CAPS IPC library stage 2/3: Adjust syscalls.master and regenerate our
[dragonfly.git] / sys / vm / vm_map.c
CommitLineData
984263bc
MD
1/*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
e1359933 65 * $DragonFly: src/sys/vm/vm_map.c,v 1.18 2004/01/14 23:26:14 dillon Exp $
984263bc
MD
66 */
67
68/*
69 * Virtual memory mapping module.
70 */
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/proc.h>
fef0fdf2 75#include <sys/lock.h>
984263bc
MD
76#include <sys/vmmeter.h>
77#include <sys/mman.h>
78#include <sys/vnode.h>
79#include <sys/resourcevar.h>
fef0fdf2 80#include <sys/shm.h>
984263bc
MD
81
82#include <vm/vm.h>
83#include <vm/vm_param.h>
984263bc
MD
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_page.h>
87#include <vm/vm_object.h>
88#include <vm/vm_pager.h>
89#include <vm/vm_kern.h>
90#include <vm/vm_extern.h>
91#include <vm/swap_pager.h>
92#include <vm/vm_zone.h>
93
a108bf71
MD
94#include <sys/thread2.h>
95
984263bc
MD
96/*
97 * Virtual memory maps provide for the mapping, protection,
98 * and sharing of virtual memory objects. In addition,
99 * this module provides for an efficient virtual copy of
100 * memory from one map to another.
101 *
102 * Synchronization is required prior to most operations.
103 *
104 * Maps consist of an ordered doubly-linked list of simple
105 * entries; a single hint is used to speed up lookups.
106 *
107 * Since portions of maps are specified by start/end addresses,
108 * which may not align with existing map entries, all
109 * routines merely "clip" entries to these start/end values.
110 * [That is, an entry is split into two, bordering at a
111 * start or end value.] Note that these clippings may not
112 * always be necessary (as the two resulting entries are then
113 * not changed); however, the clipping is done for convenience.
114 *
115 * As mentioned above, virtual copy operations are performed
116 * by copying VM object references from one map to
117 * another, and then marking both regions as copy-on-write.
118 */
119
120/*
121 * vm_map_startup:
122 *
123 * Initialize the vm_map module. Must be called before
124 * any other vm_map routines.
125 *
126 * Map and entry structures are allocated from the general
127 * purpose memory pool with some exceptions:
128 *
129 * - The kernel map and kmem submap are allocated statically.
130 * - Kernel map entries are allocated out of a static pool.
131 *
132 * These restrictions are necessary since malloc() uses the
133 * maps and requires map entries.
134 */
135
a108bf71
MD
136static struct vm_zone mapentzone_store, mapzone_store;
137static vm_zone_t mapentzone, mapzone, vmspace_zone;
138static struct vm_object mapentobj, mapobj;
984263bc
MD
139
140static struct vm_map_entry map_entry_init[MAX_MAPENT];
984263bc
MD
141static struct vm_map map_init[MAX_KMAP];
142
a108bf71
MD
143static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
144static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
145static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
146static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
147static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
1388df65
RG
148static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
149static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
150 vm_map_entry_t);
151static void vm_map_split (vm_map_entry_t);
a108bf71 152static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
984263bc
MD
153
154void
155vm_map_startup()
156{
157 mapzone = &mapzone_store;
158 zbootinit(mapzone, "MAP", sizeof (struct vm_map),
159 map_init, MAX_KMAP);
984263bc
MD
160 mapentzone = &mapentzone_store;
161 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
162 map_entry_init, MAX_MAPENT);
163}
164
165/*
166 * Allocate a vmspace structure, including a vm_map and pmap,
167 * and initialize those structures. The refcnt is set to 1.
168 * The remaining fields must be initialized by the caller.
169 */
170struct vmspace *
171vmspace_alloc(min, max)
172 vm_offset_t min, max;
173{
174 struct vmspace *vm;
175
176 vm = zalloc(vmspace_zone);
177 vm_map_init(&vm->vm_map, min, max);
178 pmap_pinit(vmspace_pmap(vm));
179 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */
180 vm->vm_refcnt = 1;
181 vm->vm_shm = NULL;
182 vm->vm_exitingcnt = 0;
183 return (vm);
184}
185
186void
a108bf71
MD
187vm_init2(void)
188{
189 zinitna(mapentzone, &mapentobj, NULL, 0, 0, ZONE_USE_RESERVE, 1);
190 zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
984263bc
MD
191 vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
192 pmap_init2();
193 vm_object_init2();
194}
195
196static __inline void
197vmspace_dofree(struct vmspace *vm)
198{
a108bf71
MD
199 int count;
200
fef0fdf2
MD
201 /*
202 * Make sure any SysV shm is freed, it might not have in
203 * exit1()
204 */
205 shmexit(vm);
206
a722be49
MD
207 KKASSERT(vm->vm_upcalls == NULL);
208
984263bc
MD
209 /*
210 * Lock the map, to wait out all other references to it.
211 * Delete all of the mappings and pages they hold, then call
212 * the pmap module to reclaim anything left.
213 */
a108bf71 214 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc 215 vm_map_lock(&vm->vm_map);
a108bf71
MD
216 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
217 vm->vm_map.max_offset, &count);
984263bc 218 vm_map_unlock(&vm->vm_map);
a108bf71 219 vm_map_entry_release(count);
984263bc
MD
220
221 pmap_release(vmspace_pmap(vm));
222 zfree(vmspace_zone, vm);
223}
224
225void
226vmspace_free(struct vmspace *vm)
227{
228 if (vm->vm_refcnt == 0)
229 panic("vmspace_free: attempt to free already freed vmspace");
230
231 if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
232 vmspace_dofree(vm);
233}
234
235void
236vmspace_exitfree(struct proc *p)
237{
238 struct vmspace *vm;
239
240 vm = p->p_vmspace;
241 p->p_vmspace = NULL;
242
243 /*
244 * cleanup by parent process wait()ing on exiting child. vm_refcnt
245 * may not be 0 (e.g. fork() and child exits without exec()ing).
246 * exitingcnt may increment above 0 and drop back down to zero
247 * several times while vm_refcnt is held non-zero. vm_refcnt
248 * may also increment above 0 and drop back down to zero several
249 * times while vm_exitingcnt is held non-zero.
250 *
251 * The last wait on the exiting child's vmspace will clean up
252 * the remainder of the vmspace.
253 */
254 if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
255 vmspace_dofree(vm);
256}
257
258/*
259 * vmspace_swap_count() - count the approximate swap useage in pages for a
260 * vmspace.
261 *
262 * Swap useage is determined by taking the proportional swap used by
263 * VM objects backing the VM map. To make up for fractional losses,
264 * if the VM object has any swap use at all the associated map entries
265 * count for at least 1 swap page.
266 */
267int
268vmspace_swap_count(struct vmspace *vmspace)
269{
270 vm_map_t map = &vmspace->vm_map;
271 vm_map_entry_t cur;
272 int count = 0;
273
274 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
275 vm_object_t object;
276
277 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
278 (object = cur->object.vm_object) != NULL &&
279 object->type == OBJT_SWAP
280 ) {
281 int n = (cur->end - cur->start) / PAGE_SIZE;
282
283 if (object->un_pager.swp.swp_bcount) {
284 count += object->un_pager.swp.swp_bcount *
285 SWAP_META_PAGES * n / object->size + 1;
286 }
287 }
288 }
289 return(count);
290}
291
292
293/*
294 * vm_map_create:
295 *
296 * Creates and returns a new empty VM map with
297 * the given physical map structure, and having
298 * the given lower and upper address bounds.
299 */
300vm_map_t
a108bf71 301vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
984263bc
MD
302{
303 vm_map_t result;
304
305 result = zalloc(mapzone);
306 vm_map_init(result, min, max);
307 result->pmap = pmap;
308 return (result);
309}
310
311/*
312 * Initialize an existing vm_map structure
313 * such as that in the vmspace structure.
314 * The pmap is set elsewhere.
315 */
316void
a108bf71 317vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max)
984263bc
MD
318{
319 map->header.next = map->header.prev = &map->header;
320 map->nentries = 0;
321 map->size = 0;
322 map->system_map = 0;
323 map->infork = 0;
324 map->min_offset = min;
325 map->max_offset = max;
326 map->first_free = &map->header;
327 map->hint = &map->header;
328 map->timestamp = 0;
377d4740 329 lockinit(&map->lock, 0, "thrd_sleep", 0, LK_NOPAUSE);
984263bc
MD
330}
331
a108bf71
MD
332/*
333 * vm_map_entry_reserve:
334 *
e1359933
MD
335 * Reserves vm_map_entry structures so code later on can manipulate
336 * map_entry structures within a locked map without blocking trying
337 * to allocate a new vm_map_entry.
a108bf71
MD
338 */
339int
340vm_map_entry_reserve(int count)
341{
342 struct globaldata *gd = mycpu;
343 vm_map_entry_t entry;
344
345 crit_enter();
346 gd->gd_vme_avail -= count;
347
348 /*
349 * Make sure we have enough structures in gd_vme_base to handle
350 * the reservation request.
351 */
352 while (gd->gd_vme_avail < 0) {
353 entry = zalloc(mapentzone);
354 entry->next = gd->gd_vme_base;
355 gd->gd_vme_base = entry;
356 ++gd->gd_vme_avail;
357 }
358 crit_exit();
359 return(count);
360}
361
362/*
363 * vm_map_entry_release:
364 *
365 * Releases previously reserved vm_map_entry structures that were not
366 * used. If we have too much junk in our per-cpu cache clean some of
367 * it out.
368 */
369void
370vm_map_entry_release(int count)
371{
372 struct globaldata *gd = mycpu;
373 vm_map_entry_t entry;
374
375 crit_enter();
376 gd->gd_vme_avail += count;
377 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
378 entry = gd->gd_vme_base;
379 KKASSERT(entry != NULL);
380 gd->gd_vme_base = entry->next;
381 --gd->gd_vme_avail;
382 crit_exit();
383 zfree(mapentzone, entry);
384 crit_enter();
385 }
386 crit_exit();
387}
388
389/*
390 * vm_map_entry_kreserve:
391 *
392 * Reserve map entry structures for use in kernel_map or (if it exists)
393 * kmem_map. These entries have *ALREADY* been reserved on a per-cpu
e1359933
MD
394 * basis when the map was inited. This function is used by zalloc()
395 * to avoid a recursion when zalloc() itself needs to allocate additional
396 * kernel memory.
a108bf71 397 *
e1359933
MD
398 * This function should only be used when the caller intends to later
399 * call vm_map_entry_reserve() to 'normalize' the reserve cache.
a108bf71
MD
400 */
401int
402vm_map_entry_kreserve(int count)
403{
404 struct globaldata *gd = mycpu;
405
406 crit_enter();
407 gd->gd_vme_kdeficit += count;
408 crit_exit();
409 KKASSERT(gd->gd_vme_base != NULL);
410 return(count);
411}
412
413/*
414 * vm_map_entry_krelease:
415 *
416 * Release previously reserved map entries for kernel_map or kmem_map
417 * use. This routine determines how many entries were actually used and
418 * replentishes the kernel reserve supply from vme_avail.
419 *
420 * If there is insufficient supply vme_avail will go negative, which is
421 * ok. We cannot safely call zalloc in this function without getting
422 * into a recursion deadlock. zalloc() will call vm_map_entry_reserve()
423 * to regenerate the lost entries.
424 */
425void
426vm_map_entry_krelease(int count)
427{
428 struct globaldata *gd = mycpu;
429
430 crit_enter();
431 gd->gd_vme_kdeficit -= count;
432 gd->gd_vme_avail -= gd->gd_vme_kdeficit; /* can go negative */
433 gd->gd_vme_kdeficit = 0;
434 crit_exit();
435}
436
984263bc 437/*
8a8d5d85 438 * vm_map_entry_create: [ internal use only ]
984263bc 439 *
8a8d5d85 440 * Allocates a VM map entry for insertion. No entry fields are filled
a108bf71
MD
441 * in.
442 *
443 * This routine may be called from an interrupt thread but not a FAST
444 * interrupt. This routine may recurse the map lock.
984263bc 445 */
8a8d5d85 446static vm_map_entry_t
a108bf71 447vm_map_entry_create(vm_map_t map, int *countp)
984263bc 448{
a108bf71
MD
449 struct globaldata *gd = mycpu;
450 vm_map_entry_t entry;
8a8d5d85 451
a108bf71
MD
452 KKASSERT(*countp > 0);
453 --*countp;
454 crit_enter();
455 entry = gd->gd_vme_base;
456 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
457 gd->gd_vme_base = entry->next;
458 crit_exit();
459 return(entry);
984263bc
MD
460}
461
462/*
8a8d5d85 463 * vm_map_entry_dispose: [ internal use only ]
984263bc 464 *
8a8d5d85
MD
465 * Dispose of a vm_map_entry that is no longer being referenced. This
466 * function may be called from an interrupt.
984263bc 467 */
8a8d5d85 468static void
a108bf71 469vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
984263bc 470{
a108bf71
MD
471 struct globaldata *gd = mycpu;
472
473 ++*countp;
474 crit_enter();
475 entry->next = gd->gd_vme_base;
476 gd->gd_vme_base = entry;
477 crit_exit();
984263bc
MD
478}
479
8a8d5d85 480
984263bc
MD
481/*
482 * vm_map_entry_{un,}link:
483 *
484 * Insert/remove entries from maps.
485 */
486static __inline void
487vm_map_entry_link(vm_map_t map,
488 vm_map_entry_t after_where,
489 vm_map_entry_t entry)
490{
491 map->nentries++;
492 entry->prev = after_where;
493 entry->next = after_where->next;
494 entry->next->prev = entry;
495 after_where->next = entry;
496}
497
498static __inline void
499vm_map_entry_unlink(vm_map_t map,
500 vm_map_entry_t entry)
501{
502 vm_map_entry_t prev;
503 vm_map_entry_t next;
504
505 if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
506 panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
507 prev = entry->prev;
508 next = entry->next;
509 next->prev = prev;
510 prev->next = next;
511 map->nentries--;
512}
513
514/*
515 * SAVE_HINT:
516 *
517 * Saves the specified entry as the hint for
518 * future lookups.
519 */
520#define SAVE_HINT(map,value) \
521 (map)->hint = (value);
522
523/*
524 * vm_map_lookup_entry: [ internal use only ]
525 *
526 * Finds the map entry containing (or
527 * immediately preceding) the specified address
528 * in the given map; the entry is returned
529 * in the "entry" parameter. The boolean
530 * result indicates whether the address is
531 * actually contained in the map.
532 */
533boolean_t
534vm_map_lookup_entry(map, address, entry)
535 vm_map_t map;
536 vm_offset_t address;
537 vm_map_entry_t *entry; /* OUT */
538{
539 vm_map_entry_t cur;
540 vm_map_entry_t last;
541
542 /*
543 * Start looking either from the head of the list, or from the hint.
544 */
545
546 cur = map->hint;
547
548 if (cur == &map->header)
549 cur = cur->next;
550
551 if (address >= cur->start) {
552 /*
553 * Go from hint to end of list.
554 *
555 * But first, make a quick check to see if we are already looking
556 * at the entry we want (which is usually the case). Note also
557 * that we don't need to save the hint here... it is the same
558 * hint (unless we are at the header, in which case the hint
559 * didn't buy us anything anyway).
560 */
561 last = &map->header;
562 if ((cur != last) && (cur->end > address)) {
563 *entry = cur;
564 return (TRUE);
565 }
566 } else {
567 /*
568 * Go from start to hint, *inclusively*
569 */
570 last = cur->next;
571 cur = map->header.next;
572 }
573
574 /*
575 * Search linearly
576 */
577
578 while (cur != last) {
579 if (cur->end > address) {
580 if (address >= cur->start) {
581 /*
582 * Save this lookup for future hints, and
583 * return
584 */
585
586 *entry = cur;
587 SAVE_HINT(map, cur);
588 return (TRUE);
589 }
590 break;
591 }
592 cur = cur->next;
593 }
594 *entry = cur->prev;
595 SAVE_HINT(map, *entry);
596 return (FALSE);
597}
598
599/*
600 * vm_map_insert:
601 *
602 * Inserts the given whole VM object into the target
603 * map at the specified address range. The object's
604 * size should match that of the address range.
605 *
a108bf71
MD
606 * Requires that the map be locked, and leaves it so. Requires that
607 * sufficient vm_map_entry structures have been reserved and tracks
608 * the use via countp.
984263bc
MD
609 *
610 * If object is non-NULL, ref count must be bumped by caller
611 * prior to making call to account for the new entry.
612 */
613int
a108bf71
MD
614vm_map_insert(vm_map_t map, int *countp,
615 vm_object_t object, vm_ooffset_t offset,
984263bc
MD
616 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
617 int cow)
618{
619 vm_map_entry_t new_entry;
620 vm_map_entry_t prev_entry;
621 vm_map_entry_t temp_entry;
622 vm_eflags_t protoeflags;
623
624 /*
625 * Check that the start and end points are not bogus.
626 */
627
628 if ((start < map->min_offset) || (end > map->max_offset) ||
629 (start >= end))
630 return (KERN_INVALID_ADDRESS);
631
632 /*
633 * Find the entry prior to the proposed starting address; if it's part
634 * of an existing entry, this range is bogus.
635 */
636
637 if (vm_map_lookup_entry(map, start, &temp_entry))
638 return (KERN_NO_SPACE);
639
640 prev_entry = temp_entry;
641
642 /*
643 * Assert that the next entry doesn't overlap the end point.
644 */
645
646 if ((prev_entry->next != &map->header) &&
647 (prev_entry->next->start < end))
648 return (KERN_NO_SPACE);
649
650 protoeflags = 0;
651
652 if (cow & MAP_COPY_ON_WRITE)
653 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
654
655 if (cow & MAP_NOFAULT) {
656 protoeflags |= MAP_ENTRY_NOFAULT;
657
658 KASSERT(object == NULL,
659 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
660 }
661 if (cow & MAP_DISABLE_SYNCER)
662 protoeflags |= MAP_ENTRY_NOSYNC;
663 if (cow & MAP_DISABLE_COREDUMP)
664 protoeflags |= MAP_ENTRY_NOCOREDUMP;
665
666 if (object) {
667 /*
668 * When object is non-NULL, it could be shared with another
669 * process. We have to set or clear OBJ_ONEMAPPING
670 * appropriately.
671 */
672 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
673 vm_object_clear_flag(object, OBJ_ONEMAPPING);
674 }
675 }
676 else if ((prev_entry != &map->header) &&
677 (prev_entry->eflags == protoeflags) &&
678 (prev_entry->end == start) &&
679 (prev_entry->wired_count == 0) &&
680 ((prev_entry->object.vm_object == NULL) ||
681 vm_object_coalesce(prev_entry->object.vm_object,
682 OFF_TO_IDX(prev_entry->offset),
683 (vm_size_t)(prev_entry->end - prev_entry->start),
684 (vm_size_t)(end - prev_entry->end)))) {
685 /*
686 * We were able to extend the object. Determine if we
687 * can extend the previous map entry to include the
688 * new range as well.
689 */
690 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
691 (prev_entry->protection == prot) &&
692 (prev_entry->max_protection == max)) {
693 map->size += (end - prev_entry->end);
694 prev_entry->end = end;
a108bf71 695 vm_map_simplify_entry(map, prev_entry, countp);
984263bc
MD
696 return (KERN_SUCCESS);
697 }
698
699 /*
700 * If we can extend the object but cannot extend the
701 * map entry, we have to create a new map entry. We
702 * must bump the ref count on the extended object to
703 * account for it. object may be NULL.
704 */
705 object = prev_entry->object.vm_object;
706 offset = prev_entry->offset +
707 (prev_entry->end - prev_entry->start);
708 vm_object_reference(object);
709 }
710
711 /*
712 * NOTE: if conditionals fail, object can be NULL here. This occurs
713 * in things like the buffer map where we manage kva but do not manage
714 * backing objects.
715 */
716
717 /*
718 * Create a new entry
719 */
720
a108bf71 721 new_entry = vm_map_entry_create(map, countp);
984263bc
MD
722 new_entry->start = start;
723 new_entry->end = end;
724
725 new_entry->eflags = protoeflags;
726 new_entry->object.vm_object = object;
727 new_entry->offset = offset;
728 new_entry->avail_ssize = 0;
729
730 new_entry->inheritance = VM_INHERIT_DEFAULT;
731 new_entry->protection = prot;
732 new_entry->max_protection = max;
733 new_entry->wired_count = 0;
734
735 /*
736 * Insert the new entry into the list
737 */
738
739 vm_map_entry_link(map, prev_entry, new_entry);
740 map->size += new_entry->end - new_entry->start;
741
742 /*
743 * Update the free space hint
744 */
745 if ((map->first_free == prev_entry) &&
746 (prev_entry->end >= new_entry->start)) {
747 map->first_free = new_entry;
748 }
749
750#if 0
751 /*
752 * Temporarily removed to avoid MAP_STACK panic, due to
753 * MAP_STACK being a huge hack. Will be added back in
754 * when MAP_STACK (and the user stack mapping) is fixed.
755 */
756 /*
757 * It may be possible to simplify the entry
758 */
a108bf71 759 vm_map_simplify_entry(map, new_entry, countp);
984263bc
MD
760#endif
761
762 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
763 pmap_object_init_pt(map->pmap, start,
764 object, OFF_TO_IDX(offset), end - start,
765 cow & MAP_PREFAULT_PARTIAL);
766 }
767
768 return (KERN_SUCCESS);
769}
770
771/*
772 * Find sufficient space for `length' bytes in the given map, starting at
773 * `start'. The map must be locked. Returns 0 on success, 1 on no space.
e9bb90e8
MD
774 *
775 * This function will returned an arbitrarily aligned pointer. If no
776 * particular alignment is required you should pass align as 1. Note that
777 * the map may return PAGE_SIZE aligned pointers if all the lengths used in
778 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
779 * argument.
780 *
781 * 'align' should be a power of 2 but is not required to be.
984263bc
MD
782 */
783int
e9bb90e8
MD
784vm_map_findspace(
785 vm_map_t map,
786 vm_offset_t start,
787 vm_size_t length,
788 vm_offset_t align,
789 vm_offset_t *addr)
984263bc
MD
790{
791 vm_map_entry_t entry, next;
792 vm_offset_t end;
e9bb90e8 793 vm_offset_t align_mask;
984263bc
MD
794
795 if (start < map->min_offset)
796 start = map->min_offset;
797 if (start > map->max_offset)
798 return (1);
799
e9bb90e8
MD
800 /*
801 * If the alignment is not a power of 2 we will have to use
802 * a mod/division, set align_mask to a special value.
803 */
804 if ((align | (align - 1)) + 1 != (align << 1))
805 align_mask = (vm_offset_t)-1;
806 else
807 align_mask = align - 1;
808
a108bf71 809retry:
984263bc
MD
810 /*
811 * Look for the first possible address; if there's already something
812 * at this address, we have to start after it.
813 */
814 if (start == map->min_offset) {
815 if ((entry = map->first_free) != &map->header)
816 start = entry->end;
817 } else {
818 vm_map_entry_t tmp;
819
820 if (vm_map_lookup_entry(map, start, &tmp))
821 start = tmp->end;
822 entry = tmp;
823 }
824
825 /*
826 * Look through the rest of the map, trying to fit a new region in the
827 * gap between existing regions, or after the very last region.
828 */
829 for (;; start = (entry = next)->end) {
e9bb90e8
MD
830 /*
831 * Adjust the proposed start by the requested alignment,
832 * be sure that we didn't wrap the address.
833 */
834 if (align_mask == (vm_offset_t)-1)
835 end = ((start + align - 1) / align) * align;
836 else
837 end = (start + align_mask) & ~align_mask;
838 if (end < start)
839 return (1);
840 start = end;
984263bc
MD
841 /*
842 * Find the end of the proposed new region. Be sure we didn't
e9bb90e8
MD
843 * go beyond the end of the map, or wrap around the address.
844 * Then check to see if this is the last entry or if the
845 * proposed end fits in the gap between this and the next
846 * entry.
984263bc
MD
847 */
848 end = start + length;
849 if (end > map->max_offset || end < start)
850 return (1);
851 next = entry->next;
852 if (next == &map->header || next->start >= end)
853 break;
854 }
855 SAVE_HINT(map, entry);
984263bc
MD
856 if (map == kernel_map) {
857 vm_offset_t ksize;
858 if ((ksize = round_page(start + length)) > kernel_vm_end) {
859 pmap_growkernel(ksize);
a108bf71 860 goto retry;
984263bc
MD
861 }
862 }
a108bf71 863 *addr = start;
984263bc
MD
864 return (0);
865}
866
867/*
868 * vm_map_find finds an unallocated region in the target address
869 * map with the given length. The search is defined to be
870 * first-fit from the specified address; the region found is
871 * returned in the same parameter.
872 *
873 * If object is non-NULL, ref count must be bumped by caller
874 * prior to making call to account for the new entry.
875 */
876int
877vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
878 vm_offset_t *addr, /* IN/OUT */
879 vm_size_t length, boolean_t find_space, vm_prot_t prot,
880 vm_prot_t max, int cow)
881{
882 vm_offset_t start;
03aa8d99 883 int result;
a108bf71 884 int count;
984263bc
MD
885
886 start = *addr;
887
a108bf71 888 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc
MD
889 vm_map_lock(map);
890 if (find_space) {
e9bb90e8 891 if (vm_map_findspace(map, start, length, 1, addr)) {
984263bc 892 vm_map_unlock(map);
a108bf71 893 vm_map_entry_release(count);
984263bc
MD
894 return (KERN_NO_SPACE);
895 }
896 start = *addr;
897 }
a108bf71 898 result = vm_map_insert(map, &count, object, offset,
984263bc
MD
899 start, start + length, prot, max, cow);
900 vm_map_unlock(map);
a108bf71 901 vm_map_entry_release(count);
984263bc 902
984263bc
MD
903 return (result);
904}
905
906/*
907 * vm_map_simplify_entry:
908 *
909 * Simplify the given map entry by merging with either neighbor. This
910 * routine also has the ability to merge with both neighbors.
911 *
912 * The map must be locked.
913 *
914 * This routine guarentees that the passed entry remains valid (though
915 * possibly extended). When merging, this routine may delete one or
916 * both neighbors. No action is taken on entries which have their
917 * in-transition flag set.
918 */
919void
a108bf71 920vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
984263bc
MD
921{
922 vm_map_entry_t next, prev;
923 vm_size_t prevsize, esize;
924
925 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) {
12e4aaff 926 ++mycpu->gd_cnt.v_intrans_coll;
984263bc
MD
927 return;
928 }
929
930 prev = entry->prev;
931 if (prev != &map->header) {
932 prevsize = prev->end - prev->start;
933 if ( (prev->end == entry->start) &&
934 (prev->object.vm_object == entry->object.vm_object) &&
935 (!prev->object.vm_object ||
936 (prev->offset + prevsize == entry->offset)) &&
937 (prev->eflags == entry->eflags) &&
938 (prev->protection == entry->protection) &&
939 (prev->max_protection == entry->max_protection) &&
940 (prev->inheritance == entry->inheritance) &&
941 (prev->wired_count == entry->wired_count)) {
942 if (map->first_free == prev)
943 map->first_free = entry;
944 if (map->hint == prev)
945 map->hint = entry;
946 vm_map_entry_unlink(map, prev);
947 entry->start = prev->start;
948 entry->offset = prev->offset;
949 if (prev->object.vm_object)
950 vm_object_deallocate(prev->object.vm_object);
a108bf71 951 vm_map_entry_dispose(map, prev, countp);
984263bc
MD
952 }
953 }
954
955 next = entry->next;
956 if (next != &map->header) {
957 esize = entry->end - entry->start;
958 if ((entry->end == next->start) &&
959 (next->object.vm_object == entry->object.vm_object) &&
960 (!entry->object.vm_object ||
961 (entry->offset + esize == next->offset)) &&
962 (next->eflags == entry->eflags) &&
963 (next->protection == entry->protection) &&
964 (next->max_protection == entry->max_protection) &&
965 (next->inheritance == entry->inheritance) &&
966 (next->wired_count == entry->wired_count)) {
967 if (map->first_free == next)
968 map->first_free = entry;
969 if (map->hint == next)
970 map->hint = entry;
971 vm_map_entry_unlink(map, next);
972 entry->end = next->end;
973 if (next->object.vm_object)
974 vm_object_deallocate(next->object.vm_object);
a108bf71 975 vm_map_entry_dispose(map, next, countp);
984263bc
MD
976 }
977 }
978}
979/*
980 * vm_map_clip_start: [ internal use only ]
981 *
982 * Asserts that the given entry begins at or after
983 * the specified address; if necessary,
984 * it splits the entry into two.
985 */
a108bf71 986#define vm_map_clip_start(map, entry, startaddr, countp) \
984263bc
MD
987{ \
988 if (startaddr > entry->start) \
a108bf71 989 _vm_map_clip_start(map, entry, startaddr, countp); \
984263bc
MD
990}
991
992/*
993 * This routine is called only when it is known that
994 * the entry must be split.
995 */
996static void
a108bf71 997_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
984263bc
MD
998{
999 vm_map_entry_t new_entry;
1000
1001 /*
1002 * Split off the front portion -- note that we must insert the new
1003 * entry BEFORE this one, so that this entry has the specified
1004 * starting address.
1005 */
1006
a108bf71 1007 vm_map_simplify_entry(map, entry, countp);
984263bc
MD
1008
1009 /*
1010 * If there is no object backing this entry, we might as well create
1011 * one now. If we defer it, an object can get created after the map
1012 * is clipped, and individual objects will be created for the split-up
1013 * map. This is a bit of a hack, but is also about the best place to
1014 * put this improvement.
1015 */
1016
1017 if (entry->object.vm_object == NULL && !map->system_map) {
1018 vm_object_t object;
1019 object = vm_object_allocate(OBJT_DEFAULT,
1020 atop(entry->end - entry->start));
1021 entry->object.vm_object = object;
1022 entry->offset = 0;
1023 }
1024
a108bf71 1025 new_entry = vm_map_entry_create(map, countp);
984263bc
MD
1026 *new_entry = *entry;
1027
1028 new_entry->end = start;
1029 entry->offset += (start - entry->start);
1030 entry->start = start;
1031
1032 vm_map_entry_link(map, entry->prev, new_entry);
1033
1034 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1035 vm_object_reference(new_entry->object.vm_object);
1036 }
1037}
1038
1039/*
1040 * vm_map_clip_end: [ internal use only ]
1041 *
1042 * Asserts that the given entry ends at or before
1043 * the specified address; if necessary,
1044 * it splits the entry into two.
1045 */
1046
a108bf71 1047#define vm_map_clip_end(map, entry, endaddr, countp) \
984263bc
MD
1048{ \
1049 if (endaddr < entry->end) \
a108bf71 1050 _vm_map_clip_end(map, entry, endaddr, countp); \
984263bc
MD
1051}
1052
1053/*
1054 * This routine is called only when it is known that
1055 * the entry must be split.
1056 */
1057static void
a108bf71 1058_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
984263bc
MD
1059{
1060 vm_map_entry_t new_entry;
1061
1062 /*
1063 * If there is no object backing this entry, we might as well create
1064 * one now. If we defer it, an object can get created after the map
1065 * is clipped, and individual objects will be created for the split-up
1066 * map. This is a bit of a hack, but is also about the best place to
1067 * put this improvement.
1068 */
1069
1070 if (entry->object.vm_object == NULL && !map->system_map) {
1071 vm_object_t object;
1072 object = vm_object_allocate(OBJT_DEFAULT,
1073 atop(entry->end - entry->start));
1074 entry->object.vm_object = object;
1075 entry->offset = 0;
1076 }
1077
1078 /*
1079 * Create a new entry and insert it AFTER the specified entry
1080 */
1081
a108bf71 1082 new_entry = vm_map_entry_create(map, countp);
984263bc
MD
1083 *new_entry = *entry;
1084
1085 new_entry->start = entry->end = end;
1086 new_entry->offset += (end - entry->start);
1087
1088 vm_map_entry_link(map, entry, new_entry);
1089
1090 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1091 vm_object_reference(new_entry->object.vm_object);
1092 }
1093}
1094
1095/*
1096 * VM_MAP_RANGE_CHECK: [ internal use only ]
1097 *
1098 * Asserts that the starting and ending region
1099 * addresses fall within the valid range of the map.
1100 */
1101#define VM_MAP_RANGE_CHECK(map, start, end) \
1102 { \
1103 if (start < vm_map_min(map)) \
1104 start = vm_map_min(map); \
1105 if (end > vm_map_max(map)) \
1106 end = vm_map_max(map); \
1107 if (start > end) \
1108 start = end; \
1109 }
1110
1111/*
1112 * vm_map_transition_wait: [ kernel use only ]
1113 *
1114 * Used to block when an in-transition collison occurs. The map
1115 * is unlocked for the sleep and relocked before the return.
1116 */
1117static
1118void
1119vm_map_transition_wait(vm_map_t map)
1120{
1121 vm_map_unlock(map);
377d4740 1122 tsleep(map, 0, "vment", 0);
984263bc
MD
1123 vm_map_lock(map);
1124}
1125
1126/*
1127 * CLIP_CHECK_BACK
1128 * CLIP_CHECK_FWD
1129 *
1130 * When we do blocking operations with the map lock held it is
1131 * possible that a clip might have occured on our in-transit entry,
1132 * requiring an adjustment to the entry in our loop. These macros
1133 * help the pageable and clip_range code deal with the case. The
1134 * conditional costs virtually nothing if no clipping has occured.
1135 */
1136
1137#define CLIP_CHECK_BACK(entry, save_start) \
1138 do { \
1139 while (entry->start != save_start) { \
1140 entry = entry->prev; \
1141 KASSERT(entry != &map->header, ("bad entry clip")); \
1142 } \
1143 } while(0)
1144
1145#define CLIP_CHECK_FWD(entry, save_end) \
1146 do { \
1147 while (entry->end != save_end) { \
1148 entry = entry->next; \
1149 KASSERT(entry != &map->header, ("bad entry clip")); \
1150 } \
1151 } while(0)
1152
1153
1154/*
1155 * vm_map_clip_range: [ kernel use only ]
1156 *
1157 * Clip the specified range and return the base entry. The
1158 * range may cover several entries starting at the returned base
1159 * and the first and last entry in the covering sequence will be
1160 * properly clipped to the requested start and end address.
1161 *
1162 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1163 * flag.
1164 *
1165 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1166 * covered by the requested range.
1167 *
1168 * The map must be exclusively locked on entry and will remain locked
1169 * on return. If no range exists or the range contains holes and you
1170 * specified that no holes were allowed, NULL will be returned. This
1171 * routine may temporarily unlock the map in order avoid a deadlock when
1172 * sleeping.
1173 */
1174static
1175vm_map_entry_t
a108bf71
MD
1176vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1177 int *countp, int flags)
984263bc
MD
1178{
1179 vm_map_entry_t start_entry;
1180 vm_map_entry_t entry;
1181
1182 /*
1183 * Locate the entry and effect initial clipping. The in-transition
1184 * case does not occur very often so do not try to optimize it.
1185 */
1186again:
1187 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1188 return (NULL);
1189 entry = start_entry;
1190 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1191 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
12e4aaff
MD
1192 ++mycpu->gd_cnt.v_intrans_coll;
1193 ++mycpu->gd_cnt.v_intrans_wait;
984263bc
MD
1194 vm_map_transition_wait(map);
1195 /*
1196 * entry and/or start_entry may have been clipped while
1197 * we slept, or may have gone away entirely. We have
1198 * to restart from the lookup.
1199 */
1200 goto again;
1201 }
1202 /*
1203 * Since we hold an exclusive map lock we do not have to restart
1204 * after clipping, even though clipping may block in zalloc.
1205 */
a108bf71
MD
1206 vm_map_clip_start(map, entry, start, countp);
1207 vm_map_clip_end(map, entry, end, countp);
984263bc
MD
1208 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1209
1210 /*
1211 * Scan entries covered by the range. When working on the next
1212 * entry a restart need only re-loop on the current entry which
1213 * we have already locked, since 'next' may have changed. Also,
1214 * even though entry is safe, it may have been clipped so we
1215 * have to iterate forwards through the clip after sleeping.
1216 */
1217 while (entry->next != &map->header && entry->next->start < end) {
1218 vm_map_entry_t next = entry->next;
1219
1220 if (flags & MAP_CLIP_NO_HOLES) {
1221 if (next->start > entry->end) {
1222 vm_map_unclip_range(map, start_entry,
a108bf71 1223 start, entry->end, countp, flags);
984263bc
MD
1224 return(NULL);
1225 }
1226 }
1227
1228 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1229 vm_offset_t save_end = entry->end;
1230 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
12e4aaff
MD
1231 ++mycpu->gd_cnt.v_intrans_coll;
1232 ++mycpu->gd_cnt.v_intrans_wait;
984263bc
MD
1233 vm_map_transition_wait(map);
1234
1235 /*
1236 * clips might have occured while we blocked.
1237 */
1238 CLIP_CHECK_FWD(entry, save_end);
1239 CLIP_CHECK_BACK(start_entry, start);
1240 continue;
1241 }
1242 /*
1243 * No restart necessary even though clip_end may block, we
1244 * are holding the map lock.
1245 */
a108bf71 1246 vm_map_clip_end(map, next, end, countp);
984263bc
MD
1247 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1248 entry = next;
1249 }
1250 if (flags & MAP_CLIP_NO_HOLES) {
1251 if (entry->end != end) {
1252 vm_map_unclip_range(map, start_entry,
a108bf71 1253 start, entry->end, countp, flags);
984263bc
MD
1254 return(NULL);
1255 }
1256 }
1257 return(start_entry);
1258}
1259
1260/*
1261 * vm_map_unclip_range: [ kernel use only ]
1262 *
1263 * Undo the effect of vm_map_clip_range(). You should pass the same
1264 * flags and the same range that you passed to vm_map_clip_range().
1265 * This code will clear the in-transition flag on the entries and
1266 * wake up anyone waiting. This code will also simplify the sequence
1267 * and attempt to merge it with entries before and after the sequence.
1268 *
1269 * The map must be locked on entry and will remain locked on return.
1270 *
1271 * Note that you should also pass the start_entry returned by
1272 * vm_map_clip_range(). However, if you block between the two calls
1273 * with the map unlocked please be aware that the start_entry may
1274 * have been clipped and you may need to scan it backwards to find
1275 * the entry corresponding with the original start address. You are
1276 * responsible for this, vm_map_unclip_range() expects the correct
1277 * start_entry to be passed to it and will KASSERT otherwise.
1278 */
1279static
1280void
1281vm_map_unclip_range(
1282 vm_map_t map,
1283 vm_map_entry_t start_entry,
1284 vm_offset_t start,
1285 vm_offset_t end,
a108bf71 1286 int *countp,
984263bc
MD
1287 int flags)
1288{
1289 vm_map_entry_t entry;
1290
1291 entry = start_entry;
1292
1293 KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1294 while (entry != &map->header && entry->start < end) {
1295 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1296 KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1297 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1298 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1299 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1300 wakeup(map);
1301 }
1302 entry = entry->next;
1303 }
1304
1305 /*
1306 * Simplification does not block so there is no restart case.
1307 */
1308 entry = start_entry;
1309 while (entry != &map->header && entry->start < end) {
a108bf71 1310 vm_map_simplify_entry(map, entry, countp);
984263bc
MD
1311 entry = entry->next;
1312 }
1313}
1314
1315/*
1316 * vm_map_submap: [ kernel use only ]
1317 *
1318 * Mark the given range as handled by a subordinate map.
1319 *
1320 * This range must have been created with vm_map_find,
1321 * and no other operations may have been performed on this
1322 * range prior to calling vm_map_submap.
1323 *
1324 * Only a limited number of operations can be performed
1325 * within this rage after calling vm_map_submap:
1326 * vm_fault
1327 * [Don't try vm_map_copy!]
1328 *
1329 * To remove a submapping, one must first remove the
1330 * range from the superior map, and then destroy the
1331 * submap (if desired). [Better yet, don't try it.]
1332 */
1333int
a108bf71 1334vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
984263bc
MD
1335{
1336 vm_map_entry_t entry;
1337 int result = KERN_INVALID_ARGUMENT;
a108bf71 1338 int count;
984263bc 1339
a108bf71 1340 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc
MD
1341 vm_map_lock(map);
1342
1343 VM_MAP_RANGE_CHECK(map, start, end);
1344
1345 if (vm_map_lookup_entry(map, start, &entry)) {
a108bf71 1346 vm_map_clip_start(map, entry, start, &count);
984263bc
MD
1347 } else {
1348 entry = entry->next;
1349 }
1350
a108bf71 1351 vm_map_clip_end(map, entry, end, &count);
984263bc
MD
1352
1353 if ((entry->start == start) && (entry->end == end) &&
1354 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1355 (entry->object.vm_object == NULL)) {
1356 entry->object.sub_map = submap;
1357 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1358 result = KERN_SUCCESS;
1359 }
1360 vm_map_unlock(map);
a108bf71 1361 vm_map_entry_release(count);
984263bc
MD
1362
1363 return (result);
1364}
1365
1366/*
1367 * vm_map_protect:
1368 *
1369 * Sets the protection of the specified address
1370 * region in the target map. If "set_max" is
1371 * specified, the maximum protection is to be set;
1372 * otherwise, only the current protection is affected.
1373 */
1374int
1375vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1376 vm_prot_t new_prot, boolean_t set_max)
1377{
1378 vm_map_entry_t current;
1379 vm_map_entry_t entry;
a108bf71 1380 int count;
984263bc 1381
a108bf71 1382 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc
MD
1383 vm_map_lock(map);
1384
1385 VM_MAP_RANGE_CHECK(map, start, end);
1386
1387 if (vm_map_lookup_entry(map, start, &entry)) {
a108bf71 1388 vm_map_clip_start(map, entry, start, &count);
984263bc
MD
1389 } else {
1390 entry = entry->next;
1391 }
1392
1393 /*
1394 * Make a first pass to check for protection violations.
1395 */
1396
1397 current = entry;
1398 while ((current != &map->header) && (current->start < end)) {
1399 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1400 vm_map_unlock(map);
a108bf71 1401 vm_map_entry_release(count);
984263bc
MD
1402 return (KERN_INVALID_ARGUMENT);
1403 }
1404 if ((new_prot & current->max_protection) != new_prot) {
1405 vm_map_unlock(map);
a108bf71 1406 vm_map_entry_release(count);
984263bc
MD
1407 return (KERN_PROTECTION_FAILURE);
1408 }
1409 current = current->next;
1410 }
1411
1412 /*
1413 * Go back and fix up protections. [Note that clipping is not
1414 * necessary the second time.]
1415 */
984263bc
MD
1416 current = entry;
1417
1418 while ((current != &map->header) && (current->start < end)) {
1419 vm_prot_t old_prot;
1420
a108bf71 1421 vm_map_clip_end(map, current, end, &count);
984263bc
MD
1422
1423 old_prot = current->protection;
1424 if (set_max)
1425 current->protection =
1426 (current->max_protection = new_prot) &
1427 old_prot;
1428 else
1429 current->protection = new_prot;
1430
1431 /*
1432 * Update physical map if necessary. Worry about copy-on-write
1433 * here -- CHECK THIS XXX
1434 */
1435
1436 if (current->protection != old_prot) {
1437#define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1438 VM_PROT_ALL)
1439
1440 pmap_protect(map->pmap, current->start,
1441 current->end,
1442 current->protection & MASK(current));
1443#undef MASK
1444 }
1445
a108bf71 1446 vm_map_simplify_entry(map, current, &count);
984263bc
MD
1447
1448 current = current->next;
1449 }
1450
1451 vm_map_unlock(map);
a108bf71 1452 vm_map_entry_release(count);
984263bc
MD
1453 return (KERN_SUCCESS);
1454}
1455
1456/*
1457 * vm_map_madvise:
1458 *
1459 * This routine traverses a processes map handling the madvise
1460 * system call. Advisories are classified as either those effecting
1461 * the vm_map_entry structure, or those effecting the underlying
1462 * objects.
1463 */
1464
1465int
a108bf71 1466vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, int behav)
984263bc
MD
1467{
1468 vm_map_entry_t current, entry;
1469 int modify_map = 0;
a108bf71 1470 int count;
984263bc
MD
1471
1472 /*
1473 * Some madvise calls directly modify the vm_map_entry, in which case
1474 * we need to use an exclusive lock on the map and we need to perform
1475 * various clipping operations. Otherwise we only need a read-lock
1476 * on the map.
1477 */
1478
a108bf71
MD
1479 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1480
984263bc
MD
1481 switch(behav) {
1482 case MADV_NORMAL:
1483 case MADV_SEQUENTIAL:
1484 case MADV_RANDOM:
1485 case MADV_NOSYNC:
1486 case MADV_AUTOSYNC:
1487 case MADV_NOCORE:
1488 case MADV_CORE:
1489 modify_map = 1;
1490 vm_map_lock(map);
1491 break;
1492 case MADV_WILLNEED:
1493 case MADV_DONTNEED:
1494 case MADV_FREE:
1495 vm_map_lock_read(map);
1496 break;
1497 default:
a108bf71 1498 vm_map_entry_release(count);
984263bc
MD
1499 return (KERN_INVALID_ARGUMENT);
1500 }
1501
1502 /*
1503 * Locate starting entry and clip if necessary.
1504 */
1505
1506 VM_MAP_RANGE_CHECK(map, start, end);
1507
1508 if (vm_map_lookup_entry(map, start, &entry)) {
1509 if (modify_map)
a108bf71 1510 vm_map_clip_start(map, entry, start, &count);
984263bc
MD
1511 } else {
1512 entry = entry->next;
1513 }
1514
1515 if (modify_map) {
1516 /*
1517 * madvise behaviors that are implemented in the vm_map_entry.
1518 *
1519 * We clip the vm_map_entry so that behavioral changes are
1520 * limited to the specified address range.
1521 */
1522 for (current = entry;
1523 (current != &map->header) && (current->start < end);
1524 current = current->next
1525 ) {
1526 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1527 continue;
1528
a108bf71 1529 vm_map_clip_end(map, current, end, &count);
984263bc
MD
1530
1531 switch (behav) {
1532 case MADV_NORMAL:
1533 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1534 break;
1535 case MADV_SEQUENTIAL:
1536 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1537 break;
1538 case MADV_RANDOM:
1539 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1540 break;
1541 case MADV_NOSYNC:
1542 current->eflags |= MAP_ENTRY_NOSYNC;
1543 break;
1544 case MADV_AUTOSYNC:
1545 current->eflags &= ~MAP_ENTRY_NOSYNC;
1546 break;
1547 case MADV_NOCORE:
1548 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1549 break;
1550 case MADV_CORE:
1551 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1552 break;
1553 default:
1554 break;
1555 }
a108bf71 1556 vm_map_simplify_entry(map, current, &count);
984263bc
MD
1557 }
1558 vm_map_unlock(map);
1559 } else {
1560 vm_pindex_t pindex;
1561 int count;
1562
1563 /*
1564 * madvise behaviors that are implemented in the underlying
1565 * vm_object.
1566 *
1567 * Since we don't clip the vm_map_entry, we have to clip
1568 * the vm_object pindex and count.
1569 */
1570 for (current = entry;
1571 (current != &map->header) && (current->start < end);
1572 current = current->next
1573 ) {
1574 vm_offset_t useStart;
1575
1576 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1577 continue;
1578
1579 pindex = OFF_TO_IDX(current->offset);
1580 count = atop(current->end - current->start);
1581 useStart = current->start;
1582
1583 if (current->start < start) {
1584 pindex += atop(start - current->start);
1585 count -= atop(start - current->start);
1586 useStart = start;
1587 }
1588 if (current->end > end)
1589 count -= atop(current->end - end);
1590
1591 if (count <= 0)
1592 continue;
1593
1594 vm_object_madvise(current->object.vm_object,
1595 pindex, count, behav);
1596 if (behav == MADV_WILLNEED) {
1597 pmap_object_init_pt(
1598 map->pmap,
1599 useStart,
1600 current->object.vm_object,
1601 pindex,
1602 (count << PAGE_SHIFT),
1603 MAP_PREFAULT_MADVISE
1604 );
1605 }
1606 }
1607 vm_map_unlock_read(map);
1608 }
a108bf71 1609 vm_map_entry_release(count);
984263bc
MD
1610 return(0);
1611}
1612
1613
1614/*
1615 * vm_map_inherit:
1616 *
1617 * Sets the inheritance of the specified address
1618 * range in the target map. Inheritance
1619 * affects how the map will be shared with
1620 * child maps at the time of vm_map_fork.
1621 */
1622int
1623vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1624 vm_inherit_t new_inheritance)
1625{
1626 vm_map_entry_t entry;
1627 vm_map_entry_t temp_entry;
a108bf71 1628 int count;
984263bc
MD
1629
1630 switch (new_inheritance) {
1631 case VM_INHERIT_NONE:
1632 case VM_INHERIT_COPY:
1633 case VM_INHERIT_SHARE:
1634 break;
1635 default:
1636 return (KERN_INVALID_ARGUMENT);
1637 }
1638
a108bf71 1639 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc
MD
1640 vm_map_lock(map);
1641
1642 VM_MAP_RANGE_CHECK(map, start, end);
1643
1644 if (vm_map_lookup_entry(map, start, &temp_entry)) {
1645 entry = temp_entry;
a108bf71 1646 vm_map_clip_start(map, entry, start, &count);
984263bc
MD
1647 } else
1648 entry = temp_entry->next;
1649
1650 while ((entry != &map->header) && (entry->start < end)) {
a108bf71 1651 vm_map_clip_end(map, entry, end, &count);
984263bc
MD
1652
1653 entry->inheritance = new_inheritance;
1654
a108bf71 1655 vm_map_simplify_entry(map, entry, &count);
984263bc
MD
1656
1657 entry = entry->next;
1658 }
984263bc 1659 vm_map_unlock(map);
a108bf71 1660 vm_map_entry_release(count);
984263bc
MD
1661 return (KERN_SUCCESS);
1662}
1663
1664/*
1665 * Implement the semantics of mlock
1666 */
1667int
cde87949 1668vm_map_unwire(map, start, real_end, new_pageable)
984263bc
MD
1669 vm_map_t map;
1670 vm_offset_t start;
1671 vm_offset_t real_end;
1672 boolean_t new_pageable;
1673{
1674 vm_map_entry_t entry;
1675 vm_map_entry_t start_entry;
1676 vm_offset_t end;
1677 int rv = KERN_SUCCESS;
a108bf71 1678 int count;
984263bc 1679
a108bf71 1680 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc
MD
1681 vm_map_lock(map);
1682 VM_MAP_RANGE_CHECK(map, start, real_end);
1683 end = real_end;
1684
a108bf71 1685 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
984263bc
MD
1686 if (start_entry == NULL) {
1687 vm_map_unlock(map);
a108bf71 1688 vm_map_entry_release(count);
984263bc
MD
1689 return (KERN_INVALID_ADDRESS);
1690 }
1691
1692 if (new_pageable == 0) {
1693 entry = start_entry;
1694 while ((entry != &map->header) && (entry->start < end)) {
1695 vm_offset_t save_start;
1696 vm_offset_t save_end;
1697
1698 /*
1699 * Already user wired or hard wired (trivial cases)
1700 */
1701 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1702 entry = entry->next;
1703 continue;
1704 }
1705 if (entry->wired_count != 0) {
1706 entry->wired_count++;
1707 entry->eflags |= MAP_ENTRY_USER_WIRED;
1708 entry = entry->next;
1709 continue;
1710 }
1711
1712 /*
1713 * A new wiring requires instantiation of appropriate
1714 * management structures and the faulting in of the
1715 * page.
1716 */
1717 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1718 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1719 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1720
1721 vm_object_shadow(&entry->object.vm_object,
1722 &entry->offset,
1723 atop(entry->end - entry->start));
1724 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1725
1726 } else if (entry->object.vm_object == NULL &&
1727 !map->system_map) {
1728
1729 entry->object.vm_object =
1730 vm_object_allocate(OBJT_DEFAULT,
1731 atop(entry->end - entry->start));
1732 entry->offset = (vm_offset_t) 0;
1733
1734 }
1735 }
1736 entry->wired_count++;
1737 entry->eflags |= MAP_ENTRY_USER_WIRED;
1738
1739 /*
1740 * Now fault in the area. The map lock needs to be
1741 * manipulated to avoid deadlocks. The in-transition
1742 * flag protects the entries.
1743 */
1744 save_start = entry->start;
1745 save_end = entry->end;
1746 vm_map_unlock(map);
1747 map->timestamp++;
1748 rv = vm_fault_user_wire(map, save_start, save_end);
1749 vm_map_lock(map);
1750 if (rv) {
1751 CLIP_CHECK_BACK(entry, save_start);
1752 for (;;) {
1753 KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1754 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1755 entry->wired_count = 0;
1756 if (entry->end == save_end)
1757 break;
1758 entry = entry->next;
1759 KASSERT(entry != &map->header, ("bad entry clip during backout"));
1760 }
1761 end = save_start; /* unwire the rest */
1762 break;
1763 }
1764 /*
1765 * note that even though the entry might have been
1766 * clipped, the USER_WIRED flag we set prevents
1767 * duplication so we do not have to do a
1768 * clip check.
1769 */
1770 entry = entry->next;
1771 }
1772
1773 /*
1774 * If we failed fall through to the unwiring section to
1775 * unwire what we had wired so far. 'end' has already
1776 * been adjusted.
1777 */
1778 if (rv)
1779 new_pageable = 1;
1780
1781 /*
1782 * start_entry might have been clipped if we unlocked the
1783 * map and blocked. No matter how clipped it has gotten
1784 * there should be a fragment that is on our start boundary.
1785 */
1786 CLIP_CHECK_BACK(start_entry, start);
1787 }
1788
1789 /*
1790 * Deal with the unwiring case.
1791 */
1792 if (new_pageable) {
1793 /*
1794 * This is the unwiring case. We must first ensure that the
1795 * range to be unwired is really wired down. We know there
1796 * are no holes.
1797 */
1798 entry = start_entry;
1799 while ((entry != &map->header) && (entry->start < end)) {
1800 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1801 rv = KERN_INVALID_ARGUMENT;
1802 goto done;
1803 }
1804 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1805 entry = entry->next;
1806 }
1807
1808 /*
1809 * Now decrement the wiring count for each region. If a region
1810 * becomes completely unwired, unwire its physical pages and
1811 * mappings.
1812 */
b4eddbac
DR
1813 /*
1814 * The map entries are processed in a loop, checking to
1815 * make sure the entry is wired and asserting it has a wired
1816 * count. However, another loop was inserted more-or-less in
1817 * the middle of the unwiring path. This loop picks up the
1818 * "entry" loop variable from the first loop without first
1819 * setting it to start_entry. Naturally, the secound loop
1820 * is never entered and the pages backing the entries are
1821 * never unwired. This can lead to a leak of wired pages.
1822 */
1823 entry = start_entry;
984263bc
MD
1824 while ((entry != &map->header) && (entry->start < end)) {
1825 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, ("expected USER_WIRED on entry %p", entry));
1826 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1827 entry->wired_count--;
1828 if (entry->wired_count == 0)
1829 vm_fault_unwire(map, entry->start, entry->end);
1830 entry = entry->next;
1831 }
1832 }
1833done:
a108bf71 1834 vm_map_unclip_range(map, start_entry, start, real_end, &count,
984263bc
MD
1835 MAP_CLIP_NO_HOLES);
1836 map->timestamp++;
1837 vm_map_unlock(map);
a108bf71 1838 vm_map_entry_release(count);
984263bc
MD
1839 return (rv);
1840}
1841
1842/*
cde87949 1843 * vm_map_wire:
984263bc
MD
1844 *
1845 * Sets the pageability of the specified address
1846 * range in the target map. Regions specified
1847 * as not pageable require locked-down physical
1848 * memory and physical page maps.
1849 *
1850 * The map must not be locked, but a reference
1851 * must remain to the map throughout the call.
a108bf71
MD
1852 *
1853 * This function may be called via the zalloc path and must properly
1854 * reserve map entries for kernel_map.
984263bc
MD
1855 */
1856int
e1359933 1857vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
984263bc
MD
1858{
1859 vm_map_entry_t entry;
1860 vm_map_entry_t start_entry;
1861 vm_offset_t end;
1862 int rv = KERN_SUCCESS;
a108bf71 1863 int count;
984263bc
MD
1864 int s;
1865
e1359933 1866 if (kmflags & KM_KRESERVE)
a108bf71 1867 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
a108bf71
MD
1868 else
1869 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc
MD
1870 vm_map_lock(map);
1871 VM_MAP_RANGE_CHECK(map, start, real_end);
1872 end = real_end;
1873
a108bf71 1874 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
984263bc
MD
1875 if (start_entry == NULL) {
1876 vm_map_unlock(map);
a108bf71
MD
1877 rv = KERN_INVALID_ADDRESS;
1878 goto failure;
984263bc 1879 }
e1359933 1880 if ((kmflags & KM_PAGEABLE) == 0) {
984263bc
MD
1881 /*
1882 * Wiring.
1883 *
1884 * 1. Holding the write lock, we create any shadow or zero-fill
1885 * objects that need to be created. Then we clip each map
1886 * entry to the region to be wired and increment its wiring
1887 * count. We create objects before clipping the map entries
1888 * to avoid object proliferation.
1889 *
1890 * 2. We downgrade to a read lock, and call vm_fault_wire to
1891 * fault in the pages for any newly wired area (wired_count is
1892 * 1).
1893 *
1894 * Downgrading to a read lock for vm_fault_wire avoids a
1895 * possible deadlock with another process that may have faulted
1896 * on one of the pages to be wired (it would mark the page busy,
1897 * blocking us, then in turn block on the map lock that we
1898 * hold). Because of problems in the recursive lock package,
1899 * we cannot upgrade to a write lock in vm_map_lookup. Thus,
1900 * any actions that require the write lock must be done
1901 * beforehand. Because we keep the read lock on the map, the
1902 * copy-on-write status of the entries we modify here cannot
1903 * change.
1904 */
1905
1906 entry = start_entry;
1907 while ((entry != &map->header) && (entry->start < end)) {
1908 /*
1909 * Trivial case if the entry is already wired
1910 */
1911 if (entry->wired_count) {
1912 entry->wired_count++;
1913 entry = entry->next;
1914 continue;
1915 }
1916
1917 /*
1918 * The entry is being newly wired, we have to setup
1919 * appropriate management structures. A shadow
1920 * object is required for a copy-on-write region,
1921 * or a normal object for a zero-fill region. We
1922 * do not have to do this for entries that point to sub
1923 * maps because we won't hold the lock on the sub map.
1924 */
1925 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1926 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1927 if (copyflag &&
1928 ((entry->protection & VM_PROT_WRITE) != 0)) {
1929
1930 vm_object_shadow(&entry->object.vm_object,
1931 &entry->offset,
1932 atop(entry->end - entry->start));
1933 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1934 } else if (entry->object.vm_object == NULL &&
1935 !map->system_map) {
1936 entry->object.vm_object =
1937 vm_object_allocate(OBJT_DEFAULT,
1938 atop(entry->end - entry->start));
1939 entry->offset = (vm_offset_t) 0;
1940 }
1941 }
1942
1943 entry->wired_count++;
1944 entry = entry->next;
1945 }
1946
1947 /*
1948 * Pass 2.
1949 */
1950
1951 /*
1952 * HACK HACK HACK HACK
1953 *
1954 * Unlock the map to avoid deadlocks. The in-transit flag
1955 * protects us from most changes but note that
1956 * clipping may still occur. To prevent clipping from
1957 * occuring after the unlock, except for when we are
1958 * blocking in vm_fault_wire, we must run at splvm().
1959 * Otherwise our accesses to entry->start and entry->end
1960 * could be corrupted. We have to set splvm() prior to
1961 * unlocking so start_entry does not change out from
1962 * under us at the very beginning of the loop.
1963 *
1964 * HACK HACK HACK HACK
1965 */
1966
1967 s = splvm();
1968 vm_map_unlock(map);
1969
1970 entry = start_entry;
1971 while (entry != &map->header && entry->start < end) {
1972 /*
1973 * If vm_fault_wire fails for any page we need to undo
1974 * what has been done. We decrement the wiring count
1975 * for those pages which have not yet been wired (now)
1976 * and unwire those that have (later).
1977 */
1978 vm_offset_t save_start = entry->start;
1979 vm_offset_t save_end = entry->end;
1980
1981 if (entry->wired_count == 1)
1982 rv = vm_fault_wire(map, entry->start, entry->end);
1983 if (rv) {
1984 CLIP_CHECK_BACK(entry, save_start);
1985 for (;;) {
1986 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
1987 entry->wired_count = 0;
1988 if (entry->end == save_end)
1989 break;
1990 entry = entry->next;
1991 KASSERT(entry != &map->header, ("bad entry clip during backout"));
1992 }
1993 end = save_start;
1994 break;
1995 }
1996 CLIP_CHECK_FWD(entry, save_end);
1997 entry = entry->next;
1998 }
1999 splx(s);
2000
2001 /*
2002 * relock. start_entry is still IN_TRANSITION and must
2003 * still exist, but may have been clipped (handled just
2004 * below).
2005 */
2006 vm_map_lock(map);
2007
2008 /*
2009 * If a failure occured undo everything by falling through
2010 * to the unwiring code. 'end' has already been adjusted
2011 * appropriately.
2012 */
2013 if (rv)
e1359933 2014 kmflags |= KM_PAGEABLE;
984263bc
MD
2015
2016 /*
2017 * start_entry might have been clipped if we unlocked the
2018 * map and blocked. No matter how clipped it has gotten
2019 * there should be a fragment that is on our start boundary.
2020 */
2021 CLIP_CHECK_BACK(start_entry, start);
2022 }
2023
e1359933 2024 if (kmflags & KM_PAGEABLE) {
984263bc
MD
2025 /*
2026 * This is the unwiring case. We must first ensure that the
2027 * range to be unwired is really wired down. We know there
2028 * are no holes.
2029 */
2030 entry = start_entry;
2031 while ((entry != &map->header) && (entry->start < end)) {
2032 if (entry->wired_count == 0) {
2033 rv = KERN_INVALID_ARGUMENT;
2034 goto done;
2035 }
2036 entry = entry->next;
2037 }
2038
2039 /*
2040 * Now decrement the wiring count for each region. If a region
2041 * becomes completely unwired, unwire its physical pages and
2042 * mappings.
2043 */
2044 entry = start_entry;
2045 while ((entry != &map->header) && (entry->start < end)) {
2046 entry->wired_count--;
2047 if (entry->wired_count == 0)
2048 vm_fault_unwire(map, entry->start, entry->end);
2049 entry = entry->next;
2050 }
2051 }
2052done:
a108bf71 2053 vm_map_unclip_range(map, start_entry, start, real_end, &count,
984263bc
MD
2054 MAP_CLIP_NO_HOLES);
2055 map->timestamp++;
2056 vm_map_unlock(map);
a108bf71 2057failure:
e1359933 2058 if (kmflags & KM_KRESERVE)
a108bf71 2059 vm_map_entry_krelease(count);
a108bf71
MD
2060 else
2061 vm_map_entry_release(count);
984263bc
MD
2062 return (rv);
2063}
2064
a108bf71
MD
2065/*
2066 * vm_map_set_wired_quick()
2067 *
2068 * Mark a newly allocated address range as wired but do not fault in
2069 * the pages. The caller is expected to load the pages into the object.
2070 *
2071 * The map must be locked on entry and will remain locked on return.
2072 */
2073void
2074vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2075{
2076 vm_map_entry_t scan;
2077 vm_map_entry_t entry;
2078
2079 entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2080 for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2081 KKASSERT(entry->wired_count == 0);
2082 entry->wired_count = 1;
2083 }
2084 vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2085}
2086
984263bc
MD
2087/*
2088 * vm_map_clean
2089 *
2090 * Push any dirty cached pages in the address range to their pager.
2091 * If syncio is TRUE, dirty pages are written synchronously.
2092 * If invalidate is TRUE, any cached pages are freed as well.
2093 *
2094 * Returns an error if any part of the specified range is not mapped.
2095 */
2096int
2097vm_map_clean(map, start, end, syncio, invalidate)
2098 vm_map_t map;
2099 vm_offset_t start;
2100 vm_offset_t end;
2101 boolean_t syncio;
2102 boolean_t invalidate;
2103{
2104 vm_map_entry_t current;
2105 vm_map_entry_t entry;
2106 vm_size_t size;
2107 vm_object_t object;
2108 vm_ooffset_t offset;
2109
2110 vm_map_lock_read(map);
2111 VM_MAP_RANGE_CHECK(map, start, end);
2112 if (!vm_map_lookup_entry(map, start, &entry)) {
2113 vm_map_unlock_read(map);
2114 return (KERN_INVALID_ADDRESS);
2115 }
2116 /*
2117 * Make a first pass to check for holes.
2118 */
2119 for (current = entry; current->start < end; current = current->next) {
2120 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2121 vm_map_unlock_read(map);
2122 return (KERN_INVALID_ARGUMENT);
2123 }
2124 if (end > current->end &&
2125 (current->next == &map->header ||
2126 current->end != current->next->start)) {
2127 vm_map_unlock_read(map);
2128 return (KERN_INVALID_ADDRESS);
2129 }
2130 }
2131
2132 if (invalidate)
2133 pmap_remove(vm_map_pmap(map), start, end);
2134 /*
2135 * Make a second pass, cleaning/uncaching pages from the indicated
2136 * objects as we go.
2137 */
2138 for (current = entry; current->start < end; current = current->next) {
2139 offset = current->offset + (start - current->start);
2140 size = (end <= current->end ? end : current->end) - start;
2141 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2142 vm_map_t smap;
2143 vm_map_entry_t tentry;
2144 vm_size_t tsize;
2145
2146 smap = current->object.sub_map;
2147 vm_map_lock_read(smap);
2148 (void) vm_map_lookup_entry(smap, offset, &tentry);
2149 tsize = tentry->end - offset;
2150 if (tsize < size)
2151 size = tsize;
2152 object = tentry->object.vm_object;
2153 offset = tentry->offset + (offset - tentry->start);
2154 vm_map_unlock_read(smap);
2155 } else {
2156 object = current->object.vm_object;
2157 }
2158 /*
2159 * Note that there is absolutely no sense in writing out
2160 * anonymous objects, so we track down the vnode object
2161 * to write out.
2162 * We invalidate (remove) all pages from the address space
2163 * anyway, for semantic correctness.
2164 *
2165 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2166 * may start out with a NULL object.
2167 */
2168 while (object && object->backing_object) {
2169 object = object->backing_object;
2170 offset += object->backing_object_offset;
2171 if (object->size < OFF_TO_IDX( offset + size))
2172 size = IDX_TO_OFF(object->size) - offset;
2173 }
2174 if (object && (object->type == OBJT_VNODE) &&
2175 (current->protection & VM_PROT_WRITE)) {
2176 /*
2177 * Flush pages if writing is allowed, invalidate them
2178 * if invalidation requested. Pages undergoing I/O
2179 * will be ignored by vm_object_page_remove().
2180 *
2181 * We cannot lock the vnode and then wait for paging
2182 * to complete without deadlocking against vm_fault.
2183 * Instead we simply call vm_object_page_remove() and
2184 * allow it to block internally on a page-by-page
2185 * basis when it encounters pages undergoing async
2186 * I/O.
2187 */
2188 int flags;
2189
2190 vm_object_reference(object);
dadab5e9 2191 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread);
984263bc
MD
2192 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2193 flags |= invalidate ? OBJPC_INVAL : 0;
2194 vm_object_page_clean(object,
2195 OFF_TO_IDX(offset),
2196 OFF_TO_IDX(offset + size + PAGE_MASK),
2197 flags);
dadab5e9 2198 VOP_UNLOCK(object->handle, 0, curthread);
984263bc
MD
2199 vm_object_deallocate(object);
2200 }
2201 if (object && invalidate &&
2202 ((object->type == OBJT_VNODE) ||
2203 (object->type == OBJT_DEVICE))) {
2204 vm_object_reference(object);
2205 vm_object_page_remove(object,
2206 OFF_TO_IDX(offset),
2207 OFF_TO_IDX(offset + size + PAGE_MASK),
2208 FALSE);
2209 vm_object_deallocate(object);
2210 }
2211 start += size;
2212 }
2213
2214 vm_map_unlock_read(map);
2215 return (KERN_SUCCESS);
2216}
2217
2218/*
2219 * vm_map_entry_unwire: [ internal use only ]
2220 *
2221 * Make the region specified by this entry pageable.
2222 *
2223 * The map in question should be locked.
2224 * [This is the reason for this routine's existence.]
2225 */
2226static void
a108bf71 2227vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
984263bc
MD
2228{
2229 vm_fault_unwire(map, entry->start, entry->end);
2230 entry->wired_count = 0;
2231}
2232
2233/*
2234 * vm_map_entry_delete: [ internal use only ]
2235 *
2236 * Deallocate the given entry from the target map.
2237 */
2238static void
a108bf71 2239vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
984263bc
MD
2240{
2241 vm_map_entry_unlink(map, entry);
2242 map->size -= entry->end - entry->start;
2243
2244 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2245 vm_object_deallocate(entry->object.vm_object);
2246 }
2247
a108bf71 2248 vm_map_entry_dispose(map, entry, countp);
984263bc
MD
2249}
2250
2251/*
2252 * vm_map_delete: [ internal use only ]
2253 *
2254 * Deallocates the given address range from the target
2255 * map.
2256 */
2257int
a108bf71 2258vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
984263bc
MD
2259{
2260 vm_object_t object;
2261 vm_map_entry_t entry;
2262 vm_map_entry_t first_entry;
2263
2264 /*
2265 * Find the start of the region, and clip it
2266 */
2267
2268again:
2269 if (!vm_map_lookup_entry(map, start, &first_entry))
2270 entry = first_entry->next;
2271 else {
2272 entry = first_entry;
a108bf71 2273 vm_map_clip_start(map, entry, start, countp);
984263bc
MD
2274 /*
2275 * Fix the lookup hint now, rather than each time though the
2276 * loop.
2277 */
2278 SAVE_HINT(map, entry->prev);
2279 }
2280
2281 /*
2282 * Save the free space hint
2283 */
2284
2285 if (entry == &map->header) {
2286 map->first_free = &map->header;
2287 } else if (map->first_free->start >= start) {
2288 map->first_free = entry->prev;
2289 }
2290
2291 /*
2292 * Step through all entries in this region
2293 */
2294
2295 while ((entry != &map->header) && (entry->start < end)) {
2296 vm_map_entry_t next;
2297 vm_offset_t s, e;
2298 vm_pindex_t offidxstart, offidxend, count;
2299
2300 /*
2301 * If we hit an in-transition entry we have to sleep and
2302 * retry. It's easier (and not really slower) to just retry
2303 * since this case occurs so rarely and the hint is already
2304 * pointing at the right place. We have to reset the
2305 * start offset so as not to accidently delete an entry
2306 * another process just created in vacated space.
2307 */
2308 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2309 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2310 start = entry->start;
12e4aaff
MD
2311 ++mycpu->gd_cnt.v_intrans_coll;
2312 ++mycpu->gd_cnt.v_intrans_wait;
984263bc
MD
2313 vm_map_transition_wait(map);
2314 goto again;
2315 }
a108bf71 2316 vm_map_clip_end(map, entry, end, countp);
984263bc
MD
2317
2318 s = entry->start;
2319 e = entry->end;
2320 next = entry->next;
2321
2322 offidxstart = OFF_TO_IDX(entry->offset);
2323 count = OFF_TO_IDX(e - s);
2324 object = entry->object.vm_object;
2325
2326 /*
2327 * Unwire before removing addresses from the pmap; otherwise,
2328 * unwiring will put the entries back in the pmap.
2329 */
2330 if (entry->wired_count != 0) {
2331 vm_map_entry_unwire(map, entry);
2332 }
2333
2334 offidxend = offidxstart + count;
2335
2336 if ((object == kernel_object) || (object == kmem_object)) {
2337 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2338 } else {
2339 pmap_remove(map->pmap, s, e);
2340 if (object != NULL &&
2341 object->ref_count != 1 &&
2342 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2343 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2344 vm_object_collapse(object);
2345 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2346 if (object->type == OBJT_SWAP) {
2347 swap_pager_freespace(object, offidxstart, count);
2348 }
2349 if (offidxend >= object->size &&
2350 offidxstart < object->size) {
2351 object->size = offidxstart;
2352 }
2353 }
2354 }
2355
2356 /*
2357 * Delete the entry (which may delete the object) only after
2358 * removing all pmap entries pointing to its pages.
2359 * (Otherwise, its page frames may be reallocated, and any
2360 * modify bits will be set in the wrong object!)
2361 */
a108bf71 2362 vm_map_entry_delete(map, entry, countp);
984263bc
MD
2363 entry = next;
2364 }
2365 return (KERN_SUCCESS);
2366}
2367
2368/*
2369 * vm_map_remove:
2370 *
2371 * Remove the given address range from the target map.
2372 * This is the exported form of vm_map_delete.
2373 */
2374int
a108bf71 2375vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
984263bc 2376{
03aa8d99 2377 int result;
a108bf71 2378 int count;
984263bc 2379
a108bf71 2380 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc
MD
2381 vm_map_lock(map);
2382 VM_MAP_RANGE_CHECK(map, start, end);
a108bf71 2383 result = vm_map_delete(map, start, end, &count);
984263bc 2384 vm_map_unlock(map);
a108bf71 2385 vm_map_entry_release(count);
984263bc 2386
984263bc
MD
2387 return (result);
2388}
2389
2390/*
2391 * vm_map_check_protection:
2392 *
2393 * Assert that the target map allows the specified
2394 * privilege on the entire address region given.
2395 * The entire region must be allocated.
2396 */
2397boolean_t
2398vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2399 vm_prot_t protection)
2400{
2401 vm_map_entry_t entry;
2402 vm_map_entry_t tmp_entry;
2403
2404 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2405 return (FALSE);
2406 }
2407 entry = tmp_entry;
2408
2409 while (start < end) {
2410 if (entry == &map->header) {
2411 return (FALSE);
2412 }
2413 /*
2414 * No holes allowed!
2415 */
2416
2417 if (start < entry->start) {
2418 return (FALSE);
2419 }
2420 /*
2421 * Check protection associated with entry.
2422 */
2423
2424 if ((entry->protection & protection) != protection) {
2425 return (FALSE);
2426 }
2427 /* go to next entry */
2428
2429 start = entry->end;
2430 entry = entry->next;
2431 }
2432 return (TRUE);
2433}
2434
2435/*
2436 * Split the pages in a map entry into a new object. This affords
2437 * easier removal of unused pages, and keeps object inheritance from
2438 * being a negative impact on memory usage.
2439 */
2440static void
a108bf71 2441vm_map_split(vm_map_entry_t entry)
984263bc
MD
2442{
2443 vm_page_t m;
2444 vm_object_t orig_object, new_object, source;
2445 vm_offset_t s, e;
2446 vm_pindex_t offidxstart, offidxend, idx;
2447 vm_size_t size;
2448 vm_ooffset_t offset;
2449
2450 orig_object = entry->object.vm_object;
2451 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2452 return;
2453 if (orig_object->ref_count <= 1)
2454 return;
2455
2456 offset = entry->offset;
2457 s = entry->start;
2458 e = entry->end;
2459
2460 offidxstart = OFF_TO_IDX(offset);
2461 offidxend = offidxstart + OFF_TO_IDX(e - s);
2462 size = offidxend - offidxstart;
2463
2464 new_object = vm_pager_allocate(orig_object->type,
2465 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2466 if (new_object == NULL)
2467 return;
2468
2469 source = orig_object->backing_object;
2470 if (source != NULL) {
2471 vm_object_reference(source); /* Referenced by new_object */
2472 LIST_INSERT_HEAD(&source->shadow_head,
2473 new_object, shadow_list);
2474 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2475 new_object->backing_object_offset =
2476 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2477 new_object->backing_object = source;
2478 source->shadow_count++;
2479 source->generation++;
2480 }
2481
2482 for (idx = 0; idx < size; idx++) {
2483 vm_page_t m;
2484
2485 retry:
2486 m = vm_page_lookup(orig_object, offidxstart + idx);
2487 if (m == NULL)
2488 continue;
2489
2490 /*
2491 * We must wait for pending I/O to complete before we can
2492 * rename the page.
2493 *
2494 * We do not have to VM_PROT_NONE the page as mappings should
2495 * not be changed by this operation.
2496 */
2497 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2498 goto retry;
2499
2500 vm_page_busy(m);
2501 vm_page_rename(m, new_object, idx);
2502 /* page automatically made dirty by rename and cache handled */
2503 vm_page_busy(m);
2504 }
2505
2506 if (orig_object->type == OBJT_SWAP) {
2507 vm_object_pip_add(orig_object, 1);
2508 /*
2509 * copy orig_object pages into new_object
2510 * and destroy unneeded pages in
2511 * shadow object.
2512 */
2513 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2514 vm_object_pip_wakeup(orig_object);
2515 }
2516
2517 for (idx = 0; idx < size; idx++) {
2518 m = vm_page_lookup(new_object, idx);
2519 if (m) {
2520 vm_page_wakeup(m);
2521 }
2522 }
2523
2524 entry->object.vm_object = new_object;
2525 entry->offset = 0LL;
2526 vm_object_deallocate(orig_object);
2527}
2528
2529/*
2530 * vm_map_copy_entry:
2531 *
2532 * Copies the contents of the source entry to the destination
2533 * entry. The entries *must* be aligned properly.
2534 */
2535static void
a108bf71
MD
2536vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2537 vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
984263bc
MD
2538{
2539 vm_object_t src_object;
2540
2541 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2542 return;
2543
2544 if (src_entry->wired_count == 0) {
2545
2546 /*
2547 * If the source entry is marked needs_copy, it is already
2548 * write-protected.
2549 */
2550 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2551 pmap_protect(src_map->pmap,
2552 src_entry->start,
2553 src_entry->end,
2554 src_entry->protection & ~VM_PROT_WRITE);
2555 }
2556
2557 /*
2558 * Make a copy of the object.
2559 */
2560 if ((src_object = src_entry->object.vm_object) != NULL) {
2561
2562 if ((src_object->handle == NULL) &&
2563 (src_object->type == OBJT_DEFAULT ||
2564 src_object->type == OBJT_SWAP)) {
2565 vm_object_collapse(src_object);
2566 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2567 vm_map_split(src_entry);
2568 src_object = src_entry->object.vm_object;
2569 }
2570 }
2571
2572 vm_object_reference(src_object);
2573 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2574 dst_entry->object.vm_object = src_object;
2575 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2576 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2577 dst_entry->offset = src_entry->offset;
2578 } else {
2579 dst_entry->object.vm_object = NULL;
2580 dst_entry->offset = 0;
2581 }
2582
2583 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2584 dst_entry->end - dst_entry->start, src_entry->start);
2585 } else {
2586 /*
2587 * Of course, wired down pages can't be set copy-on-write.
2588 * Cause wired pages to be copied into the new map by
2589 * simulating faults (the new pages are pageable)
2590 */
2591 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2592 }
2593}
2594
2595/*
2596 * vmspace_fork:
2597 * Create a new process vmspace structure and vm_map
2598 * based on those of an existing process. The new map
2599 * is based on the old map, according to the inheritance
2600 * values on the regions in that map.
2601 *
2602 * The source map must not be locked.
2603 */
2604struct vmspace *
a108bf71 2605vmspace_fork(struct vmspace *vm1)
984263bc
MD
2606{
2607 struct vmspace *vm2;
2608 vm_map_t old_map = &vm1->vm_map;
2609 vm_map_t new_map;
2610 vm_map_entry_t old_entry;
2611 vm_map_entry_t new_entry;
2612 vm_object_t object;
a108bf71 2613 int count;
984263bc
MD
2614
2615 vm_map_lock(old_map);
2616 old_map->infork = 1;
2617
2618 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2619 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2620 (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy);
2621 new_map = &vm2->vm_map; /* XXX */
2622 new_map->timestamp = 1;
2623
a108bf71 2624 count = 0;
984263bc 2625 old_entry = old_map->header.next;
a108bf71
MD
2626 while (old_entry != &old_map->header) {
2627 ++count;
2628 old_entry = old_entry->next;
2629 }
984263bc 2630
a108bf71
MD
2631 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2632
2633 old_entry = old_map->header.next;
984263bc
MD
2634 while (old_entry != &old_map->header) {
2635 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2636 panic("vm_map_fork: encountered a submap");
2637
2638 switch (old_entry->inheritance) {
2639 case VM_INHERIT_NONE:
2640 break;
2641
2642 case VM_INHERIT_SHARE:
2643 /*
2644 * Clone the entry, creating the shared object if necessary.
2645 */
2646 object = old_entry->object.vm_object;
2647 if (object == NULL) {
2648 object = vm_object_allocate(OBJT_DEFAULT,
2649 atop(old_entry->end - old_entry->start));
2650 old_entry->object.vm_object = object;
2651 old_entry->offset = (vm_offset_t) 0;
2652 }
2653
2654 /*
2655 * Add the reference before calling vm_object_shadow
2656 * to insure that a shadow object is created.
2657 */
2658 vm_object_reference(object);
2659 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2660 vm_object_shadow(&old_entry->object.vm_object,
2661 &old_entry->offset,
2662 atop(old_entry->end - old_entry->start));
2663 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2664 /* Transfer the second reference too. */
2665 vm_object_reference(
2666 old_entry->object.vm_object);
2667 vm_object_deallocate(object);
2668 object = old_entry->object.vm_object;
2669 }
2670 vm_object_clear_flag(object, OBJ_ONEMAPPING);
2671
2672 /*
2673 * Clone the entry, referencing the shared object.
2674 */
a108bf71 2675 new_entry = vm_map_entry_create(new_map, &count);
984263bc
MD
2676 *new_entry = *old_entry;
2677 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2678 new_entry->wired_count = 0;
2679
2680 /*
2681 * Insert the entry into the new map -- we know we're
2682 * inserting at the end of the new map.
2683 */
2684
2685 vm_map_entry_link(new_map, new_map->header.prev,
2686 new_entry);
2687
2688 /*
2689 * Update the physical map
2690 */
2691
2692 pmap_copy(new_map->pmap, old_map->pmap,
2693 new_entry->start,
2694 (old_entry->end - old_entry->start),
2695 old_entry->start);
2696 break;
2697
2698 case VM_INHERIT_COPY:
2699 /*
2700 * Clone the entry and link into the map.
2701 */
a108bf71 2702 new_entry = vm_map_entry_create(new_map, &count);
984263bc
MD
2703 *new_entry = *old_entry;
2704 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2705 new_entry->wired_count = 0;
2706 new_entry->object.vm_object = NULL;
2707 vm_map_entry_link(new_map, new_map->header.prev,
2708 new_entry);
2709 vm_map_copy_entry(old_map, new_map, old_entry,
2710 new_entry);
2711 break;
2712 }
2713 old_entry = old_entry->next;
2714 }
2715
2716 new_map->size = old_map->size;
2717 old_map->infork = 0;
2718 vm_map_unlock(old_map);
a108bf71 2719 vm_map_entry_release(count);
984263bc
MD
2720
2721 return (vm2);
2722}
2723
2724int
2725vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2726 vm_prot_t prot, vm_prot_t max, int cow)
2727{
2728 vm_map_entry_t prev_entry;
2729 vm_map_entry_t new_stack_entry;
2730 vm_size_t init_ssize;
2731 int rv;
a108bf71 2732 int count;
984263bc
MD
2733
2734 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2735 return (KERN_NO_SPACE);
2736
2737 if (max_ssize < sgrowsiz)
2738 init_ssize = max_ssize;
2739 else
2740 init_ssize = sgrowsiz;
2741
a108bf71 2742 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc
MD
2743 vm_map_lock(map);
2744
2745 /* If addr is already mapped, no go */
2746 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2747 vm_map_unlock(map);
a108bf71 2748 vm_map_entry_release(count);
984263bc
MD
2749 return (KERN_NO_SPACE);
2750 }
2751
2752 /* If we would blow our VMEM resource limit, no go */
2753 if (map->size + init_ssize >
2754 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2755 vm_map_unlock(map);
a108bf71 2756 vm_map_entry_release(count);
984263bc
MD
2757 return (KERN_NO_SPACE);
2758 }
2759
2760 /* If we can't accomodate max_ssize in the current mapping,
2761 * no go. However, we need to be aware that subsequent user
2762 * mappings might map into the space we have reserved for
2763 * stack, and currently this space is not protected.
2764 *
2765 * Hopefully we will at least detect this condition
2766 * when we try to grow the stack.
2767 */
2768 if ((prev_entry->next != &map->header) &&
2769 (prev_entry->next->start < addrbos + max_ssize)) {
2770 vm_map_unlock(map);
a108bf71 2771 vm_map_entry_release(count);
984263bc
MD
2772 return (KERN_NO_SPACE);
2773 }
2774
2775 /* We initially map a stack of only init_ssize. We will
2776 * grow as needed later. Since this is to be a grow
2777 * down stack, we map at the top of the range.
2778 *
2779 * Note: we would normally expect prot and max to be
2780 * VM_PROT_ALL, and cow to be 0. Possibly we should
2781 * eliminate these as input parameters, and just
2782 * pass these values here in the insert call.
2783 */
a108bf71
MD
2784 rv = vm_map_insert(map, &count,
2785 NULL, 0, addrbos + max_ssize - init_ssize,
984263bc
MD
2786 addrbos + max_ssize, prot, max, cow);
2787
2788 /* Now set the avail_ssize amount */
2789 if (rv == KERN_SUCCESS){
2790 if (prev_entry != &map->header)
a108bf71 2791 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
984263bc
MD
2792 new_stack_entry = prev_entry->next;
2793 if (new_stack_entry->end != addrbos + max_ssize ||
2794 new_stack_entry->start != addrbos + max_ssize - init_ssize)
2795 panic ("Bad entry start/end for new stack entry");
2796 else
2797 new_stack_entry->avail_ssize = max_ssize - init_ssize;
2798 }
2799
2800 vm_map_unlock(map);
a108bf71 2801 vm_map_entry_release(count);
984263bc
MD
2802 return (rv);
2803}
2804
2805/* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
2806 * desired address is already mapped, or if we successfully grow
2807 * the stack. Also returns KERN_SUCCESS if addr is outside the
2808 * stack range (this is strange, but preserves compatibility with
2809 * the grow function in vm_machdep.c).
2810 */
2811int
2812vm_map_growstack (struct proc *p, vm_offset_t addr)
2813{
2814 vm_map_entry_t prev_entry;
2815 vm_map_entry_t stack_entry;
2816 vm_map_entry_t new_stack_entry;
2817 struct vmspace *vm = p->p_vmspace;
2818 vm_map_t map = &vm->vm_map;
2819 vm_offset_t end;
a108bf71
MD
2820 int grow_amount;
2821 int rv = KERN_SUCCESS;
2822 int is_procstack;
2823 int use_read_lock = 1;
2824 int count;
984263bc 2825
a108bf71 2826 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc
MD
2827Retry:
2828 if (use_read_lock)
2829 vm_map_lock_read(map);
2830 else
2831 vm_map_lock(map);
2832
2833 /* If addr is already in the entry range, no need to grow.*/
2834 if (vm_map_lookup_entry(map, addr, &prev_entry))
2835 goto done;
2836
2837 if ((stack_entry = prev_entry->next) == &map->header)
2838 goto done;
2839 if (prev_entry == &map->header)
2840 end = stack_entry->start - stack_entry->avail_ssize;
2841 else
2842 end = prev_entry->end;
2843
2844 /* This next test mimics the old grow function in vm_machdep.c.
2845 * It really doesn't quite make sense, but we do it anyway
2846 * for compatibility.
2847 *
2848 * If not growable stack, return success. This signals the
2849 * caller to proceed as he would normally with normal vm.
2850 */
2851 if (stack_entry->avail_ssize < 1 ||
2852 addr >= stack_entry->start ||
2853 addr < stack_entry->start - stack_entry->avail_ssize) {
2854 goto done;
2855 }
2856
2857 /* Find the minimum grow amount */
2858 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2859 if (grow_amount > stack_entry->avail_ssize) {
2860 rv = KERN_NO_SPACE;
2861 goto done;
2862 }
2863
2864 /* If there is no longer enough space between the entries
2865 * nogo, and adjust the available space. Note: this
2866 * should only happen if the user has mapped into the
2867 * stack area after the stack was created, and is
2868 * probably an error.
2869 *
2870 * This also effectively destroys any guard page the user
2871 * might have intended by limiting the stack size.
2872 */
2873 if (grow_amount > stack_entry->start - end) {
2874 if (use_read_lock && vm_map_lock_upgrade(map)) {
2875 use_read_lock = 0;
2876 goto Retry;
2877 }
2878 use_read_lock = 0;
2879 stack_entry->avail_ssize = stack_entry->start - end;
2880 rv = KERN_NO_SPACE;
2881 goto done;
2882 }
2883
2884 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2885
2886 /* If this is the main process stack, see if we're over the
2887 * stack limit.
2888 */
2889 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2890 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2891 rv = KERN_NO_SPACE;
2892 goto done;
2893 }
2894
2895 /* Round up the grow amount modulo SGROWSIZ */
2896 grow_amount = roundup (grow_amount, sgrowsiz);
2897 if (grow_amount > stack_entry->avail_ssize) {
2898 grow_amount = stack_entry->avail_ssize;
2899 }
2900 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2901 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2902 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2903 ctob(vm->vm_ssize);
2904 }
2905
2906 /* If we would blow our VMEM resource limit, no go */
be77b5f9 2907 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
984263bc
MD
2908 rv = KERN_NO_SPACE;
2909 goto done;
2910 }
2911
2912 if (use_read_lock && vm_map_lock_upgrade(map)) {
2913 use_read_lock = 0;
2914 goto Retry;
2915 }
2916 use_read_lock = 0;
2917
2918 /* Get the preliminary new entry start value */
2919 addr = stack_entry->start - grow_amount;
2920
2921 /* If this puts us into the previous entry, cut back our growth
2922 * to the available space. Also, see the note above.
2923 */
2924 if (addr < end) {
2925 stack_entry->avail_ssize = stack_entry->start - end;
2926 addr = end;
2927 }
2928
a108bf71
MD
2929 rv = vm_map_insert(map, &count,
2930 NULL, 0, addr, stack_entry->start,
984263bc
MD
2931 VM_PROT_ALL,
2932 VM_PROT_ALL,
2933 0);
2934
2935 /* Adjust the available stack space by the amount we grew. */
2936 if (rv == KERN_SUCCESS) {
2937 if (prev_entry != &map->header)
a108bf71 2938 vm_map_clip_end(map, prev_entry, addr, &count);
984263bc
MD
2939 new_stack_entry = prev_entry->next;
2940 if (new_stack_entry->end != stack_entry->start ||
2941 new_stack_entry->start != addr)
2942 panic ("Bad stack grow start/end in new stack entry");
2943 else {
2944 new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2945 (new_stack_entry->end -
2946 new_stack_entry->start);
2947 if (is_procstack)
2948 vm->vm_ssize += btoc(new_stack_entry->end -
2949 new_stack_entry->start);
2950 }
2951 }
2952
2953done:
2954 if (use_read_lock)
2955 vm_map_unlock_read(map);
2956 else
2957 vm_map_unlock(map);
a108bf71 2958 vm_map_entry_release(count);
984263bc
MD
2959 return (rv);
2960}
2961
2962/*
2963 * Unshare the specified VM space for exec. If other processes are
2964 * mapped to it, then create a new one. The new vmspace is null.
2965 */
2966
2967void
a108bf71
MD
2968vmspace_exec(struct proc *p)
2969{
984263bc
MD
2970 struct vmspace *oldvmspace = p->p_vmspace;
2971 struct vmspace *newvmspace;
2972 vm_map_t map = &p->p_vmspace->vm_map;
2973
2974 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2975 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2976 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2977 /*
2978 * This code is written like this for prototype purposes. The
2979 * goal is to avoid running down the vmspace here, but let the
2980 * other process's that are still using the vmspace to finally
2981 * run it down. Even though there is little or no chance of blocking
2982 * here, it is a good idea to keep this form for future mods.
2983 */
2984 vmspace_free(oldvmspace);
2985 p->p_vmspace = newvmspace;
2986 pmap_pinit2(vmspace_pmap(newvmspace));
2987 if (p == curproc)
2988 pmap_activate(p);
2989}
2990
2991/*
2992 * Unshare the specified VM space for forcing COW. This
2993 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
2994 */
2995
2996void
a108bf71
MD
2997vmspace_unshare(struct proc *p)
2998{
984263bc
MD
2999 struct vmspace *oldvmspace = p->p_vmspace;
3000 struct vmspace *newvmspace;
3001
3002 if (oldvmspace->vm_refcnt == 1)
3003 return;
3004 newvmspace = vmspace_fork(oldvmspace);
3005 vmspace_free(oldvmspace);
3006 p->p_vmspace = newvmspace;
3007 pmap_pinit2(vmspace_pmap(newvmspace));
3008 if (p == curproc)
3009 pmap_activate(p);
3010}
984263bc
MD
3011
3012/*
3013 * vm_map_lookup:
3014 *
3015 * Finds the VM object, offset, and
3016 * protection for a given virtual address in the
3017 * specified map, assuming a page fault of the
3018 * type specified.
3019 *
3020 * Leaves the map in question locked for read; return
3021 * values are guaranteed until a vm_map_lookup_done
3022 * call is performed. Note that the map argument
3023 * is in/out; the returned map must be used in
3024 * the call to vm_map_lookup_done.
3025 *
3026 * A handle (out_entry) is returned for use in
3027 * vm_map_lookup_done, to make that fast.
3028 *
3029 * If a lookup is requested with "write protection"
3030 * specified, the map may be changed to perform virtual
3031 * copying operations, although the data referenced will
3032 * remain the same.
3033 */
3034int
3035vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
3036 vm_offset_t vaddr,
3037 vm_prot_t fault_typea,
3038 vm_map_entry_t *out_entry, /* OUT */
3039 vm_object_t *object, /* OUT */
3040 vm_pindex_t *pindex, /* OUT */
3041 vm_prot_t *out_prot, /* OUT */
3042 boolean_t *wired) /* OUT */
3043{
3044 vm_map_entry_t entry;
3045 vm_map_t map = *var_map;
3046 vm_prot_t prot;
3047 vm_prot_t fault_type = fault_typea;
3048 int use_read_lock = 1;
3049 int rv = KERN_SUCCESS;
3050
3051RetryLookup:
3052 if (use_read_lock)
3053 vm_map_lock_read(map);
3054 else
3055 vm_map_lock(map);
3056
3057 /*
3058 * If the map has an interesting hint, try it before calling full
3059 * blown lookup routine.
3060 */
3061 entry = map->hint;
3062 *out_entry = entry;
3063
3064 if ((entry == &map->header) ||
3065 (vaddr < entry->start) || (vaddr >= entry->end)) {
3066 vm_map_entry_t tmp_entry;
3067
3068 /*
3069 * Entry was either not a valid hint, or the vaddr was not
3070 * contained in the entry, so do a full lookup.
3071 */
3072 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3073 rv = KERN_INVALID_ADDRESS;
3074 goto done;
3075 }
3076
3077 entry = tmp_entry;
3078 *out_entry = entry;
3079 }
3080
3081 /*
3082 * Handle submaps.
3083 */
3084
3085 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3086 vm_map_t old_map = map;
3087
3088 *var_map = map = entry->object.sub_map;
3089 if (use_read_lock)
3090 vm_map_unlock_read(old_map);
3091 else
3092 vm_map_unlock(old_map);
3093 use_read_lock = 1;
3094 goto RetryLookup;
3095 }
3096
3097 /*
3098 * Check whether this task is allowed to have this page.
3099 * Note the special case for MAP_ENTRY_COW
3100 * pages with an override. This is to implement a forced
3101 * COW for debuggers.
3102 */
3103
3104 if (fault_type & VM_PROT_OVERRIDE_WRITE)
3105 prot = entry->max_protection;
3106 else
3107 prot = entry->protection;
3108
3109 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3110 if ((fault_type & prot) != fault_type) {
3111 rv = KERN_PROTECTION_FAILURE;
3112 goto done;
3113 }
3114
3115 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3116 (entry->eflags & MAP_ENTRY_COW) &&
3117 (fault_type & VM_PROT_WRITE) &&
3118 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3119 rv = KERN_PROTECTION_FAILURE;
3120 goto done;
3121 }
3122
3123 /*
3124 * If this page is not pageable, we have to get it for all possible
3125 * accesses.
3126 */
3127
3128 *wired = (entry->wired_count != 0);
3129 if (*wired)
3130 prot = fault_type = entry->protection;
3131
3132 /*
3133 * If the entry was copy-on-write, we either ...
3134 */
3135
3136 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3137 /*
3138 * If we want to write the page, we may as well handle that
3139 * now since we've got the map locked.
3140 *
3141 * If we don't need to write the page, we just demote the
3142 * permissions allowed.
3143 */
3144
3145 if (fault_type & VM_PROT_WRITE) {
3146 /*
3147 * Make a new object, and place it in the object
3148 * chain. Note that no new references have appeared
3149 * -- one just moved from the map to the new
3150 * object.
3151 */
3152
3153 if (use_read_lock && vm_map_lock_upgrade(map)) {
3154 use_read_lock = 0;
3155 goto RetryLookup;
3156 }
3157 use_read_lock = 0;
3158
3159 vm_object_shadow(
3160 &entry->object.vm_object,
3161 &entry->offset,
3162 atop(entry->end - entry->start));
3163
3164 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3165 } else {
3166 /*
3167 * We're attempting to read a copy-on-write page --
3168 * don't allow writes.
3169 */
3170
3171 prot &= ~VM_PROT_WRITE;
3172 }
3173 }
3174
3175 /*
3176 * Create an object if necessary.
3177 */
3178 if (entry->object.vm_object == NULL &&
3179 !map->system_map) {
3180 if (use_read_lock && vm_map_lock_upgrade(map)) {
3181 use_read_lock = 0;
3182 goto RetryLookup;
3183 }
3184 use_read_lock = 0;
3185 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3186 atop(entry->end - entry->start));
3187 entry->offset = 0;
3188 }
3189
3190 /*
3191 * Return the object/offset from this entry. If the entry was
3192 * copy-on-write or empty, it has been fixed up.
3193 */
3194
3195 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3196 *object = entry->object.vm_object;
3197
3198 /*
3199 * Return whether this is the only map sharing this data. On
3200 * success we return with a read lock held on the map. On failure
3201 * we return with the map unlocked.
3202 */
3203 *out_prot = prot;
3204done:
3205 if (rv == KERN_SUCCESS) {
3206 if (use_read_lock == 0)
3207 vm_map_lock_downgrade(map);
3208 } else if (use_read_lock) {
3209 vm_map_unlock_read(map);
3210 } else {
3211 vm_map_unlock(map);
3212 }
3213 return (rv);
3214}
3215
3216/*
3217 * vm_map_lookup_done:
3218 *
3219 * Releases locks acquired by a vm_map_lookup
3220 * (according to the handle returned by that lookup).
3221 */
3222
3223void
a108bf71 3224vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
984263bc
MD
3225{
3226 /*
3227 * Unlock the main-level map
3228 */
984263bc 3229 vm_map_unlock_read(map);
a108bf71
MD
3230 if (count)
3231 vm_map_entry_release(count);
984263bc
MD
3232}
3233
3234/*
3235 * Implement uiomove with VM operations. This handles (and collateral changes)
3236 * support every combination of source object modification, and COW type
3237 * operations.
3238 */
3239int
3240vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages)
3241 vm_map_t mapa;
3242 vm_object_t srcobject;
3243 off_t cp;
3244 int cnta;
3245 vm_offset_t uaddra;
3246 int *npages;
3247{
3248 vm_map_t map;
3249 vm_object_t first_object, oldobject, object;
3250 vm_map_entry_t entry;
3251 vm_prot_t prot;
3252 boolean_t wired;
3253 int tcnt, rv;
3254 vm_offset_t uaddr, start, end, tend;
3255 vm_pindex_t first_pindex, osize, oindex;
3256 off_t ooffset;
3257 int cnt;
a108bf71 3258 int count;
984263bc
MD
3259
3260 if (npages)
3261 *npages = 0;
3262
3263 cnt = cnta;
3264 uaddr = uaddra;
3265
3266 while (cnt > 0) {
3267 map = mapa;
3268
a108bf71
MD
3269 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3270
984263bc
MD
3271 if ((vm_map_lookup(&map, uaddr,
3272 VM_PROT_READ, &entry, &first_object,
3273 &first_pindex, &prot, &wired)) != KERN_SUCCESS) {
3274 return EFAULT;
3275 }
3276
a108bf71 3277 vm_map_clip_start(map, entry, uaddr, &count);
984263bc
MD
3278
3279 tcnt = cnt;
3280 tend = uaddr + tcnt;
3281 if (tend > entry->end) {
3282 tcnt = entry->end - uaddr;
3283 tend = entry->end;
3284 }
3285
a108bf71 3286 vm_map_clip_end(map, entry, tend, &count);
984263bc
MD
3287
3288 start = entry->start;
3289 end = entry->end;
3290
3291 osize = atop(tcnt);
3292
3293 oindex = OFF_TO_IDX(cp);
3294 if (npages) {
3295 vm_pindex_t idx;
3296 for (idx = 0; idx < osize; idx++) {
3297 vm_page_t m;
3298 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
a108bf71 3299 vm_map_lookup_done(map, entry, count);
984263bc
MD
3300 return 0;
3301 }
3302 /*
3303 * disallow busy or invalid pages, but allow
3304 * m->busy pages if they are entirely valid.
3305 */
3306 if ((m->flags & PG_BUSY) ||
3307 ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
a108bf71 3308 vm_map_lookup_done(map, entry, count);
984263bc
MD
3309 return 0;
3310 }
3311 }
3312 }
3313
3314/*
3315 * If we are changing an existing map entry, just redirect
3316 * the object, and change mappings.
3317 */
3318 if ((first_object->type == OBJT_VNODE) &&
3319 ((oldobject = entry->object.vm_object) == first_object)) {
3320
3321 if ((entry->offset != cp) || (oldobject != srcobject)) {
3322 /*
3323 * Remove old window into the file
3324 */
3325 pmap_remove (map->pmap, uaddr, tend);
3326
3327 /*
3328 * Force copy on write for mmaped regions
3329 */
3330 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3331
3332 /*
3333 * Point the object appropriately
3334 */
3335 if (oldobject != srcobject) {
3336
3337 /*
3338 * Set the object optimization hint flag
3339 */
3340 vm_object_set_flag(srcobject, OBJ_OPT);
3341 vm_object_reference(srcobject);
3342 entry->object.vm_object = srcobject;
3343
3344 if (oldobject) {
3345 vm_object_deallocate(oldobject);
3346 }
3347 }
3348
3349 entry->offset = cp;
3350 map->timestamp++;
3351 } else {
3352 pmap_remove (map->pmap, uaddr, tend);
3353 }
3354
3355 } else if ((first_object->ref_count == 1) &&
3356 (first_object->size == osize) &&
3357 ((first_object->type == OBJT_DEFAULT) ||
3358 (first_object->type == OBJT_SWAP)) ) {
3359
3360 oldobject = first_object->backing_object;
3361
3362 if ((first_object->backing_object_offset != cp) ||
3363 (oldobject != srcobject)) {
3364 /*
3365 * Remove old window into the file
3366 */
3367 pmap_remove (map->pmap, uaddr, tend);
3368
3369 /*
3370 * Remove unneeded old pages
3371 */
3372 vm_object_page_remove(first_object, 0, 0, 0);
3373
3374 /*
3375 * Invalidate swap space
3376 */
3377 if (first_object->type == OBJT_SWAP) {
3378 swap_pager_freespace(first_object,
3379 0,
3380 first_object->size);
3381 }
3382
3383 /*
3384 * Force copy on write for mmaped regions
3385 */
3386 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3387
3388 /*
3389 * Point the object appropriately
3390 */
3391 if (oldobject != srcobject) {
3392
3393 /*
3394 * Set the object optimization hint flag
3395 */
3396 vm_object_set_flag(srcobject, OBJ_OPT);
3397 vm_object_reference(srcobject);
3398
3399 if (oldobject) {
3400 LIST_REMOVE(
3401 first_object, shadow_list);
3402 oldobject->shadow_count--;
3403 /* XXX bump generation? */
3404 vm_object_deallocate(oldobject);
3405 }
3406
3407 LIST_INSERT_HEAD(&srcobject->shadow_head,
3408 first_object, shadow_list);
3409 srcobject->shadow_count++;
3410 /* XXX bump generation? */
3411
3412 first_object->backing_object = srcobject;
3413 }
3414 first_object->backing_object_offset = cp;
3415 map->timestamp++;
3416 } else {
3417 pmap_remove (map->pmap, uaddr, tend);
3418 }
3419/*
3420 * Otherwise, we have to do a logical mmap.
3421 */
3422 } else {
3423
3424 vm_object_set_flag(srcobject, OBJ_OPT);
3425 vm_object_reference(srcobject);
3426
3427 pmap_remove (map->pmap, uaddr, tend);
3428
3429 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3430 vm_map_lock_upgrade(map);
3431
3432 if (entry == &map->header) {
3433 map->first_free = &map->header;
3434 } else if (map->first_free->start >= start) {
3435 map->first_free = entry->prev;
3436 }
3437
3438 SAVE_HINT(map, entry->prev);
a108bf71 3439 vm_map_entry_delete(map, entry, &count);
984263bc
MD
3440
3441 object = srcobject;
3442 ooffset = cp;
3443
a108bf71
MD
3444 rv = vm_map_insert(map, &count,
3445 object, ooffset, start, tend,
984263bc
MD
3446 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
3447
3448 if (rv != KERN_SUCCESS)
3449 panic("vm_uiomove: could not insert new entry: %d", rv);
3450 }
3451
3452/*
3453 * Map the window directly, if it is already in memory
3454 */
3455 pmap_object_init_pt(map->pmap, uaddr,
3456 srcobject, oindex, tcnt, 0);
3457
3458 map->timestamp++;
3459 vm_map_unlock(map);
a108bf71 3460 vm_map_entry_release(count);
984263bc
MD
3461
3462 cnt -= tcnt;
3463 uaddr += tcnt;
3464 cp += tcnt;
3465 if (npages)
3466 *npages += osize;
3467 }
3468 return 0;
3469}
3470
3471/*
3472 * Performs the copy_on_write operations necessary to allow the virtual copies
3473 * into user space to work. This has to be called for write(2) system calls
3474 * from other processes, file unlinking, and file size shrinkage.
3475 */
3476void
3477vm_freeze_copyopts(object, froma, toa)
3478 vm_object_t object;
3479 vm_pindex_t froma, toa;
3480{
3481 int rv;
3482 vm_object_t robject;
3483 vm_pindex_t idx;
3484
3485 if ((object == NULL) ||
3486 ((object->flags & OBJ_OPT) == 0))
3487 return;
3488
3489 if (object->shadow_count > object->ref_count)
3490 panic("vm_freeze_copyopts: sc > rc");
3491
3492 while((robject = LIST_FIRST(&object->shadow_head)) != NULL) {
3493 vm_pindex_t bo_pindex;
3494 vm_page_t m_in, m_out;
3495
3496 bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3497
3498 vm_object_reference(robject);
3499
3500 vm_object_pip_wait(robject, "objfrz");
3501
3502 if (robject->ref_count == 1) {
3503 vm_object_deallocate(robject);
3504 continue;
3505 }
3506
3507 vm_object_pip_add(robject, 1);
3508
3509 for (idx = 0; idx < robject->size; idx++) {
3510
3511 m_out = vm_page_grab(robject, idx,
3512 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3513
3514 if (m_out->valid == 0) {
3515 m_in = vm_page_grab(object, bo_pindex + idx,
3516 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3517 if (m_in->valid == 0) {
3518 rv = vm_pager_get_pages(object, &m_in, 1, 0);
3519 if (rv != VM_PAGER_OK) {
3520 printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3521 continue;
3522 }
3523 vm_page_deactivate(m_in);
3524 }
3525
3526 vm_page_protect(m_in, VM_PROT_NONE);
3527 pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
3528 m_out->valid = m_in->valid;
3529 vm_page_dirty(m_out);
3530 vm_page_activate(m_out);
3531 vm_page_wakeup(m_in);
3532 }
3533 vm_page_wakeup(m_out);
3534 }
3535
3536 object->shadow_count--;
3537 object->ref_count--;
3538 LIST_REMOVE(robject, shadow_list);
3539 robject->backing_object = NULL;
3540 robject->backing_object_offset = 0;
3541
3542 vm_object_pip_wakeup(robject);
3543 vm_object_deallocate(robject);
3544 }
3545
3546 vm_object_clear_flag(object, OBJ_OPT);
3547}
3548
3549#include "opt_ddb.h"
3550#ifdef DDB
3551#include <sys/kernel.h>
3552
3553#include <ddb/ddb.h>
3554
3555/*
3556 * vm_map_print: [ debug ]
3557 */
3558DB_SHOW_COMMAND(map, vm_map_print)
3559{
3560 static int nlines;
3561 /* XXX convert args. */
3562 vm_map_t map = (vm_map_t)addr;
3563 boolean_t full = have_addr;
3564
3565 vm_map_entry_t entry;
3566
3567 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3568 (void *)map,
3569 (void *)map->pmap, map->nentries, map->timestamp);
3570 nlines++;
3571
3572 if (!full && db_indent)
3573 return;
3574
3575 db_indent += 2;
3576 for (entry = map->header.next; entry != &map->header;
3577 entry = entry->next) {
3578 db_iprintf("map entry %p: start=%p, end=%p\n",
3579 (void *)entry, (void *)entry->start, (void *)entry->end);
3580 nlines++;
3581 {
3582 static char *inheritance_name[4] =
3583 {"share", "copy", "none", "donate_copy"};
3584
3585 db_iprintf(" prot=%x/%x/%s",
3586 entry->protection,
3587 entry->max_protection,
3588 inheritance_name[(int)(unsigned char)entry->inheritance]);
3589 if (entry->wired_count != 0)
3590 db_printf(", wired");
3591 }
3592 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3593 /* XXX no %qd in kernel. Truncate entry->offset. */
3594 db_printf(", share=%p, offset=0x%lx\n",
3595 (void *)entry->object.sub_map,
3596 (long)entry->offset);
3597 nlines++;
3598 if ((entry->prev == &map->header) ||
3599 (entry->prev->object.sub_map !=
3600 entry->object.sub_map)) {
3601 db_indent += 2;
3602 vm_map_print((db_expr_t)(intptr_t)
3603 entry->object.sub_map,
3604 full, 0, (char *)0);
3605 db_indent -= 2;
3606 }
3607 } else {
3608 /* XXX no %qd in kernel. Truncate entry->offset. */
3609 db_printf(", object=%p, offset=0x%lx",
3610 (void *)entry->object.vm_object,
3611 (long)entry->offset);
3612 if (entry->eflags & MAP_ENTRY_COW)
3613 db_printf(", copy (%s)",
3614 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3615 db_printf("\n");
3616 nlines++;
3617
3618 if ((entry->prev == &map->header) ||
3619 (entry->prev->object.vm_object !=
3620 entry->object.vm_object)) {
3621 db_indent += 2;
3622 vm_object_print((db_expr_t)(intptr_t)
3623 entry->object.vm_object,
3624 full, 0, (char *)0);
3625 nlines += 4;
3626 db_indent -= 2;
3627 }
3628 }
3629 }
3630 db_indent -= 2;
3631 if (db_indent == 0)
3632 nlines = 0;
3633}
3634
3635
3636DB_SHOW_COMMAND(procvm, procvm)
3637{
3638 struct proc *p;
3639
3640 if (have_addr) {
3641 p = (struct proc *) addr;
3642 } else {
3643 p = curproc;
3644 }
3645
3646 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3647 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3648 (void *)vmspace_pmap(p->p_vmspace));
3649
3650 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3651}
3652
3653#endif /* DDB */