kernel - Fix MP races in recent vm_object work
[dragonfly.git] / sys / vm / vm_map.c
CommitLineData
984263bc 1/*
46754a20
MD
2 * (MPSAFE)
3 *
984263bc
MD
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
39 *
40 *
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 *
66 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
e3161323 67 * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
984263bc
MD
68 */
69
70/*
71 * Virtual memory mapping module.
72 */
73
74#include <sys/param.h>
75#include <sys/systm.h>
e3161323 76#include <sys/kernel.h>
984263bc 77#include <sys/proc.h>
ff13bc52 78#include <sys/serialize.h>
fef0fdf2 79#include <sys/lock.h>
984263bc
MD
80#include <sys/vmmeter.h>
81#include <sys/mman.h>
82#include <sys/vnode.h>
83#include <sys/resourcevar.h>
fef0fdf2 84#include <sys/shm.h>
686dbf64 85#include <sys/tree.h>
e3161323 86#include <sys/malloc.h>
984263bc
MD
87
88#include <vm/vm.h>
89#include <vm/vm_param.h>
984263bc
MD
90#include <vm/pmap.h>
91#include <vm/vm_map.h>
92#include <vm/vm_page.h>
93#include <vm/vm_object.h>
94#include <vm/vm_pager.h>
95#include <vm/vm_kern.h>
96#include <vm/vm_extern.h>
97#include <vm/swap_pager.h>
98#include <vm/vm_zone.h>
99
a108bf71 100#include <sys/thread2.h>
e3161323 101#include <sys/sysref2.h>
911e30e2
AH
102#include <sys/random.h>
103#include <sys/sysctl.h>
a108bf71 104
984263bc 105/*
46754a20
MD
106 * Virtual memory maps provide for the mapping, protection, and sharing
107 * of virtual memory objects. In addition, this module provides for an
108 * efficient virtual copy of memory from one map to another.
984263bc 109 *
46754a20 110 * Synchronization is required prior to most operations.
984263bc 111 *
46754a20
MD
112 * Maps consist of an ordered doubly-linked list of simple entries.
113 * A hint and a RB tree is used to speed-up lookups.
984263bc 114 *
46754a20
MD
115 * Callers looking to modify maps specify start/end addresses which cause
116 * the related map entry to be clipped if necessary, and then later
117 * recombined if the pieces remained compatible.
984263bc 118 *
46754a20
MD
119 * Virtual copy operations are performed by copying VM object references
120 * from one map to another, and then marking both regions as copy-on-write.
984263bc 121 */
e3161323 122static void vmspace_terminate(struct vmspace *vm);
e654922c
MD
123static void vmspace_lock(struct vmspace *vm);
124static void vmspace_unlock(struct vmspace *vm);
e3161323
MD
125static void vmspace_dtor(void *obj, void *private);
126
127MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
128
129struct sysref_class vmspace_sysref_class = {
130 .name = "vmspace",
131 .mtype = M_VMSPACE,
132 .proto = SYSREF_PROTO_VMSPACE,
133 .offset = offsetof(struct vmspace, vm_sysref),
134 .objsize = sizeof(struct vmspace),
521f81c7 135 .nom_cache = 32,
e3161323
MD
136 .flags = SRC_MANAGEDINIT,
137 .dtor = vmspace_dtor,
138 .ops = {
e654922c
MD
139 .terminate = (sysref_terminate_func_t)vmspace_terminate,
140 .lock = (sysref_lock_func_t)vmspace_lock,
141 .unlock = (sysref_lock_func_t)vmspace_unlock
e3161323
MD
142 }
143};
984263bc 144
8e5ea5f7
MD
145/*
146 * per-cpu page table cross mappings are initialized in early boot
147 * and might require a considerable number of vm_map_entry structures.
148 */
149#define VMEPERCPU (MAXCPU+1)
c4ae567f 150
a108bf71 151static struct vm_zone mapentzone_store, mapzone_store;
e3161323 152static vm_zone_t mapentzone, mapzone;
a108bf71 153static struct vm_object mapentobj, mapobj;
984263bc
MD
154
155static struct vm_map_entry map_entry_init[MAX_MAPENT];
c4ae567f 156static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
984263bc
MD
157static struct vm_map map_init[MAX_KMAP];
158
911e30e2
AH
159static int randomize_mmap;
160SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
161 "Randomize mmap offsets");
162
53025830 163static void vm_map_entry_shadow(vm_map_entry_t entry);
a108bf71
MD
164static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
165static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
166static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
167static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
168static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
1388df65
RG
169static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
170static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
171 vm_map_entry_t);
172static void vm_map_split (vm_map_entry_t);
a108bf71 173static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
984263bc 174
e3161323 175/*
46754a20
MD
176 * Initialize the vm_map module. Must be called before any other vm_map
177 * routines.
e3161323 178 *
46754a20
MD
179 * Map and entry structures are allocated from the general purpose
180 * memory pool with some exceptions:
e3161323 181 *
46754a20
MD
182 * - The kernel map is allocated statically.
183 * - Initial kernel map entries are allocated out of a static pool.
e3161323
MD
184 *
185 * These restrictions are necessary since malloc() uses the
186 * maps and requires map entries.
46754a20
MD
187 *
188 * Called from the low level boot code only.
e3161323 189 */
984263bc 190void
57e43348 191vm_map_startup(void)
984263bc
MD
192{
193 mapzone = &mapzone_store;
194 zbootinit(mapzone, "MAP", sizeof (struct vm_map),
195 map_init, MAX_KMAP);
984263bc
MD
196 mapentzone = &mapentzone_store;
197 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
198 map_entry_init, MAX_MAPENT);
199}
200
e3161323 201/*
46754a20
MD
202 * Called prior to any vmspace allocations.
203 *
204 * Called from the low level boot code only.
e3161323
MD
205 */
206void
207vm_init2(void)
208{
209 zinitna(mapentzone, &mapentobj, NULL, 0, 0,
210 ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
211 zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
212 pmap_init2();
213 vm_object_init2();
214}
215
216
686dbf64
MD
217/*
218 * Red black tree functions
46754a20
MD
219 *
220 * The caller must hold the related map lock.
686dbf64
MD
221 */
222static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
223RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
224
225/* a->start is address, and the only field has to be initialized */
226static int
227rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
228{
229 if (a->start < b->start)
230 return(-1);
231 else if (a->start > b->start)
232 return(1);
233 return(0);
234}
235
984263bc 236/*
e3161323
MD
237 * Allocate a vmspace structure, including a vm_map and pmap.
238 * Initialize numerous fields. While the initial allocation is zerod,
239 * subsequence reuse from the objcache leaves elements of the structure
240 * intact (particularly the pmap), so portions must be zerod.
241 *
242 * The structure is not considered activated until we call sysref_activate().
46754a20
MD
243 *
244 * No requirements.
984263bc
MD
245 */
246struct vmspace *
57e43348 247vmspace_alloc(vm_offset_t min, vm_offset_t max)
984263bc
MD
248{
249 struct vmspace *vm;
250
46754a20 251 lwkt_gettoken(&vmspace_token);
e3161323 252 vm = sysref_alloc(&vmspace_sysref_class);
54a764e8 253 bzero(&vm->vm_startcopy,
e3161323 254 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
e4846942 255 vm_map_init(&vm->vm_map, min, max, NULL);
e3161323 256 pmap_pinit(vmspace_pmap(vm)); /* (some fields reused) */
984263bc 257 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */
984263bc
MD
258 vm->vm_shm = NULL;
259 vm->vm_exitingcnt = 0;
135d7199 260 cpu_vmspace_alloc(vm);
e3161323 261 sysref_activate(&vm->vm_sysref);
46754a20
MD
262 lwkt_reltoken(&vmspace_token);
263
984263bc
MD
264 return (vm);
265}
266
e3161323
MD
267/*
268 * dtor function - Some elements of the pmap are retained in the
269 * free-cached vmspaces to improve performance. We have to clean them up
270 * here before returning the vmspace to the memory pool.
46754a20
MD
271 *
272 * No requirements.
e3161323
MD
273 */
274static void
275vmspace_dtor(void *obj, void *private)
a108bf71 276{
e3161323
MD
277 struct vmspace *vm = obj;
278
279 pmap_puninit(vmspace_pmap(vm));
984263bc
MD
280}
281
e3161323
MD
282/*
283 * Called in two cases:
284 *
285 * (1) When the last sysref is dropped, but exitingcnt might still be
286 * non-zero.
287 *
288 * (2) When there are no sysrefs (i.e. refcnt is negative) left and the
289 * exitingcnt becomes zero
290 *
291 * sysref will not scrap the object until we call sysref_put() once more
292 * after the last ref has been dropped.
46754a20
MD
293 *
294 * Interlocked by the sysref API.
e3161323
MD
295 */
296static void
297vmspace_terminate(struct vmspace *vm)
984263bc 298{
a108bf71
MD
299 int count;
300
e3161323
MD
301 /*
302 * If exitingcnt is non-zero we can't get rid of the entire vmspace
303 * yet, but we can scrap user memory.
304 */
46754a20 305 lwkt_gettoken(&vmspace_token);
e3161323
MD
306 if (vm->vm_exitingcnt) {
307 shmexit(vm);
308 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
309 VM_MAX_USER_ADDRESS);
310 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
311 VM_MAX_USER_ADDRESS);
46754a20 312 lwkt_reltoken(&vmspace_token);
e3161323
MD
313 return;
314 }
135d7199
MD
315 cpu_vmspace_free(vm);
316
fef0fdf2
MD
317 /*
318 * Make sure any SysV shm is freed, it might not have in
319 * exit1()
320 */
321 shmexit(vm);
322
a722be49
MD
323 KKASSERT(vm->vm_upcalls == NULL);
324
984263bc
MD
325 /*
326 * Lock the map, to wait out all other references to it.
327 * Delete all of the mappings and pages they hold, then call
328 * the pmap module to reclaim anything left.
329 */
a108bf71 330 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc 331 vm_map_lock(&vm->vm_map);
a108bf71
MD
332 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
333 vm->vm_map.max_offset, &count);
984263bc 334 vm_map_unlock(&vm->vm_map);
a108bf71 335 vm_map_entry_release(count);
984263bc
MD
336
337 pmap_release(vmspace_pmap(vm));
e3161323 338 sysref_put(&vm->vm_sysref);
46754a20 339 lwkt_reltoken(&vmspace_token);
984263bc
MD
340}
341
46754a20
MD
342/*
343 * vmspaces are not currently locked.
344 */
e654922c
MD
345static void
346vmspace_lock(struct vmspace *vm __unused)
347{
348}
349
350static void
351vmspace_unlock(struct vmspace *vm __unused)
352{
353}
354
46754a20
MD
355/*
356 * This is called during exit indicating that the vmspace is no
357 * longer in used by an exiting process, but the process has not yet
358 * been cleaned up.
359 *
360 * No requirements.
361 */
362void
363vmspace_exitbump(struct vmspace *vm)
364{
365 lwkt_gettoken(&vmspace_token);
366 ++vm->vm_exitingcnt;
367 lwkt_reltoken(&vmspace_token);
368}
369
e3161323
MD
370/*
371 * This is called in the wait*() handling code. The vmspace can be terminated
372 * after the last wait is finished using it.
46754a20
MD
373 *
374 * No requirements.
e3161323 375 */
984263bc
MD
376void
377vmspace_exitfree(struct proc *p)
378{
379 struct vmspace *vm;
380
46754a20 381 lwkt_gettoken(&vmspace_token);
984263bc
MD
382 vm = p->p_vmspace;
383 p->p_vmspace = NULL;
384
e3161323
MD
385 if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
386 vmspace_terminate(vm);
46754a20 387 lwkt_reltoken(&vmspace_token);
984263bc
MD
388}
389
390/*
46754a20
MD
391 * Swap useage is determined by taking the proportional swap used by
392 * VM objects backing the VM map. To make up for fractional losses,
393 * if the VM object has any swap use at all the associated map entries
394 * count for at least 1 swap page.
984263bc 395 *
46754a20 396 * No requirements.
984263bc
MD
397 */
398int
399vmspace_swap_count(struct vmspace *vmspace)
400{
401 vm_map_t map = &vmspace->vm_map;
402 vm_map_entry_t cur;
1b874851 403 vm_object_t object;
984263bc 404 int count = 0;
1b874851 405 int n;
984263bc 406
46754a20 407 lwkt_gettoken(&vmspace_token);
984263bc 408 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
1b874851
MD
409 switch(cur->maptype) {
410 case VM_MAPTYPE_NORMAL:
411 case VM_MAPTYPE_VPAGETABLE:
412 if ((object = cur->object.vm_object) == NULL)
413 break;
96adc753
MD
414 if (object->swblock_count) {
415 n = (cur->end - cur->start) / PAGE_SIZE;
416 count += object->swblock_count *
984263bc
MD
417 SWAP_META_PAGES * n / object->size + 1;
418 }
1b874851
MD
419 break;
420 default:
421 break;
984263bc
MD
422 }
423 }
46754a20 424 lwkt_reltoken(&vmspace_token);
984263bc
MD
425 return(count);
426}
427
20479584 428/*
46754a20
MD
429 * Calculate the approximate number of anonymous pages in use by
430 * this vmspace. To make up for fractional losses, we count each
431 * VM object as having at least 1 anonymous page.
20479584 432 *
46754a20 433 * No requirements.
20479584
MD
434 */
435int
436vmspace_anonymous_count(struct vmspace *vmspace)
437{
438 vm_map_t map = &vmspace->vm_map;
439 vm_map_entry_t cur;
440 vm_object_t object;
441 int count = 0;
442
46754a20 443 lwkt_gettoken(&vmspace_token);
20479584
MD
444 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
445 switch(cur->maptype) {
446 case VM_MAPTYPE_NORMAL:
447 case VM_MAPTYPE_VPAGETABLE:
448 if ((object = cur->object.vm_object) == NULL)
449 break;
450 if (object->type != OBJT_DEFAULT &&
451 object->type != OBJT_SWAP) {
452 break;
453 }
454 count += object->resident_page_count;
455 break;
456 default:
457 break;
458 }
459 }
46754a20 460 lwkt_reltoken(&vmspace_token);
20479584
MD
461 return(count);
462}
463
984263bc 464/*
46754a20
MD
465 * Creates and returns a new empty VM map with the given physical map
466 * structure, and having the given lower and upper address bounds.
984263bc 467 *
46754a20 468 * No requirements.
984263bc
MD
469 */
470vm_map_t
e4846942 471vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
984263bc 472{
e4846942
MD
473 if (result == NULL)
474 result = zalloc(mapzone);
475 vm_map_init(result, min, max, pmap);
984263bc
MD
476 return (result);
477}
478
479/*
46754a20
MD
480 * Initialize an existing vm_map structure such as that in the vmspace
481 * structure. The pmap is initialized elsewhere.
482 *
483 * No requirements.
984263bc
MD
484 */
485void
e4846942 486vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
984263bc
MD
487{
488 map->header.next = map->header.prev = &map->header;
686dbf64 489 RB_INIT(&map->rb_root);
984263bc
MD
490 map->nentries = 0;
491 map->size = 0;
492 map->system_map = 0;
984263bc
MD
493 map->min_offset = min;
494 map->max_offset = max;
e4846942 495 map->pmap = pmap;
984263bc
MD
496 map->first_free = &map->header;
497 map->hint = &map->header;
498 map->timestamp = 0;
69e16e2a 499 map->flags = 0;
ab6f251b 500 lockinit(&map->lock, "thrd_sleep", 0, 0);
521f81c7 501 TUNABLE_INT("vm.cache_vmspaces", &vmspace_sysref_class.nom_cache);
984263bc
MD
502}
503
53025830
MD
504/*
505 * Shadow the vm_map_entry's object. This typically needs to be done when
506 * a write fault is taken on an entry which had previously been cloned by
507 * fork(). The shared object (which might be NULL) must become private so
508 * we add a shadow layer above it.
509 *
510 * Object allocation for anonymous mappings is defered as long as possible.
511 * When creating a shadow, however, the underlying object must be instantiated
512 * so it can be shared.
513 *
514 * If the map segment is governed by a virtual page table then it is
515 * possible to address offsets beyond the mapped area. Just allocate
516 * a maximally sized object for this case.
46754a20
MD
517 *
518 * The vm_map must be exclusively locked.
519 * No other requirements.
53025830
MD
520 */
521static
522void
523vm_map_entry_shadow(vm_map_entry_t entry)
524{
525 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
526 vm_object_shadow(&entry->object.vm_object, &entry->offset,
527 0x7FFFFFFF); /* XXX */
528 } else {
529 vm_object_shadow(&entry->object.vm_object, &entry->offset,
530 atop(entry->end - entry->start));
531 }
532 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
533}
534
535/*
536 * Allocate an object for a vm_map_entry.
537 *
538 * Object allocation for anonymous mappings is defered as long as possible.
539 * This function is called when we can defer no longer, generally when a map
540 * entry might be split or forked or takes a page fault.
541 *
542 * If the map segment is governed by a virtual page table then it is
543 * possible to address offsets beyond the mapped area. Just allocate
544 * a maximally sized object for this case.
46754a20
MD
545 *
546 * The vm_map must be exclusively locked.
547 * No other requirements.
53025830
MD
548 */
549void
550vm_map_entry_allocate_object(vm_map_entry_t entry)
551{
552 vm_object_t obj;
553
554 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
555 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
556 } else {
557 obj = vm_object_allocate(OBJT_DEFAULT,
558 atop(entry->end - entry->start));
559 }
560 entry->object.vm_object = obj;
561 entry->offset = 0;
562}
563
41a01a4d 564/*
46754a20
MD
565 * Set an initial negative count so the first attempt to reserve
566 * space preloads a bunch of vm_map_entry's for this cpu. Also
567 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
568 * map a new page for vm_map_entry structures. SMP systems are
569 * particularly sensitive.
c4ae567f 570 *
46754a20
MD
571 * This routine is called in early boot so we cannot just call
572 * vm_map_entry_reserve().
41a01a4d 573 *
46754a20 574 * Called from the low level boot code only (for each cpu)
41a01a4d
MD
575 */
576void
577vm_map_entry_reserve_cpu_init(globaldata_t gd)
578{
c4ae567f
MD
579 vm_map_entry_t entry;
580 int i;
581
41a01a4d 582 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
c4ae567f
MD
583 entry = &cpu_map_entry_init[gd->gd_cpuid][0];
584 for (i = 0; i < VMEPERCPU; ++i, ++entry) {
585 entry->next = gd->gd_vme_base;
586 gd->gd_vme_base = entry;
587 }
41a01a4d
MD
588}
589
a108bf71 590/*
46754a20
MD
591 * Reserves vm_map_entry structures so code later on can manipulate
592 * map_entry structures within a locked map without blocking trying
593 * to allocate a new vm_map_entry.
a108bf71 594 *
46754a20 595 * No requirements.
a108bf71
MD
596 */
597int
598vm_map_entry_reserve(int count)
599{
600 struct globaldata *gd = mycpu;
601 vm_map_entry_t entry;
602
a108bf71
MD
603 /*
604 * Make sure we have enough structures in gd_vme_base to handle
605 * the reservation request.
606 */
46754a20 607 crit_enter();
ac13eccd 608 while (gd->gd_vme_avail < count) {
a108bf71
MD
609 entry = zalloc(mapentzone);
610 entry->next = gd->gd_vme_base;
611 gd->gd_vme_base = entry;
612 ++gd->gd_vme_avail;
613 }
ac13eccd 614 gd->gd_vme_avail -= count;
a108bf71 615 crit_exit();
46754a20 616
a108bf71
MD
617 return(count);
618}
619
620/*
46754a20
MD
621 * Releases previously reserved vm_map_entry structures that were not
622 * used. If we have too much junk in our per-cpu cache clean some of
623 * it out.
a108bf71 624 *
46754a20 625 * No requirements.
a108bf71
MD
626 */
627void
628vm_map_entry_release(int count)
629{
630 struct globaldata *gd = mycpu;
631 vm_map_entry_t entry;
632
633 crit_enter();
634 gd->gd_vme_avail += count;
635 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
636 entry = gd->gd_vme_base;
637 KKASSERT(entry != NULL);
638 gd->gd_vme_base = entry->next;
639 --gd->gd_vme_avail;
640 crit_exit();
641 zfree(mapentzone, entry);
642 crit_enter();
643 }
644 crit_exit();
645}
646
647/*
46754a20
MD
648 * Reserve map entry structures for use in kernel_map itself. These
649 * entries have *ALREADY* been reserved on a per-cpu basis when the map
650 * was inited. This function is used by zalloc() to avoid a recursion
651 * when zalloc() itself needs to allocate additional kernel memory.
a108bf71 652 *
46754a20
MD
653 * This function works like the normal reserve but does not load the
654 * vm_map_entry cache (because that would result in an infinite
655 * recursion). Note that gd_vme_avail may go negative. This is expected.
c4ae567f 656 *
46754a20
MD
657 * Any caller of this function must be sure to renormalize after
658 * potentially eating entries to ensure that the reserve supply
659 * remains intact.
a108bf71 660 *
46754a20 661 * No requirements.
a108bf71
MD
662 */
663int
664vm_map_entry_kreserve(int count)
665{
666 struct globaldata *gd = mycpu;
667
668 crit_enter();
c4ae567f 669 gd->gd_vme_avail -= count;
a108bf71 670 crit_exit();
46754a20
MD
671 KASSERT(gd->gd_vme_base != NULL,
672 ("no reserved entries left, gd_vme_avail = %d\n",
673 gd->gd_vme_avail));
a108bf71
MD
674 return(count);
675}
676
677/*
46754a20
MD
678 * Release previously reserved map entries for kernel_map. We do not
679 * attempt to clean up like the normal release function as this would
680 * cause an unnecessary (but probably not fatal) deep procedure call.
a108bf71 681 *
46754a20 682 * No requirements.
a108bf71
MD
683 */
684void
685vm_map_entry_krelease(int count)
686{
687 struct globaldata *gd = mycpu;
688
689 crit_enter();
c4ae567f 690 gd->gd_vme_avail += count;
a108bf71
MD
691 crit_exit();
692}
693
984263bc 694/*
46754a20 695 * Allocates a VM map entry for insertion. No entry fields are filled in.
984263bc 696 *
46754a20
MD
697 * The entries should have previously been reserved. The reservation count
698 * is tracked in (*countp).
a108bf71 699 *
46754a20 700 * No requirements.
984263bc 701 */
8a8d5d85 702static vm_map_entry_t
a108bf71 703vm_map_entry_create(vm_map_t map, int *countp)
984263bc 704{
a108bf71
MD
705 struct globaldata *gd = mycpu;
706 vm_map_entry_t entry;
8a8d5d85 707
a108bf71
MD
708 KKASSERT(*countp > 0);
709 --*countp;
710 crit_enter();
711 entry = gd->gd_vme_base;
712 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
713 gd->gd_vme_base = entry->next;
714 crit_exit();
46754a20 715
a108bf71 716 return(entry);
984263bc
MD
717}
718
719/*
46754a20 720 * Dispose of a vm_map_entry that is no longer being referenced.
984263bc 721 *
46754a20 722 * No requirements.
984263bc 723 */
8a8d5d85 724static void
a108bf71 725vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
984263bc 726{
a108bf71
MD
727 struct globaldata *gd = mycpu;
728
686dbf64
MD
729 KKASSERT(map->hint != entry);
730 KKASSERT(map->first_free != entry);
731
a108bf71
MD
732 ++*countp;
733 crit_enter();
734 entry->next = gd->gd_vme_base;
735 gd->gd_vme_base = entry;
736 crit_exit();
984263bc
MD
737}
738
8a8d5d85 739
984263bc 740/*
46754a20 741 * Insert/remove entries from maps.
984263bc 742 *
46754a20
MD
743 * The related map must be exclusively locked.
744 * No other requirements.
745 *
746 * NOTE! We currently acquire the vmspace_token only to avoid races
747 * against the pageout daemon's calls to vmspace_*_count(), which
748 * are unable to safely lock the vm_map without potentially
749 * deadlocking.
984263bc
MD
750 */
751static __inline void
752vm_map_entry_link(vm_map_t map,
753 vm_map_entry_t after_where,
754 vm_map_entry_t entry)
755{
46754a20
MD
756 ASSERT_VM_MAP_LOCKED(map);
757
758 lwkt_gettoken(&vmspace_token);
984263bc
MD
759 map->nentries++;
760 entry->prev = after_where;
761 entry->next = after_where->next;
762 entry->next->prev = entry;
763 after_where->next = entry;
0cd275af
MD
764 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
765 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
46754a20 766 lwkt_reltoken(&vmspace_token);
984263bc
MD
767}
768
769static __inline void
770vm_map_entry_unlink(vm_map_t map,
771 vm_map_entry_t entry)
772{
773 vm_map_entry_t prev;
774 vm_map_entry_t next;
775
46754a20
MD
776 ASSERT_VM_MAP_LOCKED(map);
777
778 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
779 panic("vm_map_entry_unlink: attempt to mess with "
780 "locked entry! %p", entry);
781 }
782 lwkt_gettoken(&vmspace_token);
984263bc
MD
783 prev = entry->prev;
784 next = entry->next;
785 next->prev = prev;
786 prev->next = next;
686dbf64 787 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
984263bc 788 map->nentries--;
46754a20 789 lwkt_reltoken(&vmspace_token);
984263bc
MD
790}
791
984263bc 792/*
46754a20
MD
793 * Finds the map entry containing (or immediately preceding) the specified
794 * address in the given map. The entry is returned in (*entry).
795 *
796 * The boolean result indicates whether the address is actually contained
797 * in the map.
984263bc 798 *
46754a20
MD
799 * The related map must be locked.
800 * No other requirements.
984263bc
MD
801 */
802boolean_t
46754a20 803vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
984263bc 804{
686dbf64 805 vm_map_entry_t tmp;
984263bc
MD
806 vm_map_entry_t last;
807
46754a20 808 ASSERT_VM_MAP_LOCKED(map);
686dbf64 809#if 0
984263bc 810 /*
686dbf64
MD
811 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive
812 * the hint code with the red-black lookup meets with system crashes
813 * and lockups. We do not yet know why.
814 *
815 * It is possible that the problem is related to the setting
816 * of the hint during map_entry deletion, in the code specified
817 * at the GGG comment later on in this file.
984263bc 818 */
686dbf64
MD
819 /*
820 * Quickly check the cached hint, there's a good chance of a match.
821 */
822 if (map->hint != &map->header) {
823 tmp = map->hint;
824 if (address >= tmp->start && address < tmp->end) {
825 *entry = tmp;
826 return(TRUE);
984263bc 827 }
984263bc 828 }
686dbf64 829#endif
984263bc
MD
830
831 /*
686dbf64
MD
832 * Locate the record from the top of the tree. 'last' tracks the
833 * closest prior record and is returned if no match is found, which
834 * in binary tree terms means tracking the most recent right-branch
835 * taken. If there is no prior record, &map->header is returned.
984263bc 836 */
686dbf64
MD
837 last = &map->header;
838 tmp = RB_ROOT(&map->rb_root);
839
840 while (tmp) {
841 if (address >= tmp->start) {
842 if (address < tmp->end) {
843 *entry = tmp;
844 map->hint = tmp;
845 return(TRUE);
984263bc 846 }
686dbf64
MD
847 last = tmp;
848 tmp = RB_RIGHT(tmp, rb_entry);
849 } else {
850 tmp = RB_LEFT(tmp, rb_entry);
984263bc 851 }
984263bc 852 }
686dbf64 853 *entry = last;
984263bc
MD
854 return (FALSE);
855}
856
857/*
46754a20
MD
858 * Inserts the given whole VM object into the target map at the specified
859 * address range. The object's size should match that of the address range.
984263bc 860 *
46754a20
MD
861 * The map must be exclusively locked.
862 * The caller must have reserved sufficient vm_map_entry structures.
984263bc 863 *
46754a20
MD
864 * If object is non-NULL, ref count must be bumped by caller
865 * prior to making call to account for the new entry.
984263bc
MD
866 */
867int
a108bf71
MD
868vm_map_insert(vm_map_t map, int *countp,
869 vm_object_t object, vm_ooffset_t offset,
1b874851
MD
870 vm_offset_t start, vm_offset_t end,
871 vm_maptype_t maptype,
872 vm_prot_t prot, vm_prot_t max,
984263bc
MD
873 int cow)
874{
875 vm_map_entry_t new_entry;
876 vm_map_entry_t prev_entry;
877 vm_map_entry_t temp_entry;
878 vm_eflags_t protoeflags;
879
46754a20
MD
880 ASSERT_VM_MAP_LOCKED(map);
881
984263bc
MD
882 /*
883 * Check that the start and end points are not bogus.
884 */
984263bc
MD
885 if ((start < map->min_offset) || (end > map->max_offset) ||
886 (start >= end))
887 return (KERN_INVALID_ADDRESS);
888
889 /*
890 * Find the entry prior to the proposed starting address; if it's part
891 * of an existing entry, this range is bogus.
892 */
984263bc
MD
893 if (vm_map_lookup_entry(map, start, &temp_entry))
894 return (KERN_NO_SPACE);
895
896 prev_entry = temp_entry;
897
898 /*
899 * Assert that the next entry doesn't overlap the end point.
900 */
901
902 if ((prev_entry->next != &map->header) &&
903 (prev_entry->next->start < end))
904 return (KERN_NO_SPACE);
905
906 protoeflags = 0;
907
908 if (cow & MAP_COPY_ON_WRITE)
909 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
910
911 if (cow & MAP_NOFAULT) {
912 protoeflags |= MAP_ENTRY_NOFAULT;
913
914 KASSERT(object == NULL,
915 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
916 }
917 if (cow & MAP_DISABLE_SYNCER)
918 protoeflags |= MAP_ENTRY_NOSYNC;
919 if (cow & MAP_DISABLE_COREDUMP)
920 protoeflags |= MAP_ENTRY_NOCOREDUMP;
c809941b
MD
921 if (cow & MAP_IS_STACK)
922 protoeflags |= MAP_ENTRY_STACK;
e40cfbd7
MD
923 if (cow & MAP_IS_KSTACK)
924 protoeflags |= MAP_ENTRY_KSTACK;
984263bc 925
2de4f77e
MD
926 lwkt_gettoken(&vm_token);
927 lwkt_gettoken(&vmobj_token);
928
984263bc
MD
929 if (object) {
930 /*
931 * When object is non-NULL, it could be shared with another
932 * process. We have to set or clear OBJ_ONEMAPPING
933 * appropriately.
934 */
70de66db 935
984263bc
MD
936 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
937 vm_object_clear_flag(object, OBJ_ONEMAPPING);
938 }
939 }
940 else if ((prev_entry != &map->header) &&
941 (prev_entry->eflags == protoeflags) &&
942 (prev_entry->end == start) &&
943 (prev_entry->wired_count == 0) &&
1b874851 944 prev_entry->maptype == maptype &&
984263bc
MD
945 ((prev_entry->object.vm_object == NULL) ||
946 vm_object_coalesce(prev_entry->object.vm_object,
947 OFF_TO_IDX(prev_entry->offset),
948 (vm_size_t)(prev_entry->end - prev_entry->start),
949 (vm_size_t)(end - prev_entry->end)))) {
950 /*
951 * We were able to extend the object. Determine if we
952 * can extend the previous map entry to include the
953 * new range as well.
954 */
955 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
956 (prev_entry->protection == prot) &&
957 (prev_entry->max_protection == max)) {
2de4f77e
MD
958 lwkt_reltoken(&vmobj_token);
959 lwkt_reltoken(&vm_token);
984263bc
MD
960 map->size += (end - prev_entry->end);
961 prev_entry->end = end;
a108bf71 962 vm_map_simplify_entry(map, prev_entry, countp);
984263bc
MD
963 return (KERN_SUCCESS);
964 }
965
966 /*
967 * If we can extend the object but cannot extend the
968 * map entry, we have to create a new map entry. We
969 * must bump the ref count on the extended object to
970 * account for it. object may be NULL.
971 */
972 object = prev_entry->object.vm_object;
973 offset = prev_entry->offset +
974 (prev_entry->end - prev_entry->start);
2de4f77e 975 vm_object_reference_locked(object);
984263bc
MD
976 }
977
2de4f77e
MD
978 lwkt_reltoken(&vmobj_token);
979 lwkt_reltoken(&vm_token);
980
984263bc
MD
981 /*
982 * NOTE: if conditionals fail, object can be NULL here. This occurs
983 * in things like the buffer map where we manage kva but do not manage
984 * backing objects.
985 */
986
987 /*
988 * Create a new entry
989 */
990
a108bf71 991 new_entry = vm_map_entry_create(map, countp);
984263bc
MD
992 new_entry->start = start;
993 new_entry->end = end;
994
1b874851 995 new_entry->maptype = maptype;
984263bc
MD
996 new_entry->eflags = protoeflags;
997 new_entry->object.vm_object = object;
998 new_entry->offset = offset;
afeabdca 999 new_entry->aux.master_pde = 0;
984263bc
MD
1000
1001 new_entry->inheritance = VM_INHERIT_DEFAULT;
1002 new_entry->protection = prot;
1003 new_entry->max_protection = max;
1004 new_entry->wired_count = 0;
1005
1006 /*
1007 * Insert the new entry into the list
1008 */
1009
1010 vm_map_entry_link(map, prev_entry, new_entry);
1011 map->size += new_entry->end - new_entry->start;
1012
1013 /*
791c6551
MD
1014 * Update the free space hint. Entries cannot overlap.
1015 * An exact comparison is needed to avoid matching
1016 * against the map->header.
984263bc
MD
1017 */
1018 if ((map->first_free == prev_entry) &&
791c6551 1019 (prev_entry->end == new_entry->start)) {
984263bc
MD
1020 map->first_free = new_entry;
1021 }
1022
1023#if 0
1024 /*
1025 * Temporarily removed to avoid MAP_STACK panic, due to
1026 * MAP_STACK being a huge hack. Will be added back in
1027 * when MAP_STACK (and the user stack mapping) is fixed.
1028 */
1029 /*
1030 * It may be possible to simplify the entry
1031 */
a108bf71 1032 vm_map_simplify_entry(map, new_entry, countp);
984263bc
MD
1033#endif
1034
afeabdca
MD
1035 /*
1036 * Try to pre-populate the page table. Mappings governed by virtual
1037 * page tables cannot be prepopulated without a lot of work, so
1038 * don't try.
1039 */
1040 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1041 maptype != VM_MAPTYPE_VPAGETABLE) {
083a7402 1042 pmap_object_init_pt(map->pmap, start, prot,
984263bc
MD
1043 object, OFF_TO_IDX(offset), end - start,
1044 cow & MAP_PREFAULT_PARTIAL);
1045 }
1046
1047 return (KERN_SUCCESS);
1048}
1049
1050/*
1051 * Find sufficient space for `length' bytes in the given map, starting at
46754a20 1052 * `start'. Returns 0 on success, 1 on no space.
e9bb90e8
MD
1053 *
1054 * This function will returned an arbitrarily aligned pointer. If no
1055 * particular alignment is required you should pass align as 1. Note that
1056 * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1057 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1058 * argument.
1059 *
1060 * 'align' should be a power of 2 but is not required to be.
46754a20
MD
1061 *
1062 * The map must be exclusively locked.
1063 * No other requirements.
984263bc
MD
1064 */
1065int
c809941b 1066vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
9388fcaa 1067 vm_size_t align, int flags, vm_offset_t *addr)
984263bc
MD
1068{
1069 vm_map_entry_t entry, next;
1070 vm_offset_t end;
e9bb90e8 1071 vm_offset_t align_mask;
984263bc
MD
1072
1073 if (start < map->min_offset)
1074 start = map->min_offset;
1075 if (start > map->max_offset)
1076 return (1);
1077
e9bb90e8
MD
1078 /*
1079 * If the alignment is not a power of 2 we will have to use
1080 * a mod/division, set align_mask to a special value.
1081 */
1082 if ((align | (align - 1)) + 1 != (align << 1))
1083 align_mask = (vm_offset_t)-1;
1084 else
1085 align_mask = align - 1;
1086
984263bc
MD
1087 /*
1088 * Look for the first possible address; if there's already something
1089 * at this address, we have to start after it.
1090 */
1091 if (start == map->min_offset) {
1092 if ((entry = map->first_free) != &map->header)
1093 start = entry->end;
1094 } else {
1095 vm_map_entry_t tmp;
1096
1097 if (vm_map_lookup_entry(map, start, &tmp))
1098 start = tmp->end;
1099 entry = tmp;
1100 }
1101
1102 /*
1103 * Look through the rest of the map, trying to fit a new region in the
1104 * gap between existing regions, or after the very last region.
1105 */
1106 for (;; start = (entry = next)->end) {
e9bb90e8
MD
1107 /*
1108 * Adjust the proposed start by the requested alignment,
1109 * be sure that we didn't wrap the address.
1110 */
1111 if (align_mask == (vm_offset_t)-1)
1112 end = ((start + align - 1) / align) * align;
1113 else
1114 end = (start + align_mask) & ~align_mask;
1115 if (end < start)
1116 return (1);
1117 start = end;
984263bc
MD
1118 /*
1119 * Find the end of the proposed new region. Be sure we didn't
e9bb90e8
MD
1120 * go beyond the end of the map, or wrap around the address.
1121 * Then check to see if this is the last entry or if the
1122 * proposed end fits in the gap between this and the next
1123 * entry.
984263bc
MD
1124 */
1125 end = start + length;
1126 if (end > map->max_offset || end < start)
1127 return (1);
1128 next = entry->next;
c809941b
MD
1129
1130 /*
1131 * If the next entry's start address is beyond the desired
1132 * end address we may have found a good entry.
1133 *
1134 * If the next entry is a stack mapping we do not map into
1135 * the stack's reserved space.
1136 *
1137 * XXX continue to allow mapping into the stack's reserved
1138 * space if doing a MAP_STACK mapping inside a MAP_STACK
1139 * mapping, for backwards compatibility. But the caller
1140 * really should use MAP_STACK | MAP_TRYFIXED if they
1141 * want to do that.
1142 */
1143 if (next == &map->header)
984263bc 1144 break;
c809941b
MD
1145 if (next->start >= end) {
1146 if ((next->eflags & MAP_ENTRY_STACK) == 0)
1147 break;
1148 if (flags & MAP_STACK)
1149 break;
1150 if (next->start - next->aux.avail_ssize >= end)
1151 break;
1152 }
984263bc 1153 }
686dbf64 1154 map->hint = entry;
a8cf2878
MD
1155
1156 /*
1157 * Grow the kernel_map if necessary. pmap_growkernel() will panic
1158 * if it fails. The kernel_map is locked and nothing can steal
1159 * our address space if pmap_growkernel() blocks.
1160 *
1161 * NOTE: This may be unconditionally called for kldload areas on
1162 * x86_64 because these do not bump kernel_vm_end (which would
1163 * fill 128G worth of page tables!). Therefore we must not
1164 * retry.
1165 */
e4846942 1166 if (map == &kernel_map) {
a8cf2878
MD
1167 vm_offset_t kstop;
1168
1169 kstop = round_page(start + length);
1170 if (kstop > kernel_vm_end)
1171 pmap_growkernel(start, kstop);
984263bc 1172 }
a108bf71 1173 *addr = start;
984263bc
MD
1174 return (0);
1175}
1176
1177/*
46754a20
MD
1178 * vm_map_find finds an unallocated region in the target address map with
1179 * the given length. The search is defined to be first-fit from the
1180 * specified address; the region found is returned in the same parameter.
984263bc 1181 *
46754a20
MD
1182 * If object is non-NULL, ref count must be bumped by caller
1183 * prior to making call to account for the new entry.
1184 *
1185 * No requirements. This function will lock the map temporarily.
984263bc
MD
1186 */
1187int
1188vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
9388fcaa 1189 vm_offset_t *addr, vm_size_t length, vm_size_t align,
c809941b 1190 boolean_t fitit,
1b874851
MD
1191 vm_maptype_t maptype,
1192 vm_prot_t prot, vm_prot_t max,
1193 int cow)
984263bc
MD
1194{
1195 vm_offset_t start;
03aa8d99 1196 int result;
a108bf71 1197 int count;
984263bc
MD
1198
1199 start = *addr;
1200
a108bf71 1201 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc 1202 vm_map_lock(map);
c809941b 1203 if (fitit) {
9388fcaa 1204 if (vm_map_findspace(map, start, length, align, 0, addr)) {
984263bc 1205 vm_map_unlock(map);
a108bf71 1206 vm_map_entry_release(count);
984263bc
MD
1207 return (KERN_NO_SPACE);
1208 }
1209 start = *addr;
1210 }
a108bf71 1211 result = vm_map_insert(map, &count, object, offset,
1b874851
MD
1212 start, start + length,
1213 maptype,
1214 prot, max,
1215 cow);
984263bc 1216 vm_map_unlock(map);
a108bf71 1217 vm_map_entry_release(count);
984263bc 1218
984263bc
MD
1219 return (result);
1220}
1221
1222/*
46754a20
MD
1223 * Simplify the given map entry by merging with either neighbor. This
1224 * routine also has the ability to merge with both neighbors.
984263bc 1225 *
46754a20
MD
1226 * This routine guarentees that the passed entry remains valid (though
1227 * possibly extended). When merging, this routine may delete one or
1228 * both neighbors. No action is taken on entries which have their
1229 * in-transition flag set.
984263bc 1230 *
46754a20 1231 * The map must be exclusively locked.
984263bc
MD
1232 */
1233void
a108bf71 1234vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
984263bc
MD
1235{
1236 vm_map_entry_t next, prev;
1237 vm_size_t prevsize, esize;
1238
1b874851 1239 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
12e4aaff 1240 ++mycpu->gd_cnt.v_intrans_coll;
984263bc
MD
1241 return;
1242 }
1243
1b874851
MD
1244 if (entry->maptype == VM_MAPTYPE_SUBMAP)
1245 return;
1246
984263bc
MD
1247 prev = entry->prev;
1248 if (prev != &map->header) {
1249 prevsize = prev->end - prev->start;
1250 if ( (prev->end == entry->start) &&
1b874851 1251 (prev->maptype == entry->maptype) &&
984263bc
MD
1252 (prev->object.vm_object == entry->object.vm_object) &&
1253 (!prev->object.vm_object ||
1254 (prev->offset + prevsize == entry->offset)) &&
1255 (prev->eflags == entry->eflags) &&
1256 (prev->protection == entry->protection) &&
1257 (prev->max_protection == entry->max_protection) &&
1258 (prev->inheritance == entry->inheritance) &&
1259 (prev->wired_count == entry->wired_count)) {
1260 if (map->first_free == prev)
1261 map->first_free = entry;
1262 if (map->hint == prev)
1263 map->hint = entry;
1264 vm_map_entry_unlink(map, prev);
1265 entry->start = prev->start;
1266 entry->offset = prev->offset;
1267 if (prev->object.vm_object)
1268 vm_object_deallocate(prev->object.vm_object);
a108bf71 1269 vm_map_entry_dispose(map, prev, countp);
984263bc
MD
1270 }
1271 }
1272
1273 next = entry->next;
1274 if (next != &map->header) {
1275 esize = entry->end - entry->start;
1276 if ((entry->end == next->start) &&
1b874851 1277 (next->maptype == entry->maptype) &&
984263bc
MD
1278 (next->object.vm_object == entry->object.vm_object) &&
1279 (!entry->object.vm_object ||
1280 (entry->offset + esize == next->offset)) &&
1281 (next->eflags == entry->eflags) &&
1282 (next->protection == entry->protection) &&
1283 (next->max_protection == entry->max_protection) &&
1284 (next->inheritance == entry->inheritance) &&
1285 (next->wired_count == entry->wired_count)) {
1286 if (map->first_free == next)
1287 map->first_free = entry;
1288 if (map->hint == next)
1289 map->hint = entry;
1290 vm_map_entry_unlink(map, next);
1291 entry->end = next->end;
1292 if (next->object.vm_object)
1293 vm_object_deallocate(next->object.vm_object);
a108bf71 1294 vm_map_entry_dispose(map, next, countp);
984263bc
MD
1295 }
1296 }
1297}
46754a20 1298
984263bc 1299/*
46754a20
MD
1300 * Asserts that the given entry begins at or after the specified address.
1301 * If necessary, it splits the entry into two.
984263bc 1302 */
46754a20
MD
1303#define vm_map_clip_start(map, entry, startaddr, countp) \
1304{ \
1305 if (startaddr > entry->start) \
1306 _vm_map_clip_start(map, entry, startaddr, countp); \
984263bc
MD
1307}
1308
1309/*
46754a20
MD
1310 * This routine is called only when it is known that the entry must be split.
1311 *
1312 * The map must be exclusively locked.
984263bc
MD
1313 */
1314static void
46754a20
MD
1315_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1316 int *countp)
984263bc
MD
1317{
1318 vm_map_entry_t new_entry;
1319
1320 /*
1321 * Split off the front portion -- note that we must insert the new
1322 * entry BEFORE this one, so that this entry has the specified
1323 * starting address.
1324 */
1325
a108bf71 1326 vm_map_simplify_entry(map, entry, countp);
984263bc
MD
1327
1328 /*
1329 * If there is no object backing this entry, we might as well create
1330 * one now. If we defer it, an object can get created after the map
1331 * is clipped, and individual objects will be created for the split-up
1332 * map. This is a bit of a hack, but is also about the best place to
1333 * put this improvement.
1334 */
984263bc 1335 if (entry->object.vm_object == NULL && !map->system_map) {
53025830 1336 vm_map_entry_allocate_object(entry);
984263bc
MD
1337 }
1338
a108bf71 1339 new_entry = vm_map_entry_create(map, countp);
984263bc
MD
1340 *new_entry = *entry;
1341
1342 new_entry->end = start;
1343 entry->offset += (start - entry->start);
1344 entry->start = start;
1345
1346 vm_map_entry_link(map, entry->prev, new_entry);
1347
1b874851
MD
1348 switch(entry->maptype) {
1349 case VM_MAPTYPE_NORMAL:
1350 case VM_MAPTYPE_VPAGETABLE:
984263bc 1351 vm_object_reference(new_entry->object.vm_object);
1b874851
MD
1352 break;
1353 default:
1354 break;
984263bc
MD
1355 }
1356}
1357
1358/*
46754a20
MD
1359 * Asserts that the given entry ends at or before the specified address.
1360 * If necessary, it splits the entry into two.
984263bc 1361 *
46754a20 1362 * The map must be exclusively locked.
984263bc 1363 */
46754a20
MD
1364#define vm_map_clip_end(map, entry, endaddr, countp) \
1365{ \
1366 if (endaddr < entry->end) \
1367 _vm_map_clip_end(map, entry, endaddr, countp); \
984263bc
MD
1368}
1369
1370/*
46754a20
MD
1371 * This routine is called only when it is known that the entry must be split.
1372 *
1373 * The map must be exclusively locked.
984263bc
MD
1374 */
1375static void
46754a20
MD
1376_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1377 int *countp)
984263bc
MD
1378{
1379 vm_map_entry_t new_entry;
1380
1381 /*
1382 * If there is no object backing this entry, we might as well create
1383 * one now. If we defer it, an object can get created after the map
1384 * is clipped, and individual objects will be created for the split-up
1385 * map. This is a bit of a hack, but is also about the best place to
1386 * put this improvement.
1387 */
1388
1389 if (entry->object.vm_object == NULL && !map->system_map) {
53025830 1390 vm_map_entry_allocate_object(entry);
984263bc
MD
1391 }
1392
1393 /*
1394 * Create a new entry and insert it AFTER the specified entry
1395 */
1396
a108bf71 1397 new_entry = vm_map_entry_create(map, countp);
984263bc
MD
1398 *new_entry = *entry;
1399
1400 new_entry->start = entry->end = end;
1401 new_entry->offset += (end - entry->start);
1402
1403 vm_map_entry_link(map, entry, new_entry);
1404
1b874851
MD
1405 switch(entry->maptype) {
1406 case VM_MAPTYPE_NORMAL:
1407 case VM_MAPTYPE_VPAGETABLE:
984263bc 1408 vm_object_reference(new_entry->object.vm_object);
1b874851
MD
1409 break;
1410 default:
1411 break;
984263bc
MD
1412 }
1413}
1414
1415/*
46754a20
MD
1416 * Asserts that the starting and ending region addresses fall within the
1417 * valid range for the map.
984263bc 1418 */
46754a20
MD
1419#define VM_MAP_RANGE_CHECK(map, start, end) \
1420{ \
1421 if (start < vm_map_min(map)) \
1422 start = vm_map_min(map); \
1423 if (end > vm_map_max(map)) \
1424 end = vm_map_max(map); \
1425 if (start > end) \
1426 start = end; \
1427}
984263bc
MD
1428
1429/*
46754a20
MD
1430 * Used to block when an in-transition collison occurs. The map
1431 * is unlocked for the sleep and relocked before the return.
984263bc 1432 */
984263bc
MD
1433void
1434vm_map_transition_wait(vm_map_t map)
1435{
ff13bc52 1436 tsleep_interlock(map, 0);
984263bc 1437 vm_map_unlock(map);
ff13bc52 1438 tsleep(map, PINTERLOCKED, "vment", 0);
984263bc
MD
1439 vm_map_lock(map);
1440}
1441
1442/*
46754a20
MD
1443 * When we do blocking operations with the map lock held it is
1444 * possible that a clip might have occured on our in-transit entry,
1445 * requiring an adjustment to the entry in our loop. These macros
1446 * help the pageable and clip_range code deal with the case. The
1447 * conditional costs virtually nothing if no clipping has occured.
984263bc
MD
1448 */
1449
1450#define CLIP_CHECK_BACK(entry, save_start) \
1451 do { \
1452 while (entry->start != save_start) { \
1453 entry = entry->prev; \
1454 KASSERT(entry != &map->header, ("bad entry clip")); \
1455 } \
1456 } while(0)
1457
1458#define CLIP_CHECK_FWD(entry, save_end) \
1459 do { \
1460 while (entry->end != save_end) { \
1461 entry = entry->next; \
1462 KASSERT(entry != &map->header, ("bad entry clip")); \
1463 } \
1464 } while(0)
1465
1466
1467/*
46754a20
MD
1468 * Clip the specified range and return the base entry. The
1469 * range may cover several entries starting at the returned base
1470 * and the first and last entry in the covering sequence will be
1471 * properly clipped to the requested start and end address.
1472 *
1473 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1474 * flag.
1475 *
1476 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1477 * covered by the requested range.
1478 *
1479 * The map must be exclusively locked on entry and will remain locked
1480 * on return. If no range exists or the range contains holes and you
1481 * specified that no holes were allowed, NULL will be returned. This
1482 * routine may temporarily unlock the map in order avoid a deadlock when
1483 * sleeping.
984263bc
MD
1484 */
1485static
1486vm_map_entry_t
a108bf71 1487vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
46754a20 1488 int *countp, int flags)
984263bc
MD
1489{
1490 vm_map_entry_t start_entry;
1491 vm_map_entry_t entry;
1492
1493 /*
1494 * Locate the entry and effect initial clipping. The in-transition
1495 * case does not occur very often so do not try to optimize it.
1496 */
1497again:
1498 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1499 return (NULL);
1500 entry = start_entry;
1501 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1502 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
12e4aaff
MD
1503 ++mycpu->gd_cnt.v_intrans_coll;
1504 ++mycpu->gd_cnt.v_intrans_wait;
984263bc
MD
1505 vm_map_transition_wait(map);
1506 /*
1507 * entry and/or start_entry may have been clipped while
1508 * we slept, or may have gone away entirely. We have
1509 * to restart from the lookup.
1510 */
1511 goto again;
1512 }
46754a20 1513
984263bc
MD
1514 /*
1515 * Since we hold an exclusive map lock we do not have to restart
1516 * after clipping, even though clipping may block in zalloc.
1517 */
a108bf71
MD
1518 vm_map_clip_start(map, entry, start, countp);
1519 vm_map_clip_end(map, entry, end, countp);
984263bc
MD
1520 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1521
1522 /*
1523 * Scan entries covered by the range. When working on the next
1524 * entry a restart need only re-loop on the current entry which
1525 * we have already locked, since 'next' may have changed. Also,
1526 * even though entry is safe, it may have been clipped so we
1527 * have to iterate forwards through the clip after sleeping.
1528 */
1529 while (entry->next != &map->header && entry->next->start < end) {
1530 vm_map_entry_t next = entry->next;
1531
1532 if (flags & MAP_CLIP_NO_HOLES) {
1533 if (next->start > entry->end) {
1534 vm_map_unclip_range(map, start_entry,
a108bf71 1535 start, entry->end, countp, flags);
984263bc
MD
1536 return(NULL);
1537 }
1538 }
1539
1540 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1541 vm_offset_t save_end = entry->end;
1542 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
12e4aaff
MD
1543 ++mycpu->gd_cnt.v_intrans_coll;
1544 ++mycpu->gd_cnt.v_intrans_wait;
984263bc
MD
1545 vm_map_transition_wait(map);
1546
1547 /*
1548 * clips might have occured while we blocked.
1549 */
1550 CLIP_CHECK_FWD(entry, save_end);
1551 CLIP_CHECK_BACK(start_entry, start);
1552 continue;
1553 }
1554 /*
1555 * No restart necessary even though clip_end may block, we
1556 * are holding the map lock.
1557 */
a108bf71 1558 vm_map_clip_end(map, next, end, countp);
984263bc
MD
1559 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1560 entry = next;
1561 }
1562 if (flags & MAP_CLIP_NO_HOLES) {
1563 if (entry->end != end) {
1564 vm_map_unclip_range(map, start_entry,
a108bf71 1565 start, entry->end, countp, flags);
984263bc
MD
1566 return(NULL);
1567 }
1568 }
1569 return(start_entry);
1570}
1571
1572/*
46754a20
MD
1573 * Undo the effect of vm_map_clip_range(). You should pass the same
1574 * flags and the same range that you passed to vm_map_clip_range().
1575 * This code will clear the in-transition flag on the entries and
1576 * wake up anyone waiting. This code will also simplify the sequence
1577 * and attempt to merge it with entries before and after the sequence.
1578 *
1579 * The map must be locked on entry and will remain locked on return.
1580 *
1581 * Note that you should also pass the start_entry returned by
1582 * vm_map_clip_range(). However, if you block between the two calls
1583 * with the map unlocked please be aware that the start_entry may
1584 * have been clipped and you may need to scan it backwards to find
1585 * the entry corresponding with the original start address. You are
1586 * responsible for this, vm_map_unclip_range() expects the correct
1587 * start_entry to be passed to it and will KASSERT otherwise.
984263bc
MD
1588 */
1589static
1590void
46754a20
MD
1591vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1592 vm_offset_t start, vm_offset_t end,
1593 int *countp, int flags)
984263bc
MD
1594{
1595 vm_map_entry_t entry;
1596
1597 entry = start_entry;
1598
1599 KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1600 while (entry != &map->header && entry->start < end) {
46754a20
MD
1601 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1602 ("in-transition flag not set during unclip on: %p",
1603 entry));
1604 KASSERT(entry->end <= end,
1605 ("unclip_range: tail wasn't clipped"));
984263bc
MD
1606 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1607 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1608 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1609 wakeup(map);
1610 }
1611 entry = entry->next;
1612 }
1613
1614 /*
1615 * Simplification does not block so there is no restart case.
1616 */
1617 entry = start_entry;
1618 while (entry != &map->header && entry->start < end) {
a108bf71 1619 vm_map_simplify_entry(map, entry, countp);
984263bc
MD
1620 entry = entry->next;
1621 }
1622}
1623
1624/*
46754a20 1625 * Mark the given range as handled by a subordinate map.
984263bc 1626 *
46754a20
MD
1627 * This range must have been created with vm_map_find(), and no other
1628 * operations may have been performed on this range prior to calling
1629 * vm_map_submap().
984263bc 1630 *
46754a20 1631 * Submappings cannot be removed.
984263bc 1632 *
46754a20 1633 * No requirements.
984263bc
MD
1634 */
1635int
a108bf71 1636vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
984263bc
MD
1637{
1638 vm_map_entry_t entry;
1639 int result = KERN_INVALID_ARGUMENT;
a108bf71 1640 int count;
984263bc 1641
a108bf71 1642 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc
MD
1643 vm_map_lock(map);
1644
1645 VM_MAP_RANGE_CHECK(map, start, end);
1646
1647 if (vm_map_lookup_entry(map, start, &entry)) {
a108bf71 1648 vm_map_clip_start(map, entry, start, &count);
984263bc
MD
1649 } else {
1650 entry = entry->next;
1651 }
1652
a108bf71 1653 vm_map_clip_end(map, entry, end, &count);
984263bc
MD
1654
1655 if ((entry->start == start) && (entry->end == end) &&
1656 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1657 (entry->object.vm_object == NULL)) {
1658 entry->object.sub_map = submap;
1b874851 1659 entry->maptype = VM_MAPTYPE_SUBMAP;
984263bc
MD
1660 result = KERN_SUCCESS;
1661 }
1662 vm_map_unlock(map);
a108bf71 1663 vm_map_entry_release(count);
984263bc
MD
1664
1665 return (result);
1666}
1667
1668/*
1b874851
MD
1669 * Sets the protection of the specified address region in the target map.
1670 * If "set_max" is specified, the maximum protection is to be set;
1671 * otherwise, only the current protection is affected.
1672 *
1673 * The protection is not applicable to submaps, but is applicable to normal
1674 * maps and maps governed by virtual page tables. For example, when operating
1675 * on a virtual page table our protection basically controls how COW occurs
1676 * on the backing object, whereas the virtual page table abstraction itself
1677 * is an abstraction for userland.
46754a20
MD
1678 *
1679 * No requirements.
984263bc
MD
1680 */
1681int
1682vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1683 vm_prot_t new_prot, boolean_t set_max)
1684{
1685 vm_map_entry_t current;
1686 vm_map_entry_t entry;
a108bf71 1687 int count;
984263bc 1688
a108bf71 1689 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc
MD
1690 vm_map_lock(map);
1691
1692 VM_MAP_RANGE_CHECK(map, start, end);
1693
1694 if (vm_map_lookup_entry(map, start, &entry)) {
a108bf71 1695 vm_map_clip_start(map, entry, start, &count);
984263bc
MD
1696 } else {
1697 entry = entry->next;
1698 }
1699
1700 /*
1701 * Make a first pass to check for protection violations.
1702 */
984263bc
MD
1703 current = entry;
1704 while ((current != &map->header) && (current->start < end)) {
1b874851 1705 if (current->maptype == VM_MAPTYPE_SUBMAP) {
984263bc 1706 vm_map_unlock(map);
a108bf71 1707 vm_map_entry_release(count);
984263bc
MD
1708 return (KERN_INVALID_ARGUMENT);
1709 }
1710 if ((new_prot & current->max_protection) != new_prot) {
1711 vm_map_unlock(map);
a108bf71 1712 vm_map_entry_release(count);
984263bc
MD
1713 return (KERN_PROTECTION_FAILURE);
1714 }
1715 current = current->next;
1716 }
1717
1718 /*
1719 * Go back and fix up protections. [Note that clipping is not
1720 * necessary the second time.]
1721 */
984263bc
MD
1722 current = entry;
1723
1724 while ((current != &map->header) && (current->start < end)) {
1725 vm_prot_t old_prot;
1726
a108bf71 1727 vm_map_clip_end(map, current, end, &count);
984263bc
MD
1728
1729 old_prot = current->protection;
1b874851 1730 if (set_max) {
984263bc
MD
1731 current->protection =
1732 (current->max_protection = new_prot) &
1733 old_prot;
1b874851 1734 } else {
984263bc 1735 current->protection = new_prot;
1b874851 1736 }
984263bc
MD
1737
1738 /*
1739 * Update physical map if necessary. Worry about copy-on-write
1740 * here -- CHECK THIS XXX
1741 */
1742
1743 if (current->protection != old_prot) {
1744#define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1745 VM_PROT_ALL)
1746
1747 pmap_protect(map->pmap, current->start,
1748 current->end,
1749 current->protection & MASK(current));
1750#undef MASK
1751 }
1752
a108bf71 1753 vm_map_simplify_entry(map, current, &count);
984263bc
MD
1754
1755 current = current->next;
1756 }
1757
1758 vm_map_unlock(map);
a108bf71 1759 vm_map_entry_release(count);
984263bc
MD
1760 return (KERN_SUCCESS);
1761}
1762
1763/*
46754a20
MD
1764 * This routine traverses a processes map handling the madvise
1765 * system call. Advisories are classified as either those effecting
1766 * the vm_map_entry structure, or those effecting the underlying
1767 * objects.
984263bc 1768 *
46754a20 1769 * The <value> argument is used for extended madvise calls.
afeabdca 1770 *
46754a20 1771 * No requirements.
984263bc 1772 */
984263bc 1773int
afeabdca
MD
1774vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1775 int behav, off_t value)
984263bc
MD
1776{
1777 vm_map_entry_t current, entry;
1778 int modify_map = 0;
afeabdca 1779 int error = 0;
a108bf71 1780 int count;
984263bc
MD
1781
1782 /*
1783 * Some madvise calls directly modify the vm_map_entry, in which case
1784 * we need to use an exclusive lock on the map and we need to perform
1785 * various clipping operations. Otherwise we only need a read-lock
1786 * on the map.
1787 */
1788
a108bf71
MD
1789 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1790
984263bc
MD
1791 switch(behav) {
1792 case MADV_NORMAL:
1793 case MADV_SEQUENTIAL:
1794 case MADV_RANDOM:
1795 case MADV_NOSYNC:
1796 case MADV_AUTOSYNC:
1797 case MADV_NOCORE:
1798 case MADV_CORE:
afeabdca
MD
1799 case MADV_SETMAP:
1800 case MADV_INVAL:
984263bc
MD
1801 modify_map = 1;
1802 vm_map_lock(map);
1803 break;
1804 case MADV_WILLNEED:
1805 case MADV_DONTNEED:
1806 case MADV_FREE:
1807 vm_map_lock_read(map);
1808 break;
1809 default:
a108bf71 1810 vm_map_entry_release(count);
afeabdca 1811 return (EINVAL);
984263bc
MD
1812 }
1813
1814 /*
1815 * Locate starting entry and clip if necessary.
1816 */
1817
1818 VM_MAP_RANGE_CHECK(map, start, end);
1819
1820 if (vm_map_lookup_entry(map, start, &entry)) {
1821 if (modify_map)
a108bf71 1822 vm_map_clip_start(map, entry, start, &count);
984263bc
MD
1823 } else {
1824 entry = entry->next;
1825 }
1826
1827 if (modify_map) {
1828 /*
1829 * madvise behaviors that are implemented in the vm_map_entry.
1830 *
1831 * We clip the vm_map_entry so that behavioral changes are
1832 * limited to the specified address range.
1833 */
1834 for (current = entry;
1835 (current != &map->header) && (current->start < end);
1836 current = current->next
1837 ) {
1b874851 1838 if (current->maptype == VM_MAPTYPE_SUBMAP)
984263bc
MD
1839 continue;
1840
a108bf71 1841 vm_map_clip_end(map, current, end, &count);
984263bc
MD
1842
1843 switch (behav) {
1844 case MADV_NORMAL:
1845 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1846 break;
1847 case MADV_SEQUENTIAL:
1848 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1849 break;
1850 case MADV_RANDOM:
1851 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1852 break;
1853 case MADV_NOSYNC:
1854 current->eflags |= MAP_ENTRY_NOSYNC;
1855 break;
1856 case MADV_AUTOSYNC:
1857 current->eflags &= ~MAP_ENTRY_NOSYNC;
1858 break;
1859 case MADV_NOCORE:
1860 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1861 break;
1862 case MADV_CORE:
1863 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1864 break;
afeabdca
MD
1865 case MADV_INVAL:
1866 /*
1867 * Invalidate the related pmap entries, used
1868 * to flush portions of the real kernel's
1869 * pmap when the caller has removed or
1870 * modified existing mappings in a virtual
1871 * page table.
1872 */
1873 pmap_remove(map->pmap,
1874 current->start, current->end);
1875 break;
1876 case MADV_SETMAP:
1877 /*
1878 * Set the page directory page for a map
1879 * governed by a virtual page table. Mark
1880 * the entry as being governed by a virtual
1881 * page table if it is not.
1882 *
1883 * XXX the page directory page is stored
1884 * in the avail_ssize field if the map_entry.
1885 *
1886 * XXX the map simplification code does not
1887 * compare this field so weird things may
1888 * happen if you do not apply this function
1889 * to the entire mapping governed by the
1890 * virtual page table.
1891 */
1892 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1893 error = EINVAL;
1894 break;
1895 }
1896 current->aux.master_pde = value;
1897 pmap_remove(map->pmap,
1898 current->start, current->end);
1899 break;
984263bc 1900 default:
afeabdca 1901 error = EINVAL;
984263bc
MD
1902 break;
1903 }
a108bf71 1904 vm_map_simplify_entry(map, current, &count);
984263bc
MD
1905 }
1906 vm_map_unlock(map);
1907 } else {
1908 vm_pindex_t pindex;
1909 int count;
1910
1911 /*
1912 * madvise behaviors that are implemented in the underlying
1913 * vm_object.
1914 *
1915 * Since we don't clip the vm_map_entry, we have to clip
1916 * the vm_object pindex and count.
1b874851
MD
1917 *
1918 * NOTE! We currently do not support these functions on
1919 * virtual page tables.
984263bc
MD
1920 */
1921 for (current = entry;
1922 (current != &map->header) && (current->start < end);
1923 current = current->next
1924 ) {
1925 vm_offset_t useStart;
1926
1b874851 1927 if (current->maptype != VM_MAPTYPE_NORMAL)
984263bc
MD
1928 continue;
1929
1930 pindex = OFF_TO_IDX(current->offset);
1931 count = atop(current->end - current->start);
1932 useStart = current->start;
1933
1934 if (current->start < start) {
1935 pindex += atop(start - current->start);
1936 count -= atop(start - current->start);
1937 useStart = start;
1938 }
1939 if (current->end > end)
1940 count -= atop(current->end - end);
1941
1942 if (count <= 0)
1943 continue;
1944
1945 vm_object_madvise(current->object.vm_object,
1946 pindex, count, behav);
afeabdca
MD
1947
1948 /*
1949 * Try to populate the page table. Mappings governed
1950 * by virtual page tables cannot be pre-populated
1951 * without a lot of work so don't try.
1952 */
1953 if (behav == MADV_WILLNEED &&
1954 current->maptype != VM_MAPTYPE_VPAGETABLE) {
984263bc
MD
1955 pmap_object_init_pt(
1956 map->pmap,
1957 useStart,
083a7402 1958 current->protection,
984263bc
MD
1959 current->object.vm_object,
1960 pindex,
1961 (count << PAGE_SHIFT),
1962 MAP_PREFAULT_MADVISE
1963 );
1964 }
1965 }
1966 vm_map_unlock_read(map);
1967 }
a108bf71 1968 vm_map_entry_release(count);
afeabdca 1969 return(error);
984263bc
MD
1970}
1971
1972
1973/*
46754a20
MD
1974 * Sets the inheritance of the specified address range in the target map.
1975 * Inheritance affects how the map will be shared with child maps at the
1976 * time of vm_map_fork.
984263bc
MD
1977 */
1978int
1979vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1980 vm_inherit_t new_inheritance)
1981{
1982 vm_map_entry_t entry;
1983 vm_map_entry_t temp_entry;
a108bf71 1984 int count;
984263bc
MD
1985
1986 switch (new_inheritance) {
1987 case VM_INHERIT_NONE:
1988 case VM_INHERIT_COPY:
1989 case VM_INHERIT_SHARE:
1990 break;
1991 default:
1992 return (KERN_INVALID_ARGUMENT);
1993 }
1994
a108bf71 1995 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc
MD
1996 vm_map_lock(map);
1997
1998 VM_MAP_RANGE_CHECK(map, start, end);
1999
2000 if (vm_map_lookup_entry(map, start, &temp_entry)) {
2001 entry = temp_entry;
a108bf71 2002 vm_map_clip_start(map, entry, start, &count);
984263bc
MD
2003 } else
2004 entry = temp_entry->next;
2005
2006 while ((entry != &map->header) && (entry->start < end)) {
a108bf71 2007 vm_map_clip_end(map, entry, end, &count);
984263bc
MD
2008
2009 entry->inheritance = new_inheritance;
2010
a108bf71 2011 vm_map_simplify_entry(map, entry, &count);
984263bc
MD
2012
2013 entry = entry->next;
2014 }
984263bc 2015 vm_map_unlock(map);
a108bf71 2016 vm_map_entry_release(count);
984263bc
MD
2017 return (KERN_SUCCESS);
2018}
2019
2020/*
2021 * Implement the semantics of mlock
2022 */
2023int
57e43348 2024vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
46754a20 2025 boolean_t new_pageable)
984263bc
MD
2026{
2027 vm_map_entry_t entry;
2028 vm_map_entry_t start_entry;
2029 vm_offset_t end;
2030 int rv = KERN_SUCCESS;
a108bf71 2031 int count;
984263bc 2032
a108bf71 2033 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc
MD
2034 vm_map_lock(map);
2035 VM_MAP_RANGE_CHECK(map, start, real_end);
2036 end = real_end;
2037
46754a20
MD
2038 start_entry = vm_map_clip_range(map, start, end, &count,
2039 MAP_CLIP_NO_HOLES);
984263bc
MD
2040 if (start_entry == NULL) {
2041 vm_map_unlock(map);
a108bf71 2042 vm_map_entry_release(count);
984263bc
MD
2043 return (KERN_INVALID_ADDRESS);
2044 }
2045
2046 if (new_pageable == 0) {
2047 entry = start_entry;
2048 while ((entry != &map->header) && (entry->start < end)) {
2049 vm_offset_t save_start;
2050 vm_offset_t save_end;
2051
2052 /*
2053 * Already user wired or hard wired (trivial cases)
2054 */
2055 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2056 entry = entry->next;
2057 continue;
2058 }
2059 if (entry->wired_count != 0) {
2060 entry->wired_count++;
2061 entry->eflags |= MAP_ENTRY_USER_WIRED;
2062 entry = entry->next;
2063 continue;
2064 }
2065
2066 /*
2067 * A new wiring requires instantiation of appropriate
2068 * management structures and the faulting in of the
2069 * page.
2070 */
1b874851 2071 if (entry->maptype != VM_MAPTYPE_SUBMAP) {
46754a20
MD
2072 int copyflag = entry->eflags &
2073 MAP_ENTRY_NEEDS_COPY;
2074 if (copyflag && ((entry->protection &
2075 VM_PROT_WRITE) != 0)) {
53025830 2076 vm_map_entry_shadow(entry);
984263bc
MD
2077 } else if (entry->object.vm_object == NULL &&
2078 !map->system_map) {
53025830 2079 vm_map_entry_allocate_object(entry);
984263bc
MD
2080 }
2081 }
2082 entry->wired_count++;
2083 entry->eflags |= MAP_ENTRY_USER_WIRED;
2084
2085 /*
f2d22ebf
MD
2086 * Now fault in the area. Note that vm_fault_wire()
2087 * may release the map lock temporarily, it will be
2088 * relocked on return. The in-transition
984263bc
MD
2089 * flag protects the entries.
2090 */
2091 save_start = entry->start;
2092 save_end = entry->end;
f2d22ebf 2093 rv = vm_fault_wire(map, entry, TRUE);
984263bc
MD
2094 if (rv) {
2095 CLIP_CHECK_BACK(entry, save_start);
2096 for (;;) {
2097 KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2098 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2099 entry->wired_count = 0;
2100 if (entry->end == save_end)
2101 break;
2102 entry = entry->next;
2103 KASSERT(entry != &map->header, ("bad entry clip during backout"));
2104 }
2105 end = save_start; /* unwire the rest */
2106 break;
2107 }
2108 /*
2109 * note that even though the entry might have been
2110 * clipped, the USER_WIRED flag we set prevents
2111 * duplication so we do not have to do a
2112 * clip check.
2113 */
2114 entry = entry->next;
2115 }
2116
2117 /*
2118 * If we failed fall through to the unwiring section to
2119 * unwire what we had wired so far. 'end' has already
2120 * been adjusted.
2121 */
2122 if (rv)
2123 new_pageable = 1;
2124
2125 /*
2126 * start_entry might have been clipped if we unlocked the
2127 * map and blocked. No matter how clipped it has gotten
2128 * there should be a fragment that is on our start boundary.
2129 */
2130 CLIP_CHECK_BACK(start_entry, start);
2131 }
2132
2133 /*
2134 * Deal with the unwiring case.
2135 */
2136 if (new_pageable) {
2137 /*
2138 * This is the unwiring case. We must first ensure that the
2139 * range to be unwired is really wired down. We know there
2140 * are no holes.
2141 */
2142 entry = start_entry;
2143 while ((entry != &map->header) && (entry->start < end)) {
2144 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2145 rv = KERN_INVALID_ARGUMENT;
2146 goto done;
2147 }
2148 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2149 entry = entry->next;
2150 }
2151
2152 /*
2153 * Now decrement the wiring count for each region. If a region
2154 * becomes completely unwired, unwire its physical pages and
2155 * mappings.
2156 */
b4eddbac
DR
2157 /*
2158 * The map entries are processed in a loop, checking to
2159 * make sure the entry is wired and asserting it has a wired
2160 * count. However, another loop was inserted more-or-less in
2161 * the middle of the unwiring path. This loop picks up the
2162 * "entry" loop variable from the first loop without first
2163 * setting it to start_entry. Naturally, the secound loop
2164 * is never entered and the pages backing the entries are
2165 * never unwired. This can lead to a leak of wired pages.
2166 */
2167 entry = start_entry;
984263bc 2168 while ((entry != &map->header) && (entry->start < end)) {
f2d22ebf
MD
2169 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2170 ("expected USER_WIRED on entry %p", entry));
984263bc
MD
2171 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2172 entry->wired_count--;
2173 if (entry->wired_count == 0)
f2d22ebf 2174 vm_fault_unwire(map, entry);
984263bc
MD
2175 entry = entry->next;
2176 }
2177 }
2178done:
a108bf71 2179 vm_map_unclip_range(map, start_entry, start, real_end, &count,
984263bc
MD
2180 MAP_CLIP_NO_HOLES);
2181 map->timestamp++;
2182 vm_map_unlock(map);
a108bf71 2183 vm_map_entry_release(count);
984263bc
MD
2184 return (rv);
2185}
2186
2187/*
46754a20
MD
2188 * Sets the pageability of the specified address range in the target map.
2189 * Regions specified as not pageable require locked-down physical
2190 * memory and physical page maps.
984263bc 2191 *
46754a20
MD
2192 * The map must not be locked, but a reference must remain to the map
2193 * throughout the call.
984263bc 2194 *
46754a20
MD
2195 * This function may be called via the zalloc path and must properly
2196 * reserve map entries for kernel_map.
a108bf71 2197 *
46754a20 2198 * No requirements.
984263bc
MD
2199 */
2200int
e1359933 2201vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
984263bc
MD
2202{
2203 vm_map_entry_t entry;
2204 vm_map_entry_t start_entry;
2205 vm_offset_t end;
2206 int rv = KERN_SUCCESS;
a108bf71 2207 int count;
984263bc 2208
e1359933 2209 if (kmflags & KM_KRESERVE)
a108bf71 2210 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
a108bf71
MD
2211 else
2212 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc
MD
2213 vm_map_lock(map);
2214 VM_MAP_RANGE_CHECK(map, start, real_end);
2215 end = real_end;
2216
46754a20
MD
2217 start_entry = vm_map_clip_range(map, start, end, &count,
2218 MAP_CLIP_NO_HOLES);
984263bc
MD
2219 if (start_entry == NULL) {
2220 vm_map_unlock(map);
a108bf71
MD
2221 rv = KERN_INVALID_ADDRESS;
2222 goto failure;
984263bc 2223 }
e1359933 2224 if ((kmflags & KM_PAGEABLE) == 0) {
984263bc
MD
2225 /*
2226 * Wiring.
2227 *
2228 * 1. Holding the write lock, we create any shadow or zero-fill
2229 * objects that need to be created. Then we clip each map
2230 * entry to the region to be wired and increment its wiring
2231 * count. We create objects before clipping the map entries
2232 * to avoid object proliferation.
2233 *
2234 * 2. We downgrade to a read lock, and call vm_fault_wire to
2235 * fault in the pages for any newly wired area (wired_count is
2236 * 1).
2237 *
2238 * Downgrading to a read lock for vm_fault_wire avoids a
2239 * possible deadlock with another process that may have faulted
2240 * on one of the pages to be wired (it would mark the page busy,
2241 * blocking us, then in turn block on the map lock that we
2242 * hold). Because of problems in the recursive lock package,
2243 * we cannot upgrade to a write lock in vm_map_lookup. Thus,
2244 * any actions that require the write lock must be done
2245 * beforehand. Because we keep the read lock on the map, the
2246 * copy-on-write status of the entries we modify here cannot
2247 * change.
2248 */
984263bc
MD
2249 entry = start_entry;
2250 while ((entry != &map->header) && (entry->start < end)) {
2251 /*
2252 * Trivial case if the entry is already wired
2253 */
2254 if (entry->wired_count) {
2255 entry->wired_count++;
2256 entry = entry->next;
2257 continue;
2258 }
2259
2260 /*
2261 * The entry is being newly wired, we have to setup
2262 * appropriate management structures. A shadow
2263 * object is required for a copy-on-write region,
2264 * or a normal object for a zero-fill region. We
2265 * do not have to do this for entries that point to sub
2266 * maps because we won't hold the lock on the sub map.
2267 */
1b874851 2268 if (entry->maptype != VM_MAPTYPE_SUBMAP) {
46754a20
MD
2269 int copyflag = entry->eflags &
2270 MAP_ENTRY_NEEDS_COPY;
2271 if (copyflag && ((entry->protection &
2272 VM_PROT_WRITE) != 0)) {
53025830 2273 vm_map_entry_shadow(entry);
984263bc
MD
2274 } else if (entry->object.vm_object == NULL &&
2275 !map->system_map) {
53025830 2276 vm_map_entry_allocate_object(entry);
984263bc
MD
2277 }
2278 }
2279
2280 entry->wired_count++;
2281 entry = entry->next;
2282 }
2283
2284 /*
2285 * Pass 2.
2286 */
2287
2288 /*
2289 * HACK HACK HACK HACK
2290 *
46754a20
MD
2291 * vm_fault_wire() temporarily unlocks the map to avoid
2292 * deadlocks. The in-transition flag from vm_map_clip_range
2293 * call should protect us from changes while the map is
2294 * unlocked. T
2295 *
2296 * NOTE: Previously this comment stated that clipping might
2297 * still occur while the entry is unlocked, but from
2298 * what I can tell it actually cannot.
2299 *
2300 * It is unclear whether the CLIP_CHECK_*() calls
2301 * are still needed but we keep them in anyway.
984263bc
MD
2302 *
2303 * HACK HACK HACK HACK
2304 */
2305
984263bc
MD
2306 entry = start_entry;
2307 while (entry != &map->header && entry->start < end) {
2308 /*
2309 * If vm_fault_wire fails for any page we need to undo
2310 * what has been done. We decrement the wiring count
2311 * for those pages which have not yet been wired (now)
2312 * and unwire those that have (later).
2313 */
2314 vm_offset_t save_start = entry->start;
2315 vm_offset_t save_end = entry->end;
2316
2317 if (entry->wired_count == 1)
f2d22ebf 2318 rv = vm_fault_wire(map, entry, FALSE);
984263bc
MD
2319 if (rv) {
2320 CLIP_CHECK_BACK(entry, save_start);
2321 for (;;) {
2322 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2323 entry->wired_count = 0;
2324 if (entry->end == save_end)
2325 break;
2326 entry = entry->next;
2327 KASSERT(entry != &map->header, ("bad entry clip during backout"));
2328 }
2329 end = save_start;
2330 break;
2331 }
2332 CLIP_CHECK_FWD(entry, save_end);
2333 entry = entry->next;
2334 }
984263bc 2335
984263bc
MD
2336 /*
2337 * If a failure occured undo everything by falling through
2338 * to the unwiring code. 'end' has already been adjusted
2339 * appropriately.
2340 */
2341 if (rv)
e1359933 2342 kmflags |= KM_PAGEABLE;
984263bc
MD
2343
2344 /*
f2d22ebf
MD
2345 * start_entry is still IN_TRANSITION but may have been
2346 * clipped since vm_fault_wire() unlocks and relocks the
2347 * map. No matter how clipped it has gotten there should
2348 * be a fragment that is on our start boundary.
984263bc
MD
2349 */
2350 CLIP_CHECK_BACK(start_entry, start);
2351 }
2352
e1359933 2353 if (kmflags & KM_PAGEABLE) {
984263bc
MD
2354 /*
2355 * This is the unwiring case. We must first ensure that the
2356 * range to be unwired is really wired down. We know there
2357 * are no holes.
2358 */
2359 entry = start_entry;
2360 while ((entry != &map->header) && (entry->start < end)) {
2361 if (entry->wired_count == 0) {
2362 rv = KERN_INVALID_ARGUMENT;
2363 goto done;
2364 }
2365 entry = entry->next;
2366 }
2367
2368 /*
2369 * Now decrement the wiring count for each region. If a region
2370 * becomes completely unwired, unwire its physical pages and
2371 * mappings.
2372 */
2373 entry = start_entry;
2374 while ((entry != &map->header) && (entry->start < end)) {
2375 entry->wired_count--;
2376 if (entry->wired_count == 0)
f2d22ebf 2377 vm_fault_unwire(map, entry);
984263bc
MD
2378 entry = entry->next;
2379 }
2380 }
2381done:
46754a20
MD
2382 vm_map_unclip_range(map, start_entry, start, real_end,
2383 &count, MAP_CLIP_NO_HOLES);
984263bc
MD
2384 map->timestamp++;
2385 vm_map_unlock(map);
a108bf71 2386failure:
e1359933 2387 if (kmflags & KM_KRESERVE)
a108bf71 2388 vm_map_entry_krelease(count);
a108bf71
MD
2389 else
2390 vm_map_entry_release(count);
984263bc
MD
2391 return (rv);
2392}
2393
a108bf71 2394/*
46754a20
MD
2395 * Mark a newly allocated address range as wired but do not fault in
2396 * the pages. The caller is expected to load the pages into the object.
a108bf71 2397 *
46754a20
MD
2398 * The map must be locked on entry and will remain locked on return.
2399 * No other requirements.
a108bf71
MD
2400 */
2401void
46754a20
MD
2402vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2403 int *countp)
a108bf71
MD
2404{
2405 vm_map_entry_t scan;
2406 vm_map_entry_t entry;
2407
46754a20
MD
2408 entry = vm_map_clip_range(map, addr, addr + size,
2409 countp, MAP_CLIP_NO_HOLES);
2410 for (scan = entry;
2411 scan != &map->header && scan->start < addr + size;
2412 scan = scan->next) {
a108bf71
MD
2413 KKASSERT(entry->wired_count == 0);
2414 entry->wired_count = 1;
2415 }
46754a20
MD
2416 vm_map_unclip_range(map, entry, addr, addr + size,
2417 countp, MAP_CLIP_NO_HOLES);
a108bf71
MD
2418}
2419
984263bc 2420/*
984263bc
MD
2421 * Push any dirty cached pages in the address range to their pager.
2422 * If syncio is TRUE, dirty pages are written synchronously.
2423 * If invalidate is TRUE, any cached pages are freed as well.
2424 *
2bc7505b
MD
2425 * This routine is called by sys_msync()
2426 *
984263bc 2427 * Returns an error if any part of the specified range is not mapped.
46754a20
MD
2428 *
2429 * No requirements.
984263bc
MD
2430 */
2431int
2bc7505b
MD
2432vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2433 boolean_t syncio, boolean_t invalidate)
984263bc
MD
2434{
2435 vm_map_entry_t current;
2436 vm_map_entry_t entry;
2437 vm_size_t size;
2438 vm_object_t object;
2439 vm_ooffset_t offset;
2440
2441 vm_map_lock_read(map);
2442 VM_MAP_RANGE_CHECK(map, start, end);
2443 if (!vm_map_lookup_entry(map, start, &entry)) {
2444 vm_map_unlock_read(map);
2445 return (KERN_INVALID_ADDRESS);
2446 }
2447 /*
2448 * Make a first pass to check for holes.
2449 */
2450 for (current = entry; current->start < end; current = current->next) {
1b874851 2451 if (current->maptype == VM_MAPTYPE_SUBMAP) {
984263bc
MD
2452 vm_map_unlock_read(map);
2453 return (KERN_INVALID_ARGUMENT);
2454 }
2455 if (end > current->end &&
2456 (current->next == &map->header ||
2457 current->end != current->next->start)) {
2458 vm_map_unlock_read(map);
2459 return (KERN_INVALID_ADDRESS);
2460 }
2461 }
2462
2463 if (invalidate)
2464 pmap_remove(vm_map_pmap(map), start, end);
46754a20 2465
984263bc
MD
2466 /*
2467 * Make a second pass, cleaning/uncaching pages from the indicated
2468 * objects as we go.
46754a20
MD
2469 *
2470 * Hold vm_token to avoid blocking in vm_object_reference()
984263bc 2471 */
46754a20 2472 lwkt_gettoken(&vm_token);
2de4f77e
MD
2473 lwkt_gettoken(&vmobj_token);
2474
984263bc
MD
2475 for (current = entry; current->start < end; current = current->next) {
2476 offset = current->offset + (start - current->start);
2477 size = (end <= current->end ? end : current->end) - start;
1b874851 2478 if (current->maptype == VM_MAPTYPE_SUBMAP) {
984263bc
MD
2479 vm_map_t smap;
2480 vm_map_entry_t tentry;
2481 vm_size_t tsize;
2482
2483 smap = current->object.sub_map;
2484 vm_map_lock_read(smap);
418ff780 2485 vm_map_lookup_entry(smap, offset, &tentry);
984263bc
MD
2486 tsize = tentry->end - offset;
2487 if (tsize < size)
2488 size = tsize;
2489 object = tentry->object.vm_object;
2490 offset = tentry->offset + (offset - tentry->start);
2491 vm_map_unlock_read(smap);
2492 } else {
2493 object = current->object.vm_object;
2494 }
2495 /*
2496 * Note that there is absolutely no sense in writing out
2497 * anonymous objects, so we track down the vnode object
2498 * to write out.
2499 * We invalidate (remove) all pages from the address space
2500 * anyway, for semantic correctness.
2501 *
2502 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2503 * may start out with a NULL object.
2504 */
2505 while (object && object->backing_object) {
984263bc 2506 offset += object->backing_object_offset;
7cad6903 2507 object = object->backing_object;
984263bc
MD
2508 if (object->size < OFF_TO_IDX( offset + size))
2509 size = IDX_TO_OFF(object->size) - offset;
2510 }
2511 if (object && (object->type == OBJT_VNODE) &&
2bc7505b
MD
2512 (current->protection & VM_PROT_WRITE) &&
2513 (object->flags & OBJ_NOMSYNC) == 0) {
984263bc
MD
2514 /*
2515 * Flush pages if writing is allowed, invalidate them
2516 * if invalidation requested. Pages undergoing I/O
2517 * will be ignored by vm_object_page_remove().
2518 *
2519 * We cannot lock the vnode and then wait for paging
2520 * to complete without deadlocking against vm_fault.
2521 * Instead we simply call vm_object_page_remove() and
2522 * allow it to block internally on a page-by-page
2523 * basis when it encounters pages undergoing async
2524 * I/O.
2525 */
2526 int flags;
2527
2de4f77e 2528 vm_object_reference_locked(object);
ca466bae 2529 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
984263bc
MD
2530 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2531 flags |= invalidate ? OBJPC_INVAL : 0;
1b874851
MD
2532
2533 /*
2534 * When operating on a virtual page table just
2535 * flush the whole object. XXX we probably ought
2536 * to
2537 */
2538 switch(current->maptype) {
2539 case VM_MAPTYPE_NORMAL:
2540 vm_object_page_clean(object,
2541 OFF_TO_IDX(offset),
2542 OFF_TO_IDX(offset + size + PAGE_MASK),
2543 flags);
2544 break;
2545 case VM_MAPTYPE_VPAGETABLE:
2546 vm_object_page_clean(object, 0, 0, flags);
2547 break;
2548 }
a11aaa81 2549 vn_unlock(((struct vnode *)object->handle));
2de4f77e 2550 vm_object_deallocate_locked(object);
984263bc
MD
2551 }
2552 if (object && invalidate &&
2553 ((object->type == OBJT_VNODE) ||
2554 (object->type == OBJT_DEVICE))) {
2f1821ca
MD
2555 int clean_only =
2556 (object->type == OBJT_DEVICE) ? FALSE : TRUE;
2de4f77e 2557 vm_object_reference_locked(object);
1b874851
MD
2558 switch(current->maptype) {
2559 case VM_MAPTYPE_NORMAL:
2560 vm_object_page_remove(object,
2561 OFF_TO_IDX(offset),
2562 OFF_TO_IDX(offset + size + PAGE_MASK),
2563 clean_only);
2564 break;
2565 case VM_MAPTYPE_VPAGETABLE:
2566 vm_object_page_remove(object, 0, 0, clean_only);
2567 break;
2568 }
2de4f77e 2569 vm_object_deallocate_locked(object);
984263bc
MD
2570 }
2571 start += size;
2572 }
2de4f77e
MD
2573
2574 lwkt_reltoken(&vmobj_token);
46754a20 2575 lwkt_reltoken(&vm_token);
2de4f77e 2576 vm_map_unlock_read(map);
46754a20 2577
984263bc
MD
2578 return (KERN_SUCCESS);
2579}
2580
2581/*
46754a20 2582 * Make the region specified by this entry pageable.
984263bc 2583 *
46754a20 2584 * The vm_map must be exclusively locked.
984263bc
MD
2585 */
2586static void
a108bf71 2587vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
984263bc 2588{
f2d22ebf 2589 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
984263bc 2590 entry->wired_count = 0;
f2d22ebf 2591 vm_fault_unwire(map, entry);
984263bc
MD
2592}
2593
2594/*
46754a20 2595 * Deallocate the given entry from the target map.
984263bc 2596 *
46754a20 2597 * The vm_map must be exclusively locked.
984263bc
MD
2598 */
2599static void
a108bf71 2600vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
984263bc
MD
2601{
2602 vm_map_entry_unlink(map, entry);
2603 map->size -= entry->end - entry->start;
2604
1b874851
MD
2605 switch(entry->maptype) {
2606 case VM_MAPTYPE_NORMAL:
2607 case VM_MAPTYPE_VPAGETABLE:
984263bc 2608 vm_object_deallocate(entry->object.vm_object);
1b874851
MD
2609 break;
2610 default:
2611 break;
984263bc
MD
2612 }
2613
a108bf71 2614 vm_map_entry_dispose(map, entry, countp);
984263bc
MD
2615}
2616
2617/*
46754a20 2618 * Deallocates the given address range from the target map.
984263bc 2619 *
46754a20 2620 * The vm_map must be exclusively locked.
984263bc
MD
2621 */
2622int
a108bf71 2623vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
984263bc
MD
2624{
2625 vm_object_t object;
2626 vm_map_entry_t entry;
2627 vm_map_entry_t first_entry;
2628
46754a20 2629 ASSERT_VM_MAP_LOCKED(map);
686dbf64 2630again:
984263bc 2631 /*
686dbf64
MD
2632 * Find the start of the region, and clip it. Set entry to point
2633 * at the first record containing the requested address or, if no
2634 * such record exists, the next record with a greater address. The
2635 * loop will run from this point until a record beyond the termination
2636 * address is encountered.
2637 *
2638 * map->hint must be adjusted to not point to anything we delete,
2639 * so set it to the entry prior to the one being deleted.
2640 *
2641 * GGG see other GGG comment.
984263bc 2642 */
686dbf64 2643 if (vm_map_lookup_entry(map, start, &first_entry)) {
984263bc 2644 entry = first_entry;
a108bf71 2645 vm_map_clip_start(map, entry, start, countp);
686dbf64
MD
2646 map->hint = entry->prev; /* possible problem XXX */
2647 } else {
2648 map->hint = first_entry; /* possible problem XXX */
2649 entry = first_entry->next;
984263bc
MD
2650 }
2651
2652 /*
686dbf64
MD
2653 * If a hole opens up prior to the current first_free then
2654 * adjust first_free. As with map->hint, map->first_free
2655 * cannot be left set to anything we might delete.
984263bc 2656 */
984263bc
MD
2657 if (entry == &map->header) {
2658 map->first_free = &map->header;
2659 } else if (map->first_free->start >= start) {
2660 map->first_free = entry->prev;
2661 }
2662
2663 /*
2664 * Step through all entries in this region
2665 */
984263bc
MD
2666 while ((entry != &map->header) && (entry->start < end)) {
2667 vm_map_entry_t next;
2668 vm_offset_t s, e;
2669 vm_pindex_t offidxstart, offidxend, count;
2670
2671 /*
2672 * If we hit an in-transition entry we have to sleep and
2673 * retry. It's easier (and not really slower) to just retry
2674 * since this case occurs so rarely and the hint is already
2675 * pointing at the right place. We have to reset the
2676 * start offset so as not to accidently delete an entry
2677 * another process just created in vacated space.
2678 */
2679 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2680 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2681 start = entry->start;
12e4aaff
MD
2682 ++mycpu->gd_cnt.v_intrans_coll;
2683 ++mycpu->gd_cnt.v_intrans_wait;
984263bc
MD
2684 vm_map_transition_wait(map);
2685 goto again;
2686 }
a108bf71 2687 vm_map_clip_end(map, entry, end, countp);
984263bc
MD
2688
2689 s = entry->start;
2690 e = entry->end;
2691 next = entry->next;
2692
2693 offidxstart = OFF_TO_IDX(entry->offset);
2694 count = OFF_TO_IDX(e - s);
2695 object = entry->object.vm_object;
2696
2697 /*
2698 * Unwire before removing addresses from the pmap; otherwise,
2699 * unwiring will put the entries back in the pmap.
2700 */
f2d22ebf 2701 if (entry->wired_count != 0)
984263bc 2702 vm_map_entry_unwire(map, entry);
984263bc
MD
2703
2704 offidxend = offidxstart + count;
2705
46754a20 2706 /*
2de4f77e
MD
2707 * Hold vm_token when manipulating vm_objects,
2708 *
2709 * Hold vmobj_token when potentially adding or removing
2710 * objects (collapse requires both).
46754a20
MD
2711 */
2712 lwkt_gettoken(&vm_token);
2de4f77e 2713 lwkt_gettoken(&vmobj_token);
b4460ab3 2714 vm_object_hold(object);
2de4f77e 2715
c439ad8f 2716 if (object == &kernel_object) {
46754a20
MD
2717 vm_object_page_remove(object, offidxstart,
2718 offidxend, FALSE);
984263bc
MD
2719 } else {
2720 pmap_remove(map->pmap, s, e);
2de4f77e 2721
984263bc
MD
2722 if (object != NULL &&
2723 object->ref_count != 1 &&
46754a20
MD
2724 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2725 OBJ_ONEMAPPING &&
2726 (object->type == OBJT_DEFAULT ||
2727 object->type == OBJT_SWAP)) {
984263bc 2728 vm_object_collapse(object);
46754a20
MD
2729 vm_object_page_remove(object, offidxstart,
2730 offidxend, FALSE);
984263bc 2731 if (object->type == OBJT_SWAP) {
46754a20
MD
2732 swap_pager_freespace(object,
2733 offidxstart,
2734 count);
984263bc
MD
2735 }
2736 if (offidxend >= object->size &&
2737 offidxstart < object->size) {
2738 object->size = offidxstart;
2739 }
2740 }
2741 }
b4460ab3
VS
2742
2743 vm_object_drop(object);
2de4f77e 2744 lwkt_reltoken(&vmobj_token);
46754a20 2745 lwkt_reltoken(&vm_token);
984263bc
MD
2746
2747 /*
2748 * Delete the entry (which may delete the object) only after
2749 * removing all pmap entries pointing to its pages.
2750 * (Otherwise, its page frames may be reallocated, and any
2751 * modify bits will be set in the wrong object!)
2752 */
a108bf71 2753 vm_map_entry_delete(map, entry, countp);
984263bc
MD
2754 entry = next;
2755 }
2756 return (KERN_SUCCESS);
2757}
2758
2759/*
46754a20
MD
2760 * Remove the given address range from the target map.
2761 * This is the exported form of vm_map_delete.
984263bc 2762 *
46754a20 2763 * No requirements.
984263bc
MD
2764 */
2765int
a108bf71 2766vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
984263bc 2767{
03aa8d99 2768 int result;
a108bf71 2769 int count;
984263bc 2770
a108bf71 2771 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc
MD
2772 vm_map_lock(map);
2773 VM_MAP_RANGE_CHECK(map, start, end);
a108bf71 2774 result = vm_map_delete(map, start, end, &count);
984263bc 2775 vm_map_unlock(map);
a108bf71 2776 vm_map_entry_release(count);
984263bc 2777
984263bc
MD
2778 return (result);
2779}
2780
2781/*
46754a20
MD
2782 * Assert that the target map allows the specified privilege on the
2783 * entire address region given. The entire region must be allocated.
984263bc 2784 *
46754a20 2785 * The caller must specify whether the vm_map is already locked or not.
984263bc
MD
2786 */
2787boolean_t
2788vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
46754a20 2789 vm_prot_t protection, boolean_t have_lock)
984263bc
MD
2790{
2791 vm_map_entry_t entry;
2792 vm_map_entry_t tmp_entry;
46754a20
MD
2793 boolean_t result;
2794
2795 if (have_lock == FALSE)
2796 vm_map_lock_read(map);
984263bc
MD
2797
2798 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
46754a20
MD
2799 if (have_lock == FALSE)
2800 vm_map_unlock_read(map);
984263bc
MD
2801 return (FALSE);
2802 }
2803 entry = tmp_entry;
2804
46754a20 2805 result = TRUE;
984263bc
MD
2806 while (start < end) {
2807 if (entry == &map->header) {
46754a20
MD
2808 result = FALSE;
2809 break;
984263bc
MD
2810 }
2811 /*
2812 * No holes allowed!
2813 */
2814
2815 if (start < entry->start) {
46754a20
MD
2816 result = FALSE;
2817 break;
984263bc
MD
2818 }
2819 /*
2820 * Check protection associated with entry.
2821 */
2822
2823 if ((entry->protection & protection) != protection) {
46754a20
MD
2824 result = FALSE;
2825 break;
984263bc
MD
2826 }
2827 /* go to next entry */
2828
2829 start = entry->end;
2830 entry = entry->next;
2831 }
46754a20
MD
2832 if (have_lock == FALSE)
2833 vm_map_unlock_read(map);
2834 return (result);
984263bc
MD
2835}
2836
2837/*
2838 * Split the pages in a map entry into a new object. This affords
2839 * easier removal of unused pages, and keeps object inheritance from
2840 * being a negative impact on memory usage.
46754a20
MD
2841 *
2842 * The vm_map must be exclusively locked.
398c240d 2843 * The orig_object should be held.
984263bc
MD
2844 */
2845static void
a108bf71 2846vm_map_split(vm_map_entry_t entry)
984263bc
MD
2847{
2848 vm_page_t m;
2849 vm_object_t orig_object, new_object, source;
2850 vm_offset_t s, e;
2851 vm_pindex_t offidxstart, offidxend, idx;
2852 vm_size_t size;
2853 vm_ooffset_t offset;
2854
2855 orig_object = entry->object.vm_object;
2856 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2857 return;
2858 if (orig_object->ref_count <= 1)
2859 return;
2860
2861 offset = entry->offset;
2862 s = entry->start;
2863 e = entry->end;
2864
2865 offidxstart = OFF_TO_IDX(offset);
2866 offidxend = offidxstart + OFF_TO_IDX(e - s);
2867 size = offidxend - offidxstart;
2868
5a648714
MD
2869 switch(orig_object->type) {
2870 case OBJT_DEFAULT:
2871 new_object = default_pager_alloc(NULL, IDX_TO_OFF(size),
2872 VM_PROT_ALL, 0);
2873 break;
2874 case OBJT_SWAP:
2875 new_object = swap_pager_alloc(NULL, IDX_TO_OFF(size),
2876 VM_PROT_ALL, 0);
2877 break;
2878 default:
2879 /* not reached */
1570194c 2880 new_object = NULL;
5a648714
MD
2881 KKASSERT(0);
2882 }
984263bc
MD
2883 if (new_object == NULL)
2884 return;
2885
46754a20
MD
2886 /*
2887 * vm_token required when manipulating vm_objects.
2888 */
2889 lwkt_gettoken(&vm_token);
2de4f77e 2890 lwkt_gettoken(&vmobj_token);
46754a20 2891
398c240d
VS
2892 vm_object_hold(new_object);
2893
984263bc
MD
2894 source = orig_object->backing_object;
2895 if (source != NULL) {
398c240d 2896 vm_object_hold(source);
2de4f77e
MD
2897 /* Referenced by new_object */
2898 vm_object_reference_locked(source);
984263bc 2899 LIST_INSERT_HEAD(&source->shadow_head,
2de4f77e 2900 new_object, shadow_list);
984263bc
MD
2901 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2902 new_object->backing_object_offset =
2de4f77e
MD
2903 orig_object->backing_object_offset +
2904 IDX_TO_OFF(offidxstart);
984263bc
MD
2905 new_object->backing_object = source;
2906 source->shadow_count++;
2907 source->generation++;
398c240d 2908 vm_object_drop(source);
984263bc
MD
2909 }
2910
2911 for (idx = 0; idx < size; idx++) {
2912 vm_page_t m;
2913
2914 retry:
2915 m = vm_page_lookup(orig_object, offidxstart + idx);
2de4f77e 2916 if (m == NULL)
984263bc
MD
2917 continue;
2918
2919 /*
2920 * We must wait for pending I/O to complete before we can
2921 * rename the page.
2922 *
2923 * We do not have to VM_PROT_NONE the page as mappings should
2924 * not be changed by this operation.
2925 */
2926 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2927 goto retry;
984263bc
MD
2928 vm_page_busy(m);
2929 vm_page_rename(m, new_object, idx);
2930 /* page automatically made dirty by rename and cache handled */
2931 vm_page_busy(m);
2932 }
2933
2934 if (orig_object->type == OBJT_SWAP) {
2935 vm_object_pip_add(orig_object, 1);
2936 /*
2937 * copy orig_object pages into new_object
2938 * and destroy unneeded pages in
2939 * shadow object.
2940 */
2941 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2942 vm_object_pip_wakeup(orig_object);
2943 }
2944
06ecca5a
MD
2945 /*
2946 * Wakeup the pages we played with. No spl protection is needed
2947 * for a simple wakeup.
2948 */
984263bc
MD
2949 for (idx = 0; idx < size; idx++) {
2950 m = vm_page_lookup(new_object, idx);
06ecca5a 2951 if (m)
984263bc 2952 vm_page_wakeup(m);
984263bc
MD
2953 }
2954
2955 entry->object.vm_object = new_object;
2956 entry->offset = 0LL;
2de4f77e 2957 vm_object_deallocate_locked(orig_object);
398c240d 2958 vm_object_drop(new_object);
2de4f77e 2959 lwkt_reltoken(&vmobj_token);
46754a20 2960 lwkt_reltoken(&vm_token);
984263bc
MD
2961}
2962
2963/*
46754a20
MD
2964 * Copies the contents of the source entry to the destination
2965 * entry. The entries *must* be aligned properly.
984263bc 2966 *
46754a20 2967 * The vm_map must be exclusively locked.
2de4f77e 2968 * vm_token must be held
984263bc
MD
2969 */
2970static void
a108bf71
MD
2971vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2972 vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
984263bc
MD
2973{
2974 vm_object_t src_object;
2975
1b874851
MD
2976 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2977 return;
2978 if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
984263bc
MD
2979 return;
2980
2de4f77e
MD
2981 ASSERT_LWKT_TOKEN_HELD(&vm_token);
2982 lwkt_gettoken(&vmobj_token); /* required for collapse */
2983
984263bc 2984 if (src_entry->wired_count == 0) {
984263bc
MD
2985 /*
2986 * If the source entry is marked needs_copy, it is already
2987 * write-protected.
2988 */
2989 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2990 pmap_protect(src_map->pmap,
2991 src_entry->start,
2992 src_entry->end,
2993 src_entry->protection & ~VM_PROT_WRITE);
2994 }
2995
2996 /*
2997 * Make a copy of the object.
212f39f5
MD
2998 *
2999 * The object must be held prior to checking the object type
3000 * and for the call to vm_object_collapse().
984263bc
MD
3001 */
3002 if ((src_object = src_entry->object.vm_object) != NULL) {
212f39f5 3003 vm_object_hold(src_object);
984263bc
MD
3004 if ((src_object->handle == NULL) &&
3005 (src_object->type == OBJT_DEFAULT ||
3006 src_object->type == OBJT_SWAP)) {
3007 vm_object_collapse(src_object);
3008 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3009 vm_map_split(src_entry);
212f39f5 3010 vm_object_drop(src_object);
984263bc 3011 src_object = src_entry->object.vm_object;
212f39f5 3012 vm_object_hold(src_object);
984263bc
MD
3013 }
3014 }
2de4f77e 3015 vm_object_reference_locked(src_object);
212f39f5 3016 vm_object_drop(src_object);
984263bc
MD
3017 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3018 dst_entry->object.vm_object = src_object;
3019 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3020 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3021 dst_entry->offset = src_entry->offset;
3022 } else {
3023 dst_entry->object.vm_object = NULL;
3024 dst_entry->offset = 0;
3025 }
3026
3027 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3028 dst_entry->end - dst_entry->start, src_entry->start);
3029 } else {
3030 /*
3031 * Of course, wired down pages can't be set copy-on-write.
3032 * Cause wired pages to be copied into the new map by
3033 * simulating faults (the new pages are pageable)
3034 */
3035 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3036 }
2de4f77e 3037 lwkt_reltoken(&vmobj_token);
984263bc
MD
3038}
3039
3040/*
3041 * vmspace_fork:
3042 * Create a new process vmspace structure and vm_map
3043 * based on those of an existing process. The new map
3044 * is based on the old map, according to the inheritance
3045 * values on the regions in that map.
3046 *
3047 * The source map must not be locked.
46754a20 3048 * No requirements.
984263bc
MD
3049 */
3050struct vmspace *
a108bf71 3051vmspace_fork(struct vmspace *vm1)
984263bc
MD
3052{
3053 struct vmspace *vm2;
3054 vm_map_t old_map = &vm1->vm_map;
3055 vm_map_t new_map;
3056 vm_map_entry_t old_entry;
3057 vm_map_entry_t new_entry;
3058 vm_object_t object;
a108bf71 3059 int count;
984263bc 3060
46754a20
MD
3061 lwkt_gettoken(&vm_token);
3062 lwkt_gettoken(&vmspace_token);
2de4f77e 3063 lwkt_gettoken(&vmobj_token);
984263bc 3064 vm_map_lock(old_map);
984263bc 3065
239b4df9
MD
3066 /*
3067 * XXX Note: upcalls are not copied.
3068 */
984263bc
MD
3069 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3070 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
239b4df9 3071 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
984263bc
MD
3072 new_map = &vm2->vm_map; /* XXX */
3073 new_map->timestamp = 1;
3074
46754a20
MD
3075 vm_map_lock(new_map);
3076
a108bf71 3077 count = 0;
984263bc 3078 old_entry = old_map->header.next;
a108bf71
MD
3079 while (old_entry != &old_map->header) {
3080 ++count;
3081 old_entry = old_entry->next;
3082 }
984263bc 3083
a108bf71
MD
3084 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3085
3086 old_entry = old_map->header.next;
984263bc 3087 while (old_entry != &old_map->header) {
1b874851 3088 if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
984263bc
MD
3089 panic("vm_map_fork: encountered a submap");
3090
3091 switch (old_entry->inheritance) {
3092 case VM_INHERIT_NONE:
3093 break;
984263bc
MD
3094 case VM_INHERIT_SHARE:
3095 /*
1b874851
MD
3096 * Clone the entry, creating the shared object if
3097 * necessary.
984263bc
MD
3098 */
3099 object = old_entry->object.vm_object;
3100 if (object == NULL) {
53025830
MD
3101 vm_map_entry_allocate_object(old_entry);
3102 object = old_entry->object.vm_object;
984263bc
MD
3103 }
3104
3105 /*
53025830 3106 * Add the reference before calling vm_map_entry_shadow
984263bc
MD
3107 * to insure that a shadow object is created.
3108 */
2de4f77e 3109 vm_object_reference_locked(object);
984263bc 3110 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
53025830 3111 vm_map_entry_shadow(old_entry);
984263bc 3112 /* Transfer the second reference too. */
2de4f77e 3113 vm_object_reference_locked(
984263bc 3114 old_entry->object.vm_object);
2de4f77e 3115 vm_object_deallocate_locked(object);
984263bc
MD
3116 object = old_entry->object.vm_object;
3117 }
3118 vm_object_clear_flag(object, OBJ_ONEMAPPING);
3119
3120 /*
3121 * Clone the entry, referencing the shared object.
3122 */
a108bf71 3123 new_entry = vm_map_entry_create(new_map, &count);
984263bc
MD
3124 *new_entry = *old_entry;
3125 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3126 new_entry->wired_count = 0;
3127
3128 /*
3129 * Insert the entry into the new map -- we know we're
3130 * inserting at the end of the new map.
3131 */
3132
3133 vm_map_entry_link(new_map, new_map->header.prev,
46754a20 3134 new_entry);
984263bc
MD
3135
3136 /*
3137 * Update the physical map
3138 */
984263bc
MD
3139 pmap_copy(new_map->pmap, old_map->pmap,
3140 new_entry->start,
3141 (old_entry->end - old_entry->start),
3142 old_entry->start);
3143 break;
984263bc
MD
3144 case VM_INHERIT_COPY:
3145 /*
3146 * Clone the entry and link into the map.
3147 */
a108bf71 3148 new_entry = vm_map_entry_create(new_map, &count);
984263bc
MD
3149 *new_entry = *old_entry;
3150 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3151 new_entry->wired_count = 0;
3152 new_entry->object.vm_object = NULL;
3153 vm_map_entry_link(new_map, new_map->header.prev,
46754a20 3154 new_entry);
984263bc 3155 vm_map_copy_entry(old_map, new_map, old_entry,
46754a20 3156 new_entry);
984263bc
MD
3157 break;
3158 }
3159 old_entry = old_entry->next;
3160 }
3161
3162 new_map->size = old_map->size;
984263bc 3163 vm_map_unlock(old_map);
46754a20 3164 vm_map_unlock(new_map);
a108bf71 3165 vm_map_entry_release(count);
2de4f77e
MD
3166
3167 lwkt_reltoken(&vmobj_token);
46754a20
MD
3168 lwkt_reltoken(&vmspace_token);
3169 lwkt_reltoken(&vm_token);
984263bc
MD
3170
3171 return (vm2);
3172}
3173
46754a20
MD
3174/*
3175 * Create an auto-grow stack entry
3176 *
3177 * No requirements.
3178 */
984263bc
MD
3179int
3180vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
c809941b 3181 int flags, vm_prot_t prot, vm_prot_t max, int cow)
984263bc 3182{
85d25bcf
MD
3183 vm_map_entry_t prev_entry;
3184 vm_map_entry_t new_stack_entry;
3185 vm_size_t init_ssize;
3186 int rv;
a108bf71 3187 int count;
85d25bcf 3188 vm_offset_t tmpaddr;
984263bc 3189
c809941b 3190 cow |= MAP_IS_STACK;
984263bc
MD
3191
3192 if (max_ssize < sgrowsiz)
3193 init_ssize = max_ssize;
3194 else
3195 init_ssize = sgrowsiz;
3196
a108bf71 3197 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc
MD
3198 vm_map_lock(map);
3199
85d25bcf
MD
3200 /*
3201 * Find space for the mapping
3202 */
cadb984b 3203 if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
c809941b
MD
3204 if (vm_map_findspace(map, addrbos, max_ssize, 1,
3205 flags, &tmpaddr)) {
85d25bcf
MD
3206 vm_map_unlock(map);
3207 vm_map_entry_release(count);
3208 return (KERN_NO_SPACE);
3209 }
3210 addrbos = tmpaddr;
3211 }
3212
984263bc
MD
3213 /* If addr is already mapped, no go */
3214 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3215 vm_map_unlock(map);
a108bf71 3216 vm_map_entry_release(count);
984263bc
MD
3217 return (KERN_NO_SPACE);
3218 }
3219
85d25bcf
MD
3220#if 0
3221 /* XXX already handled by kern_mmap() */
984263bc
MD
3222 /* If we would blow our VMEM resource limit, no go */
3223 if (map->size + init_ssize >
3224 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3225 vm_map_unlock(map);
a108bf71 3226 vm_map_entry_release(count);
984263bc
MD
3227 return (KERN_NO_SPACE);
3228 }
85d25bcf 3229#endif
984263bc 3230
85d25bcf
MD
3231 /*
3232 * If we can't accomodate max_ssize in the current mapping,
984263bc
MD
3233 * no go. However, we need to be aware that subsequent user
3234 * mappings might map into the space we have reserved for
3235 * stack, and currently this space is not protected.
3236 *
3237 * Hopefully we will at least detect this condition
3238 * when we try to grow the stack.
3239 */
3240 if ((prev_entry->next != &map->header) &&
3241 (prev_entry->next->start < addrbos + max_ssize)) {
3242 vm_map_unlock(map);
a108bf71 3243 vm_map_entry_release(count);
984263bc
MD
3244 return (KERN_NO_SPACE);
3245 }
3246
85d25bcf
MD
3247 /*
3248 * We initially map a stack of only init_ssize. We will
984263bc
MD
3249 * grow as needed later. Since this is to be a grow
3250 * down stack, we map at the top of the range.
3251 *
3252 * Note: we would normally expect prot and max to be
3253 * VM_PROT_ALL, and cow to be 0. Possibly we should
3254 * eliminate these as input parameters, and just
3255 * pass these values here in the insert call.
3256 */
a108bf71
MD
3257 rv = vm_map_insert(map, &count,
3258 NULL, 0, addrbos + max_ssize - init_ssize,
1b874851
MD
3259 addrbos + max_ssize,
3260 VM_MAPTYPE_NORMAL,
3261 prot, max,
3262 cow);
984263bc
MD
3263
3264 /* Now set the avail_ssize amount */
517e1666 3265 if (rv == KERN_SUCCESS) {
984263bc 3266 if (prev_entry != &map->header)
a108bf71 3267 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
984263bc
MD
3268 new_stack_entry = prev_entry->next;
3269 if (new_stack_entry->end != addrbos + max_ssize ||
3270 new_stack_entry->start != addrbos + max_ssize - init_ssize)
3271 panic ("Bad entry start/end for new stack entry");
3272 else
afeabdca 3273 new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
984263bc
MD
3274 }
3275
3276 vm_map_unlock(map);
a108bf71 3277 vm_map_entry_release(count);
984263bc
MD
3278 return (rv);
3279}
3280
46754a20
MD
3281/*
3282 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
984263bc
MD
3283 * desired address is already mapped, or if we successfully grow
3284 * the stack. Also returns KERN_SUCCESS if addr is outside the
3285 * stack range (this is strange, but preserves compatibility with
3286 * the grow function in vm_machdep.c).
46754a20
MD
3287 *
3288 * No requirements.
984263bc
MD
3289 */
3290int
3291vm_map_growstack (struct proc *p, vm_offset_t addr)
3292{
3293 vm_map_entry_t prev_entry;
3294 vm_map_entry_t stack_entry;
3295 vm_map_entry_t new_stack_entry;
3296 struct vmspace *vm = p->p_vmspace;
3297 vm_map_t map = &vm->vm_map;
3298 vm_offset_t end;
a108bf71
MD
3299 int grow_amount;
3300 int rv = KERN_SUCCESS;
3301 int is_procstack;
3302 int use_read_lock = 1;
3303 int count;
984263bc 3304
a108bf71 3305 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
984263bc
MD
3306Retry:
3307 if (use_read_lock)
3308 vm_map_lock_read(map);
3309 else
3310 vm_map_lock(map);
3311
3312 /* If addr is already in the entry range, no need to grow.*/
3313 if (vm_map_lookup_entry(map, addr, &prev_entry))
3314 goto done;
3315
3316 if ((stack_entry = prev_entry->next) == &map->header)
3317 goto done;
3318 if (prev_entry == &map->header)
afeabdca 3319 end = stack_entry->start - stack_entry->aux.avail_ssize;
984263bc
MD
3320 else
3321 end = prev_entry->end;
3322
c809941b
MD
3323 /*
3324 * This next test mimics the old grow function in vm_machdep.c.
984263bc
MD
3325 * It really doesn't quite make sense, but we do it anyway
3326 * for compatibility.
3327 *
3328 * If not growable stack, return success. This signals the
3329 * caller to proceed as he would normally with normal vm.
3330 */
afeabdca 3331 if (stack_entry->aux.avail_ssize < 1 ||
984263bc 3332 addr >= stack_entry->start ||
afeabdca 3333 addr < stack_entry->start - stack_entry->aux.avail_ssize) {
984263bc
MD
3334 goto done;
3335 }
3336
3337 /* Find the minimum grow amount */
3338 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
afeabdca 3339 if (grow_amount > stack_entry->aux.avail_ssize) {
984263bc
MD
3340 rv = KERN_NO_SPACE;
3341 goto done;
3342 }
3343
c809941b
MD
3344 /*
3345 * If there is no longer enough space between the entries
984263bc
MD
3346 * nogo, and adjust the available space. Note: this
3347 * should only happen if the user has mapped into the
3348 * stack area after the stack was created, and is
3349 * probably an error.
3350 *
3351 * This also effectively destroys any guard page the user
3352 * might have intended by limiting the stack size.
3353 */
3354 if (grow_amount > stack_entry->start - end) {
3355 if (use_read_lock && vm_map_lock_upgrade(map)) {
3356 use_read_lock = 0;
3357 goto Retry;
3358 }
3359 use_read_lock = 0;
afeabdca 3360 stack_entry->aux.avail_ssize = stack_entry->start - end;
984263bc
MD
3361 rv = KERN_NO_SPACE;
3362 goto done;
3363 }
3364
3365 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3366
3367 /* If this is the main process stack, see if we're over the
3368 * stack limit.
3369 */
3370 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3371 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3372 rv = KERN_NO_SPACE;
3373 goto done;
3374 }
3375
3376 /* Round up the grow amount modulo SGROWSIZ */
3377 grow_amount = roundup (grow_amount, sgrowsiz);
afeabdca
MD
3378 if (grow_amount > stack_entry->aux.avail_ssize) {
3379 grow_amount = stack_entry->aux.avail_ssize;
984263bc
MD
3380 }
3381 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3382 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3383 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3384 ctob(vm->vm_ssize);
3385 }
3386
3387 /* If we would blow our VMEM resource limit, no go */
be77b5f9 3388 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
984263bc
MD
3389 rv = KERN_NO_SPACE;
3390 goto done;
3391 }
3392
3393 if (use_read_lock && vm_map_lock_upgrade(map)) {
3394 use_read_lock = 0;
3395 goto Retry;
3396 }
3397 use_read_lock = 0;
3398
3399 /* Get the preliminary new entry start value */
3400 addr = stack_entry->start - grow_amount;
3401
3402 /* If this puts us into the previous entry, cut back our growth
3403 * to the available space. Also, see the note above.
3404 */
3405 if (addr < end) {
afeabdca 3406 stack_entry->aux.avail_ssize = stack_entry->start - end;
984263bc
MD
3407 addr = end;
3408 }
3409
a108bf71
MD
3410 rv = vm_map_insert(map, &count,
3411 NULL, 0, addr, stack_entry->start,
1b874851
MD
3412 VM_MAPTYPE_NORMAL,
3413 VM_PROT_ALL, VM_PROT_ALL,
984263bc
MD
3414 0);
3415
3416 /* Adjust the available stack space by the amount we grew. */
3417 if (rv == KERN_SUCCESS) {
3418 if (prev_entry != &map->header)
a108bf71 3419 vm_map_clip_end(map, prev_entry, addr, &count);
984263bc
MD
3420 new_stack_entry = prev_entry->next;
3421 if (new_stack_entry->end != stack_entry->start ||
3422 new_stack_entry->start != addr)
3423 panic ("Bad stack grow start/end in new stack entry");
3424 else {
afeabdca
MD
3425 new_stack_entry->aux.avail_ssize =
3426 stack_entry->aux.avail_ssize -
3427 (new_stack_entry->end - new_stack_entry->start);
984263bc
MD
3428 if (is_procstack)
3429 vm->vm_ssize += btoc(new_stack_entry->end -
3430 new_stack_entry->start);
3431 }
7c553423
VS
3432
3433 if (map->flags & MAP_WIREFUTURE)
3434 vm_map_unwire(map, new_stack_entry->start,
3435 new_stack_entry->end, FALSE);
984263bc
MD
3436 }
3437
3438done:
3439 if (use_read_lock)
3440 vm_map_unlock_read(map);
3441 else
3442 vm_map_unlock(map);
a108bf71 3443 vm_map_entry_release(count);
984263bc
MD
3444 return (rv);
3445}
3446
3447/*
3448 * Unshare the specified VM space for exec. If other processes are
3449 * mapped to it, then create a new one. The new vmspace is null.
46754a20
MD
3450 *