Move flag(s) representing the type of vm_map_entry into its own vm_maptype_t
[dragonfly.git] / sys / vm / vm_map.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65 * $DragonFly: src/sys/vm/vm_map.c,v 1.47 2006/09/11 20:25:31 dillon Exp $
66 */
67
68/*
69 * Virtual memory mapping module.
70 */
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/proc.h>
75#include <sys/lock.h>
76#include <sys/vmmeter.h>
77#include <sys/mman.h>
78#include <sys/vnode.h>
79#include <sys/resourcevar.h>
80#include <sys/shm.h>
81#include <sys/tree.h>
82
83#include <vm/vm.h>
84#include <vm/vm_param.h>
85#include <vm/pmap.h>
86#include <vm/vm_map.h>
87#include <vm/vm_page.h>
88#include <vm/vm_object.h>
89#include <vm/vm_pager.h>
90#include <vm/vm_kern.h>
91#include <vm/vm_extern.h>
92#include <vm/swap_pager.h>
93#include <vm/vm_zone.h>
94
95#include <sys/thread2.h>
96
97/*
98 * Virtual memory maps provide for the mapping, protection,
99 * and sharing of virtual memory objects. In addition,
100 * this module provides for an efficient virtual copy of
101 * memory from one map to another.
102 *
103 * Synchronization is required prior to most operations.
104 *
105 * Maps consist of an ordered doubly-linked list of simple
106 * entries; a single hint is used to speed up lookups.
107 *
108 * Since portions of maps are specified by start/end addresses,
109 * which may not align with existing map entries, all
110 * routines merely "clip" entries to these start/end values.
111 * [That is, an entry is split into two, bordering at a
112 * start or end value.] Note that these clippings may not
113 * always be necessary (as the two resulting entries are then
114 * not changed); however, the clipping is done for convenience.
115 *
116 * As mentioned above, virtual copy operations are performed
117 * by copying VM object references from one map to
118 * another, and then marking both regions as copy-on-write.
119 */
120
121/*
122 * vm_map_startup:
123 *
124 * Initialize the vm_map module. Must be called before
125 * any other vm_map routines.
126 *
127 * Map and entry structures are allocated from the general
128 * purpose memory pool with some exceptions:
129 *
130 * - The kernel map and kmem submap are allocated statically.
131 * - Kernel map entries are allocated out of a static pool.
132 *
133 * These restrictions are necessary since malloc() uses the
134 * maps and requires map entries.
135 */
136
137#define VMEPERCPU 2
138
139static struct vm_zone mapentzone_store, mapzone_store;
140static vm_zone_t mapentzone, mapzone, vmspace_zone;
141static struct vm_object mapentobj, mapobj;
142
143static struct vm_map_entry map_entry_init[MAX_MAPENT];
144static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
145static struct vm_map map_init[MAX_KMAP];
146
147static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
148static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
149static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
150static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
151static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
152static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
153static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
154 vm_map_entry_t);
155static void vm_map_split (vm_map_entry_t);
156static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
157
158void
159vm_map_startup(void)
160{
161 mapzone = &mapzone_store;
162 zbootinit(mapzone, "MAP", sizeof (struct vm_map),
163 map_init, MAX_KMAP);
164 mapentzone = &mapentzone_store;
165 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
166 map_entry_init, MAX_MAPENT);
167}
168
169/*
170 * Red black tree functions
171 */
172static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
173RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
174
175/* a->start is address, and the only field has to be initialized */
176static int
177rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
178{
179 if (a->start < b->start)
180 return(-1);
181 else if (a->start > b->start)
182 return(1);
183 return(0);
184}
185
186/*
187 * Allocate a vmspace structure, including a vm_map and pmap,
188 * and initialize those structures. The refcnt is set to 1.
189 * The remaining fields must be initialized by the caller.
190 */
191struct vmspace *
192vmspace_alloc(vm_offset_t min, vm_offset_t max)
193{
194 struct vmspace *vm;
195
196 vm = zalloc(vmspace_zone);
197 vm_map_init(&vm->vm_map, min, max);
198 pmap_pinit(vmspace_pmap(vm));
199 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */
200 vm->vm_refcnt = 1;
201 vm->vm_shm = NULL;
202 vm->vm_exitingcnt = 0;
203 return (vm);
204}
205
206void
207vm_init2(void)
208{
209 zinitna(mapentzone, &mapentobj, NULL, 0, 0,
210 ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
211 zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
212 vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
213 pmap_init2();
214 vm_object_init2();
215}
216
217static __inline void
218vmspace_dofree(struct vmspace *vm)
219{
220 int count;
221
222 /*
223 * Make sure any SysV shm is freed, it might not have in
224 * exit1()
225 */
226 shmexit(vm);
227
228 KKASSERT(vm->vm_upcalls == NULL);
229
230 /*
231 * Lock the map, to wait out all other references to it.
232 * Delete all of the mappings and pages they hold, then call
233 * the pmap module to reclaim anything left.
234 */
235 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
236 vm_map_lock(&vm->vm_map);
237 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
238 vm->vm_map.max_offset, &count);
239 vm_map_unlock(&vm->vm_map);
240 vm_map_entry_release(count);
241
242 pmap_release(vmspace_pmap(vm));
243 zfree(vmspace_zone, vm);
244}
245
246void
247vmspace_free(struct vmspace *vm)
248{
249 if (vm->vm_refcnt == 0)
250 panic("vmspace_free: attempt to free already freed vmspace");
251
252 if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
253 vmspace_dofree(vm);
254}
255
256void
257vmspace_exitfree(struct proc *p)
258{
259 struct vmspace *vm;
260
261 vm = p->p_vmspace;
262 p->p_vmspace = NULL;
263
264 /*
265 * cleanup by parent process wait()ing on exiting child. vm_refcnt
266 * may not be 0 (e.g. fork() and child exits without exec()ing).
267 * exitingcnt may increment above 0 and drop back down to zero
268 * several times while vm_refcnt is held non-zero. vm_refcnt
269 * may also increment above 0 and drop back down to zero several
270 * times while vm_exitingcnt is held non-zero.
271 *
272 * The last wait on the exiting child's vmspace will clean up
273 * the remainder of the vmspace.
274 */
275 if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
276 vmspace_dofree(vm);
277}
278
279/*
280 * vmspace_swap_count() - count the approximate swap useage in pages for a
281 * vmspace.
282 *
283 * Swap useage is determined by taking the proportional swap used by
284 * VM objects backing the VM map. To make up for fractional losses,
285 * if the VM object has any swap use at all the associated map entries
286 * count for at least 1 swap page.
287 */
288int
289vmspace_swap_count(struct vmspace *vmspace)
290{
291 vm_map_t map = &vmspace->vm_map;
292 vm_map_entry_t cur;
293 vm_object_t object;
294 int count = 0;
295 int n;
296
297 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
298 switch(cur->maptype) {
299 case VM_MAPTYPE_NORMAL:
300 case VM_MAPTYPE_VPAGETABLE:
301 if ((object = cur->object.vm_object) == NULL)
302 break;
303 if (object->type != OBJT_SWAP)
304 break;
305 n = (cur->end - cur->start) / PAGE_SIZE;
306 if (object->un_pager.swp.swp_bcount) {
307 count += object->un_pager.swp.swp_bcount *
308 SWAP_META_PAGES * n / object->size + 1;
309 }
310 break;
311 default:
312 break;
313 }
314 }
315 return(count);
316}
317
318
319/*
320 * vm_map_create:
321 *
322 * Creates and returns a new empty VM map with
323 * the given physical map structure, and having
324 * the given lower and upper address bounds.
325 */
326vm_map_t
327vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
328{
329 vm_map_t result;
330
331 result = zalloc(mapzone);
332 vm_map_init(result, min, max);
333 result->pmap = pmap;
334 return (result);
335}
336
337/*
338 * Initialize an existing vm_map structure
339 * such as that in the vmspace structure.
340 * The pmap is set elsewhere.
341 */
342void
343vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max)
344{
345 map->header.next = map->header.prev = &map->header;
346 RB_INIT(&map->rb_root);
347 map->nentries = 0;
348 map->size = 0;
349 map->system_map = 0;
350 map->infork = 0;
351 map->min_offset = min;
352 map->max_offset = max;
353 map->first_free = &map->header;
354 map->hint = &map->header;
355 map->timestamp = 0;
356 lockinit(&map->lock, "thrd_sleep", 0, 0);
357}
358
359/*
360 * vm_map_entry_reserve_cpu_init:
361 *
362 * Set an initial negative count so the first attempt to reserve
363 * space preloads a bunch of vm_map_entry's for this cpu. Also
364 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
365 * map a new page for vm_map_entry structures. SMP systems are
366 * particularly sensitive.
367 *
368 * This routine is called in early boot so we cannot just call
369 * vm_map_entry_reserve().
370 *
371 * May be called for a gd other then mycpu, but may only be called
372 * during early boot.
373 */
374void
375vm_map_entry_reserve_cpu_init(globaldata_t gd)
376{
377 vm_map_entry_t entry;
378 int i;
379
380 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
381 entry = &cpu_map_entry_init[gd->gd_cpuid][0];
382 for (i = 0; i < VMEPERCPU; ++i, ++entry) {
383 entry->next = gd->gd_vme_base;
384 gd->gd_vme_base = entry;
385 }
386}
387
388/*
389 * vm_map_entry_reserve:
390 *
391 * Reserves vm_map_entry structures so code later on can manipulate
392 * map_entry structures within a locked map without blocking trying
393 * to allocate a new vm_map_entry.
394 */
395int
396vm_map_entry_reserve(int count)
397{
398 struct globaldata *gd = mycpu;
399 vm_map_entry_t entry;
400
401 crit_enter();
402
403 /*
404 * Make sure we have enough structures in gd_vme_base to handle
405 * the reservation request.
406 */
407 while (gd->gd_vme_avail < count) {
408 entry = zalloc(mapentzone);
409 entry->next = gd->gd_vme_base;
410 gd->gd_vme_base = entry;
411 ++gd->gd_vme_avail;
412 }
413 gd->gd_vme_avail -= count;
414 crit_exit();
415 return(count);
416}
417
418/*
419 * vm_map_entry_release:
420 *
421 * Releases previously reserved vm_map_entry structures that were not
422 * used. If we have too much junk in our per-cpu cache clean some of
423 * it out.
424 */
425void
426vm_map_entry_release(int count)
427{
428 struct globaldata *gd = mycpu;
429 vm_map_entry_t entry;
430
431 crit_enter();
432 gd->gd_vme_avail += count;
433 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
434 entry = gd->gd_vme_base;
435 KKASSERT(entry != NULL);
436 gd->gd_vme_base = entry->next;
437 --gd->gd_vme_avail;
438 crit_exit();
439 zfree(mapentzone, entry);
440 crit_enter();
441 }
442 crit_exit();
443}
444
445/*
446 * vm_map_entry_kreserve:
447 *
448 * Reserve map entry structures for use in kernel_map itself. These
449 * entries have *ALREADY* been reserved on a per-cpu basis when the map
450 * was inited. This function is used by zalloc() to avoid a recursion
451 * when zalloc() itself needs to allocate additional kernel memory.
452 *
453 * This function works like the normal reserve but does not load the
454 * vm_map_entry cache (because that would result in an infinite
455 * recursion). Note that gd_vme_avail may go negative. This is expected.
456 *
457 * Any caller of this function must be sure to renormalize after
458 * potentially eating entries to ensure that the reserve supply
459 * remains intact.
460 */
461int
462vm_map_entry_kreserve(int count)
463{
464 struct globaldata *gd = mycpu;
465
466 crit_enter();
467 gd->gd_vme_avail -= count;
468 crit_exit();
469 KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail));
470 return(count);
471}
472
473/*
474 * vm_map_entry_krelease:
475 *
476 * Release previously reserved map entries for kernel_map. We do not
477 * attempt to clean up like the normal release function as this would
478 * cause an unnecessary (but probably not fatal) deep procedure call.
479 */
480void
481vm_map_entry_krelease(int count)
482{
483 struct globaldata *gd = mycpu;
484
485 crit_enter();
486 gd->gd_vme_avail += count;
487 crit_exit();
488}
489
490/*
491 * vm_map_entry_create: [ internal use only ]
492 *
493 * Allocates a VM map entry for insertion. No entry fields are filled
494 * in.
495 *
496 * This routine may be called from an interrupt thread but not a FAST
497 * interrupt. This routine may recurse the map lock.
498 */
499static vm_map_entry_t
500vm_map_entry_create(vm_map_t map, int *countp)
501{
502 struct globaldata *gd = mycpu;
503 vm_map_entry_t entry;
504
505 KKASSERT(*countp > 0);
506 --*countp;
507 crit_enter();
508 entry = gd->gd_vme_base;
509 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
510 gd->gd_vme_base = entry->next;
511 crit_exit();
512 return(entry);
513}
514
515/*
516 * vm_map_entry_dispose: [ internal use only ]
517 *
518 * Dispose of a vm_map_entry that is no longer being referenced. This
519 * function may be called from an interrupt.
520 */
521static void
522vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
523{
524 struct globaldata *gd = mycpu;
525
526 KKASSERT(map->hint != entry);
527 KKASSERT(map->first_free != entry);
528
529 ++*countp;
530 crit_enter();
531 entry->next = gd->gd_vme_base;
532 gd->gd_vme_base = entry;
533 crit_exit();
534}
535
536
537/*
538 * vm_map_entry_{un,}link:
539 *
540 * Insert/remove entries from maps.
541 */
542static __inline void
543vm_map_entry_link(vm_map_t map,
544 vm_map_entry_t after_where,
545 vm_map_entry_t entry)
546{
547 map->nentries++;
548 entry->prev = after_where;
549 entry->next = after_where->next;
550 entry->next->prev = entry;
551 after_where->next = entry;
552 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
553 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
554}
555
556static __inline void
557vm_map_entry_unlink(vm_map_t map,
558 vm_map_entry_t entry)
559{
560 vm_map_entry_t prev;
561 vm_map_entry_t next;
562
563 if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
564 panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
565 prev = entry->prev;
566 next = entry->next;
567 next->prev = prev;
568 prev->next = next;
569 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
570 map->nentries--;
571}
572
573/*
574 * vm_map_lookup_entry: [ internal use only ]
575 *
576 * Finds the map entry containing (or
577 * immediately preceding) the specified address
578 * in the given map; the entry is returned
579 * in the "entry" parameter. The boolean
580 * result indicates whether the address is
581 * actually contained in the map.
582 */
583boolean_t
584vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
585 vm_map_entry_t *entry /* OUT */)
586{
587 vm_map_entry_t tmp;
588 vm_map_entry_t last;
589
590#if 0
591 /*
592 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive
593 * the hint code with the red-black lookup meets with system crashes
594 * and lockups. We do not yet know why.
595 *
596 * It is possible that the problem is related to the setting
597 * of the hint during map_entry deletion, in the code specified
598 * at the GGG comment later on in this file.
599 */
600 /*
601 * Quickly check the cached hint, there's a good chance of a match.
602 */
603 if (map->hint != &map->header) {
604 tmp = map->hint;
605 if (address >= tmp->start && address < tmp->end) {
606 *entry = tmp;
607 return(TRUE);
608 }
609 }
610#endif
611
612 /*
613 * Locate the record from the top of the tree. 'last' tracks the
614 * closest prior record and is returned if no match is found, which
615 * in binary tree terms means tracking the most recent right-branch
616 * taken. If there is no prior record, &map->header is returned.
617 */
618 last = &map->header;
619 tmp = RB_ROOT(&map->rb_root);
620
621 while (tmp) {
622 if (address >= tmp->start) {
623 if (address < tmp->end) {
624 *entry = tmp;
625 map->hint = tmp;
626 return(TRUE);
627 }
628 last = tmp;
629 tmp = RB_RIGHT(tmp, rb_entry);
630 } else {
631 tmp = RB_LEFT(tmp, rb_entry);
632 }
633 }
634 *entry = last;
635 return (FALSE);
636}
637
638/*
639 * vm_map_insert:
640 *
641 * Inserts the given whole VM object into the target
642 * map at the specified address range. The object's
643 * size should match that of the address range.
644 *
645 * Requires that the map be locked, and leaves it so. Requires that
646 * sufficient vm_map_entry structures have been reserved and tracks
647 * the use via countp.
648 *
649 * If object is non-NULL, ref count must be bumped by caller
650 * prior to making call to account for the new entry.
651 */
652int
653vm_map_insert(vm_map_t map, int *countp,
654 vm_object_t object, vm_ooffset_t offset,
655 vm_offset_t start, vm_offset_t end,
656 vm_maptype_t maptype,
657 vm_prot_t prot, vm_prot_t max,
658 int cow)
659{
660 vm_map_entry_t new_entry;
661 vm_map_entry_t prev_entry;
662 vm_map_entry_t temp_entry;
663 vm_eflags_t protoeflags;
664
665 /*
666 * Check that the start and end points are not bogus.
667 */
668
669 if ((start < map->min_offset) || (end > map->max_offset) ||
670 (start >= end))
671 return (KERN_INVALID_ADDRESS);
672
673 /*
674 * Find the entry prior to the proposed starting address; if it's part
675 * of an existing entry, this range is bogus.
676 */
677
678 if (vm_map_lookup_entry(map, start, &temp_entry))
679 return (KERN_NO_SPACE);
680
681 prev_entry = temp_entry;
682
683 /*
684 * Assert that the next entry doesn't overlap the end point.
685 */
686
687 if ((prev_entry->next != &map->header) &&
688 (prev_entry->next->start < end))
689 return (KERN_NO_SPACE);
690
691 protoeflags = 0;
692
693 if (cow & MAP_COPY_ON_WRITE)
694 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
695
696 if (cow & MAP_NOFAULT) {
697 protoeflags |= MAP_ENTRY_NOFAULT;
698
699 KASSERT(object == NULL,
700 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
701 }
702 if (cow & MAP_DISABLE_SYNCER)
703 protoeflags |= MAP_ENTRY_NOSYNC;
704 if (cow & MAP_DISABLE_COREDUMP)
705 protoeflags |= MAP_ENTRY_NOCOREDUMP;
706
707 if (object) {
708 /*
709 * When object is non-NULL, it could be shared with another
710 * process. We have to set or clear OBJ_ONEMAPPING
711 * appropriately.
712 */
713 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
714 vm_object_clear_flag(object, OBJ_ONEMAPPING);
715 }
716 }
717 else if ((prev_entry != &map->header) &&
718 (prev_entry->eflags == protoeflags) &&
719 (prev_entry->end == start) &&
720 (prev_entry->wired_count == 0) &&
721 prev_entry->maptype == maptype &&
722 ((prev_entry->object.vm_object == NULL) ||
723 vm_object_coalesce(prev_entry->object.vm_object,
724 OFF_TO_IDX(prev_entry->offset),
725 (vm_size_t)(prev_entry->end - prev_entry->start),
726 (vm_size_t)(end - prev_entry->end)))) {
727 /*
728 * We were able to extend the object. Determine if we
729 * can extend the previous map entry to include the
730 * new range as well.
731 */
732 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
733 (prev_entry->protection == prot) &&
734 (prev_entry->max_protection == max)) {
735 map->size += (end - prev_entry->end);
736 prev_entry->end = end;
737 vm_map_simplify_entry(map, prev_entry, countp);
738 return (KERN_SUCCESS);
739 }
740
741 /*
742 * If we can extend the object but cannot extend the
743 * map entry, we have to create a new map entry. We
744 * must bump the ref count on the extended object to
745 * account for it. object may be NULL.
746 */
747 object = prev_entry->object.vm_object;
748 offset = prev_entry->offset +
749 (prev_entry->end - prev_entry->start);
750 vm_object_reference(object);
751 }
752
753 /*
754 * NOTE: if conditionals fail, object can be NULL here. This occurs
755 * in things like the buffer map where we manage kva but do not manage
756 * backing objects.
757 */
758
759 /*
760 * Create a new entry
761 */
762
763 new_entry = vm_map_entry_create(map, countp);
764 new_entry->start = start;
765 new_entry->end = end;
766
767 new_entry->maptype = maptype;
768 new_entry->eflags = protoeflags;
769 new_entry->object.vm_object = object;
770 new_entry->offset = offset;
771 new_entry->avail_ssize = 0;
772
773 new_entry->inheritance = VM_INHERIT_DEFAULT;
774 new_entry->protection = prot;
775 new_entry->max_protection = max;
776 new_entry->wired_count = 0;
777
778 /*
779 * Insert the new entry into the list
780 */
781
782 vm_map_entry_link(map, prev_entry, new_entry);
783 map->size += new_entry->end - new_entry->start;
784
785 /*
786 * Update the free space hint
787 */
788 if ((map->first_free == prev_entry) &&
789 (prev_entry->end >= new_entry->start)) {
790 map->first_free = new_entry;
791 }
792
793#if 0
794 /*
795 * Temporarily removed to avoid MAP_STACK panic, due to
796 * MAP_STACK being a huge hack. Will be added back in
797 * when MAP_STACK (and the user stack mapping) is fixed.
798 */
799 /*
800 * It may be possible to simplify the entry
801 */
802 vm_map_simplify_entry(map, new_entry, countp);
803#endif
804
805 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
806 pmap_object_init_pt(map->pmap, start, prot,
807 object, OFF_TO_IDX(offset), end - start,
808 cow & MAP_PREFAULT_PARTIAL);
809 }
810
811 return (KERN_SUCCESS);
812}
813
814/*
815 * Find sufficient space for `length' bytes in the given map, starting at
816 * `start'. The map must be locked. Returns 0 on success, 1 on no space.
817 *
818 * This function will returned an arbitrarily aligned pointer. If no
819 * particular alignment is required you should pass align as 1. Note that
820 * the map may return PAGE_SIZE aligned pointers if all the lengths used in
821 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
822 * argument.
823 *
824 * 'align' should be a power of 2 but is not required to be.
825 */
826int
827vm_map_findspace(
828 vm_map_t map,
829 vm_offset_t start,
830 vm_size_t length,
831 vm_offset_t align,
832 vm_offset_t *addr)
833{
834 vm_map_entry_t entry, next;
835 vm_offset_t end;
836 vm_offset_t align_mask;
837
838 if (start < map->min_offset)
839 start = map->min_offset;
840 if (start > map->max_offset)
841 return (1);
842
843 /*
844 * If the alignment is not a power of 2 we will have to use
845 * a mod/division, set align_mask to a special value.
846 */
847 if ((align | (align - 1)) + 1 != (align << 1))
848 align_mask = (vm_offset_t)-1;
849 else
850 align_mask = align - 1;
851
852retry:
853 /*
854 * Look for the first possible address; if there's already something
855 * at this address, we have to start after it.
856 */
857 if (start == map->min_offset) {
858 if ((entry = map->first_free) != &map->header)
859 start = entry->end;
860 } else {
861 vm_map_entry_t tmp;
862
863 if (vm_map_lookup_entry(map, start, &tmp))
864 start = tmp->end;
865 entry = tmp;
866 }
867
868 /*
869 * Look through the rest of the map, trying to fit a new region in the
870 * gap between existing regions, or after the very last region.
871 */
872 for (;; start = (entry = next)->end) {
873 /*
874 * Adjust the proposed start by the requested alignment,
875 * be sure that we didn't wrap the address.
876 */
877 if (align_mask == (vm_offset_t)-1)
878 end = ((start + align - 1) / align) * align;
879 else
880 end = (start + align_mask) & ~align_mask;
881 if (end < start)
882 return (1);
883 start = end;
884 /*
885 * Find the end of the proposed new region. Be sure we didn't
886 * go beyond the end of the map, or wrap around the address.
887 * Then check to see if this is the last entry or if the
888 * proposed end fits in the gap between this and the next
889 * entry.
890 */
891 end = start + length;
892 if (end > map->max_offset || end < start)
893 return (1);
894 next = entry->next;
895 if (next == &map->header || next->start >= end)
896 break;
897 }
898 map->hint = entry;
899 if (map == kernel_map) {
900 vm_offset_t ksize;
901 if ((ksize = round_page(start + length)) > kernel_vm_end) {
902 pmap_growkernel(ksize);
903 goto retry;
904 }
905 }
906 *addr = start;
907 return (0);
908}
909
910/*
911 * vm_map_find finds an unallocated region in the target address
912 * map with the given length. The search is defined to be
913 * first-fit from the specified address; the region found is
914 * returned in the same parameter.
915 *
916 * If object is non-NULL, ref count must be bumped by caller
917 * prior to making call to account for the new entry.
918 */
919int
920vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
921 vm_offset_t *addr, vm_size_t length,
922 boolean_t find_space,
923 vm_maptype_t maptype,
924 vm_prot_t prot, vm_prot_t max,
925 int cow)
926{
927 vm_offset_t start;
928 int result;
929 int count;
930
931 start = *addr;
932
933 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
934 vm_map_lock(map);
935 if (find_space) {
936 if (vm_map_findspace(map, start, length, 1, addr)) {
937 vm_map_unlock(map);
938 vm_map_entry_release(count);
939 return (KERN_NO_SPACE);
940 }
941 start = *addr;
942 }
943 result = vm_map_insert(map, &count, object, offset,
944 start, start + length,
945 maptype,
946 prot, max,
947 cow);
948 vm_map_unlock(map);
949 vm_map_entry_release(count);
950
951 return (result);
952}
953
954/*
955 * vm_map_simplify_entry:
956 *
957 * Simplify the given map entry by merging with either neighbor. This
958 * routine also has the ability to merge with both neighbors.
959 *
960 * The map must be locked.
961 *
962 * This routine guarentees that the passed entry remains valid (though
963 * possibly extended). When merging, this routine may delete one or
964 * both neighbors. No action is taken on entries which have their
965 * in-transition flag set.
966 */
967void
968vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
969{
970 vm_map_entry_t next, prev;
971 vm_size_t prevsize, esize;
972
973 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
974 ++mycpu->gd_cnt.v_intrans_coll;
975 return;
976 }
977
978 if (entry->maptype == VM_MAPTYPE_SUBMAP)
979 return;
980
981 prev = entry->prev;
982 if (prev != &map->header) {
983 prevsize = prev->end - prev->start;
984 if ( (prev->end == entry->start) &&
985 (prev->maptype == entry->maptype) &&
986 (prev->object.vm_object == entry->object.vm_object) &&
987 (!prev->object.vm_object ||
988 (prev->offset + prevsize == entry->offset)) &&
989 (prev->eflags == entry->eflags) &&
990 (prev->protection == entry->protection) &&
991 (prev->max_protection == entry->max_protection) &&
992 (prev->inheritance == entry->inheritance) &&
993 (prev->wired_count == entry->wired_count)) {
994 if (map->first_free == prev)
995 map->first_free = entry;
996 if (map->hint == prev)
997 map->hint = entry;
998 vm_map_entry_unlink(map, prev);
999 entry->start = prev->start;
1000 entry->offset = prev->offset;
1001 if (prev->object.vm_object)
1002 vm_object_deallocate(prev->object.vm_object);
1003 vm_map_entry_dispose(map, prev, countp);
1004 }
1005 }
1006
1007 next = entry->next;
1008 if (next != &map->header) {
1009 esize = entry->end - entry->start;
1010 if ((entry->end == next->start) &&
1011 (next->maptype == entry->maptype) &&
1012 (next->object.vm_object == entry->object.vm_object) &&
1013 (!entry->object.vm_object ||
1014 (entry->offset + esize == next->offset)) &&
1015 (next->eflags == entry->eflags) &&
1016 (next->protection == entry->protection) &&
1017 (next->max_protection == entry->max_protection) &&
1018 (next->inheritance == entry->inheritance) &&
1019 (next->wired_count == entry->wired_count)) {
1020 if (map->first_free == next)
1021 map->first_free = entry;
1022 if (map->hint == next)
1023 map->hint = entry;
1024 vm_map_entry_unlink(map, next);
1025 entry->end = next->end;
1026 if (next->object.vm_object)
1027 vm_object_deallocate(next->object.vm_object);
1028 vm_map_entry_dispose(map, next, countp);
1029 }
1030 }
1031}
1032/*
1033 * vm_map_clip_start: [ internal use only ]
1034 *
1035 * Asserts that the given entry begins at or after
1036 * the specified address; if necessary,
1037 * it splits the entry into two.
1038 */
1039#define vm_map_clip_start(map, entry, startaddr, countp) \
1040{ \
1041 if (startaddr > entry->start) \
1042 _vm_map_clip_start(map, entry, startaddr, countp); \
1043}
1044
1045/*
1046 * This routine is called only when it is known that
1047 * the entry must be split.
1048 */
1049static void
1050_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1051{
1052 vm_map_entry_t new_entry;
1053
1054 /*
1055 * Split off the front portion -- note that we must insert the new
1056 * entry BEFORE this one, so that this entry has the specified
1057 * starting address.
1058 */
1059
1060 vm_map_simplify_entry(map, entry, countp);
1061
1062 /*
1063 * If there is no object backing this entry, we might as well create
1064 * one now. If we defer it, an object can get created after the map
1065 * is clipped, and individual objects will be created for the split-up
1066 * map. This is a bit of a hack, but is also about the best place to
1067 * put this improvement.
1068 */
1069
1070 if (entry->object.vm_object == NULL && !map->system_map) {
1071 vm_object_t object;
1072 object = vm_object_allocate(OBJT_DEFAULT,
1073 atop(entry->end - entry->start));
1074 entry->object.vm_object = object;
1075 entry->offset = 0;
1076 }
1077
1078 new_entry = vm_map_entry_create(map, countp);
1079 *new_entry = *entry;
1080
1081 new_entry->end = start;
1082 entry->offset += (start - entry->start);
1083 entry->start = start;
1084
1085 vm_map_entry_link(map, entry->prev, new_entry);
1086
1087 switch(entry->maptype) {
1088 case VM_MAPTYPE_NORMAL:
1089 case VM_MAPTYPE_VPAGETABLE:
1090 vm_object_reference(new_entry->object.vm_object);
1091 break;
1092 default:
1093 break;
1094 }
1095}
1096
1097/*
1098 * vm_map_clip_end: [ internal use only ]
1099 *
1100 * Asserts that the given entry ends at or before
1101 * the specified address; if necessary,
1102 * it splits the entry into two.
1103 */
1104
1105#define vm_map_clip_end(map, entry, endaddr, countp) \
1106{ \
1107 if (endaddr < entry->end) \
1108 _vm_map_clip_end(map, entry, endaddr, countp); \
1109}
1110
1111/*
1112 * This routine is called only when it is known that
1113 * the entry must be split.
1114 */
1115static void
1116_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1117{
1118 vm_map_entry_t new_entry;
1119
1120 /*
1121 * If there is no object backing this entry, we might as well create
1122 * one now. If we defer it, an object can get created after the map
1123 * is clipped, and individual objects will be created for the split-up
1124 * map. This is a bit of a hack, but is also about the best place to
1125 * put this improvement.
1126 */
1127
1128 if (entry->object.vm_object == NULL && !map->system_map) {
1129 vm_object_t object;
1130 object = vm_object_allocate(OBJT_DEFAULT,
1131 atop(entry->end - entry->start));
1132 entry->object.vm_object = object;
1133 entry->offset = 0;
1134 }
1135
1136 /*
1137 * Create a new entry and insert it AFTER the specified entry
1138 */
1139
1140 new_entry = vm_map_entry_create(map, countp);
1141 *new_entry = *entry;
1142
1143 new_entry->start = entry->end = end;
1144 new_entry->offset += (end - entry->start);
1145
1146 vm_map_entry_link(map, entry, new_entry);
1147
1148 switch(entry->maptype) {
1149 case VM_MAPTYPE_NORMAL:
1150 case VM_MAPTYPE_VPAGETABLE:
1151 vm_object_reference(new_entry->object.vm_object);
1152 break;
1153 default:
1154 break;
1155 }
1156}
1157
1158/*
1159 * VM_MAP_RANGE_CHECK: [ internal use only ]
1160 *
1161 * Asserts that the starting and ending region
1162 * addresses fall within the valid range of the map.
1163 */
1164#define VM_MAP_RANGE_CHECK(map, start, end) \
1165 { \
1166 if (start < vm_map_min(map)) \
1167 start = vm_map_min(map); \
1168 if (end > vm_map_max(map)) \
1169 end = vm_map_max(map); \
1170 if (start > end) \
1171 start = end; \
1172 }
1173
1174/*
1175 * vm_map_transition_wait: [ kernel use only ]
1176 *
1177 * Used to block when an in-transition collison occurs. The map
1178 * is unlocked for the sleep and relocked before the return.
1179 */
1180static
1181void
1182vm_map_transition_wait(vm_map_t map)
1183{
1184 vm_map_unlock(map);
1185 tsleep(map, 0, "vment", 0);
1186 vm_map_lock(map);
1187}
1188
1189/*
1190 * CLIP_CHECK_BACK
1191 * CLIP_CHECK_FWD
1192 *
1193 * When we do blocking operations with the map lock held it is
1194 * possible that a clip might have occured on our in-transit entry,
1195 * requiring an adjustment to the entry in our loop. These macros
1196 * help the pageable and clip_range code deal with the case. The
1197 * conditional costs virtually nothing if no clipping has occured.
1198 */
1199
1200#define CLIP_CHECK_BACK(entry, save_start) \
1201 do { \
1202 while (entry->start != save_start) { \
1203 entry = entry->prev; \
1204 KASSERT(entry != &map->header, ("bad entry clip")); \
1205 } \
1206 } while(0)
1207
1208#define CLIP_CHECK_FWD(entry, save_end) \
1209 do { \
1210 while (entry->end != save_end) { \
1211 entry = entry->next; \
1212 KASSERT(entry != &map->header, ("bad entry clip")); \
1213 } \
1214 } while(0)
1215
1216
1217/*
1218 * vm_map_clip_range: [ kernel use only ]
1219 *
1220 * Clip the specified range and return the base entry. The
1221 * range may cover several entries starting at the returned base
1222 * and the first and last entry in the covering sequence will be
1223 * properly clipped to the requested start and end address.
1224 *
1225 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1226 * flag.
1227 *
1228 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1229 * covered by the requested range.
1230 *
1231 * The map must be exclusively locked on entry and will remain locked
1232 * on return. If no range exists or the range contains holes and you
1233 * specified that no holes were allowed, NULL will be returned. This
1234 * routine may temporarily unlock the map in order avoid a deadlock when
1235 * sleeping.
1236 */
1237static
1238vm_map_entry_t
1239vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1240 int *countp, int flags)
1241{
1242 vm_map_entry_t start_entry;
1243 vm_map_entry_t entry;
1244
1245 /*
1246 * Locate the entry and effect initial clipping. The in-transition
1247 * case does not occur very often so do not try to optimize it.
1248 */
1249again:
1250 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1251 return (NULL);
1252 entry = start_entry;
1253 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1254 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1255 ++mycpu->gd_cnt.v_intrans_coll;
1256 ++mycpu->gd_cnt.v_intrans_wait;
1257 vm_map_transition_wait(map);
1258 /*
1259 * entry and/or start_entry may have been clipped while
1260 * we slept, or may have gone away entirely. We have
1261 * to restart from the lookup.
1262 */
1263 goto again;
1264 }
1265 /*
1266 * Since we hold an exclusive map lock we do not have to restart
1267 * after clipping, even though clipping may block in zalloc.
1268 */
1269 vm_map_clip_start(map, entry, start, countp);
1270 vm_map_clip_end(map, entry, end, countp);
1271 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1272
1273 /*
1274 * Scan entries covered by the range. When working on the next
1275 * entry a restart need only re-loop on the current entry which
1276 * we have already locked, since 'next' may have changed. Also,
1277 * even though entry is safe, it may have been clipped so we
1278 * have to iterate forwards through the clip after sleeping.
1279 */
1280 while (entry->next != &map->header && entry->next->start < end) {
1281 vm_map_entry_t next = entry->next;
1282
1283 if (flags & MAP_CLIP_NO_HOLES) {
1284 if (next->start > entry->end) {
1285 vm_map_unclip_range(map, start_entry,
1286 start, entry->end, countp, flags);
1287 return(NULL);
1288 }
1289 }
1290
1291 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1292 vm_offset_t save_end = entry->end;
1293 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1294 ++mycpu->gd_cnt.v_intrans_coll;
1295 ++mycpu->gd_cnt.v_intrans_wait;
1296 vm_map_transition_wait(map);
1297
1298 /*
1299 * clips might have occured while we blocked.
1300 */
1301 CLIP_CHECK_FWD(entry, save_end);
1302 CLIP_CHECK_BACK(start_entry, start);
1303 continue;
1304 }
1305 /*
1306 * No restart necessary even though clip_end may block, we
1307 * are holding the map lock.
1308 */
1309 vm_map_clip_end(map, next, end, countp);
1310 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1311 entry = next;
1312 }
1313 if (flags & MAP_CLIP_NO_HOLES) {
1314 if (entry->end != end) {
1315 vm_map_unclip_range(map, start_entry,
1316 start, entry->end, countp, flags);
1317 return(NULL);
1318 }
1319 }
1320 return(start_entry);
1321}
1322
1323/*
1324 * vm_map_unclip_range: [ kernel use only ]
1325 *
1326 * Undo the effect of vm_map_clip_range(). You should pass the same
1327 * flags and the same range that you passed to vm_map_clip_range().
1328 * This code will clear the in-transition flag on the entries and
1329 * wake up anyone waiting. This code will also simplify the sequence
1330 * and attempt to merge it with entries before and after the sequence.
1331 *
1332 * The map must be locked on entry and will remain locked on return.
1333 *
1334 * Note that you should also pass the start_entry returned by
1335 * vm_map_clip_range(). However, if you block between the two calls
1336 * with the map unlocked please be aware that the start_entry may
1337 * have been clipped and you may need to scan it backwards to find
1338 * the entry corresponding with the original start address. You are
1339 * responsible for this, vm_map_unclip_range() expects the correct
1340 * start_entry to be passed to it and will KASSERT otherwise.
1341 */
1342static
1343void
1344vm_map_unclip_range(
1345 vm_map_t map,
1346 vm_map_entry_t start_entry,
1347 vm_offset_t start,
1348 vm_offset_t end,
1349 int *countp,
1350 int flags)
1351{
1352 vm_map_entry_t entry;
1353
1354 entry = start_entry;
1355
1356 KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1357 while (entry != &map->header && entry->start < end) {
1358 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1359 KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1360 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1361 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1362 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1363 wakeup(map);
1364 }
1365 entry = entry->next;
1366 }
1367
1368 /*
1369 * Simplification does not block so there is no restart case.
1370 */
1371 entry = start_entry;
1372 while (entry != &map->header && entry->start < end) {
1373 vm_map_simplify_entry(map, entry, countp);
1374 entry = entry->next;
1375 }
1376}
1377
1378/*
1379 * vm_map_submap: [ kernel use only ]
1380 *
1381 * Mark the given range as handled by a subordinate map.
1382 *
1383 * This range must have been created with vm_map_find,
1384 * and no other operations may have been performed on this
1385 * range prior to calling vm_map_submap.
1386 *
1387 * Only a limited number of operations can be performed
1388 * within this rage after calling vm_map_submap:
1389 * vm_fault
1390 * [Don't try vm_map_copy!]
1391 *
1392 * To remove a submapping, one must first remove the
1393 * range from the superior map, and then destroy the
1394 * submap (if desired). [Better yet, don't try it.]
1395 */
1396int
1397vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1398{
1399 vm_map_entry_t entry;
1400 int result = KERN_INVALID_ARGUMENT;
1401 int count;
1402
1403 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1404 vm_map_lock(map);
1405
1406 VM_MAP_RANGE_CHECK(map, start, end);
1407
1408 if (vm_map_lookup_entry(map, start, &entry)) {
1409 vm_map_clip_start(map, entry, start, &count);
1410 } else {
1411 entry = entry->next;
1412 }
1413
1414 vm_map_clip_end(map, entry, end, &count);
1415
1416 if ((entry->start == start) && (entry->end == end) &&
1417 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1418 (entry->object.vm_object == NULL)) {
1419 entry->object.sub_map = submap;
1420 entry->maptype = VM_MAPTYPE_SUBMAP;
1421 result = KERN_SUCCESS;
1422 }
1423 vm_map_unlock(map);
1424 vm_map_entry_release(count);
1425
1426 return (result);
1427}
1428
1429/*
1430 * vm_map_protect:
1431 *
1432 * Sets the protection of the specified address region in the target map.
1433 * If "set_max" is specified, the maximum protection is to be set;
1434 * otherwise, only the current protection is affected.
1435 *
1436 * The protection is not applicable to submaps, but is applicable to normal
1437 * maps and maps governed by virtual page tables. For example, when operating
1438 * on a virtual page table our protection basically controls how COW occurs
1439 * on the backing object, whereas the virtual page table abstraction itself
1440 * is an abstraction for userland.
1441 */
1442int
1443vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1444 vm_prot_t new_prot, boolean_t set_max)
1445{
1446 vm_map_entry_t current;
1447 vm_map_entry_t entry;
1448 int count;
1449
1450 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1451 vm_map_lock(map);
1452
1453 VM_MAP_RANGE_CHECK(map, start, end);
1454
1455 if (vm_map_lookup_entry(map, start, &entry)) {
1456 vm_map_clip_start(map, entry, start, &count);
1457 } else {
1458 entry = entry->next;
1459 }
1460
1461 /*
1462 * Make a first pass to check for protection violations.
1463 */
1464 current = entry;
1465 while ((current != &map->header) && (current->start < end)) {
1466 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1467 vm_map_unlock(map);
1468 vm_map_entry_release(count);
1469 return (KERN_INVALID_ARGUMENT);
1470 }
1471 if ((new_prot & current->max_protection) != new_prot) {
1472 vm_map_unlock(map);
1473 vm_map_entry_release(count);
1474 return (KERN_PROTECTION_FAILURE);
1475 }
1476 current = current->next;
1477 }
1478
1479 /*
1480 * Go back and fix up protections. [Note that clipping is not
1481 * necessary the second time.]
1482 */
1483 current = entry;
1484
1485 while ((current != &map->header) && (current->start < end)) {
1486 vm_prot_t old_prot;
1487
1488 vm_map_clip_end(map, current, end, &count);
1489
1490 old_prot = current->protection;
1491 if (set_max) {
1492 current->protection =
1493 (current->max_protection = new_prot) &
1494 old_prot;
1495 } else {
1496 current->protection = new_prot;
1497 }
1498
1499 /*
1500 * Update physical map if necessary. Worry about copy-on-write
1501 * here -- CHECK THIS XXX
1502 */
1503
1504 if (current->protection != old_prot) {
1505#define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1506 VM_PROT_ALL)
1507
1508 pmap_protect(map->pmap, current->start,
1509 current->end,
1510 current->protection & MASK(current));
1511#undef MASK
1512 }
1513
1514 vm_map_simplify_entry(map, current, &count);
1515
1516 current = current->next;
1517 }
1518
1519 vm_map_unlock(map);
1520 vm_map_entry_release(count);
1521 return (KERN_SUCCESS);
1522}
1523
1524/*
1525 * vm_map_madvise:
1526 *
1527 * This routine traverses a processes map handling the madvise
1528 * system call. Advisories are classified as either those effecting
1529 * the vm_map_entry structure, or those effecting the underlying
1530 * objects.
1531 */
1532
1533int
1534vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, int behav)
1535{
1536 vm_map_entry_t current, entry;
1537 int modify_map = 0;
1538 int count;
1539
1540 /*
1541 * Some madvise calls directly modify the vm_map_entry, in which case
1542 * we need to use an exclusive lock on the map and we need to perform
1543 * various clipping operations. Otherwise we only need a read-lock
1544 * on the map.
1545 */
1546
1547 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1548
1549 switch(behav) {
1550 case MADV_NORMAL:
1551 case MADV_SEQUENTIAL:
1552 case MADV_RANDOM:
1553 case MADV_NOSYNC:
1554 case MADV_AUTOSYNC:
1555 case MADV_NOCORE:
1556 case MADV_CORE:
1557 modify_map = 1;
1558 vm_map_lock(map);
1559 break;
1560 case MADV_WILLNEED:
1561 case MADV_DONTNEED:
1562 case MADV_FREE:
1563 vm_map_lock_read(map);
1564 break;
1565 default:
1566 vm_map_entry_release(count);
1567 return (KERN_INVALID_ARGUMENT);
1568 }
1569
1570 /*
1571 * Locate starting entry and clip if necessary.
1572 */
1573
1574 VM_MAP_RANGE_CHECK(map, start, end);
1575
1576 if (vm_map_lookup_entry(map, start, &entry)) {
1577 if (modify_map)
1578 vm_map_clip_start(map, entry, start, &count);
1579 } else {
1580 entry = entry->next;
1581 }
1582
1583 if (modify_map) {
1584 /*
1585 * madvise behaviors that are implemented in the vm_map_entry.
1586 *
1587 * We clip the vm_map_entry so that behavioral changes are
1588 * limited to the specified address range.
1589 */
1590 for (current = entry;
1591 (current != &map->header) && (current->start < end);
1592 current = current->next
1593 ) {
1594 if (current->maptype == VM_MAPTYPE_SUBMAP)
1595 continue;
1596
1597 vm_map_clip_end(map, current, end, &count);
1598
1599 switch (behav) {
1600 case MADV_NORMAL:
1601 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1602 break;
1603 case MADV_SEQUENTIAL:
1604 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1605 break;
1606 case MADV_RANDOM:
1607 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1608 break;
1609 case MADV_NOSYNC:
1610 current->eflags |= MAP_ENTRY_NOSYNC;
1611 break;
1612 case MADV_AUTOSYNC:
1613 current->eflags &= ~MAP_ENTRY_NOSYNC;
1614 break;
1615 case MADV_NOCORE:
1616 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1617 break;
1618 case MADV_CORE:
1619 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1620 break;
1621 default:
1622 break;
1623 }
1624 vm_map_simplify_entry(map, current, &count);
1625 }
1626 vm_map_unlock(map);
1627 } else {
1628 vm_pindex_t pindex;
1629 int count;
1630
1631 /*
1632 * madvise behaviors that are implemented in the underlying
1633 * vm_object.
1634 *
1635 * Since we don't clip the vm_map_entry, we have to clip
1636 * the vm_object pindex and count.
1637 *
1638 * NOTE! We currently do not support these functions on
1639 * virtual page tables.
1640 */
1641 for (current = entry;
1642 (current != &map->header) && (current->start < end);
1643 current = current->next
1644 ) {
1645 vm_offset_t useStart;
1646
1647 if (current->maptype != VM_MAPTYPE_NORMAL)
1648 continue;
1649
1650 pindex = OFF_TO_IDX(current->offset);
1651 count = atop(current->end - current->start);
1652 useStart = current->start;
1653
1654 if (current->start < start) {
1655 pindex += atop(start - current->start);
1656 count -= atop(start - current->start);
1657 useStart = start;
1658 }
1659 if (current->end > end)
1660 count -= atop(current->end - end);
1661
1662 if (count <= 0)
1663 continue;
1664
1665 vm_object_madvise(current->object.vm_object,
1666 pindex, count, behav);
1667 if (behav == MADV_WILLNEED) {
1668 pmap_object_init_pt(
1669 map->pmap,
1670 useStart,
1671 current->protection,
1672 current->object.vm_object,
1673 pindex,
1674 (count << PAGE_SHIFT),
1675 MAP_PREFAULT_MADVISE
1676 );
1677 }
1678 }
1679 vm_map_unlock_read(map);
1680 }
1681 vm_map_entry_release(count);
1682 return(0);
1683}
1684
1685
1686/*
1687 * vm_map_inherit:
1688 *
1689 * Sets the inheritance of the specified address
1690 * range in the target map. Inheritance
1691 * affects how the map will be shared with
1692 * child maps at the time of vm_map_fork.
1693 */
1694int
1695vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1696 vm_inherit_t new_inheritance)
1697{
1698 vm_map_entry_t entry;
1699 vm_map_entry_t temp_entry;
1700 int count;
1701
1702 switch (new_inheritance) {
1703 case VM_INHERIT_NONE:
1704 case VM_INHERIT_COPY:
1705 case VM_INHERIT_SHARE:
1706 break;
1707 default:
1708 return (KERN_INVALID_ARGUMENT);
1709 }
1710
1711 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1712 vm_map_lock(map);
1713
1714 VM_MAP_RANGE_CHECK(map, start, end);
1715
1716 if (vm_map_lookup_entry(map, start, &temp_entry)) {
1717 entry = temp_entry;
1718 vm_map_clip_start(map, entry, start, &count);
1719 } else
1720 entry = temp_entry->next;
1721
1722 while ((entry != &map->header) && (entry->start < end)) {
1723 vm_map_clip_end(map, entry, end, &count);
1724
1725 entry->inheritance = new_inheritance;
1726
1727 vm_map_simplify_entry(map, entry, &count);
1728
1729 entry = entry->next;
1730 }
1731 vm_map_unlock(map);
1732 vm_map_entry_release(count);
1733 return (KERN_SUCCESS);
1734}
1735
1736/*
1737 * Implement the semantics of mlock
1738 */
1739int
1740vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1741 boolean_t new_pageable)
1742{
1743 vm_map_entry_t entry;
1744 vm_map_entry_t start_entry;
1745 vm_offset_t end;
1746 int rv = KERN_SUCCESS;
1747 int count;
1748
1749 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1750 vm_map_lock(map);
1751 VM_MAP_RANGE_CHECK(map, start, real_end);
1752 end = real_end;
1753
1754 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1755 if (start_entry == NULL) {
1756 vm_map_unlock(map);
1757 vm_map_entry_release(count);
1758 return (KERN_INVALID_ADDRESS);
1759 }
1760
1761 if (new_pageable == 0) {
1762 entry = start_entry;
1763 while ((entry != &map->header) && (entry->start < end)) {
1764 vm_offset_t save_start;
1765 vm_offset_t save_end;
1766
1767 /*
1768 * Already user wired or hard wired (trivial cases)
1769 */
1770 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1771 entry = entry->next;
1772 continue;
1773 }
1774 if (entry->wired_count != 0) {
1775 entry->wired_count++;
1776 entry->eflags |= MAP_ENTRY_USER_WIRED;
1777 entry = entry->next;
1778 continue;
1779 }
1780
1781 /*
1782 * A new wiring requires instantiation of appropriate
1783 * management structures and the faulting in of the
1784 * page.
1785 */
1786 if (entry->maptype != VM_MAPTYPE_SUBMAP) {
1787 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1788 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1789
1790 vm_object_shadow(&entry->object.vm_object,
1791 &entry->offset,
1792 atop(entry->end - entry->start));
1793 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1794
1795 } else if (entry->object.vm_object == NULL &&
1796 !map->system_map) {
1797
1798 entry->object.vm_object =
1799 vm_object_allocate(OBJT_DEFAULT,
1800 atop(entry->end - entry->start));
1801 entry->offset = (vm_offset_t) 0;
1802
1803 }
1804 }
1805 entry->wired_count++;
1806 entry->eflags |= MAP_ENTRY_USER_WIRED;
1807
1808 /*
1809 * Now fault in the area. Note that vm_fault_wire()
1810 * may release the map lock temporarily, it will be
1811 * relocked on return. The in-transition
1812 * flag protects the entries.
1813 */
1814 save_start = entry->start;
1815 save_end = entry->end;
1816 rv = vm_fault_wire(map, entry, TRUE);
1817 if (rv) {
1818 CLIP_CHECK_BACK(entry, save_start);
1819 for (;;) {
1820 KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1821 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1822 entry->wired_count = 0;
1823 if (entry->end == save_end)
1824 break;
1825 entry = entry->next;
1826 KASSERT(entry != &map->header, ("bad entry clip during backout"));
1827 }
1828 end = save_start; /* unwire the rest */
1829 break;
1830 }
1831 /*
1832 * note that even though the entry might have been
1833 * clipped, the USER_WIRED flag we set prevents
1834 * duplication so we do not have to do a
1835 * clip check.
1836 */
1837 entry = entry->next;
1838 }
1839
1840 /*
1841 * If we failed fall through to the unwiring section to
1842 * unwire what we had wired so far. 'end' has already
1843 * been adjusted.
1844 */
1845 if (rv)
1846 new_pageable = 1;
1847
1848 /*
1849 * start_entry might have been clipped if we unlocked the
1850 * map and blocked. No matter how clipped it has gotten
1851 * there should be a fragment that is on our start boundary.
1852 */
1853 CLIP_CHECK_BACK(start_entry, start);
1854 }
1855
1856 /*
1857 * Deal with the unwiring case.
1858 */
1859 if (new_pageable) {
1860 /*
1861 * This is the unwiring case. We must first ensure that the
1862 * range to be unwired is really wired down. We know there
1863 * are no holes.
1864 */
1865 entry = start_entry;
1866 while ((entry != &map->header) && (entry->start < end)) {
1867 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1868 rv = KERN_INVALID_ARGUMENT;
1869 goto done;
1870 }
1871 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1872 entry = entry->next;
1873 }
1874
1875 /*
1876 * Now decrement the wiring count for each region. If a region
1877 * becomes completely unwired, unwire its physical pages and
1878 * mappings.
1879 */
1880 /*
1881 * The map entries are processed in a loop, checking to
1882 * make sure the entry is wired and asserting it has a wired
1883 * count. However, another loop was inserted more-or-less in
1884 * the middle of the unwiring path. This loop picks up the
1885 * "entry" loop variable from the first loop without first
1886 * setting it to start_entry. Naturally, the secound loop
1887 * is never entered and the pages backing the entries are
1888 * never unwired. This can lead to a leak of wired pages.
1889 */
1890 entry = start_entry;
1891 while ((entry != &map->header) && (entry->start < end)) {
1892 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
1893 ("expected USER_WIRED on entry %p", entry));
1894 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1895 entry->wired_count--;
1896 if (entry->wired_count == 0)
1897 vm_fault_unwire(map, entry);
1898 entry = entry->next;
1899 }
1900 }
1901done:
1902 vm_map_unclip_range(map, start_entry, start, real_end, &count,
1903 MAP_CLIP_NO_HOLES);
1904 map->timestamp++;
1905 vm_map_unlock(map);
1906 vm_map_entry_release(count);
1907 return (rv);
1908}
1909
1910/*
1911 * vm_map_wire:
1912 *
1913 * Sets the pageability of the specified address
1914 * range in the target map. Regions specified
1915 * as not pageable require locked-down physical
1916 * memory and physical page maps.
1917 *
1918 * The map must not be locked, but a reference
1919 * must remain to the map throughout the call.
1920 *
1921 * This function may be called via the zalloc path and must properly
1922 * reserve map entries for kernel_map.
1923 */
1924int
1925vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
1926{
1927 vm_map_entry_t entry;
1928 vm_map_entry_t start_entry;
1929 vm_offset_t end;
1930 int rv = KERN_SUCCESS;
1931 int count;
1932
1933 if (kmflags & KM_KRESERVE)
1934 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
1935 else
1936 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1937 vm_map_lock(map);
1938 VM_MAP_RANGE_CHECK(map, start, real_end);
1939 end = real_end;
1940
1941 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1942 if (start_entry == NULL) {
1943 vm_map_unlock(map);
1944 rv = KERN_INVALID_ADDRESS;
1945 goto failure;
1946 }
1947 if ((kmflags & KM_PAGEABLE) == 0) {
1948 /*
1949 * Wiring.
1950 *
1951 * 1. Holding the write lock, we create any shadow or zero-fill
1952 * objects that need to be created. Then we clip each map
1953 * entry to the region to be wired and increment its wiring
1954 * count. We create objects before clipping the map entries
1955 * to avoid object proliferation.
1956 *
1957 * 2. We downgrade to a read lock, and call vm_fault_wire to
1958 * fault in the pages for any newly wired area (wired_count is
1959 * 1).
1960 *
1961 * Downgrading to a read lock for vm_fault_wire avoids a
1962 * possible deadlock with another process that may have faulted
1963 * on one of the pages to be wired (it would mark the page busy,
1964 * blocking us, then in turn block on the map lock that we
1965 * hold). Because of problems in the recursive lock package,
1966 * we cannot upgrade to a write lock in vm_map_lookup. Thus,
1967 * any actions that require the write lock must be done
1968 * beforehand. Because we keep the read lock on the map, the
1969 * copy-on-write status of the entries we modify here cannot
1970 * change.
1971 */
1972
1973 entry = start_entry;
1974 while ((entry != &map->header) && (entry->start < end)) {
1975 /*
1976 * Trivial case if the entry is already wired
1977 */
1978 if (entry->wired_count) {
1979 entry->wired_count++;
1980 entry = entry->next;
1981 continue;
1982 }
1983
1984 /*
1985 * The entry is being newly wired, we have to setup
1986 * appropriate management structures. A shadow
1987 * object is required for a copy-on-write region,
1988 * or a normal object for a zero-fill region. We
1989 * do not have to do this for entries that point to sub
1990 * maps because we won't hold the lock on the sub map.
1991 */
1992 if (entry->maptype != VM_MAPTYPE_SUBMAP) {
1993 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1994 if (copyflag &&
1995 ((entry->protection & VM_PROT_WRITE) != 0)) {
1996
1997 vm_object_shadow(&entry->object.vm_object,
1998 &entry->offset,
1999 atop(entry->end - entry->start));
2000 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2001 } else if (entry->object.vm_object == NULL &&
2002 !map->system_map) {
2003 entry->object.vm_object =
2004 vm_object_allocate(OBJT_DEFAULT,
2005 atop(entry->end - entry->start));
2006 entry->offset = (vm_offset_t) 0;
2007 }
2008 }
2009
2010 entry->wired_count++;
2011 entry = entry->next;
2012 }
2013
2014 /*
2015 * Pass 2.
2016 */
2017
2018 /*
2019 * HACK HACK HACK HACK
2020 *
2021 * Unlock the map to avoid deadlocks. The in-transit flag
2022 * protects us from most changes but note that
2023 * clipping may still occur. To prevent clipping from
2024 * occuring after the unlock, except for when we are
2025 * blocking in vm_fault_wire, we must run in a critical
2026 * section, otherwise our accesses to entry->start and
2027 * entry->end could be corrupted. We have to enter the
2028 * critical section prior to unlocking so start_entry does
2029 * not change out from under us at the very beginning of the
2030 * loop.
2031 *
2032 * HACK HACK HACK HACK
2033 */
2034
2035 crit_enter();
2036
2037 entry = start_entry;
2038 while (entry != &map->header && entry->start < end) {
2039 /*
2040 * If vm_fault_wire fails for any page we need to undo
2041 * what has been done. We decrement the wiring count
2042 * for those pages which have not yet been wired (now)
2043 * and unwire those that have (later).
2044 */
2045 vm_offset_t save_start = entry->start;
2046 vm_offset_t save_end = entry->end;
2047
2048 if (entry->wired_count == 1)
2049 rv = vm_fault_wire(map, entry, FALSE);
2050 if (rv) {
2051 CLIP_CHECK_BACK(entry, save_start);
2052 for (;;) {
2053 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2054 entry->wired_count = 0;
2055 if (entry->end == save_end)
2056 break;
2057 entry = entry->next;
2058 KASSERT(entry != &map->header, ("bad entry clip during backout"));
2059 }
2060 end = save_start;
2061 break;
2062 }
2063 CLIP_CHECK_FWD(entry, save_end);
2064 entry = entry->next;
2065 }
2066 crit_exit();
2067
2068 /*
2069 * If a failure occured undo everything by falling through
2070 * to the unwiring code. 'end' has already been adjusted
2071 * appropriately.
2072 */
2073 if (rv)
2074 kmflags |= KM_PAGEABLE;
2075
2076 /*
2077 * start_entry is still IN_TRANSITION but may have been
2078 * clipped since vm_fault_wire() unlocks and relocks the
2079 * map. No matter how clipped it has gotten there should
2080 * be a fragment that is on our start boundary.
2081 */
2082 CLIP_CHECK_BACK(start_entry, start);
2083 }
2084
2085 if (kmflags & KM_PAGEABLE) {
2086 /*
2087 * This is the unwiring case. We must first ensure that the
2088 * range to be unwired is really wired down. We know there
2089 * are no holes.
2090 */
2091 entry = start_entry;
2092 while ((entry != &map->header) && (entry->start < end)) {
2093 if (entry->wired_count == 0) {
2094 rv = KERN_INVALID_ARGUMENT;
2095 goto done;
2096 }
2097 entry = entry->next;
2098 }
2099
2100 /*
2101 * Now decrement the wiring count for each region. If a region
2102 * becomes completely unwired, unwire its physical pages and
2103 * mappings.
2104 */
2105 entry = start_entry;
2106 while ((entry != &map->header) && (entry->start < end)) {
2107 entry->wired_count--;
2108 if (entry->wired_count == 0)
2109 vm_fault_unwire(map, entry);
2110 entry = entry->next;
2111 }
2112 }
2113done:
2114 vm_map_unclip_range(map, start_entry, start, real_end, &count,
2115 MAP_CLIP_NO_HOLES);
2116 map->timestamp++;
2117 vm_map_unlock(map);
2118failure:
2119 if (kmflags & KM_KRESERVE)
2120 vm_map_entry_krelease(count);
2121 else
2122 vm_map_entry_release(count);
2123 return (rv);
2124}
2125
2126/*
2127 * vm_map_set_wired_quick()
2128 *
2129 * Mark a newly allocated address range as wired but do not fault in
2130 * the pages. The caller is expected to load the pages into the object.
2131 *
2132 * The map must be locked on entry and will remain locked on return.
2133 */
2134void
2135vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2136{
2137 vm_map_entry_t scan;
2138 vm_map_entry_t entry;
2139
2140 entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2141 for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2142 KKASSERT(entry->wired_count == 0);
2143 entry->wired_count = 1;
2144 }
2145 vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2146}
2147
2148/*
2149 * vm_map_clean
2150 *
2151 * Push any dirty cached pages in the address range to their pager.
2152 * If syncio is TRUE, dirty pages are written synchronously.
2153 * If invalidate is TRUE, any cached pages are freed as well.
2154 *
2155 * Returns an error if any part of the specified range is not mapped.
2156 */
2157int
2158vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio,
2159 boolean_t invalidate)
2160{
2161 vm_map_entry_t current;
2162 vm_map_entry_t entry;
2163 vm_size_t size;
2164 vm_object_t object;
2165 vm_ooffset_t offset;
2166
2167 vm_map_lock_read(map);
2168 VM_MAP_RANGE_CHECK(map, start, end);
2169 if (!vm_map_lookup_entry(map, start, &entry)) {
2170 vm_map_unlock_read(map);
2171 return (KERN_INVALID_ADDRESS);
2172 }
2173 /*
2174 * Make a first pass to check for holes.
2175 */
2176 for (current = entry; current->start < end; current = current->next) {
2177 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2178 vm_map_unlock_read(map);
2179 return (KERN_INVALID_ARGUMENT);
2180 }
2181 if (end > current->end &&
2182 (current->next == &map->header ||
2183 current->end != current->next->start)) {
2184 vm_map_unlock_read(map);
2185 return (KERN_INVALID_ADDRESS);
2186 }
2187 }
2188
2189 if (invalidate)
2190 pmap_remove(vm_map_pmap(map), start, end);
2191 /*
2192 * Make a second pass, cleaning/uncaching pages from the indicated
2193 * objects as we go.
2194 */
2195 for (current = entry; current->start < end; current = current->next) {
2196 offset = current->offset + (start - current->start);
2197 size = (end <= current->end ? end : current->end) - start;
2198 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2199 vm_map_t smap;
2200 vm_map_entry_t tentry;
2201 vm_size_t tsize;
2202
2203 smap = current->object.sub_map;
2204 vm_map_lock_read(smap);
2205 vm_map_lookup_entry(smap, offset, &tentry);
2206 tsize = tentry->end - offset;
2207 if (tsize < size)
2208 size = tsize;
2209 object = tentry->object.vm_object;
2210 offset = tentry->offset + (offset - tentry->start);
2211 vm_map_unlock_read(smap);
2212 } else {
2213 object = current->object.vm_object;
2214 }
2215 /*
2216 * Note that there is absolutely no sense in writing out
2217 * anonymous objects, so we track down the vnode object
2218 * to write out.
2219 * We invalidate (remove) all pages from the address space
2220 * anyway, for semantic correctness.
2221 *
2222 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2223 * may start out with a NULL object.
2224 */
2225 while (object && object->backing_object) {
2226 offset += object->backing_object_offset;
2227 object = object->backing_object;
2228 if (object->size < OFF_TO_IDX( offset + size))
2229 size = IDX_TO_OFF(object->size) - offset;
2230 }
2231 if (object && (object->type == OBJT_VNODE) &&
2232 (current->protection & VM_PROT_WRITE)) {
2233 /*
2234 * Flush pages if writing is allowed, invalidate them
2235 * if invalidation requested. Pages undergoing I/O
2236 * will be ignored by vm_object_page_remove().
2237 *
2238 * We cannot lock the vnode and then wait for paging
2239 * to complete without deadlocking against vm_fault.
2240 * Instead we simply call vm_object_page_remove() and
2241 * allow it to block internally on a page-by-page
2242 * basis when it encounters pages undergoing async
2243 * I/O.
2244 */
2245 int flags;
2246
2247 vm_object_reference(object);
2248 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2249 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2250 flags |= invalidate ? OBJPC_INVAL : 0;
2251
2252 /*
2253 * When operating on a virtual page table just
2254 * flush the whole object. XXX we probably ought
2255 * to
2256 */
2257 switch(current->maptype) {
2258 case VM_MAPTYPE_NORMAL:
2259 vm_object_page_clean(object,
2260 OFF_TO_IDX(offset),
2261 OFF_TO_IDX(offset + size + PAGE_MASK),
2262 flags);
2263 break;
2264 case VM_MAPTYPE_VPAGETABLE:
2265 vm_object_page_clean(object, 0, 0, flags);
2266 break;
2267 }
2268 vn_unlock(((struct vnode *)object->handle));
2269 vm_object_deallocate(object);
2270 }
2271 if (object && invalidate &&
2272 ((object->type == OBJT_VNODE) ||
2273 (object->type == OBJT_DEVICE))) {
2274 int clean_only =
2275 (object->type == OBJT_DEVICE) ? FALSE : TRUE;
2276 vm_object_reference(object);
2277 switch(current->maptype) {
2278 case VM_MAPTYPE_NORMAL:
2279 vm_object_page_remove(object,
2280 OFF_TO_IDX(offset),
2281 OFF_TO_IDX(offset + size + PAGE_MASK),
2282 clean_only);
2283 break;
2284 case VM_MAPTYPE_VPAGETABLE:
2285 vm_object_page_remove(object, 0, 0, clean_only);
2286 break;
2287 }
2288 vm_object_deallocate(object);
2289 }
2290 start += size;
2291 }
2292
2293 vm_map_unlock_read(map);
2294 return (KERN_SUCCESS);
2295}
2296
2297/*
2298 * vm_map_entry_unwire: [ internal use only ]
2299 *
2300 * Make the region specified by this entry pageable.
2301 *
2302 * The map in question should be locked.
2303 * [This is the reason for this routine's existence.]
2304 */
2305static void
2306vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2307{
2308 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2309 entry->wired_count = 0;
2310 vm_fault_unwire(map, entry);
2311}
2312
2313/*
2314 * vm_map_entry_delete: [ internal use only ]
2315 *
2316 * Deallocate the given entry from the target map.
2317 */
2318static void
2319vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2320{
2321 vm_map_entry_unlink(map, entry);
2322 map->size -= entry->end - entry->start;
2323
2324 switch(entry->maptype) {
2325 case VM_MAPTYPE_NORMAL:
2326 case VM_MAPTYPE_VPAGETABLE:
2327 vm_object_deallocate(entry->object.vm_object);
2328 break;
2329 default:
2330 break;
2331 }
2332
2333 vm_map_entry_dispose(map, entry, countp);
2334}
2335
2336/*
2337 * vm_map_delete: [ internal use only ]
2338 *
2339 * Deallocates the given address range from the target
2340 * map.
2341 */
2342int
2343vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2344{
2345 vm_object_t object;
2346 vm_map_entry_t entry;
2347 vm_map_entry_t first_entry;
2348
2349again:
2350 /*
2351 * Find the start of the region, and clip it. Set entry to point
2352 * at the first record containing the requested address or, if no
2353 * such record exists, the next record with a greater address. The
2354 * loop will run from this point until a record beyond the termination
2355 * address is encountered.
2356 *
2357 * map->hint must be adjusted to not point to anything we delete,
2358 * so set it to the entry prior to the one being deleted.
2359 *
2360 * GGG see other GGG comment.
2361 */
2362 if (vm_map_lookup_entry(map, start, &first_entry)) {
2363 entry = first_entry;
2364 vm_map_clip_start(map, entry, start, countp);
2365 map->hint = entry->prev; /* possible problem XXX */
2366 } else {
2367 map->hint = first_entry; /* possible problem XXX */
2368 entry = first_entry->next;
2369 }
2370
2371 /*
2372 * If a hole opens up prior to the current first_free then
2373 * adjust first_free. As with map->hint, map->first_free
2374 * cannot be left set to anything we might delete.
2375 */
2376 if (entry == &map->header) {
2377 map->first_free = &map->header;
2378 } else if (map->first_free->start >= start) {
2379 map->first_free = entry->prev;
2380 }
2381
2382 /*
2383 * Step through all entries in this region
2384 */
2385
2386 while ((entry != &map->header) && (entry->start < end)) {
2387 vm_map_entry_t next;
2388 vm_offset_t s, e;
2389 vm_pindex_t offidxstart, offidxend, count;
2390
2391 /*
2392 * If we hit an in-transition entry we have to sleep and
2393 * retry. It's easier (and not really slower) to just retry
2394 * since this case occurs so rarely and the hint is already
2395 * pointing at the right place. We have to reset the
2396 * start offset so as not to accidently delete an entry
2397 * another process just created in vacated space.
2398 */
2399 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2400 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2401 start = entry->start;
2402 ++mycpu->gd_cnt.v_intrans_coll;
2403 ++mycpu->gd_cnt.v_intrans_wait;
2404 vm_map_transition_wait(map);
2405 goto again;
2406 }
2407 vm_map_clip_end(map, entry, end, countp);
2408
2409 s = entry->start;
2410 e = entry->end;
2411 next = entry->next;
2412
2413 offidxstart = OFF_TO_IDX(entry->offset);
2414 count = OFF_TO_IDX(e - s);
2415 object = entry->object.vm_object;
2416
2417 /*
2418 * Unwire before removing addresses from the pmap; otherwise,
2419 * unwiring will put the entries back in the pmap.
2420 */
2421 if (entry->wired_count != 0)
2422 vm_map_entry_unwire(map, entry);
2423
2424 offidxend = offidxstart + count;
2425
2426 if ((object == kernel_object) || (object == kmem_object)) {
2427 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2428 } else {
2429 pmap_remove(map->pmap, s, e);
2430 if (object != NULL &&
2431 object->ref_count != 1 &&
2432 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2433 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2434 vm_object_collapse(object);
2435 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2436 if (object->type == OBJT_SWAP) {
2437 swap_pager_freespace(object, offidxstart, count);
2438 }
2439 if (offidxend >= object->size &&
2440 offidxstart < object->size) {
2441 object->size = offidxstart;
2442 }
2443 }
2444 }
2445
2446 /*
2447 * Delete the entry (which may delete the object) only after
2448 * removing all pmap entries pointing to its pages.
2449 * (Otherwise, its page frames may be reallocated, and any
2450 * modify bits will be set in the wrong object!)
2451 */
2452 vm_map_entry_delete(map, entry, countp);
2453 entry = next;
2454 }
2455 return (KERN_SUCCESS);
2456}
2457
2458/*
2459 * vm_map_remove:
2460 *
2461 * Remove the given address range from the target map.
2462 * This is the exported form of vm_map_delete.
2463 */
2464int
2465vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2466{
2467 int result;
2468 int count;
2469
2470 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2471 vm_map_lock(map);
2472 VM_MAP_RANGE_CHECK(map, start, end);
2473 result = vm_map_delete(map, start, end, &count);
2474 vm_map_unlock(map);
2475 vm_map_entry_release(count);
2476
2477 return (result);
2478}
2479
2480/*
2481 * vm_map_check_protection:
2482 *
2483 * Assert that the target map allows the specified
2484 * privilege on the entire address region given.
2485 * The entire region must be allocated.
2486 */
2487boolean_t
2488vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2489 vm_prot_t protection)
2490{
2491 vm_map_entry_t entry;
2492 vm_map_entry_t tmp_entry;
2493
2494 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2495 return (FALSE);
2496 }
2497 entry = tmp_entry;
2498
2499 while (start < end) {
2500 if (entry == &map->header) {
2501 return (FALSE);
2502 }
2503 /*
2504 * No holes allowed!
2505 */
2506
2507 if (start < entry->start) {
2508 return (FALSE);
2509 }
2510 /*
2511 * Check protection associated with entry.
2512 */
2513
2514 if ((entry->protection & protection) != protection) {
2515 return (FALSE);
2516 }
2517 /* go to next entry */
2518
2519 start = entry->end;
2520 entry = entry->next;
2521 }
2522 return (TRUE);
2523}
2524
2525/*
2526 * Split the pages in a map entry into a new object. This affords
2527 * easier removal of unused pages, and keeps object inheritance from
2528 * being a negative impact on memory usage.
2529 */
2530static void
2531vm_map_split(vm_map_entry_t entry)
2532{
2533 vm_page_t m;
2534 vm_object_t orig_object, new_object, source;
2535 vm_offset_t s, e;
2536 vm_pindex_t offidxstart, offidxend, idx;
2537 vm_size_t size;
2538 vm_ooffset_t offset;
2539
2540 orig_object = entry->object.vm_object;
2541 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2542 return;
2543 if (orig_object->ref_count <= 1)
2544 return;
2545
2546 offset = entry->offset;
2547 s = entry->start;
2548 e = entry->end;
2549
2550 offidxstart = OFF_TO_IDX(offset);
2551 offidxend = offidxstart + OFF_TO_IDX(e - s);
2552 size = offidxend - offidxstart;
2553
2554 new_object = vm_pager_allocate(orig_object->type, NULL,
2555 IDX_TO_OFF(size), VM_PROT_ALL, 0);
2556 if (new_object == NULL)
2557 return;
2558
2559 source = orig_object->backing_object;
2560 if (source != NULL) {
2561 vm_object_reference(source); /* Referenced by new_object */
2562 LIST_INSERT_HEAD(&source->shadow_head,
2563 new_object, shadow_list);
2564 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2565 new_object->backing_object_offset =
2566 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2567 new_object->backing_object = source;
2568 source->shadow_count++;
2569 source->generation++;
2570 }
2571
2572 for (idx = 0; idx < size; idx++) {
2573 vm_page_t m;
2574
2575 /*
2576 * A critical section is required to avoid a race between
2577 * the lookup and an interrupt/unbusy/free and our busy
2578 * check.
2579 */
2580 crit_enter();
2581 retry:
2582 m = vm_page_lookup(orig_object, offidxstart + idx);
2583 if (m == NULL) {
2584 crit_exit();
2585 continue;
2586 }
2587
2588 /*
2589 * We must wait for pending I/O to complete before we can
2590 * rename the page.
2591 *
2592 * We do not have to VM_PROT_NONE the page as mappings should
2593 * not be changed by this operation.
2594 */
2595 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2596 goto retry;
2597 vm_page_busy(m);
2598 vm_page_rename(m, new_object, idx);
2599 /* page automatically made dirty by rename and cache handled */
2600 vm_page_busy(m);
2601 crit_exit();
2602 }
2603
2604 if (orig_object->type == OBJT_SWAP) {
2605 vm_object_pip_add(orig_object, 1);
2606 /*
2607 * copy orig_object pages into new_object
2608 * and destroy unneeded pages in
2609 * shadow object.
2610 */
2611 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2612 vm_object_pip_wakeup(orig_object);
2613 }
2614
2615 /*
2616 * Wakeup the pages we played with. No spl protection is needed
2617 * for a simple wakeup.
2618 */
2619 for (idx = 0; idx < size; idx++) {
2620 m = vm_page_lookup(new_object, idx);
2621 if (m)
2622 vm_page_wakeup(m);
2623 }
2624
2625 entry->object.vm_object = new_object;
2626 entry->offset = 0LL;
2627 vm_object_deallocate(orig_object);
2628}
2629
2630/*
2631 * vm_map_copy_entry:
2632 *
2633 * Copies the contents of the source entry to the destination
2634 * entry. The entries *must* be aligned properly.
2635 */
2636static void
2637vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2638 vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2639{
2640 vm_object_t src_object;
2641
2642 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2643 return;
2644 if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2645 return;
2646
2647 if (src_entry->wired_count == 0) {
2648 /*
2649 * If the source entry is marked needs_copy, it is already
2650 * write-protected.
2651 */
2652 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2653 pmap_protect(src_map->pmap,
2654 src_entry->start,
2655 src_entry->end,
2656 src_entry->protection & ~VM_PROT_WRITE);
2657 }
2658
2659 /*
2660 * Make a copy of the object.
2661 */
2662 if ((src_object = src_entry->object.vm_object) != NULL) {
2663 if ((src_object->handle == NULL) &&
2664 (src_object->type == OBJT_DEFAULT ||
2665 src_object->type == OBJT_SWAP)) {
2666 vm_object_collapse(src_object);
2667 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2668 vm_map_split(src_entry);
2669 src_object = src_entry->object.vm_object;
2670 }
2671 }
2672
2673 vm_object_reference(src_object);
2674 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2675 dst_entry->object.vm_object = src_object;
2676 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2677 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2678 dst_entry->offset = src_entry->offset;
2679 } else {
2680 dst_entry->object.vm_object = NULL;
2681 dst_entry->offset = 0;
2682 }
2683
2684 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2685 dst_entry->end - dst_entry->start, src_entry->start);
2686 } else {
2687 /*
2688 * Of course, wired down pages can't be set copy-on-write.
2689 * Cause wired pages to be copied into the new map by
2690 * simulating faults (the new pages are pageable)
2691 */
2692 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2693 }
2694}
2695
2696/*
2697 * vmspace_fork:
2698 * Create a new process vmspace structure and vm_map
2699 * based on those of an existing process. The new map
2700 * is based on the old map, according to the inheritance
2701 * values on the regions in that map.
2702 *
2703 * The source map must not be locked.
2704 */
2705struct vmspace *
2706vmspace_fork(struct vmspace *vm1)
2707{
2708 struct vmspace *vm2;
2709 vm_map_t old_map = &vm1->vm_map;
2710 vm_map_t new_map;
2711 vm_map_entry_t old_entry;
2712 vm_map_entry_t new_entry;
2713 vm_object_t object;
2714 int count;
2715
2716 vm_map_lock(old_map);
2717 old_map->infork = 1;
2718
2719 /*
2720 * XXX Note: upcalls are not copied.
2721 */
2722 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2723 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2724 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2725 new_map = &vm2->vm_map; /* XXX */
2726 new_map->timestamp = 1;
2727
2728 count = 0;
2729 old_entry = old_map->header.next;
2730 while (old_entry != &old_map->header) {
2731 ++count;
2732 old_entry = old_entry->next;
2733 }
2734
2735 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2736
2737 old_entry = old_map->header.next;
2738 while (old_entry != &old_map->header) {
2739 if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
2740 panic("vm_map_fork: encountered a submap");
2741
2742 switch (old_entry->inheritance) {
2743 case VM_INHERIT_NONE:
2744 break;
2745
2746 case VM_INHERIT_SHARE:
2747 /*
2748 * Clone the entry, creating the shared object if
2749 * necessary.
2750 */
2751 object = old_entry->object.vm_object;
2752 if (object == NULL) {
2753 object = vm_object_allocate(OBJT_DEFAULT,
2754 atop(old_entry->end - old_entry->start));
2755 old_entry->object.vm_object = object;
2756 old_entry->offset = (vm_offset_t) 0;
2757 }
2758
2759 /*
2760 * Add the reference before calling vm_object_shadow
2761 * to insure that a shadow object is created.
2762 */
2763 vm_object_reference(object);
2764 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2765 vm_object_shadow(&old_entry->object.vm_object,
2766 &old_entry->offset,
2767 atop(old_entry->end - old_entry->start));
2768 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2769 /* Transfer the second reference too. */
2770 vm_object_reference(
2771 old_entry->object.vm_object);
2772 vm_object_deallocate(object);
2773 object = old_entry->object.vm_object;
2774 }
2775 vm_object_clear_flag(object, OBJ_ONEMAPPING);
2776
2777 /*
2778 * Clone the entry, referencing the shared object.
2779 */
2780 new_entry = vm_map_entry_create(new_map, &count);
2781 *new_entry = *old_entry;
2782 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2783 new_entry->wired_count = 0;
2784
2785 /*
2786 * Insert the entry into the new map -- we know we're
2787 * inserting at the end of the new map.
2788 */
2789
2790 vm_map_entry_link(new_map, new_map->header.prev,
2791 new_entry);
2792
2793 /*
2794 * Update the physical map
2795 */
2796
2797 pmap_copy(new_map->pmap, old_map->pmap,
2798 new_entry->start,
2799 (old_entry->end - old_entry->start),
2800 old_entry->start);
2801 break;
2802
2803 case VM_INHERIT_COPY:
2804 /*
2805 * Clone the entry and link into the map.
2806 */
2807 new_entry = vm_map_entry_create(new_map, &count);
2808 *new_entry = *old_entry;
2809 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2810 new_entry->wired_count = 0;
2811 new_entry->object.vm_object = NULL;
2812 vm_map_entry_link(new_map, new_map->header.prev,
2813 new_entry);
2814 vm_map_copy_entry(old_map, new_map, old_entry,
2815 new_entry);
2816 break;
2817 }
2818 old_entry = old_entry->next;
2819 }
2820
2821 new_map->size = old_map->size;
2822 old_map->infork = 0;
2823 vm_map_unlock(old_map);
2824 vm_map_entry_release(count);
2825
2826 return (vm2);
2827}
2828
2829int
2830vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2831 vm_prot_t prot, vm_prot_t max, int cow)
2832{
2833 vm_map_entry_t prev_entry;
2834 vm_map_entry_t new_stack_entry;
2835 vm_size_t init_ssize;
2836 int rv;
2837 int count;
2838
2839 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2840 return (KERN_NO_SPACE);
2841
2842 if (max_ssize < sgrowsiz)
2843 init_ssize = max_ssize;
2844 else
2845 init_ssize = sgrowsiz;
2846
2847 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2848 vm_map_lock(map);
2849
2850 /* If addr is already mapped, no go */
2851 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2852 vm_map_unlock(map);
2853 vm_map_entry_release(count);
2854 return (KERN_NO_SPACE);
2855 }
2856
2857 /* If we would blow our VMEM resource limit, no go */
2858 if (map->size + init_ssize >
2859 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2860 vm_map_unlock(map);
2861 vm_map_entry_release(count);
2862 return (KERN_NO_SPACE);
2863 }
2864
2865 /* If we can't accomodate max_ssize in the current mapping,
2866 * no go. However, we need to be aware that subsequent user
2867 * mappings might map into the space we have reserved for
2868 * stack, and currently this space is not protected.
2869 *
2870 * Hopefully we will at least detect this condition
2871 * when we try to grow the stack.
2872 */
2873 if ((prev_entry->next != &map->header) &&
2874 (prev_entry->next->start < addrbos + max_ssize)) {
2875 vm_map_unlock(map);
2876 vm_map_entry_release(count);
2877 return (KERN_NO_SPACE);
2878 }
2879
2880 /* We initially map a stack of only init_ssize. We will
2881 * grow as needed later. Since this is to be a grow
2882 * down stack, we map at the top of the range.
2883 *
2884 * Note: we would normally expect prot and max to be
2885 * VM_PROT_ALL, and cow to be 0. Possibly we should
2886 * eliminate these as input parameters, and just
2887 * pass these values here in the insert call.
2888 */
2889 rv = vm_map_insert(map, &count,
2890 NULL, 0, addrbos + max_ssize - init_ssize,
2891 addrbos + max_ssize,
2892 VM_MAPTYPE_NORMAL,
2893 prot, max,
2894 cow);
2895
2896 /* Now set the avail_ssize amount */
2897 if (rv == KERN_SUCCESS) {
2898 if (prev_entry != &map->header)
2899 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
2900 new_stack_entry = prev_entry->next;
2901 if (new_stack_entry->end != addrbos + max_ssize ||
2902 new_stack_entry->start != addrbos + max_ssize - init_ssize)
2903 panic ("Bad entry start/end for new stack entry");
2904 else
2905 new_stack_entry->avail_ssize = max_ssize - init_ssize;
2906 }
2907
2908 vm_map_unlock(map);
2909 vm_map_entry_release(count);
2910 return (rv);
2911}
2912
2913/* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
2914 * desired address is already mapped, or if we successfully grow
2915 * the stack. Also returns KERN_SUCCESS if addr is outside the
2916 * stack range (this is strange, but preserves compatibility with
2917 * the grow function in vm_machdep.c).
2918 */
2919int
2920vm_map_growstack (struct proc *p, vm_offset_t addr)
2921{
2922 vm_map_entry_t prev_entry;
2923 vm_map_entry_t stack_entry;
2924 vm_map_entry_t new_stack_entry;
2925 struct vmspace *vm = p->p_vmspace;
2926 vm_map_t map = &vm->vm_map;
2927 vm_offset_t end;
2928 int grow_amount;
2929 int rv = KERN_SUCCESS;
2930 int is_procstack;
2931 int use_read_lock = 1;
2932 int count;
2933
2934 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2935Retry:
2936 if (use_read_lock)
2937 vm_map_lock_read(map);
2938 else
2939 vm_map_lock(map);
2940
2941 /* If addr is already in the entry range, no need to grow.*/
2942 if (vm_map_lookup_entry(map, addr, &prev_entry))
2943 goto done;
2944
2945 if ((stack_entry = prev_entry->next) == &map->header)
2946 goto done;
2947 if (prev_entry == &map->header)
2948 end = stack_entry->start - stack_entry->avail_ssize;
2949 else
2950 end = prev_entry->end;
2951
2952 /* This next test mimics the old grow function in vm_machdep.c.
2953 * It really doesn't quite make sense, but we do it anyway
2954 * for compatibility.
2955 *
2956 * If not growable stack, return success. This signals the
2957 * caller to proceed as he would normally with normal vm.
2958 */
2959 if (stack_entry->avail_ssize < 1 ||
2960 addr >= stack_entry->start ||
2961 addr < stack_entry->start - stack_entry->avail_ssize) {
2962 goto done;
2963 }
2964
2965 /* Find the minimum grow amount */
2966 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2967 if (grow_amount > stack_entry->avail_ssize) {
2968 rv = KERN_NO_SPACE;
2969 goto done;
2970 }
2971
2972 /* If there is no longer enough space between the entries
2973 * nogo, and adjust the available space. Note: this
2974 * should only happen if the user has mapped into the
2975 * stack area after the stack was created, and is
2976 * probably an error.
2977 *
2978 * This also effectively destroys any guard page the user
2979 * might have intended by limiting the stack size.
2980 */
2981 if (grow_amount > stack_entry->start - end) {
2982 if (use_read_lock && vm_map_lock_upgrade(map)) {
2983 use_read_lock = 0;
2984 goto Retry;
2985 }
2986 use_read_lock = 0;
2987 stack_entry->avail_ssize = stack_entry->start - end;
2988 rv = KERN_NO_SPACE;
2989 goto done;
2990 }
2991
2992 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2993
2994 /* If this is the main process stack, see if we're over the
2995 * stack limit.
2996 */
2997 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2998 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2999 rv = KERN_NO_SPACE;
3000 goto done;
3001 }
3002
3003 /* Round up the grow amount modulo SGROWSIZ */
3004 grow_amount = roundup (grow_amount, sgrowsiz);
3005 if (grow_amount > stack_entry->avail_ssize) {
3006 grow_amount = stack_entry->avail_ssize;
3007 }
3008 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3009 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3010 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3011 ctob(vm->vm_ssize);
3012 }
3013
3014 /* If we would blow our VMEM resource limit, no go */
3015 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3016 rv = KERN_NO_SPACE;
3017 goto done;
3018 }
3019
3020 if (use_read_lock && vm_map_lock_upgrade(map)) {
3021 use_read_lock = 0;
3022 goto Retry;
3023 }
3024 use_read_lock = 0;
3025
3026 /* Get the preliminary new entry start value */
3027 addr = stack_entry->start - grow_amount;
3028
3029 /* If this puts us into the previous entry, cut back our growth
3030 * to the available space. Also, see the note above.
3031 */
3032 if (addr < end) {
3033 stack_entry->avail_ssize = stack_entry->start - end;
3034 addr = end;
3035 }
3036
3037 rv = vm_map_insert(map, &count,
3038 NULL, 0, addr, stack_entry->start,
3039 VM_MAPTYPE_NORMAL,
3040 VM_PROT_ALL, VM_PROT_ALL,
3041 0);
3042
3043 /* Adjust the available stack space by the amount we grew. */
3044 if (rv == KERN_SUCCESS) {
3045 if (prev_entry != &map->header)
3046 vm_map_clip_end(map, prev_entry, addr, &count);
3047 new_stack_entry = prev_entry->next;
3048 if (new_stack_entry->end != stack_entry->start ||
3049 new_stack_entry->start != addr)
3050 panic ("Bad stack grow start/end in new stack entry");
3051 else {
3052 new_stack_entry->avail_ssize = stack_entry->avail_ssize -
3053 (new_stack_entry->end -
3054 new_stack_entry->start);
3055 if (is_procstack)
3056 vm->vm_ssize += btoc(new_stack_entry->end -
3057 new_stack_entry->start);
3058 }
3059 }
3060
3061done:
3062 if (use_read_lock)
3063 vm_map_unlock_read(map);
3064 else
3065 vm_map_unlock(map);
3066 vm_map_entry_release(count);
3067 return (rv);
3068}
3069
3070/*
3071 * Unshare the specified VM space for exec. If other processes are
3072 * mapped to it, then create a new one. The new vmspace is null.
3073 */
3074
3075void
3076vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3077{
3078 struct vmspace *oldvmspace = p->p_vmspace;
3079 struct vmspace *newvmspace;
3080 vm_map_t map = &p->p_vmspace->vm_map;
3081
3082 /*
3083 * If we are execing a resident vmspace we fork it, otherwise
3084 * we create a new vmspace. Note that exitingcnt and upcalls
3085 * are not copied to the new vmspace.
3086 */
3087 if (vmcopy) {
3088 newvmspace = vmspace_fork(vmcopy);
3089 } else {
3090 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3091 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3092 (caddr_t)&oldvmspace->vm_endcopy -
3093 (caddr_t)&oldvmspace->vm_startcopy);
3094 }
3095
3096 /*
3097 * This code is written like this for prototype purposes. The
3098 * goal is to avoid running down the vmspace here, but let the
3099 * other process's that are still using the vmspace to finally
3100 * run it down. Even though there is little or no chance of blocking
3101 * here, it is a good idea to keep this form for future mods.
3102 */
3103 p->p_vmspace = newvmspace;
3104 pmap_pinit2(vmspace_pmap(newvmspace));
3105 if (p == curproc)
3106 pmap_activate(p);
3107 vmspace_free(oldvmspace);
3108}
3109
3110/*
3111 * Unshare the specified VM space for forcing COW. This
3112 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3113 *
3114 * The exitingcnt test is not strictly necessary but has been
3115 * included for code sanity (to make the code a bit more deterministic).
3116 */
3117
3118void
3119vmspace_unshare(struct proc *p)
3120{
3121 struct vmspace *oldvmspace = p->p_vmspace;
3122 struct vmspace *newvmspace;
3123
3124 if (oldvmspace->vm_refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3125 return;
3126 newvmspace = vmspace_fork(oldvmspace);
3127 p->p_vmspace = newvmspace;
3128 pmap_pinit2(vmspace_pmap(newvmspace));
3129 if (p == curproc)
3130 pmap_activate(p);
3131 vmspace_free(oldvmspace);
3132}
3133
3134/*
3135 * vm_map_lookup:
3136 *
3137 * Finds the VM object, offset, and
3138 * protection for a given virtual address in the
3139 * specified map, assuming a page fault of the
3140 * type specified.
3141 *
3142 * Leaves the map in question locked for read; return
3143 * values are guaranteed until a vm_map_lookup_done
3144 * call is performed. Note that the map argument
3145 * is in/out; the returned map must be used in
3146 * the call to vm_map_lookup_done.
3147 *
3148 * A handle (out_entry) is returned for use in
3149 * vm_map_lookup_done, to make that fast.
3150 *
3151 * If a lookup is requested with "write protection"
3152 * specified, the map may be changed to perform virtual
3153 * copying operations, although the data referenced will
3154 * remain the same.
3155 */
3156int
3157vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
3158 vm_offset_t vaddr,
3159 vm_prot_t fault_typea,
3160 vm_map_entry_t *out_entry, /* OUT */
3161 vm_object_t *object, /* OUT */
3162 vm_pindex_t *pindex, /* OUT */
3163 vm_prot_t *out_prot, /* OUT */
3164 boolean_t *wired) /* OUT */
3165{
3166 vm_map_entry_t entry;
3167 vm_map_t map = *var_map;
3168 vm_prot_t prot;
3169 vm_prot_t fault_type = fault_typea;
3170 int use_read_lock = 1;
3171 int rv = KERN_SUCCESS;
3172
3173RetryLookup:
3174 if (use_read_lock)
3175 vm_map_lock_read(map);
3176 else
3177 vm_map_lock(map);
3178
3179 /*
3180 * If the map has an interesting hint, try it before calling full
3181 * blown lookup routine.
3182 */
3183 entry = map->hint;
3184 *out_entry = entry;
3185
3186 if ((entry == &map->header) ||
3187 (vaddr < entry->start) || (vaddr >= entry->end)) {
3188 vm_map_entry_t tmp_entry;
3189
3190 /*
3191 * Entry was either not a valid hint, or the vaddr was not
3192 * contained in the entry, so do a full lookup.
3193 */
3194 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3195 rv = KERN_INVALID_ADDRESS;
3196 goto done;
3197 }
3198
3199 entry = tmp_entry;
3200 *out_entry = entry;
3201 }
3202
3203 /*
3204 * Handle submaps.
3205 */
3206 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3207 vm_map_t old_map = map;
3208
3209 *var_map = map = entry->object.sub_map;
3210 if (use_read_lock)
3211 vm_map_unlock_read(old_map);
3212 else
3213 vm_map_unlock(old_map);
3214 use_read_lock = 1;
3215 goto RetryLookup;
3216 }
3217
3218 /*
3219 * Check whether this task is allowed to have this page.
3220 * Note the special case for MAP_ENTRY_COW
3221 * pages with an override. This is to implement a forced
3222 * COW for debuggers.
3223 */
3224
3225 if (fault_type & VM_PROT_OVERRIDE_WRITE)
3226 prot = entry->max_protection;
3227 else
3228 prot = entry->protection;
3229
3230 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3231 if ((fault_type & prot) != fault_type) {
3232 rv = KERN_PROTECTION_FAILURE;
3233 goto done;
3234 }
3235
3236 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3237 (entry->eflags & MAP_ENTRY_COW) &&
3238 (fault_type & VM_PROT_WRITE) &&
3239 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3240 rv = KERN_PROTECTION_FAILURE;
3241 goto done;
3242 }
3243
3244 /*
3245 * If this page is not pageable, we have to get it for all possible
3246 * accesses.
3247 */
3248
3249 *wired = (entry->wired_count != 0);
3250 if (*wired)
3251 prot = fault_type = entry->protection;
3252
3253 /*
3254 * If the entry was copy-on-write, we either ...
3255 */
3256
3257 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3258 /*
3259 * If we want to write the page, we may as well handle that
3260 * now since we've got the map locked.
3261 *
3262 * If we don't need to write the page, we just demote the
3263 * permissions allowed.
3264 */
3265
3266 if (fault_type & VM_PROT_WRITE) {
3267 /*
3268 * Make a new object, and place it in the object
3269 * chain. Note that no new references have appeared
3270 * -- one just moved from the map to the new
3271 * object.
3272 */
3273
3274 if (use_read_lock && vm_map_lock_upgrade(map)) {
3275 use_read_lock = 0;
3276 goto RetryLookup;
3277 }
3278 use_read_lock = 0;
3279
3280 vm_object_shadow(
3281 &entry->object.vm_object,
3282 &entry->offset,
3283 atop(entry->end - entry->start));
3284
3285 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3286 } else {
3287 /*
3288 * We're attempting to read a copy-on-write page --
3289 * don't allow writes.
3290 */
3291
3292 prot &= ~VM_PROT_WRITE;
3293 }
3294 }
3295
3296 /*
3297 * Create an object if necessary.
3298 */
3299 if (entry->object.vm_object == NULL &&
3300 !map->system_map) {
3301 if (use_read_lock && vm_map_lock_upgrade(map)) {
3302 use_read_lock = 0;
3303 goto RetryLookup;
3304 }
3305 use_read_lock = 0;
3306 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3307 atop(entry->end - entry->start));
3308 entry->offset = 0;
3309 }
3310
3311 /*
3312 * Return the object/offset from this entry. If the entry was
3313 * copy-on-write or empty, it has been fixed up.
3314 */
3315
3316 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3317 *object = entry->object.vm_object;
3318
3319 /*
3320 * Return whether this is the only map sharing this data. On
3321 * success we return with a read lock held on the map. On failure
3322 * we return with the map unlocked.
3323 */
3324 *out_prot = prot;
3325done:
3326 if (rv == KERN_SUCCESS) {
3327 if (use_read_lock == 0)
3328 vm_map_lock_downgrade(map);
3329 } else if (use_read_lock) {
3330 vm_map_unlock_read(map);
3331 } else {
3332 vm_map_unlock(map);
3333 }
3334 return (rv);
3335}
3336
3337/*
3338 * vm_map_lookup_done:
3339 *
3340 * Releases locks acquired by a vm_map_lookup
3341 * (according to the handle returned by that lookup).
3342 */
3343
3344void
3345vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3346{
3347 /*
3348 * Unlock the main-level map
3349 */
3350 vm_map_unlock_read(map);
3351 if (count)
3352 vm_map_entry_release(count);
3353}
3354
3355#include "opt_ddb.h"
3356#ifdef DDB
3357#include <sys/kernel.h>
3358
3359#include <ddb/ddb.h>
3360
3361/*
3362 * vm_map_print: [ debug ]
3363 */
3364DB_SHOW_COMMAND(map, vm_map_print)
3365{
3366 static int nlines;
3367 /* XXX convert args. */
3368 vm_map_t map = (vm_map_t)addr;
3369 boolean_t full = have_addr;
3370
3371 vm_map_entry_t entry;
3372
3373 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3374 (void *)map,
3375 (void *)map->pmap, map->nentries, map->timestamp);
3376 nlines++;
3377
3378 if (!full && db_indent)
3379 return;
3380
3381 db_indent += 2;
3382 for (entry = map->header.next; entry != &map->header;
3383 entry = entry->next) {
3384 db_iprintf("map entry %p: start=%p, end=%p\n",
3385 (void *)entry, (void *)entry->start, (void *)entry->end);
3386 nlines++;
3387 {
3388 static char *inheritance_name[4] =
3389 {"share", "copy", "none", "donate_copy"};
3390
3391 db_iprintf(" prot=%x/%x/%s",
3392 entry->protection,
3393 entry->max_protection,
3394 inheritance_name[(int)(unsigned char)entry->inheritance]);
3395 if (entry->wired_count != 0)
3396 db_printf(", wired");
3397 }
3398 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3399 /* XXX no %qd in kernel. Truncate entry->offset. */
3400 db_printf(", share=%p, offset=0x%lx\n",
3401 (void *)entry->object.sub_map,
3402 (long)entry->offset);
3403 nlines++;
3404 if ((entry->prev == &map->header) ||
3405 (entry->prev->object.sub_map !=
3406 entry->object.sub_map)) {
3407 db_indent += 2;
3408 vm_map_print((db_expr_t)(intptr_t)
3409 entry->object.sub_map,
3410 full, 0, (char *)0);
3411 db_indent -= 2;
3412 }
3413 } else {
3414 /* XXX no %qd in kernel. Truncate entry->offset. */
3415 db_printf(", object=%p, offset=0x%lx",
3416 (void *)entry->object.vm_object,
3417 (long)entry->offset);
3418 if (entry->eflags & MAP_ENTRY_COW)
3419 db_printf(", copy (%s)",
3420 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3421 db_printf("\n");
3422 nlines++;
3423
3424 if ((entry->prev == &map->header) ||
3425 (entry->prev->object.vm_object !=
3426 entry->object.vm_object)) {
3427 db_indent += 2;
3428 vm_object_print((db_expr_t)(intptr_t)
3429 entry->object.vm_object,
3430 full, 0, (char *)0);
3431 nlines += 4;
3432 db_indent -= 2;
3433 }
3434 }
3435 }
3436 db_indent -= 2;
3437 if (db_indent == 0)
3438 nlines = 0;
3439}
3440
3441
3442DB_SHOW_COMMAND(procvm, procvm)
3443{
3444 struct proc *p;
3445
3446 if (have_addr) {
3447 p = (struct proc *) addr;
3448 } else {
3449 p = curproc;
3450 }
3451
3452 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3453 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3454 (void *)vmspace_pmap(p->p_vmspace));
3455
3456 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3457}
3458
3459#endif /* DDB */