ifp = sc->sc_ifp;
3639         ic = ifp->if_l2com;
3640         DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3641
3642         if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3643                 /* No need to lock firmware memory */
3644                 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3645
3646                 if ((tmp & 0x1) == 0) {
3647                         /* Radio kill switch is still off */
3648                         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3649                         wlan_serialize_exit();
3650                         return;
3651                 }
3652
3653                 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3654                 ieee80211_runtask(ic, &sc->sc_radiotask);
3655                 wlan_serialize_exit();
3656                 return;
3657         }
3658
3659         if (sc->sc_tx_timer > 0) {
3660                 if (--sc->sc_tx_timer == 0) {
3661                         device_printf(sc->sc_dev,"device timeout\n");
3662                         ifp->if_oerrors++;
3663                         wlan_serialize_exit();
3664                         ieee80211_runtask(ic, &sc->sc_restarttask);
3665                         wlan_serialize_enter();
3666                 }
3667         }
3668         if (sc->sc_scan_timer > 0) {
3669                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3670                 if (--sc->sc_scan_timer == 0 && vap != NULL) {
3671                         device_printf(sc->sc_dev,"scan timeout\n");
3672                         ieee80211_cancel_scan(vap);
3673                         wlan_serialize_exit();
3674                         ieee80211_runtask(ic, &sc->sc_restarttask);
3675                         wlan_serialize_enter();
3676                 }
3677         }
3678
3679         if (ifp->if_flags & IFF_RUNNING)
3680                 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3681
3682         wlan_serialize_exit();
3683 }
3684
3685 #ifdef WPI_DEBUG
3686 static const char *wpi_cmd_str(int cmd)
3687 {
3688         switch (cmd) {
3689         case WPI_DISABLE_CMD:   return "WPI_DISABLE_CMD";
3690         case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
3691         case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
3692         case WPI_CMD_SET_WME:   return "WPI_CMD_SET_WME";
3693         case WPI_CMD_TSF:       return "WPI_CMD_TSF";
3694         case WPI_CMD_ADD_NODE:  return "WPI_CMD_ADD_NODE";
3695         case WPI_CMD_TX_DATA:   return "WPI_CMD_TX_DATA";
3696         case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
3697         case WPI_CMD_SET_LED:   return "WPI_CMD_SET_LED";
3698         case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3699         case WPI_CMD_SCAN:      return "WPI_CMD_SCAN";
3700         case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3701         case WPI_CMD_TXPOWER:   return "WPI_CMD_TXPOWER";
3702         case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
3703
3704         default:
3705                 KASSERT(1, ("Unknown Command: %d\n", cmd));
3706                 return "UNKNOWN CMD";   /* Make the compiler happy */
3707         }
3708 }
3709 #endif
3710
3711 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3712 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3713 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3714 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);