Merge branch 'vendor/OPENSSL'
[dragonfly.git] / secure / lib / libcrypto / man / engine.3
... / ...
CommitLineData
1.\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05)
2.\"
3.\" Standard preamble:
4.\" ========================================================================
5.de Sh \" Subsection heading
6.br
7.if t .Sp
8.ne 5
9.PP
10\fB\\$1\fR
11.PP
12..
13.de Sp \" Vertical space (when we can't use .PP)
14.if t .sp .5v
15.if n .sp
16..
17.de Vb \" Begin verbatim text
18.ft CW
19.nf
20.ne \\$1
21..
22.de Ve \" End verbatim text
23.ft R
24.fi
25..
26.\" Set up some character translations and predefined strings. \*(-- will
27.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
28.\" double quote, and \*(R" will give a right double quote. \*(C+ will
29.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
30.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
31.\" nothing in troff, for use with C<>.
32.tr \(*W-
33.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
34.ie n \{\
35. ds -- \(*W-
36. ds PI pi
37. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
38. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
39. ds L" ""
40. ds R" ""
41. ds C` ""
42. ds C' ""
43'br\}
44.el\{\
45. ds -- \|\(em\|
46. ds PI \(*p
47. ds L" ``
48. ds R" ''
49'br\}
50.\"
51.\" Escape single quotes in literal strings from groff's Unicode transform.
52.ie \n(.g .ds Aq \(aq
53.el .ds Aq '
54.\"
55.\" If the F register is turned on, we'll generate index entries on stderr for
56.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
57.\" entries marked with X<> in POD. Of course, you'll have to process the
58.\" output yourself in some meaningful fashion.
59.ie \nF \{\
60. de IX
61. tm Index:\\$1\t\\n%\t"\\$2"
62..
63. nr % 0
64. rr F
65.\}
66.el \{\
67. de IX
68..
69.\}
70.\"
71.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
72.\" Fear. Run. Save yourself. No user-serviceable parts.
73. \" fudge factors for nroff and troff
74.if n \{\
75. ds #H 0
76. ds #V .8m
77. ds #F .3m
78. ds #[ \f1
79. ds #] \fP
80.\}
81.if t \{\
82. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
83. ds #V .6m
84. ds #F 0
85. ds #[ \&
86. ds #] \&
87.\}
88. \" simple accents for nroff and troff
89.if n \{\
90. ds ' \&
91. ds ` \&
92. ds ^ \&
93. ds , \&
94. ds ~ ~
95. ds /
96.\}
97.if t \{\
98. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
99. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
100. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
101. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
102. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
103. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
104.\}
105. \" troff and (daisy-wheel) nroff accents
106.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
107.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
108.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
109.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
110.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
111.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
112.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
113.ds ae a\h'-(\w'a'u*4/10)'e
114.ds Ae A\h'-(\w'A'u*4/10)'E
115. \" corrections for vroff
116.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
117.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
118. \" for low resolution devices (crt and lpr)
119.if \n(.H>23 .if \n(.V>19 \
120\{\
121. ds : e
122. ds 8 ss
123. ds o a
124. ds d- d\h'-1'\(ga
125. ds D- D\h'-1'\(hy
126. ds th \o'bp'
127. ds Th \o'LP'
128. ds ae ae
129. ds Ae AE
130.\}
131.rm #[ #] #H #V #F C
132.\" ========================================================================
133.\"
134.IX Title "engine 3"
135.TH engine 3 "2010-02-27" "0.9.8m" "OpenSSL"
136.\" For nroff, turn off justification. Always turn off hyphenation; it makes
137.\" way too many mistakes in technical documents.
138.if n .ad l
139.nh
140.SH "NAME"
141engine \- ENGINE cryptographic module support
142.SH "SYNOPSIS"
143.IX Header "SYNOPSIS"
144.Vb 1
145\& #include <openssl/engine.h>
146\&
147\& ENGINE *ENGINE_get_first(void);
148\& ENGINE *ENGINE_get_last(void);
149\& ENGINE *ENGINE_get_next(ENGINE *e);
150\& ENGINE *ENGINE_get_prev(ENGINE *e);
151\&
152\& int ENGINE_add(ENGINE *e);
153\& int ENGINE_remove(ENGINE *e);
154\&
155\& ENGINE *ENGINE_by_id(const char *id);
156\&
157\& int ENGINE_init(ENGINE *e);
158\& int ENGINE_finish(ENGINE *e);
159\&
160\& void ENGINE_load_openssl(void);
161\& void ENGINE_load_dynamic(void);
162\& #ifndef OPENSSL_NO_STATIC_ENGINE
163\& void ENGINE_load_4758cca(void);
164\& void ENGINE_load_aep(void);
165\& void ENGINE_load_atalla(void);
166\& void ENGINE_load_chil(void);
167\& void ENGINE_load_cswift(void);
168\& void ENGINE_load_gmp(void);
169\& void ENGINE_load_nuron(void);
170\& void ENGINE_load_sureware(void);
171\& void ENGINE_load_ubsec(void);
172\& #endif
173\& void ENGINE_load_cryptodev(void);
174\& void ENGINE_load_builtin_engines(void);
175\&
176\& void ENGINE_cleanup(void);
177\&
178\& ENGINE *ENGINE_get_default_RSA(void);
179\& ENGINE *ENGINE_get_default_DSA(void);
180\& ENGINE *ENGINE_get_default_ECDH(void);
181\& ENGINE *ENGINE_get_default_ECDSA(void);
182\& ENGINE *ENGINE_get_default_DH(void);
183\& ENGINE *ENGINE_get_default_RAND(void);
184\& ENGINE *ENGINE_get_cipher_engine(int nid);
185\& ENGINE *ENGINE_get_digest_engine(int nid);
186\&
187\& int ENGINE_set_default_RSA(ENGINE *e);
188\& int ENGINE_set_default_DSA(ENGINE *e);
189\& int ENGINE_set_default_ECDH(ENGINE *e);
190\& int ENGINE_set_default_ECDSA(ENGINE *e);
191\& int ENGINE_set_default_DH(ENGINE *e);
192\& int ENGINE_set_default_RAND(ENGINE *e);
193\& int ENGINE_set_default_ciphers(ENGINE *e);
194\& int ENGINE_set_default_digests(ENGINE *e);
195\& int ENGINE_set_default_string(ENGINE *e, const char *list);
196\&
197\& int ENGINE_set_default(ENGINE *e, unsigned int flags);
198\&
199\& unsigned int ENGINE_get_table_flags(void);
200\& void ENGINE_set_table_flags(unsigned int flags);
201\&
202\& int ENGINE_register_RSA(ENGINE *e);
203\& void ENGINE_unregister_RSA(ENGINE *e);
204\& void ENGINE_register_all_RSA(void);
205\& int ENGINE_register_DSA(ENGINE *e);
206\& void ENGINE_unregister_DSA(ENGINE *e);
207\& void ENGINE_register_all_DSA(void);
208\& int ENGINE_register_ECDH(ENGINE *e);
209\& void ENGINE_unregister_ECDH(ENGINE *e);
210\& void ENGINE_register_all_ECDH(void);
211\& int ENGINE_register_ECDSA(ENGINE *e);
212\& void ENGINE_unregister_ECDSA(ENGINE *e);
213\& void ENGINE_register_all_ECDSA(void);
214\& int ENGINE_register_DH(ENGINE *e);
215\& void ENGINE_unregister_DH(ENGINE *e);
216\& void ENGINE_register_all_DH(void);
217\& int ENGINE_register_RAND(ENGINE *e);
218\& void ENGINE_unregister_RAND(ENGINE *e);
219\& void ENGINE_register_all_RAND(void);
220\& int ENGINE_register_STORE(ENGINE *e);
221\& void ENGINE_unregister_STORE(ENGINE *e);
222\& void ENGINE_register_all_STORE(void);
223\& int ENGINE_register_ciphers(ENGINE *e);
224\& void ENGINE_unregister_ciphers(ENGINE *e);
225\& void ENGINE_register_all_ciphers(void);
226\& int ENGINE_register_digests(ENGINE *e);
227\& void ENGINE_unregister_digests(ENGINE *e);
228\& void ENGINE_register_all_digests(void);
229\& int ENGINE_register_complete(ENGINE *e);
230\& int ENGINE_register_all_complete(void);
231\&
232\& int ENGINE_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void));
233\& int ENGINE_cmd_is_executable(ENGINE *e, int cmd);
234\& int ENGINE_ctrl_cmd(ENGINE *e, const char *cmd_name,
235\& long i, void *p, void (*f)(void), int cmd_optional);
236\& int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg,
237\& int cmd_optional);
238\&
239\& int ENGINE_set_ex_data(ENGINE *e, int idx, void *arg);
240\& void *ENGINE_get_ex_data(const ENGINE *e, int idx);
241\&
242\& int ENGINE_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
243\& CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func);
244\&
245\& ENGINE *ENGINE_new(void);
246\& int ENGINE_free(ENGINE *e);
247\& int ENGINE_up_ref(ENGINE *e);
248\&
249\& int ENGINE_set_id(ENGINE *e, const char *id);
250\& int ENGINE_set_name(ENGINE *e, const char *name);
251\& int ENGINE_set_RSA(ENGINE *e, const RSA_METHOD *rsa_meth);
252\& int ENGINE_set_DSA(ENGINE *e, const DSA_METHOD *dsa_meth);
253\& int ENGINE_set_ECDH(ENGINE *e, const ECDH_METHOD *dh_meth);
254\& int ENGINE_set_ECDSA(ENGINE *e, const ECDSA_METHOD *dh_meth);
255\& int ENGINE_set_DH(ENGINE *e, const DH_METHOD *dh_meth);
256\& int ENGINE_set_RAND(ENGINE *e, const RAND_METHOD *rand_meth);
257\& int ENGINE_set_STORE(ENGINE *e, const STORE_METHOD *rand_meth);
258\& int ENGINE_set_destroy_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR destroy_f);
259\& int ENGINE_set_init_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR init_f);
260\& int ENGINE_set_finish_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR finish_f);
261\& int ENGINE_set_ctrl_function(ENGINE *e, ENGINE_CTRL_FUNC_PTR ctrl_f);
262\& int ENGINE_set_load_privkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpriv_f);
263\& int ENGINE_set_load_pubkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpub_f);
264\& int ENGINE_set_ciphers(ENGINE *e, ENGINE_CIPHERS_PTR f);
265\& int ENGINE_set_digests(ENGINE *e, ENGINE_DIGESTS_PTR f);
266\& int ENGINE_set_flags(ENGINE *e, int flags);
267\& int ENGINE_set_cmd_defns(ENGINE *e, const ENGINE_CMD_DEFN *defns);
268\&
269\& const char *ENGINE_get_id(const ENGINE *e);
270\& const char *ENGINE_get_name(const ENGINE *e);
271\& const RSA_METHOD *ENGINE_get_RSA(const ENGINE *e);
272\& const DSA_METHOD *ENGINE_get_DSA(const ENGINE *e);
273\& const ECDH_METHOD *ENGINE_get_ECDH(const ENGINE *e);
274\& const ECDSA_METHOD *ENGINE_get_ECDSA(const ENGINE *e);
275\& const DH_METHOD *ENGINE_get_DH(const ENGINE *e);
276\& const RAND_METHOD *ENGINE_get_RAND(const ENGINE *e);
277\& const STORE_METHOD *ENGINE_get_STORE(const ENGINE *e);
278\& ENGINE_GEN_INT_FUNC_PTR ENGINE_get_destroy_function(const ENGINE *e);
279\& ENGINE_GEN_INT_FUNC_PTR ENGINE_get_init_function(const ENGINE *e);
280\& ENGINE_GEN_INT_FUNC_PTR ENGINE_get_finish_function(const ENGINE *e);
281\& ENGINE_CTRL_FUNC_PTR ENGINE_get_ctrl_function(const ENGINE *e);
282\& ENGINE_LOAD_KEY_PTR ENGINE_get_load_privkey_function(const ENGINE *e);
283\& ENGINE_LOAD_KEY_PTR ENGINE_get_load_pubkey_function(const ENGINE *e);
284\& ENGINE_CIPHERS_PTR ENGINE_get_ciphers(const ENGINE *e);
285\& ENGINE_DIGESTS_PTR ENGINE_get_digests(const ENGINE *e);
286\& const EVP_CIPHER *ENGINE_get_cipher(ENGINE *e, int nid);
287\& const EVP_MD *ENGINE_get_digest(ENGINE *e, int nid);
288\& int ENGINE_get_flags(const ENGINE *e);
289\& const ENGINE_CMD_DEFN *ENGINE_get_cmd_defns(const ENGINE *e);
290\&
291\& EVP_PKEY *ENGINE_load_private_key(ENGINE *e, const char *key_id,
292\& UI_METHOD *ui_method, void *callback_data);
293\& EVP_PKEY *ENGINE_load_public_key(ENGINE *e, const char *key_id,
294\& UI_METHOD *ui_method, void *callback_data);
295\&
296\& void ENGINE_add_conf_module(void);
297.Ve
298.SH "DESCRIPTION"
299.IX Header "DESCRIPTION"
300These functions create, manipulate, and use cryptographic modules in the
301form of \fB\s-1ENGINE\s0\fR objects. These objects act as containers for
302implementations of cryptographic algorithms, and support a
303reference-counted mechanism to allow them to be dynamically loaded in and
304out of the running application.
305.PP
306The cryptographic functionality that can be provided by an \fB\s-1ENGINE\s0\fR
307implementation includes the following abstractions;
308.PP
309.Vb 6
310\& RSA_METHOD \- for providing alternative RSA implementations
311\& DSA_METHOD, DH_METHOD, RAND_METHOD, ECDH_METHOD, ECDSA_METHOD,
312\& STORE_METHOD \- similarly for other OpenSSL APIs
313\& EVP_CIPHER \- potentially multiple cipher algorithms (indexed by \*(Aqnid\*(Aq)
314\& EVP_DIGEST \- potentially multiple hash algorithms (indexed by \*(Aqnid\*(Aq)
315\& key\-loading \- loading public and/or private EVP_PKEY keys
316.Ve
317.Sh "Reference counting and handles"
318.IX Subsection "Reference counting and handles"
319Due to the modular nature of the \s-1ENGINE\s0 \s-1API\s0, pointers to ENGINEs need to be
320treated as handles \- ie. not only as pointers, but also as references to
321the underlying \s-1ENGINE\s0 object. Ie. one should obtain a new reference when
322making copies of an \s-1ENGINE\s0 pointer if the copies will be used (and
323released) independently.
324.PP
325\&\s-1ENGINE\s0 objects have two levels of reference-counting to match the way in
326which the objects are used. At the most basic level, each \s-1ENGINE\s0 pointer is
327inherently a \fBstructural\fR reference \- a structural reference is required
328to use the pointer value at all, as this kind of reference is a guarantee
329that the structure can not be deallocated until the reference is released.
330.PP
331However, a structural reference provides no guarantee that the \s-1ENGINE\s0 is
332initiliased and able to use any of its cryptographic
333implementations. Indeed it's quite possible that most ENGINEs will not
334initialise at all in typical environments, as ENGINEs are typically used to
335support specialised hardware. To use an \s-1ENGINE\s0's functionality, you need a
336\&\fBfunctional\fR reference. This kind of reference can be considered a
337specialised form of structural reference, because each functional reference
338implicitly contains a structural reference as well \- however to avoid
339difficult-to-find programming bugs, it is recommended to treat the two
340kinds of reference independently. If you have a functional reference to an
341\&\s-1ENGINE\s0, you have a guarantee that the \s-1ENGINE\s0 has been initialised ready to
342perform cryptographic operations and will remain uninitialised
343until after you have released your reference.
344.PP
345\&\fIStructural references\fR
346.PP
347This basic type of reference is used for instantiating new ENGINEs,
348iterating across OpenSSL's internal linked-list of loaded
349ENGINEs, reading information about an \s-1ENGINE\s0, etc. Essentially a structural
350reference is sufficient if you only need to query or manipulate the data of
351an \s-1ENGINE\s0 implementation rather than use its functionality.
352.PP
353The \fIENGINE_new()\fR function returns a structural reference to a new (empty)
354\&\s-1ENGINE\s0 object. There are other \s-1ENGINE\s0 \s-1API\s0 functions that return structural
355references such as; \fIENGINE_by_id()\fR, \fIENGINE_get_first()\fR, \fIENGINE_get_last()\fR,
356\&\fIENGINE_get_next()\fR, \fIENGINE_get_prev()\fR. All structural references should be
357released by a corresponding to call to the \fIENGINE_free()\fR function \- the
358\&\s-1ENGINE\s0 object itself will only actually be cleaned up and deallocated when
359the last structural reference is released.
360.PP
361It should also be noted that many \s-1ENGINE\s0 \s-1API\s0 function calls that accept a
362structural reference will internally obtain another reference \- typically
363this happens whenever the supplied \s-1ENGINE\s0 will be needed by OpenSSL after
364the function has returned. Eg. the function to add a new \s-1ENGINE\s0 to
365OpenSSL's internal list is \fIENGINE_add()\fR \- if this function returns success,
366then OpenSSL will have stored a new structural reference internally so the
367caller is still responsible for freeing their own reference with
368\&\fIENGINE_free()\fR when they are finished with it. In a similar way, some
369functions will automatically release the structural reference passed to it
370if part of the function's job is to do so. Eg. the \fIENGINE_get_next()\fR and
371\&\fIENGINE_get_prev()\fR functions are used for iterating across the internal
372\&\s-1ENGINE\s0 list \- they will return a new structural reference to the next (or
373previous) \s-1ENGINE\s0 in the list or \s-1NULL\s0 if at the end (or beginning) of the
374list, but in either case the structural reference passed to the function is
375released on behalf of the caller.
376.PP
377To clarify a particular function's handling of references, one should
378always consult that function's documentation \*(L"man\*(R" page, or failing that
379the openssl/engine.h header file includes some hints.
380.PP
381\&\fIFunctional references\fR
382.PP
383As mentioned, functional references exist when the cryptographic
384functionality of an \s-1ENGINE\s0 is required to be available. A functional
385reference can be obtained in one of two ways; from an existing structural
386reference to the required \s-1ENGINE\s0, or by asking OpenSSL for the default
387operational \s-1ENGINE\s0 for a given cryptographic purpose.
388.PP
389To obtain a functional reference from an existing structural reference,
390call the \fIENGINE_init()\fR function. This returns zero if the \s-1ENGINE\s0 was not
391already operational and couldn't be successfully initialised (eg. lack of
392system drivers, no special hardware attached, etc), otherwise it will
393return non-zero to indicate that the \s-1ENGINE\s0 is now operational and will
394have allocated a new \fBfunctional\fR reference to the \s-1ENGINE\s0. All functional
395references are released by calling \fIENGINE_finish()\fR (which removes the
396implicit structural reference as well).
397.PP
398The second way to get a functional reference is by asking OpenSSL for a
399default implementation for a given task, eg. by \fIENGINE_get_default_RSA()\fR,
400\&\fIENGINE_get_default_cipher_engine()\fR, etc. These are discussed in the next
401section, though they are not usually required by application programmers as
402they are used automatically when creating and using the relevant
403algorithm-specific types in OpenSSL, such as \s-1RSA\s0, \s-1DSA\s0, \s-1EVP_CIPHER_CTX\s0, etc.
404.Sh "Default implementations"
405.IX Subsection "Default implementations"
406For each supported abstraction, the \s-1ENGINE\s0 code maintains an internal table
407of state to control which implementations are available for a given
408abstraction and which should be used by default. These implementations are
409registered in the tables and indexed by an 'nid' value, because
410abstractions like \s-1EVP_CIPHER\s0 and \s-1EVP_DIGEST\s0 support many distinct
411algorithms and modes, and ENGINEs can support arbitrarily many of them.
412In the case of other abstractions like \s-1RSA\s0, \s-1DSA\s0, etc, there is only one
413\&\*(L"algorithm\*(R" so all implementations implicitly register using the same 'nid'
414index.
415.PP
416When a default \s-1ENGINE\s0 is requested for a given abstraction/algorithm/mode, (eg.
417when calling RSA_new_method(\s-1NULL\s0)), a \*(L"get_default\*(R" call will be made to the
418\&\s-1ENGINE\s0 subsystem to process the corresponding state table and return a
419functional reference to an initialised \s-1ENGINE\s0 whose implementation should be
420used. If no \s-1ENGINE\s0 should (or can) be used, it will return \s-1NULL\s0 and the caller
421will operate with a \s-1NULL\s0 \s-1ENGINE\s0 handle \- this usually equates to using the
422conventional software implementation. In the latter case, OpenSSL will from
423then on behave the way it used to before the \s-1ENGINE\s0 \s-1API\s0 existed.
424.PP
425Each state table has a flag to note whether it has processed this
426\&\*(L"get_default\*(R" query since the table was last modified, because to process
427this question it must iterate across all the registered ENGINEs in the
428table trying to initialise each of them in turn, in case one of them is
429operational. If it returns a functional reference to an \s-1ENGINE\s0, it will
430also cache another reference to speed up processing future queries (without
431needing to iterate across the table). Likewise, it will cache a \s-1NULL\s0
432response if no \s-1ENGINE\s0 was available so that future queries won't repeat the
433same iteration unless the state table changes. This behaviour can also be
434changed; if the \s-1ENGINE_TABLE_FLAG_NOINIT\s0 flag is set (using
435\&\fIENGINE_set_table_flags()\fR), no attempted initialisations will take place,
436instead the only way for the state table to return a non-NULL \s-1ENGINE\s0 to the
437\&\*(L"get_default\*(R" query will be if one is expressly set in the table. Eg.
438\&\fIENGINE_set_default_RSA()\fR does the same job as \fIENGINE_register_RSA()\fR except
439that it also sets the state table's cached response for the \*(L"get_default\*(R"
440query. In the case of abstractions like \s-1EVP_CIPHER\s0, where implementations are
441indexed by 'nid', these flags and cached-responses are distinct for each 'nid'
442value.
443.Sh "Application requirements"
444.IX Subsection "Application requirements"
445This section will explain the basic things an application programmer should
446support to make the most useful elements of the \s-1ENGINE\s0 functionality
447available to the user. The first thing to consider is whether the
448programmer wishes to make alternative \s-1ENGINE\s0 modules available to the
449application and user. OpenSSL maintains an internal linked list of
450\&\*(L"visible\*(R" ENGINEs from which it has to operate \- at start-up, this list is
451empty and in fact if an application does not call any \s-1ENGINE\s0 \s-1API\s0 calls and
452it uses static linking against openssl, then the resulting application
453binary will not contain any alternative \s-1ENGINE\s0 code at all. So the first
454consideration is whether any/all available \s-1ENGINE\s0 implementations should be
455made visible to OpenSSL \- this is controlled by calling the various \*(L"load\*(R"
456functions, eg.
457.PP
458.Vb 9
459\& /* Make the "dynamic" ENGINE available */
460\& void ENGINE_load_dynamic(void);
461\& /* Make the CryptoSwift hardware acceleration support available */
462\& void ENGINE_load_cswift(void);
463\& /* Make support for nCipher\*(Aqs "CHIL" hardware available */
464\& void ENGINE_load_chil(void);
465\& ...
466\& /* Make ALL ENGINE implementations bundled with OpenSSL available */
467\& void ENGINE_load_builtin_engines(void);
468.Ve
469.PP
470Having called any of these functions, \s-1ENGINE\s0 objects would have been
471dynamically allocated and populated with these implementations and linked
472into OpenSSL's internal linked list. At this point it is important to
473mention an important \s-1API\s0 function;
474.PP
475.Vb 1
476\& void ENGINE_cleanup(void);
477.Ve
478.PP
479If no \s-1ENGINE\s0 \s-1API\s0 functions are called at all in an application, then there
480are no inherent memory leaks to worry about from the \s-1ENGINE\s0 functionality,
481however if any ENGINEs are loaded, even if they are never registered or
482used, it is necessary to use the \fIENGINE_cleanup()\fR function to
483correspondingly cleanup before program exit, if the caller wishes to avoid
484memory leaks. This mechanism uses an internal callback registration table
485so that any \s-1ENGINE\s0 \s-1API\s0 functionality that knows it requires cleanup can
486register its cleanup details to be called during \fIENGINE_cleanup()\fR. This
487approach allows \fIENGINE_cleanup()\fR to clean up after any \s-1ENGINE\s0 functionality
488at all that your program uses, yet doesn't automatically create linker
489dependencies to all possible \s-1ENGINE\s0 functionality \- only the cleanup
490callbacks required by the functionality you do use will be required by the
491linker.
492.PP
493The fact that ENGINEs are made visible to OpenSSL (and thus are linked into
494the program and loaded into memory at run-time) does not mean they are
495\&\*(L"registered\*(R" or called into use by OpenSSL automatically \- that behaviour
496is something for the application to control. Some applications
497will want to allow the user to specify exactly which \s-1ENGINE\s0 they want used
498if any is to be used at all. Others may prefer to load all support and have
499OpenSSL automatically use at run-time any \s-1ENGINE\s0 that is able to
500successfully initialise \- ie. to assume that this corresponds to
501acceleration hardware attached to the machine or some such thing. There are
502probably numerous other ways in which applications may prefer to handle
503things, so we will simply illustrate the consequences as they apply to a
504couple of simple cases and leave developers to consider these and the
505source code to openssl's builtin utilities as guides.
506.PP
507\&\fIUsing a specific \s-1ENGINE\s0 implementation\fR
508.PP
509Here we'll assume an application has been configured by its user or admin
510to want to use the \*(L"\s-1ACME\s0\*(R" \s-1ENGINE\s0 if it is available in the version of
511OpenSSL the application was compiled with. If it is available, it should be
512used by default for all \s-1RSA\s0, \s-1DSA\s0, and symmetric cipher operation, otherwise
513OpenSSL should use its builtin software as per usual. The following code
514illustrates how to approach this;
515.PP
516.Vb 10
517\& ENGINE *e;
518\& const char *engine_id = "ACME";
519\& ENGINE_load_builtin_engines();
520\& e = ENGINE_by_id(engine_id);
521\& if(!e)
522\& /* the engine isn\*(Aqt available */
523\& return;
524\& if(!ENGINE_init(e)) {
525\& /* the engine couldn\*(Aqt initialise, release \*(Aqe\*(Aq */
526\& ENGINE_free(e);
527\& return;
528\& }
529\& if(!ENGINE_set_default_RSA(e))
530\& /* This should only happen when \*(Aqe\*(Aq can\*(Aqt initialise, but the previous
531\& * statement suggests it did. */
532\& abort();
533\& ENGINE_set_default_DSA(e);
534\& ENGINE_set_default_ciphers(e);
535\& /* Release the functional reference from ENGINE_init() */
536\& ENGINE_finish(e);
537\& /* Release the structural reference from ENGINE_by_id() */
538\& ENGINE_free(e);
539.Ve
540.PP
541\&\fIAutomatically using builtin \s-1ENGINE\s0 implementations\fR
542.PP
543Here we'll assume we want to load and register all \s-1ENGINE\s0 implementations
544bundled with OpenSSL, such that for any cryptographic algorithm required by
545OpenSSL \- if there is an \s-1ENGINE\s0 that implements it and can be initialise,
546it should be used. The following code illustrates how this can work;
547.PP
548.Vb 4
549\& /* Load all bundled ENGINEs into memory and make them visible */
550\& ENGINE_load_builtin_engines();
551\& /* Register all of them for every algorithm they collectively implement */
552\& ENGINE_register_all_complete();
553.Ve
554.PP
555That's all that's required. Eg. the next time OpenSSL tries to set up an
556\&\s-1RSA\s0 key, any bundled ENGINEs that implement \s-1RSA_METHOD\s0 will be passed to
557\&\fIENGINE_init()\fR and if any of those succeed, that \s-1ENGINE\s0 will be set as the
558default for \s-1RSA\s0 use from then on.
559.Sh "Advanced configuration support"
560.IX Subsection "Advanced configuration support"
561There is a mechanism supported by the \s-1ENGINE\s0 framework that allows each
562\&\s-1ENGINE\s0 implementation to define an arbitrary set of configuration
563\&\*(L"commands\*(R" and expose them to OpenSSL and any applications based on
564OpenSSL. This mechanism is entirely based on the use of name-value pairs
565and assumes \s-1ASCII\s0 input (no unicode or \s-1UTF\s0 for now!), so it is ideal if
566applications want to provide a transparent way for users to provide
567arbitrary configuration \*(L"directives\*(R" directly to such ENGINEs. It is also
568possible for the application to dynamically interrogate the loaded \s-1ENGINE\s0
569implementations for the names, descriptions, and input flags of their
570available \*(L"control commands\*(R", providing a more flexible configuration
571scheme. However, if the user is expected to know which \s-1ENGINE\s0 device he/she
572is using (in the case of specialised hardware, this goes without saying)
573then applications may not need to concern themselves with discovering the
574supported control commands and simply prefer to pass settings into ENGINEs
575exactly as they are provided by the user.
576.PP
577Before illustrating how control commands work, it is worth mentioning what
578they are typically used for. Broadly speaking there are two uses for
579control commands; the first is to provide the necessary details to the
580implementation (which may know nothing at all specific to the host system)
581so that it can be initialised for use. This could include the path to any
582driver or config files it needs to load, required network addresses,
583smart-card identifiers, passwords to initialise protected devices,
584logging information, etc etc. This class of commands typically needs to be
585passed to an \s-1ENGINE\s0 \fBbefore\fR attempting to initialise it, ie. before
586calling \fIENGINE_init()\fR. The other class of commands consist of settings or
587operations that tweak certain behaviour or cause certain operations to take
588place, and these commands may work either before or after \fIENGINE_init()\fR, or
589in some cases both. \s-1ENGINE\s0 implementations should provide indications of
590this in the descriptions attached to builtin control commands and/or in
591external product documentation.
592.PP
593\&\fIIssuing control commands to an \s-1ENGINE\s0\fR
594.PP
595Let's illustrate by example; a function for which the caller supplies the
596name of the \s-1ENGINE\s0 it wishes to use, a table of string-pairs for use before
597initialisation, and another table for use after initialisation. Note that
598the string-pairs used for control commands consist of a command \*(L"name\*(R"
599followed by the command \*(L"parameter\*(R" \- the parameter could be \s-1NULL\s0 in some
600cases but the name can not. This function should initialise the \s-1ENGINE\s0
601(issuing the \*(L"pre\*(R" commands beforehand and the \*(L"post\*(R" commands afterwards)
602and set it as the default for everything except \s-1RAND\s0 and then return a
603boolean success or failure.
604.PP
605.Vb 10
606\& int generic_load_engine_fn(const char *engine_id,
607\& const char **pre_cmds, int pre_num,
608\& const char **post_cmds, int post_num)
609\& {
610\& ENGINE *e = ENGINE_by_id(engine_id);
611\& if(!e) return 0;
612\& while(pre_num\-\-) {
613\& if(!ENGINE_ctrl_cmd_string(e, pre_cmds[0], pre_cmds[1], 0)) {
614\& fprintf(stderr, "Failed command (%s \- %s:%s)\en", engine_id,
615\& pre_cmds[0], pre_cmds[1] ? pre_cmds[1] : "(NULL)");
616\& ENGINE_free(e);
617\& return 0;
618\& }
619\& pre_cmds += 2;
620\& }
621\& if(!ENGINE_init(e)) {
622\& fprintf(stderr, "Failed initialisation\en");
623\& ENGINE_free(e);
624\& return 0;
625\& }
626\& /* ENGINE_init() returned a functional reference, so free the structural
627\& * reference from ENGINE_by_id(). */
628\& ENGINE_free(e);
629\& while(post_num\-\-) {
630\& if(!ENGINE_ctrl_cmd_string(e, post_cmds[0], post_cmds[1], 0)) {
631\& fprintf(stderr, "Failed command (%s \- %s:%s)\en", engine_id,
632\& post_cmds[0], post_cmds[1] ? post_cmds[1] : "(NULL)");
633\& ENGINE_finish(e);
634\& return 0;
635\& }
636\& post_cmds += 2;
637\& }
638\& ENGINE_set_default(e, ENGINE_METHOD_ALL & ~ENGINE_METHOD_RAND);
639\& /* Success */
640\& return 1;
641\& }
642.Ve
643.PP
644Note that \fIENGINE_ctrl_cmd_string()\fR accepts a boolean argument that can
645relax the semantics of the function \- if set non-zero it will only return
646failure if the \s-1ENGINE\s0 supported the given command name but failed while
647executing it, if the \s-1ENGINE\s0 doesn't support the command name it will simply
648return success without doing anything. In this case we assume the user is
649only supplying commands specific to the given \s-1ENGINE\s0 so we set this to
650\&\s-1FALSE\s0.
651.PP
652\&\fIDiscovering supported control commands\fR
653.PP
654It is possible to discover at run-time the names, numerical-ids, descriptions
655and input parameters of the control commands supported by an \s-1ENGINE\s0 using a
656structural reference. Note that some control commands are defined by OpenSSL
657itself and it will intercept and handle these control commands on behalf of the
658\&\s-1ENGINE\s0, ie. the \s-1ENGINE\s0's \fIctrl()\fR handler is not used for the control command.
659openssl/engine.h defines an index, \s-1ENGINE_CMD_BASE\s0, that all control commands
660implemented by ENGINEs should be numbered from. Any command value lower than
661this symbol is considered a \*(L"generic\*(R" command is handled directly by the
662OpenSSL core routines.
663.PP
664It is using these \*(L"core\*(R" control commands that one can discover the the control
665commands implemented by a given \s-1ENGINE\s0, specifically the commands;
666.PP
667.Vb 9
668\& #define ENGINE_HAS_CTRL_FUNCTION 10
669\& #define ENGINE_CTRL_GET_FIRST_CMD_TYPE 11
670\& #define ENGINE_CTRL_GET_NEXT_CMD_TYPE 12
671\& #define ENGINE_CTRL_GET_CMD_FROM_NAME 13
672\& #define ENGINE_CTRL_GET_NAME_LEN_FROM_CMD 14
673\& #define ENGINE_CTRL_GET_NAME_FROM_CMD 15
674\& #define ENGINE_CTRL_GET_DESC_LEN_FROM_CMD 16
675\& #define ENGINE_CTRL_GET_DESC_FROM_CMD 17
676\& #define ENGINE_CTRL_GET_CMD_FLAGS 18
677.Ve
678.PP
679Whilst these commands are automatically processed by the OpenSSL framework code,
680they use various properties exposed by each \s-1ENGINE\s0 to process these
681queries. An \s-1ENGINE\s0 has 3 properties it exposes that can affect how this behaves;
682it can supply a \fIctrl()\fR handler, it can specify \s-1ENGINE_FLAGS_MANUAL_CMD_CTRL\s0 in
683the \s-1ENGINE\s0's flags, and it can expose an array of control command descriptions.
684If an \s-1ENGINE\s0 specifies the \s-1ENGINE_FLAGS_MANUAL_CMD_CTRL\s0 flag, then it will
685simply pass all these \*(L"core\*(R" control commands directly to the \s-1ENGINE\s0's \fIctrl()\fR
686handler (and thus, it must have supplied one), so it is up to the \s-1ENGINE\s0 to
687reply to these \*(L"discovery\*(R" commands itself. If that flag is not set, then the
688OpenSSL framework code will work with the following rules;
689.PP
690.Vb 9
691\& if no ctrl() handler supplied;
692\& ENGINE_HAS_CTRL_FUNCTION returns FALSE (zero),
693\& all other commands fail.
694\& if a ctrl() handler was supplied but no array of control commands;
695\& ENGINE_HAS_CTRL_FUNCTION returns TRUE,
696\& all other commands fail.
697\& if a ctrl() handler and array of control commands was supplied;
698\& ENGINE_HAS_CTRL_FUNCTION returns TRUE,
699\& all other commands proceed processing ...
700.Ve
701.PP
702If the \s-1ENGINE\s0's array of control commands is empty then all other commands will
703fail, otherwise; \s-1ENGINE_CTRL_GET_FIRST_CMD_TYPE\s0 returns the identifier of
704the first command supported by the \s-1ENGINE\s0, \s-1ENGINE_GET_NEXT_CMD_TYPE\s0 takes the
705identifier of a command supported by the \s-1ENGINE\s0 and returns the next command
706identifier or fails if there are no more, \s-1ENGINE_CMD_FROM_NAME\s0 takes a string
707name for a command and returns the corresponding identifier or fails if no such
708command name exists, and the remaining commands take a command identifier and
709return properties of the corresponding commands. All except
710\&\s-1ENGINE_CTRL_GET_FLAGS\s0 return the string length of a command name or description,
711or populate a supplied character buffer with a copy of the command name or
712description. \s-1ENGINE_CTRL_GET_FLAGS\s0 returns a bitwise-OR'd mask of the following
713possible values;
714.PP
715.Vb 4
716\& #define ENGINE_CMD_FLAG_NUMERIC (unsigned int)0x0001
717\& #define ENGINE_CMD_FLAG_STRING (unsigned int)0x0002
718\& #define ENGINE_CMD_FLAG_NO_INPUT (unsigned int)0x0004
719\& #define ENGINE_CMD_FLAG_INTERNAL (unsigned int)0x0008
720.Ve
721.PP
722If the \s-1ENGINE_CMD_FLAG_INTERNAL\s0 flag is set, then any other flags are purely
723informational to the caller \- this flag will prevent the command being usable
724for any higher-level \s-1ENGINE\s0 functions such as \fIENGINE_ctrl_cmd_string()\fR.
725\&\*(L"\s-1INTERNAL\s0\*(R" commands are not intended to be exposed to text-based configuration
726by applications, administrations, users, etc. These can support arbitrary
727operations via \fIENGINE_ctrl()\fR, including passing to and/or from the control
728commands data of any arbitrary type. These commands are supported in the
729discovery mechanisms simply to allow applications determinie if an \s-1ENGINE\s0
730supports certain specific commands it might want to use (eg. application \*(L"foo\*(R"
731might query various ENGINEs to see if they implement \*(L"\s-1FOO_GET_VENDOR_LOGO_GIF\s0\*(R" \-
732and \s-1ENGINE\s0 could therefore decide whether or not to support this \*(L"foo\*(R"\-specific
733extension).
734.Sh "Future developments"
735.IX Subsection "Future developments"
736The \s-1ENGINE\s0 \s-1API\s0 and internal architecture is currently being reviewed. Slated for
737possible release in 0.9.8 is support for transparent loading of \*(L"dynamic\*(R"
738ENGINEs (built as self-contained shared-libraries). This would allow \s-1ENGINE\s0
739implementations to be provided independently of OpenSSL libraries and/or
740OpenSSL-based applications, and would also remove any requirement for
741applications to explicitly use the \*(L"dynamic\*(R" \s-1ENGINE\s0 to bind to shared-library
742implementations.
743.SH "SEE ALSO"
744.IX Header "SEE ALSO"
745\&\fIrsa\fR\|(3), \fIdsa\fR\|(3), \fIdh\fR\|(3), \fIrand\fR\|(3)