kernel - swapcache - Fix snocache and cache flags propagation, fix PG_NOTMETA
[dragonfly.git] / sys / kern / vfs_cache.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2003,2004,2009 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * Copyright (c) 1989, 1993, 1995
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * Poul-Henning Kamp of the FreeBSD Project.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the University of
51 * California, Berkeley and its contributors.
52 * 4. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 */
68
69#include <sys/param.h>
70#include <sys/systm.h>
71#include <sys/kernel.h>
72#include <sys/sysctl.h>
73#include <sys/mount.h>
74#include <sys/vnode.h>
75#include <sys/malloc.h>
76#include <sys/sysproto.h>
77#include <sys/spinlock.h>
78#include <sys/proc.h>
79#include <sys/namei.h>
80#include <sys/nlookup.h>
81#include <sys/filedesc.h>
82#include <sys/fnv_hash.h>
83#include <sys/globaldata.h>
84#include <sys/kern_syscall.h>
85#include <sys/dirent.h>
86#include <ddb/ddb.h>
87
88#include <sys/sysref2.h>
89#include <sys/spinlock2.h>
90#include <sys/mplock2.h>
91
92#define MAX_RECURSION_DEPTH 64
93
94/*
95 * Random lookups in the cache are accomplished with a hash table using
96 * a hash key of (nc_src_vp, name). Each hash chain has its own spin lock.
97 *
98 * Negative entries may exist and correspond to resolved namecache
99 * structures where nc_vp is NULL. In a negative entry, NCF_WHITEOUT
100 * will be set if the entry corresponds to a whited-out directory entry
101 * (verses simply not finding the entry at all). ncneglist is locked
102 * with a global spinlock (ncspin).
103 *
104 * MPSAFE RULES:
105 *
106 * (1) A ncp must be referenced before it can be locked.
107 *
108 * (2) A ncp must be locked in order to modify it.
109 *
110 * (3) ncp locks are always ordered child -> parent. That may seem
111 * backwards but forward scans use the hash table and thus can hold
112 * the parent unlocked when traversing downward.
113 *
114 * This allows insert/rename/delete/dot-dot and other operations
115 * to use ncp->nc_parent links.
116 *
117 * This also prevents a locked up e.g. NFS node from creating a
118 * chain reaction all the way back to the root vnode / namecache.
119 *
120 * (4) parent linkages require both the parent and child to be locked.
121 */
122
123/*
124 * Structures associated with name cacheing.
125 */
126#define NCHHASH(hash) (&nchashtbl[(hash) & nchash])
127#define MINNEG 1024
128
129MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
130
131LIST_HEAD(nchash_list, namecache);
132
133struct nchash_head {
134 struct nchash_list list;
135 struct spinlock spin;
136};
137
138static struct nchash_head *nchashtbl;
139static struct namecache_list ncneglist;
140static struct spinlock ncspin;
141
142/*
143 * ncvp_debug - debug cache_fromvp(). This is used by the NFS server
144 * to create the namecache infrastructure leading to a dangling vnode.
145 *
146 * 0 Only errors are reported
147 * 1 Successes are reported
148 * 2 Successes + the whole directory scan is reported
149 * 3 Force the directory scan code run as if the parent vnode did not
150 * have a namecache record, even if it does have one.
151 */
152static int ncvp_debug;
153SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0, "");
154
155static u_long nchash; /* size of hash table */
156SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, "");
157
158static int ncnegfactor = 16; /* ratio of negative entries */
159SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0, "");
160
161static int nclockwarn; /* warn on locked entries in ticks */
162SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0, "");
163
164static int numneg; /* number of cache entries allocated */
165SYSCTL_INT(_debug, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0, "");
166
167static int numdefered; /* number of cache entries allocated */
168SYSCTL_INT(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0, "");
169
170static int numcache; /* number of cache entries allocated */
171SYSCTL_INT(_debug, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0, "");
172
173SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode), "");
174SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache), "");
175
176int cache_mpsafe;
177SYSCTL_INT(_vfs, OID_AUTO, cache_mpsafe, CTLFLAG_RW, &cache_mpsafe, 0, "");
178
179static int cache_resolve_mp(struct mount *mp);
180static struct vnode *cache_dvpref(struct namecache *ncp);
181static void _cache_lock(struct namecache *ncp);
182static void _cache_setunresolved(struct namecache *ncp);
183static void _cache_cleanneg(int count);
184static void _cache_cleandefered(void);
185
186/*
187 * The new name cache statistics
188 */
189SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
190#define STATNODE(mode, name, var) \
191 SYSCTL_ULONG(_vfs_cache, OID_AUTO, name, mode, var, 0, "");
192STATNODE(CTLFLAG_RD, numneg, &numneg);
193STATNODE(CTLFLAG_RD, numcache, &numcache);
194static u_long numcalls; STATNODE(CTLFLAG_RD, numcalls, &numcalls);
195static u_long dothits; STATNODE(CTLFLAG_RD, dothits, &dothits);
196static u_long dotdothits; STATNODE(CTLFLAG_RD, dotdothits, &dotdothits);
197static u_long numchecks; STATNODE(CTLFLAG_RD, numchecks, &numchecks);
198static u_long nummiss; STATNODE(CTLFLAG_RD, nummiss, &nummiss);
199static u_long nummisszap; STATNODE(CTLFLAG_RD, nummisszap, &nummisszap);
200static u_long numposzaps; STATNODE(CTLFLAG_RD, numposzaps, &numposzaps);
201static u_long numposhits; STATNODE(CTLFLAG_RD, numposhits, &numposhits);
202static u_long numnegzaps; STATNODE(CTLFLAG_RD, numnegzaps, &numnegzaps);
203static u_long numneghits; STATNODE(CTLFLAG_RD, numneghits, &numneghits);
204
205struct nchstats nchstats[SMP_MAXCPU];
206/*
207 * Export VFS cache effectiveness statistics to user-land.
208 *
209 * The statistics are left for aggregation to user-land so
210 * neat things can be achieved, like observing per-CPU cache
211 * distribution.
212 */
213static int
214sysctl_nchstats(SYSCTL_HANDLER_ARGS)
215{
216 struct globaldata *gd;
217 int i, error;
218
219 error = 0;
220 for (i = 0; i < ncpus; ++i) {
221 gd = globaldata_find(i);
222 if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
223 sizeof(struct nchstats))))
224 break;
225 }
226
227 return (error);
228}
229SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
230 0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
231
232static struct namecache *cache_zap(struct namecache *ncp, int nonblock);
233
234/*
235 * Namespace locking. The caller must already hold a reference to the
236 * namecache structure in order to lock/unlock it. This function prevents
237 * the namespace from being created or destroyed by accessors other then
238 * the lock holder.
239 *
240 * Note that holding a locked namecache structure prevents other threads
241 * from making namespace changes (e.g. deleting or creating), prevents
242 * vnode association state changes by other threads, and prevents the
243 * namecache entry from being resolved or unresolved by other threads.
244 *
245 * The lock owner has full authority to associate/disassociate vnodes
246 * and resolve/unresolve the locked ncp.
247 *
248 * The primary lock field is nc_exlocks. nc_locktd is set after the
249 * fact (when locking) or cleared prior to unlocking.
250 *
251 * WARNING! Holding a locked ncp will prevent a vnode from being destroyed
252 * or recycled, but it does NOT help you if the vnode had already
253 * initiated a recyclement. If this is important, use cache_get()
254 * rather then cache_lock() (and deal with the differences in the
255 * way the refs counter is handled). Or, alternatively, make an
256 * unconditional call to cache_validate() or cache_resolve()
257 * after cache_lock() returns.
258 *
259 * MPSAFE
260 */
261static
262void
263_cache_lock(struct namecache *ncp)
264{
265 thread_t td;
266 int didwarn;
267 int error;
268 u_int count;
269
270 KKASSERT(ncp->nc_refs != 0);
271 didwarn = 0;
272 td = curthread;
273
274 for (;;) {
275 count = ncp->nc_exlocks;
276
277 if (count == 0) {
278 if (atomic_cmpset_int(&ncp->nc_exlocks, 0, 1)) {
279 /*
280 * The vp associated with a locked ncp must
281 * be held to prevent it from being recycled.
282 *
283 * WARNING! If VRECLAIMED is set the vnode
284 * could already be in the middle of a recycle.
285 * Callers must use cache_vref() or
286 * cache_vget() on the locked ncp to
287 * validate the vp or set the cache entry
288 * to unresolved.
289 *
290 * NOTE! vhold() is allowed if we hold a
291 * lock on the ncp (which we do).
292 */
293 ncp->nc_locktd = td;
294 if (ncp->nc_vp)
295 vhold(ncp->nc_vp); /* MPSAFE */
296 break;
297 }
298 /* cmpset failed */
299 continue;
300 }
301 if (ncp->nc_locktd == td) {
302 if (atomic_cmpset_int(&ncp->nc_exlocks, count,
303 count + 1)) {
304 break;
305 }
306 /* cmpset failed */
307 continue;
308 }
309 tsleep_interlock(ncp, 0);
310 if (atomic_cmpset_int(&ncp->nc_exlocks, count,
311 count | NC_EXLOCK_REQ) == 0) {
312 /* cmpset failed */
313 continue;
314 }
315 error = tsleep(ncp, PINTERLOCKED, "clock", nclockwarn);
316 if (error == EWOULDBLOCK) {
317 if (didwarn == 0) {
318 didwarn = ticks;
319 kprintf("[diagnostic] cache_lock: blocked "
320 "on %p",
321 ncp);
322 kprintf(" \"%*.*s\"\n",
323 ncp->nc_nlen, ncp->nc_nlen,
324 ncp->nc_name);
325 }
326 }
327 }
328 if (didwarn) {
329 kprintf("[diagnostic] cache_lock: unblocked %*.*s after "
330 "%d secs\n",
331 ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
332 (int)(ticks - didwarn) / hz);
333 }
334}
335
336/*
337 * NOTE: nc_refs may be zero if the ncp is interlocked by circumstance,
338 * such as the case where one of its children is locked.
339 *
340 * MPSAFE
341 */
342static
343int
344_cache_lock_nonblock(struct namecache *ncp)
345{
346 thread_t td;
347 u_int count;
348
349 td = curthread;
350
351 for (;;) {
352 count = ncp->nc_exlocks;
353
354 if (count == 0) {
355 if (atomic_cmpset_int(&ncp->nc_exlocks, 0, 1)) {
356 /*
357 * The vp associated with a locked ncp must
358 * be held to prevent it from being recycled.
359 *
360 * WARNING! If VRECLAIMED is set the vnode
361 * could already be in the middle of a recycle.
362 * Callers must use cache_vref() or
363 * cache_vget() on the locked ncp to
364 * validate the vp or set the cache entry
365 * to unresolved.
366 *
367 * NOTE! vhold() is allowed if we hold a
368 * lock on the ncp (which we do).
369 */
370 ncp->nc_locktd = td;
371 if (ncp->nc_vp)
372 vhold(ncp->nc_vp); /* MPSAFE */
373 break;
374 }
375 /* cmpset failed */
376 continue;
377 }
378 if (ncp->nc_locktd == td) {
379 if (atomic_cmpset_int(&ncp->nc_exlocks, count,
380 count + 1)) {
381 break;
382 }
383 /* cmpset failed */
384 continue;
385 }
386 return(EWOULDBLOCK);
387 }
388 return(0);
389}
390
391/*
392 * Helper function
393 *
394 * NOTE: nc_refs can be 0 (degenerate case during _cache_drop).
395 *
396 * nc_locktd must be NULLed out prior to nc_exlocks getting cleared.
397 *
398 * MPSAFE
399 */
400static
401void
402_cache_unlock(struct namecache *ncp)
403{
404 thread_t td __debugvar = curthread;
405 u_int count;
406
407 KKASSERT(ncp->nc_refs >= 0);
408 KKASSERT(ncp->nc_exlocks > 0);
409 KKASSERT(ncp->nc_locktd == td);
410
411 count = ncp->nc_exlocks;
412 if ((count & ~NC_EXLOCK_REQ) == 1) {
413 ncp->nc_locktd = NULL;
414 if (ncp->nc_vp)
415 vdrop(ncp->nc_vp);
416 }
417 for (;;) {
418 if ((count & ~NC_EXLOCK_REQ) == 1) {
419 if (atomic_cmpset_int(&ncp->nc_exlocks, count, 0)) {
420 if (count & NC_EXLOCK_REQ)
421 wakeup(ncp);
422 break;
423 }
424 } else {
425 if (atomic_cmpset_int(&ncp->nc_exlocks, count,
426 count - 1)) {
427 break;
428 }
429 }
430 count = ncp->nc_exlocks;
431 }
432}
433
434
435/*
436 * cache_hold() and cache_drop() prevent the premature deletion of a
437 * namecache entry but do not prevent operations (such as zapping) on
438 * that namecache entry.
439 *
440 * This routine may only be called from outside this source module if
441 * nc_refs is already at least 1.
442 *
443 * This is a rare case where callers are allowed to hold a spinlock,
444 * so we can't ourselves.
445 *
446 * MPSAFE
447 */
448static __inline
449struct namecache *
450_cache_hold(struct namecache *ncp)
451{
452 atomic_add_int(&ncp->nc_refs, 1);
453 return(ncp);
454}
455
456/*
457 * Drop a cache entry, taking care to deal with races.
458 *
459 * For potential 1->0 transitions we must hold the ncp lock to safely
460 * test its flags. An unresolved entry with no children must be zapped
461 * to avoid leaks.
462 *
463 * The call to cache_zap() itself will handle all remaining races and
464 * will decrement the ncp's refs regardless. If we are resolved or
465 * have children nc_refs can safely be dropped to 0 without having to
466 * zap the entry.
467 *
468 * NOTE: cache_zap() will re-check nc_refs and nc_list in a MPSAFE fashion.
469 *
470 * NOTE: cache_zap() may return a non-NULL referenced parent which must
471 * be dropped in a loop.
472 *
473 * MPSAFE
474 */
475static __inline
476void
477_cache_drop(struct namecache *ncp)
478{
479 int refs;
480
481 while (ncp) {
482 KKASSERT(ncp->nc_refs > 0);
483 refs = ncp->nc_refs;
484
485 if (refs == 1) {
486 if (_cache_lock_nonblock(ncp) == 0) {
487 ncp->nc_flag &= ~NCF_DEFEREDZAP;
488 if ((ncp->nc_flag & NCF_UNRESOLVED) &&
489 TAILQ_EMPTY(&ncp->nc_list)) {
490 ncp = cache_zap(ncp, 1);
491 continue;
492 }
493 if (atomic_cmpset_int(&ncp->nc_refs, 1, 0)) {
494 _cache_unlock(ncp);
495 break;
496 }
497 _cache_unlock(ncp);
498 }
499 } else {
500 if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1))
501 break;
502 }
503 cpu_pause();
504 }
505}
506
507/*
508 * Link a new namecache entry to its parent and to the hash table. Be
509 * careful to avoid races if vhold() blocks in the future.
510 *
511 * Both ncp and par must be referenced and locked.
512 *
513 * NOTE: The hash table spinlock is likely held during this call, we
514 * can't do anything fancy.
515 *
516 * MPSAFE
517 */
518static void
519_cache_link_parent(struct namecache *ncp, struct namecache *par,
520 struct nchash_head *nchpp)
521{
522 KKASSERT(ncp->nc_parent == NULL);
523 ncp->nc_parent = par;
524 ncp->nc_head = nchpp;
525
526 /*
527 * Set inheritance flags. Note that the parent flags may be
528 * stale due to getattr potentially not having been run yet
529 * (it gets run during nlookup()'s).
530 */
531 ncp->nc_flag &= ~(NCF_SF_PNOCACHE | NCF_UF_PCACHE);
532 if (par->nc_flag & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE))
533 ncp->nc_flag |= NCF_SF_PNOCACHE;
534 if (par->nc_flag & (NCF_UF_CACHE | NCF_UF_PCACHE))
535 ncp->nc_flag |= NCF_UF_PCACHE;
536
537 LIST_INSERT_HEAD(&nchpp->list, ncp, nc_hash);
538
539 if (TAILQ_EMPTY(&par->nc_list)) {
540 TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
541 /*
542 * Any vp associated with an ncp which has children must
543 * be held to prevent it from being recycled.
544 */
545 if (par->nc_vp)
546 vhold(par->nc_vp);
547 } else {
548 TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
549 }
550}
551
552/*
553 * Remove the parent and hash associations from a namecache structure.
554 * If this is the last child of the parent the cache_drop(par) will
555 * attempt to recursively zap the parent.
556 *
557 * ncp must be locked. This routine will acquire a temporary lock on
558 * the parent as wlel as the appropriate hash chain.
559 *
560 * MPSAFE
561 */
562static void
563_cache_unlink_parent(struct namecache *ncp)
564{
565 struct namecache *par;
566 struct vnode *dropvp;
567
568 if ((par = ncp->nc_parent) != NULL) {
569 KKASSERT(ncp->nc_parent == par);
570 _cache_hold(par);
571 _cache_lock(par);
572 spin_lock_wr(&ncp->nc_head->spin);
573 LIST_REMOVE(ncp, nc_hash);
574 TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
575 dropvp = NULL;
576 if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
577 dropvp = par->nc_vp;
578 spin_unlock_wr(&ncp->nc_head->spin);
579 ncp->nc_parent = NULL;
580 ncp->nc_head = NULL;
581 _cache_unlock(par);
582 _cache_drop(par);
583
584 /*
585 * We can only safely vdrop with no spinlocks held.
586 */
587 if (dropvp)
588 vdrop(dropvp);
589 }
590}
591
592/*
593 * Allocate a new namecache structure. Most of the code does not require
594 * zero-termination of the string but it makes vop_compat_ncreate() easier.
595 *
596 * MPSAFE
597 */
598static struct namecache *
599cache_alloc(int nlen)
600{
601 struct namecache *ncp;
602
603 ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
604 if (nlen)
605 ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
606 ncp->nc_nlen = nlen;
607 ncp->nc_flag = NCF_UNRESOLVED;
608 ncp->nc_error = ENOTCONN; /* needs to be resolved */
609 ncp->nc_refs = 1;
610
611 TAILQ_INIT(&ncp->nc_list);
612 _cache_lock(ncp);
613 return(ncp);
614}
615
616/*
617 * Can only be called for the case where the ncp has never been
618 * associated with anything (so no spinlocks are needed).
619 *
620 * MPSAFE
621 */
622static void
623_cache_free(struct namecache *ncp)
624{
625 KKASSERT(ncp->nc_refs == 1 && ncp->nc_exlocks == 1);
626 if (ncp->nc_name)
627 kfree(ncp->nc_name, M_VFSCACHE);
628 kfree(ncp, M_VFSCACHE);
629}
630
631/*
632 * MPSAFE
633 */
634void
635cache_zero(struct nchandle *nch)
636{
637 nch->ncp = NULL;
638 nch->mount = NULL;
639}
640
641/*
642 * Ref and deref a namecache structure.
643 *
644 * The caller must specify a stable ncp pointer, typically meaning the
645 * ncp is already referenced but this can also occur indirectly through
646 * e.g. holding a lock on a direct child.
647 *
648 * WARNING: Caller may hold an unrelated read spinlock, which means we can't
649 * use read spinlocks here.
650 *
651 * MPSAFE if nch is
652 */
653struct nchandle *
654cache_hold(struct nchandle *nch)
655{
656 _cache_hold(nch->ncp);
657 atomic_add_int(&nch->mount->mnt_refs, 1);
658 return(nch);
659}
660
661/*
662 * Create a copy of a namecache handle for an already-referenced
663 * entry.
664 *
665 * MPSAFE if nch is
666 */
667void
668cache_copy(struct nchandle *nch, struct nchandle *target)
669{
670 *target = *nch;
671 if (target->ncp)
672 _cache_hold(target->ncp);
673 atomic_add_int(&nch->mount->mnt_refs, 1);
674}
675
676/*
677 * MPSAFE if nch is
678 */
679void
680cache_changemount(struct nchandle *nch, struct mount *mp)
681{
682 atomic_add_int(&nch->mount->mnt_refs, -1);
683 nch->mount = mp;
684 atomic_add_int(&nch->mount->mnt_refs, 1);
685}
686
687/*
688 * MPSAFE
689 */
690void
691cache_drop(struct nchandle *nch)
692{
693 atomic_add_int(&nch->mount->mnt_refs, -1);
694 _cache_drop(nch->ncp);
695 nch->ncp = NULL;
696 nch->mount = NULL;
697}
698
699/*
700 * MPSAFE
701 */
702void
703cache_lock(struct nchandle *nch)
704{
705 _cache_lock(nch->ncp);
706}
707
708/*
709 * Relock nch1 given an unlocked nch1 and a locked nch2. The caller
710 * is responsible for checking both for validity on return as they
711 * may have become invalid.
712 *
713 * We have to deal with potential deadlocks here, just ping pong
714 * the lock until we get it (we will always block somewhere when
715 * looping so this is not cpu-intensive).
716 *
717 * which = 0 nch1 not locked, nch2 is locked
718 * which = 1 nch1 is locked, nch2 is not locked
719 */
720void
721cache_relock(struct nchandle *nch1, struct ucred *cred1,
722 struct nchandle *nch2, struct ucred *cred2)
723{
724 int which;
725
726 which = 0;
727
728 for (;;) {
729 if (which == 0) {
730 if (cache_lock_nonblock(nch1) == 0) {
731 cache_resolve(nch1, cred1);
732 break;
733 }
734 cache_unlock(nch2);
735 cache_lock(nch1);
736 cache_resolve(nch1, cred1);
737 which = 1;
738 } else {
739 if (cache_lock_nonblock(nch2) == 0) {
740 cache_resolve(nch2, cred2);
741 break;
742 }
743 cache_unlock(nch1);
744 cache_lock(nch2);
745 cache_resolve(nch2, cred2);
746 which = 0;
747 }
748 }
749}
750
751/*
752 * MPSAFE
753 */
754int
755cache_lock_nonblock(struct nchandle *nch)
756{
757 return(_cache_lock_nonblock(nch->ncp));
758}
759
760
761/*
762 * MPSAFE
763 */
764void
765cache_unlock(struct nchandle *nch)
766{
767 _cache_unlock(nch->ncp);
768}
769
770/*
771 * ref-and-lock, unlock-and-deref functions.
772 *
773 * This function is primarily used by nlookup. Even though cache_lock
774 * holds the vnode, it is possible that the vnode may have already
775 * initiated a recyclement.
776 *
777 * We want cache_get() to return a definitively usable vnode or a
778 * definitively unresolved ncp.
779 *
780 * MPSAFE
781 */
782static
783struct namecache *
784_cache_get(struct namecache *ncp)
785{
786 _cache_hold(ncp);
787 _cache_lock(ncp);
788 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
789 _cache_setunresolved(ncp);
790 return(ncp);
791}
792
793/*
794 * This is a special form of _cache_lock() which only succeeds if
795 * it can get a pristine, non-recursive lock. The caller must have
796 * already ref'd the ncp.
797 *
798 * On success the ncp will be locked, on failure it will not. The
799 * ref count does not change either way.
800 *
801 * We want _cache_lock_special() (on success) to return a definitively
802 * usable vnode or a definitively unresolved ncp.
803 *
804 * MPSAFE
805 */
806static int
807_cache_lock_special(struct namecache *ncp)
808{
809 if (_cache_lock_nonblock(ncp) == 0) {
810 if ((ncp->nc_exlocks & ~NC_EXLOCK_REQ) == 1) {
811 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
812 _cache_setunresolved(ncp);
813 return(0);
814 }
815 _cache_unlock(ncp);
816 }
817 return(EWOULDBLOCK);
818}
819
820
821/*
822 * NOTE: The same nchandle can be passed for both arguments.
823 *
824 * MPSAFE
825 */
826void
827cache_get(struct nchandle *nch, struct nchandle *target)
828{
829 KKASSERT(nch->ncp->nc_refs > 0);
830 target->mount = nch->mount;
831 target->ncp = _cache_get(nch->ncp);
832 atomic_add_int(&target->mount->mnt_refs, 1);
833}
834
835/*
836 * MPSAFE
837 */
838static __inline
839void
840_cache_put(struct namecache *ncp)
841{
842 _cache_unlock(ncp);
843 _cache_drop(ncp);
844}
845
846/*
847 * MPSAFE
848 */
849void
850cache_put(struct nchandle *nch)
851{
852 atomic_add_int(&nch->mount->mnt_refs, -1);
853 _cache_put(nch->ncp);
854 nch->ncp = NULL;
855 nch->mount = NULL;
856}
857
858/*
859 * Resolve an unresolved ncp by associating a vnode with it. If the
860 * vnode is NULL, a negative cache entry is created.
861 *
862 * The ncp should be locked on entry and will remain locked on return.
863 *
864 * MPSAFE
865 */
866static
867void
868_cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
869{
870 KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
871
872 if (vp != NULL) {
873 /*
874 * Any vp associated with an ncp which has children must
875 * be held. Any vp associated with a locked ncp must be held.
876 */
877 if (!TAILQ_EMPTY(&ncp->nc_list))
878 vhold(vp);
879 spin_lock_wr(&vp->v_spinlock);
880 ncp->nc_vp = vp;
881 TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
882 spin_unlock_wr(&vp->v_spinlock);
883 if (ncp->nc_exlocks)
884 vhold(vp);
885
886 /*
887 * Set auxiliary flags
888 */
889 switch(vp->v_type) {
890 case VDIR:
891 ncp->nc_flag |= NCF_ISDIR;
892 break;
893 case VLNK:
894 ncp->nc_flag |= NCF_ISSYMLINK;
895 /* XXX cache the contents of the symlink */
896 break;
897 default:
898 break;
899 }
900 atomic_add_int(&numcache, 1);
901 ncp->nc_error = 0;
902 } else {
903 /*
904 * When creating a negative cache hit we set the
905 * namecache_gen. A later resolve will clean out the
906 * negative cache hit if the mount point's namecache_gen
907 * has changed. Used by devfs, could also be used by
908 * other remote FSs.
909 */
910 ncp->nc_vp = NULL;
911 spin_lock_wr(&ncspin);
912 TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
913 ++numneg;
914 spin_unlock_wr(&ncspin);
915 ncp->nc_error = ENOENT;
916 if (mp)
917 ncp->nc_namecache_gen = mp->mnt_namecache_gen;
918 }
919 ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP);
920}
921
922/*
923 * MPSAFE
924 */
925void
926cache_setvp(struct nchandle *nch, struct vnode *vp)
927{
928 _cache_setvp(nch->mount, nch->ncp, vp);
929}
930
931/*
932 * MPSAFE
933 */
934void
935cache_settimeout(struct nchandle *nch, int nticks)
936{
937 struct namecache *ncp = nch->ncp;
938
939 if ((ncp->nc_timeout = ticks + nticks) == 0)
940 ncp->nc_timeout = 1;
941}
942
943/*
944 * Disassociate the vnode or negative-cache association and mark a
945 * namecache entry as unresolved again. Note that the ncp is still
946 * left in the hash table and still linked to its parent.
947 *
948 * The ncp should be locked and refd on entry and will remain locked and refd
949 * on return.
950 *
951 * This routine is normally never called on a directory containing children.
952 * However, NFS often does just that in its rename() code as a cop-out to
953 * avoid complex namespace operations. This disconnects a directory vnode
954 * from its namecache and can cause the OLDAPI and NEWAPI to get out of
955 * sync.
956 *
957 * MPSAFE
958 */
959static
960void
961_cache_setunresolved(struct namecache *ncp)
962{
963 struct vnode *vp;
964
965 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
966 ncp->nc_flag |= NCF_UNRESOLVED;
967 ncp->nc_timeout = 0;
968 ncp->nc_error = ENOTCONN;
969 if ((vp = ncp->nc_vp) != NULL) {
970 atomic_add_int(&numcache, -1);
971 spin_lock_wr(&vp->v_spinlock);
972 ncp->nc_vp = NULL;
973 TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
974 spin_unlock_wr(&vp->v_spinlock);
975
976 /*
977 * Any vp associated with an ncp with children is
978 * held by that ncp. Any vp associated with a locked
979 * ncp is held by that ncp. These conditions must be
980 * undone when the vp is cleared out from the ncp.
981 */
982 if (!TAILQ_EMPTY(&ncp->nc_list))
983 vdrop(vp);
984 if (ncp->nc_exlocks)
985 vdrop(vp);
986 } else {
987 spin_lock_wr(&ncspin);
988 TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
989 --numneg;
990 spin_unlock_wr(&ncspin);
991 }
992 ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
993 }
994}
995
996/*
997 * The cache_nresolve() code calls this function to automatically
998 * set a resolved cache element to unresolved if it has timed out
999 * or if it is a negative cache hit and the mount point namecache_gen
1000 * has changed.
1001 *
1002 * MPSAFE
1003 */
1004static __inline void
1005_cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
1006{
1007 /*
1008 * Already in an unresolved state, nothing to do.
1009 */
1010 if (ncp->nc_flag & NCF_UNRESOLVED)
1011 return;
1012
1013 /*
1014 * Try to zap entries that have timed out. We have
1015 * to be careful here because locked leafs may depend
1016 * on the vnode remaining intact in a parent, so only
1017 * do this under very specific conditions.
1018 */
1019 if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
1020 TAILQ_EMPTY(&ncp->nc_list)) {
1021 _cache_setunresolved(ncp);
1022 return;
1023 }
1024
1025 /*
1026 * If a resolved negative cache hit is invalid due to
1027 * the mount's namecache generation being bumped, zap it.
1028 */
1029 if (ncp->nc_vp == NULL &&
1030 ncp->nc_namecache_gen != mp->mnt_namecache_gen) {
1031 _cache_setunresolved(ncp);
1032 return;
1033 }
1034}
1035
1036/*
1037 * MPSAFE
1038 */
1039void
1040cache_setunresolved(struct nchandle *nch)
1041{
1042 _cache_setunresolved(nch->ncp);
1043}
1044
1045/*
1046 * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
1047 * looking for matches. This flag tells the lookup code when it must
1048 * check for a mount linkage and also prevents the directories in question
1049 * from being deleted or renamed.
1050 *
1051 * MPSAFE
1052 */
1053static
1054int
1055cache_clrmountpt_callback(struct mount *mp, void *data)
1056{
1057 struct nchandle *nch = data;
1058
1059 if (mp->mnt_ncmounton.ncp == nch->ncp)
1060 return(1);
1061 if (mp->mnt_ncmountpt.ncp == nch->ncp)
1062 return(1);
1063 return(0);
1064}
1065
1066/*
1067 * MPSAFE
1068 */
1069void
1070cache_clrmountpt(struct nchandle *nch)
1071{
1072 int count;
1073
1074 count = mountlist_scan(cache_clrmountpt_callback, nch,
1075 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1076 if (count == 0)
1077 nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
1078}
1079
1080/*
1081 * Invalidate portions of the namecache topology given a starting entry.
1082 * The passed ncp is set to an unresolved state and:
1083 *
1084 * The passed ncp must be referencxed and locked. The routine may unlock
1085 * and relock ncp several times, and will recheck the children and loop
1086 * to catch races. When done the passed ncp will be returned with the
1087 * reference and lock intact.
1088 *
1089 * CINV_DESTROY - Set a flag in the passed ncp entry indicating
1090 * that the physical underlying nodes have been
1091 * destroyed... as in deleted. For example, when
1092 * a directory is removed. This will cause record
1093 * lookups on the name to no longer be able to find
1094 * the record and tells the resolver to return failure
1095 * rather then trying to resolve through the parent.
1096 *
1097 * The topology itself, including ncp->nc_name,
1098 * remains intact.
1099 *
1100 * This only applies to the passed ncp, if CINV_CHILDREN
1101 * is specified the children are not flagged.
1102 *
1103 * CINV_CHILDREN - Set all children (recursively) to an unresolved
1104 * state as well.
1105 *
1106 * Note that this will also have the side effect of
1107 * cleaning out any unreferenced nodes in the topology
1108 * from the leaves up as the recursion backs out.
1109 *
1110 * Note that the topology for any referenced nodes remains intact, but
1111 * the nodes will be marked as having been destroyed and will be set
1112 * to an unresolved state.
1113 *
1114 * It is possible for cache_inval() to race a cache_resolve(), meaning that
1115 * the namecache entry may not actually be invalidated on return if it was
1116 * revalidated while recursing down into its children. This code guarentees
1117 * that the node(s) will go through an invalidation cycle, but does not
1118 * guarentee that they will remain in an invalidated state.
1119 *
1120 * Returns non-zero if a revalidation was detected during the invalidation
1121 * recursion, zero otherwise. Note that since only the original ncp is
1122 * locked the revalidation ultimately can only indicate that the original ncp
1123 * *MIGHT* no have been reresolved.
1124 *
1125 * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
1126 * have to avoid blowing out the kernel stack. We do this by saving the
1127 * deep namecache node and aborting the recursion, then re-recursing at that
1128 * node using a depth-first algorithm in order to allow multiple deep
1129 * recursions to chain through each other, then we restart the invalidation
1130 * from scratch.
1131 *
1132 * MPSAFE
1133 */
1134
1135struct cinvtrack {
1136 struct namecache *resume_ncp;
1137 int depth;
1138};
1139
1140static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
1141
1142static
1143int
1144_cache_inval(struct namecache *ncp, int flags)
1145{
1146 struct cinvtrack track;
1147 struct namecache *ncp2;
1148 int r;
1149
1150 track.depth = 0;
1151 track.resume_ncp = NULL;
1152
1153 for (;;) {
1154 r = _cache_inval_internal(ncp, flags, &track);
1155 if (track.resume_ncp == NULL)
1156 break;
1157 kprintf("Warning: deep namecache recursion at %s\n",
1158 ncp->nc_name);
1159 _cache_unlock(ncp);
1160 while ((ncp2 = track.resume_ncp) != NULL) {
1161 track.resume_ncp = NULL;
1162 _cache_lock(ncp2);
1163 _cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
1164 &track);
1165 _cache_put(ncp2);
1166 }
1167 _cache_lock(ncp);
1168 }
1169 return(r);
1170}
1171
1172int
1173cache_inval(struct nchandle *nch, int flags)
1174{
1175 return(_cache_inval(nch->ncp, flags));
1176}
1177
1178/*
1179 * Helper for _cache_inval(). The passed ncp is refd and locked and
1180 * remains that way on return, but may be unlocked/relocked multiple
1181 * times by the routine.
1182 */
1183static int
1184_cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
1185{
1186 struct namecache *kid;
1187 struct namecache *nextkid;
1188 int rcnt = 0;
1189
1190 KKASSERT(ncp->nc_exlocks);
1191
1192 _cache_setunresolved(ncp);
1193 if (flags & CINV_DESTROY)
1194 ncp->nc_flag |= NCF_DESTROYED;
1195 if ((flags & CINV_CHILDREN) &&
1196 (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
1197 ) {
1198 _cache_hold(kid);
1199 if (++track->depth > MAX_RECURSION_DEPTH) {
1200 track->resume_ncp = ncp;
1201 _cache_hold(ncp);
1202 ++rcnt;
1203 }
1204 _cache_unlock(ncp);
1205 while (kid) {
1206 if (track->resume_ncp) {
1207 _cache_drop(kid);
1208 break;
1209 }
1210 if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
1211 _cache_hold(nextkid);
1212 if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
1213 TAILQ_FIRST(&kid->nc_list)
1214 ) {
1215 _cache_lock(kid);
1216 rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track);
1217 _cache_unlock(kid);
1218 }
1219 _cache_drop(kid);
1220 kid = nextkid;
1221 }
1222 --track->depth;
1223 _cache_lock(ncp);
1224 }
1225
1226 /*
1227 * Someone could have gotten in there while ncp was unlocked,
1228 * retry if so.
1229 */
1230 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1231 ++rcnt;
1232 return (rcnt);
1233}
1234
1235/*
1236 * Invalidate a vnode's namecache associations. To avoid races against
1237 * the resolver we do not invalidate a node which we previously invalidated
1238 * but which was then re-resolved while we were in the invalidation loop.
1239 *
1240 * Returns non-zero if any namecache entries remain after the invalidation
1241 * loop completed.
1242 *
1243 * NOTE: Unlike the namecache topology which guarentees that ncp's will not
1244 * be ripped out of the topology while held, the vnode's v_namecache
1245 * list has no such restriction. NCP's can be ripped out of the list
1246 * at virtually any time if not locked, even if held.
1247 *
1248 * In addition, the v_namecache list itself must be locked via
1249 * the vnode's spinlock.
1250 *
1251 * MPSAFE
1252 */
1253int
1254cache_inval_vp(struct vnode *vp, int flags)
1255{
1256 struct namecache *ncp;
1257 struct namecache *next;
1258
1259restart:
1260 spin_lock_wr(&vp->v_spinlock);
1261 ncp = TAILQ_FIRST(&vp->v_namecache);
1262 if (ncp)
1263 _cache_hold(ncp);
1264 while (ncp) {
1265 /* loop entered with ncp held and vp spin-locked */
1266 if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1267 _cache_hold(next);
1268 spin_unlock_wr(&vp->v_spinlock);
1269 _cache_lock(ncp);
1270 if (ncp->nc_vp != vp) {
1271 kprintf("Warning: cache_inval_vp: race-A detected on "
1272 "%s\n", ncp->nc_name);
1273 _cache_put(ncp);
1274 if (next)
1275 _cache_drop(next);
1276 goto restart;
1277 }
1278 _cache_inval(ncp, flags);
1279 _cache_put(ncp); /* also releases reference */
1280 ncp = next;
1281 spin_lock_wr(&vp->v_spinlock);
1282 if (ncp && ncp->nc_vp != vp) {
1283 spin_unlock_wr(&vp->v_spinlock);
1284 kprintf("Warning: cache_inval_vp: race-B detected on "
1285 "%s\n", ncp->nc_name);
1286 _cache_drop(ncp);
1287 goto restart;
1288 }
1289 }
1290 spin_unlock_wr(&vp->v_spinlock);
1291 return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1292}
1293
1294/*
1295 * This routine is used instead of the normal cache_inval_vp() when we
1296 * are trying to recycle otherwise good vnodes.
1297 *
1298 * Return 0 on success, non-zero if not all namecache records could be
1299 * disassociated from the vnode (for various reasons).
1300 *
1301 * MPSAFE
1302 */
1303int
1304cache_inval_vp_nonblock(struct vnode *vp)
1305{
1306 struct namecache *ncp;
1307 struct namecache *next;
1308
1309 spin_lock_wr(&vp->v_spinlock);
1310 ncp = TAILQ_FIRST(&vp->v_namecache);
1311 if (ncp)
1312 _cache_hold(ncp);
1313 while (ncp) {
1314 /* loop entered with ncp held */
1315 if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1316 _cache_hold(next);
1317 spin_unlock_wr(&vp->v_spinlock);
1318 if (_cache_lock_nonblock(ncp)) {
1319 _cache_drop(ncp);
1320 if (next)
1321 _cache_drop(next);
1322 goto done;
1323 }
1324 if (ncp->nc_vp != vp) {
1325 kprintf("Warning: cache_inval_vp: race-A detected on "
1326 "%s\n", ncp->nc_name);
1327 _cache_put(ncp);
1328 if (next)
1329 _cache_drop(next);
1330 goto done;
1331 }
1332 _cache_inval(ncp, 0);
1333 _cache_put(ncp); /* also releases reference */
1334 ncp = next;
1335 spin_lock_wr(&vp->v_spinlock);
1336 if (ncp && ncp->nc_vp != vp) {
1337 spin_unlock_wr(&vp->v_spinlock);
1338 kprintf("Warning: cache_inval_vp: race-B detected on "
1339 "%s\n", ncp->nc_name);
1340 _cache_drop(ncp);
1341 goto done;
1342 }
1343 }
1344 spin_unlock_wr(&vp->v_spinlock);
1345done:
1346 return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1347}
1348
1349/*
1350 * The source ncp has been renamed to the target ncp. Both fncp and tncp
1351 * must be locked. The target ncp is destroyed (as a normal rename-over
1352 * would destroy the target file or directory).
1353 *
1354 * Because there may be references to the source ncp we cannot copy its
1355 * contents to the target. Instead the source ncp is relinked as the target
1356 * and the target ncp is removed from the namecache topology.
1357 *
1358 * MPSAFE
1359 */
1360void
1361cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1362{
1363 struct namecache *fncp = fnch->ncp;
1364 struct namecache *tncp = tnch->ncp;
1365 struct namecache *tncp_par;
1366 struct nchash_head *nchpp;
1367 u_int32_t hash;
1368 char *oname;
1369
1370 /*
1371 * Rename fncp (unlink)
1372 */
1373 _cache_unlink_parent(fncp);
1374 oname = fncp->nc_name;
1375 fncp->nc_name = tncp->nc_name;
1376 fncp->nc_nlen = tncp->nc_nlen;
1377 tncp_par = tncp->nc_parent;
1378 _cache_hold(tncp_par);
1379 _cache_lock(tncp_par);
1380
1381 /*
1382 * Rename fncp (relink)
1383 */
1384 hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT);
1385 hash = fnv_32_buf(&tncp_par, sizeof(tncp_par), hash);
1386 nchpp = NCHHASH(hash);
1387
1388 spin_lock_wr(&nchpp->spin);
1389 _cache_link_parent(fncp, tncp_par, nchpp);
1390 spin_unlock_wr(&nchpp->spin);
1391
1392 _cache_put(tncp_par);
1393
1394 /*
1395 * Get rid of the overwritten tncp (unlink)
1396 */
1397 _cache_setunresolved(tncp);
1398 _cache_unlink_parent(tncp);
1399 tncp->nc_name = NULL;
1400 tncp->nc_nlen = 0;
1401
1402 if (oname)
1403 kfree(oname, M_VFSCACHE);
1404}
1405
1406/*
1407 * vget the vnode associated with the namecache entry. Resolve the namecache
1408 * entry if necessary. The passed ncp must be referenced and locked.
1409 *
1410 * lk_type may be LK_SHARED, LK_EXCLUSIVE. A ref'd, possibly locked
1411 * (depending on the passed lk_type) will be returned in *vpp with an error
1412 * of 0, or NULL will be returned in *vpp with a non-0 error code. The
1413 * most typical error is ENOENT, meaning that the ncp represents a negative
1414 * cache hit and there is no vnode to retrieve, but other errors can occur
1415 * too.
1416 *
1417 * The vget() can race a reclaim. If this occurs we re-resolve the
1418 * namecache entry.
1419 *
1420 * There are numerous places in the kernel where vget() is called on a
1421 * vnode while one or more of its namecache entries is locked. Releasing
1422 * a vnode never deadlocks against locked namecache entries (the vnode
1423 * will not get recycled while referenced ncp's exist). This means we
1424 * can safely acquire the vnode. In fact, we MUST NOT release the ncp
1425 * lock when acquiring the vp lock or we might cause a deadlock.
1426 *
1427 * MPSAFE
1428 */
1429int
1430cache_vget(struct nchandle *nch, struct ucred *cred,
1431 int lk_type, struct vnode **vpp)
1432{
1433 struct namecache *ncp;
1434 struct vnode *vp;
1435 int error;
1436
1437 ncp = nch->ncp;
1438 KKASSERT(ncp->nc_locktd == curthread);
1439again:
1440 vp = NULL;
1441 if (ncp->nc_flag & NCF_UNRESOLVED)
1442 error = cache_resolve(nch, cred);
1443 else
1444 error = 0;
1445
1446 if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1447 error = vget(vp, lk_type);
1448 if (error) {
1449 /*
1450 * VRECLAIM race
1451 */
1452 if (error == ENOENT) {
1453 kprintf("Warning: vnode reclaim race detected "
1454 "in cache_vget on %p (%s)\n",
1455 vp, ncp->nc_name);
1456 _cache_setunresolved(ncp);
1457 goto again;
1458 }
1459
1460 /*
1461 * Not a reclaim race, some other error.
1462 */
1463 KKASSERT(ncp->nc_vp == vp);
1464 vp = NULL;
1465 } else {
1466 KKASSERT(ncp->nc_vp == vp);
1467 KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1468 }
1469 }
1470 if (error == 0 && vp == NULL)
1471 error = ENOENT;
1472 *vpp = vp;
1473 return(error);
1474}
1475
1476int
1477cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
1478{
1479 struct namecache *ncp;
1480 struct vnode *vp;
1481 int error;
1482
1483 ncp = nch->ncp;
1484 KKASSERT(ncp->nc_locktd == curthread);
1485again:
1486 vp = NULL;
1487 if (ncp->nc_flag & NCF_UNRESOLVED)
1488 error = cache_resolve(nch, cred);
1489 else
1490 error = 0;
1491
1492 if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1493 error = vget(vp, LK_SHARED);
1494 if (error) {
1495 /*
1496 * VRECLAIM race
1497 */
1498 if (error == ENOENT) {
1499 kprintf("Warning: vnode reclaim race detected "
1500 "in cache_vget on %p (%s)\n",
1501 vp, ncp->nc_name);
1502 _cache_setunresolved(ncp);
1503 goto again;
1504 }
1505
1506 /*
1507 * Not a reclaim race, some other error.
1508 */
1509 KKASSERT(ncp->nc_vp == vp);
1510 vp = NULL;
1511 } else {
1512 KKASSERT(ncp->nc_vp == vp);
1513 KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1514 /* caller does not want a lock */
1515 vn_unlock(vp);
1516 }
1517 }
1518 if (error == 0 && vp == NULL)
1519 error = ENOENT;
1520 *vpp = vp;
1521 return(error);
1522}
1523
1524/*
1525 * Return a referenced vnode representing the parent directory of
1526 * ncp.
1527 *
1528 * Because the caller has locked the ncp it should not be possible for
1529 * the parent ncp to go away. However, the parent can unresolve its
1530 * dvp at any time so we must be able to acquire a lock on the parent
1531 * to safely access nc_vp.
1532 *
1533 * We have to leave par unlocked when vget()ing dvp to avoid a deadlock,
1534 * so use vhold()/vdrop() while holding the lock to prevent dvp from
1535 * getting destroyed.
1536 *
1537 * MPSAFE - Note vhold() is allowed when dvp has 0 refs if we hold a
1538 * lock on the ncp in question..
1539 */
1540static struct vnode *
1541cache_dvpref(struct namecache *ncp)
1542{
1543 struct namecache *par;
1544 struct vnode *dvp;
1545
1546 dvp = NULL;
1547 if ((par = ncp->nc_parent) != NULL) {
1548 _cache_hold(par);
1549 _cache_lock(par);
1550 if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
1551 if ((dvp = par->nc_vp) != NULL)
1552 vhold(dvp);
1553 }
1554 _cache_unlock(par);
1555 if (dvp) {
1556 if (vget(dvp, LK_SHARED) == 0) {
1557 vn_unlock(dvp);
1558 vdrop(dvp);
1559 /* return refd, unlocked dvp */
1560 } else {
1561 vdrop(dvp);
1562 dvp = NULL;
1563 }
1564 }
1565 _cache_drop(par);
1566 }
1567 return(dvp);
1568}
1569
1570/*
1571 * Convert a directory vnode to a namecache record without any other
1572 * knowledge of the topology. This ONLY works with directory vnodes and
1573 * is ONLY used by the NFS server. dvp must be refd but unlocked, and the
1574 * returned ncp (if not NULL) will be held and unlocked.
1575 *
1576 * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
1577 * If 'makeit' is 1 we attempt to track-down and create the namecache topology
1578 * for dvp. This will fail only if the directory has been deleted out from
1579 * under the caller.
1580 *
1581 * Callers must always check for a NULL return no matter the value of 'makeit'.
1582 *
1583 * To avoid underflowing the kernel stack each recursive call increments
1584 * the makeit variable.
1585 */
1586
1587static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1588 struct vnode *dvp, char *fakename);
1589static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1590 struct vnode **saved_dvp);
1591
1592int
1593cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
1594 struct nchandle *nch)
1595{
1596 struct vnode *saved_dvp;
1597 struct vnode *pvp;
1598 char *fakename;
1599 int error;
1600
1601 nch->ncp = NULL;
1602 nch->mount = dvp->v_mount;
1603 saved_dvp = NULL;
1604 fakename = NULL;
1605
1606 /*
1607 * Handle the makeit == 0 degenerate case
1608 */
1609 if (makeit == 0) {
1610 spin_lock_wr(&dvp->v_spinlock);
1611 nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1612 if (nch->ncp)
1613 cache_hold(nch);
1614 spin_unlock_wr(&dvp->v_spinlock);
1615 }
1616
1617 /*
1618 * Loop until resolution, inside code will break out on error.
1619 */
1620 while (makeit) {
1621 /*
1622 * Break out if we successfully acquire a working ncp.
1623 */
1624 spin_lock_wr(&dvp->v_spinlock);
1625 nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1626 if (nch->ncp) {
1627 cache_hold(nch);
1628 spin_unlock_wr(&dvp->v_spinlock);
1629 break;
1630 }
1631 spin_unlock_wr(&dvp->v_spinlock);
1632
1633 /*
1634 * If dvp is the root of its filesystem it should already
1635 * have a namecache pointer associated with it as a side
1636 * effect of the mount, but it may have been disassociated.
1637 */
1638 if (dvp->v_flag & VROOT) {
1639 nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
1640 error = cache_resolve_mp(nch->mount);
1641 _cache_put(nch->ncp);
1642 if (ncvp_debug) {
1643 kprintf("cache_fromdvp: resolve root of mount %p error %d",
1644 dvp->v_mount, error);
1645 }
1646 if (error) {
1647 if (ncvp_debug)
1648 kprintf(" failed\n");
1649 nch->ncp = NULL;
1650 break;
1651 }
1652 if (ncvp_debug)
1653 kprintf(" succeeded\n");
1654 continue;
1655 }
1656
1657 /*
1658 * If we are recursed too deeply resort to an O(n^2)
1659 * algorithm to resolve the namecache topology. The
1660 * resolved pvp is left referenced in saved_dvp to
1661 * prevent the tree from being destroyed while we loop.
1662 */
1663 if (makeit > 20) {
1664 error = cache_fromdvp_try(dvp, cred, &saved_dvp);
1665 if (error) {
1666 kprintf("lookupdotdot(longpath) failed %d "
1667 "dvp %p\n", error, dvp);
1668 nch->ncp = NULL;
1669 break;
1670 }
1671 continue;
1672 }
1673
1674 /*
1675 * Get the parent directory and resolve its ncp.
1676 */
1677 if (fakename) {
1678 kfree(fakename, M_TEMP);
1679 fakename = NULL;
1680 }
1681 error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1682 &fakename);
1683 if (error) {
1684 kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
1685 break;
1686 }
1687 vn_unlock(pvp);
1688
1689 /*
1690 * Reuse makeit as a recursion depth counter. On success
1691 * nch will be fully referenced.
1692 */
1693 cache_fromdvp(pvp, cred, makeit + 1, nch);
1694 vrele(pvp);
1695 if (nch->ncp == NULL)
1696 break;
1697
1698 /*
1699 * Do an inefficient scan of pvp (embodied by ncp) to look
1700 * for dvp. This will create a namecache record for dvp on
1701 * success. We loop up to recheck on success.
1702 *
1703 * ncp and dvp are both held but not locked.
1704 */
1705 error = cache_inefficient_scan(nch, cred, dvp, fakename);
1706 if (error) {
1707 kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
1708 pvp, nch->ncp->nc_name, dvp);
1709 cache_drop(nch);
1710 /* nch was NULLed out, reload mount */
1711 nch->mount = dvp->v_mount;
1712 break;
1713 }
1714 if (ncvp_debug) {
1715 kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
1716 pvp, nch->ncp->nc_name);
1717 }
1718 cache_drop(nch);
1719 /* nch was NULLed out, reload mount */
1720 nch->mount = dvp->v_mount;
1721 }
1722
1723 /*
1724 * If nch->ncp is non-NULL it will have been held already.
1725 */
1726 if (fakename)
1727 kfree(fakename, M_TEMP);
1728 if (saved_dvp)
1729 vrele(saved_dvp);
1730 if (nch->ncp)
1731 return (0);
1732 return (EINVAL);
1733}
1734
1735/*
1736 * Go up the chain of parent directories until we find something
1737 * we can resolve into the namecache. This is very inefficient.
1738 */
1739static
1740int
1741cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1742 struct vnode **saved_dvp)
1743{
1744 struct nchandle nch;
1745 struct vnode *pvp;
1746 int error;
1747 static time_t last_fromdvp_report;
1748 char *fakename;
1749
1750 /*
1751 * Loop getting the parent directory vnode until we get something we
1752 * can resolve in the namecache.
1753 */
1754 vref(dvp);
1755 nch.mount = dvp->v_mount;
1756 nch.ncp = NULL;
1757 fakename = NULL;
1758
1759 for (;;) {
1760 if (fakename) {
1761 kfree(fakename, M_TEMP);
1762 fakename = NULL;
1763 }
1764 error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1765 &fakename);
1766 if (error) {
1767 vrele(dvp);
1768 break;
1769 }
1770 vn_unlock(pvp);
1771 spin_lock_wr(&pvp->v_spinlock);
1772 if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
1773 _cache_hold(nch.ncp);
1774 spin_unlock_wr(&pvp->v_spinlock);
1775 vrele(pvp);
1776 break;
1777 }
1778 spin_unlock_wr(&pvp->v_spinlock);
1779 if (pvp->v_flag & VROOT) {
1780 nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
1781 error = cache_resolve_mp(nch.mount);
1782 _cache_unlock(nch.ncp);
1783 vrele(pvp);
1784 if (error) {
1785 _cache_drop(nch.ncp);
1786 nch.ncp = NULL;
1787 vrele(dvp);
1788 }
1789 break;
1790 }
1791 vrele(dvp);
1792 dvp = pvp;
1793 }
1794 if (error == 0) {
1795 if (last_fromdvp_report != time_second) {
1796 last_fromdvp_report = time_second;
1797 kprintf("Warning: extremely inefficient path "
1798 "resolution on %s\n",
1799 nch.ncp->nc_name);
1800 }
1801 error = cache_inefficient_scan(&nch, cred, dvp, fakename);
1802
1803 /*
1804 * Hopefully dvp now has a namecache record associated with
1805 * it. Leave it referenced to prevent the kernel from
1806 * recycling the vnode. Otherwise extremely long directory
1807 * paths could result in endless recycling.
1808 */
1809 if (*saved_dvp)
1810 vrele(*saved_dvp);
1811 *saved_dvp = dvp;
1812 _cache_drop(nch.ncp);
1813 }
1814 if (fakename)
1815 kfree(fakename, M_TEMP);
1816 return (error);
1817}
1818
1819/*
1820 * Do an inefficient scan of the directory represented by ncp looking for
1821 * the directory vnode dvp. ncp must be held but not locked on entry and
1822 * will be held on return. dvp must be refd but not locked on entry and
1823 * will remain refd on return.
1824 *
1825 * Why do this at all? Well, due to its stateless nature the NFS server
1826 * converts file handles directly to vnodes without necessarily going through
1827 * the namecache ops that would otherwise create the namecache topology
1828 * leading to the vnode. We could either (1) Change the namecache algorithms
1829 * to allow disconnect namecache records that are re-merged opportunistically,
1830 * or (2) Make the NFS server backtrack and scan to recover a connected
1831 * namecache topology in order to then be able to issue new API lookups.
1832 *
1833 * It turns out that (1) is a huge mess. It takes a nice clean set of
1834 * namecache algorithms and introduces a lot of complication in every subsystem
1835 * that calls into the namecache to deal with the re-merge case, especially
1836 * since we are using the namecache to placehold negative lookups and the
1837 * vnode might not be immediately assigned. (2) is certainly far less
1838 * efficient then (1), but since we are only talking about directories here
1839 * (which are likely to remain cached), the case does not actually run all
1840 * that often and has the supreme advantage of not polluting the namecache
1841 * algorithms.
1842 *
1843 * If a fakename is supplied just construct a namecache entry using the
1844 * fake name.
1845 */
1846static int
1847cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1848 struct vnode *dvp, char *fakename)
1849{
1850 struct nlcomponent nlc;
1851 struct nchandle rncp;
1852 struct dirent *den;
1853 struct vnode *pvp;
1854 struct vattr vat;
1855 struct iovec iov;
1856 struct uio uio;
1857 int blksize;
1858 int eofflag;
1859 int bytes;
1860 char *rbuf;
1861 int error;
1862
1863 vat.va_blocksize = 0;
1864 if ((error = VOP_GETATTR(dvp, &vat)) != 0)
1865 return (error);
1866 cache_lock(nch);
1867 error = cache_vref(nch, cred, &pvp);
1868 cache_unlock(nch);
1869 if (error)
1870 return (error);
1871 if (ncvp_debug) {
1872 kprintf("inefficient_scan: directory iosize %ld "
1873 "vattr fileid = %lld\n",
1874 vat.va_blocksize,
1875 (long long)vat.va_fileid);
1876 }
1877
1878 /*
1879 * Use the supplied fakename if not NULL. Fake names are typically
1880 * not in the actual filesystem hierarchy. This is used by HAMMER
1881 * to glue @@timestamp recursions together.
1882 */
1883 if (fakename) {
1884 nlc.nlc_nameptr = fakename;
1885 nlc.nlc_namelen = strlen(fakename);
1886 rncp = cache_nlookup(nch, &nlc);
1887 goto done;
1888 }
1889
1890 if ((blksize = vat.va_blocksize) == 0)
1891 blksize = DEV_BSIZE;
1892 rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
1893 rncp.ncp = NULL;
1894
1895 eofflag = 0;
1896 uio.uio_offset = 0;
1897again:
1898 iov.iov_base = rbuf;
1899 iov.iov_len = blksize;
1900 uio.uio_iov = &iov;
1901 uio.uio_iovcnt = 1;
1902 uio.uio_resid = blksize;
1903 uio.uio_segflg = UIO_SYSSPACE;
1904 uio.uio_rw = UIO_READ;
1905 uio.uio_td = curthread;
1906
1907 if (ncvp_debug >= 2)
1908 kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
1909 error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
1910 if (error == 0) {
1911 den = (struct dirent *)rbuf;
1912 bytes = blksize - uio.uio_resid;
1913
1914 while (bytes > 0) {
1915 if (ncvp_debug >= 2) {
1916 kprintf("cache_inefficient_scan: %*.*s\n",
1917 den->d_namlen, den->d_namlen,
1918 den->d_name);
1919 }
1920 if (den->d_type != DT_WHT &&
1921 den->d_ino == vat.va_fileid) {
1922 if (ncvp_debug) {
1923 kprintf("cache_inefficient_scan: "
1924 "MATCHED inode %lld path %s/%*.*s\n",
1925 (long long)vat.va_fileid,
1926 nch->ncp->nc_name,
1927 den->d_namlen, den->d_namlen,
1928 den->d_name);
1929 }
1930 nlc.nlc_nameptr = den->d_name;
1931 nlc.nlc_namelen = den->d_namlen;
1932 rncp = cache_nlookup(nch, &nlc);
1933 KKASSERT(rncp.ncp != NULL);
1934 break;
1935 }
1936 bytes -= _DIRENT_DIRSIZ(den);
1937 den = _DIRENT_NEXT(den);
1938 }
1939 if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
1940 goto again;
1941 }
1942 kfree(rbuf, M_TEMP);
1943done:
1944 vrele(pvp);
1945 if (rncp.ncp) {
1946 if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
1947 _cache_setvp(rncp.mount, rncp.ncp, dvp);
1948 if (ncvp_debug >= 2) {
1949 kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
1950 nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
1951 }
1952 } else {
1953 if (ncvp_debug >= 2) {
1954 kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
1955 nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
1956 rncp.ncp->nc_vp);
1957 }
1958 }
1959 if (rncp.ncp->nc_vp == NULL)
1960 error = rncp.ncp->nc_error;
1961 /*
1962 * Release rncp after a successful nlookup. rncp was fully
1963 * referenced.
1964 */
1965 cache_put(&rncp);
1966 } else {
1967 kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
1968 dvp, nch->ncp->nc_name);
1969 error = ENOENT;
1970 }
1971 return (error);
1972}
1973
1974/*
1975 * Zap a namecache entry. The ncp is unconditionally set to an unresolved
1976 * state, which disassociates it from its vnode or ncneglist.
1977 *
1978 * Then, if there are no additional references to the ncp and no children,
1979 * the ncp is removed from the topology and destroyed.
1980 *
1981 * References and/or children may exist if the ncp is in the middle of the
1982 * topology, preventing the ncp from being destroyed.
1983 *
1984 * This function must be called with the ncp held and locked and will unlock
1985 * and drop it during zapping.
1986 *
1987 * If nonblock is non-zero and the parent ncp cannot be locked we give up.
1988 * This case can occur in the cache_drop() path.
1989 *
1990 * This function may returned a held (but NOT locked) parent node which the
1991 * caller must drop. We do this so _cache_drop() can loop, to avoid
1992 * blowing out the kernel stack.
1993 *
1994 * WARNING! For MPSAFE operation this routine must acquire up to three
1995 * spin locks to be able to safely test nc_refs. Lock order is
1996 * very important.
1997 *
1998 * hash spinlock if on hash list
1999 * parent spinlock if child of parent
2000 * (the ncp is unresolved so there is no vnode association)
2001 */
2002static struct namecache *
2003cache_zap(struct namecache *ncp, int nonblock)
2004{
2005 struct namecache *par;
2006 struct vnode *dropvp;
2007 int refs;
2008
2009 /*
2010 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
2011 */
2012 _cache_setunresolved(ncp);
2013
2014 /*
2015 * Try to scrap the entry and possibly tail-recurse on its parent.
2016 * We only scrap unref'd (other then our ref) unresolved entries,
2017 * we do not scrap 'live' entries.
2018 *
2019 * Note that once the spinlocks are acquired if nc_refs == 1 no
2020 * other references are possible. If it isn't, however, we have
2021 * to decrement but also be sure to avoid a 1->0 transition.
2022 */
2023 KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
2024 KKASSERT(ncp->nc_refs > 0);
2025
2026 /*
2027 * Acquire locks. Note that the parent can't go away while we hold
2028 * a child locked.
2029 */
2030 if ((par = ncp->nc_parent) != NULL) {
2031 if (nonblock) {
2032 for (;;) {
2033 if (_cache_lock_nonblock(par) == 0)
2034 break;
2035 refs = ncp->nc_refs;
2036 ncp->nc_flag |= NCF_DEFEREDZAP;
2037 ++numdefered; /* MP race ok */
2038 if (atomic_cmpset_int(&ncp->nc_refs,
2039 refs, refs - 1)) {
2040 _cache_unlock(ncp);
2041 return(NULL);
2042 }
2043 cpu_pause();
2044 }
2045 _cache_hold(par);
2046 } else {
2047 _cache_hold(par);
2048 _cache_lock(par);
2049 }
2050 spin_lock_wr(&ncp->nc_head->spin);
2051 }
2052
2053 /*
2054 * If someone other then us has a ref or we have children
2055 * we cannot zap the entry. The 1->0 transition and any
2056 * further list operation is protected by the spinlocks
2057 * we have acquired but other transitions are not.
2058 */
2059 for (;;) {
2060 refs = ncp->nc_refs;
2061 if (refs == 1 && TAILQ_EMPTY(&ncp->nc_list))
2062 break;
2063 if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1)) {
2064 if (par) {
2065 spin_unlock_wr(&ncp->nc_head->spin);
2066 _cache_put(par);
2067 }
2068 _cache_unlock(ncp);
2069 return(NULL);
2070 }
2071 cpu_pause();
2072 }
2073
2074 /*
2075 * We are the only ref and with the spinlocks held no further
2076 * refs can be acquired by others.
2077 *
2078 * Remove us from the hash list and parent list. We have to
2079 * drop a ref on the parent's vp if the parent's list becomes
2080 * empty.
2081 */
2082 dropvp = NULL;
2083 if (par) {
2084 struct nchash_head *nchpp = ncp->nc_head;
2085
2086 KKASSERT(nchpp != NULL);
2087 LIST_REMOVE(ncp, nc_hash);
2088 TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
2089 if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
2090 dropvp = par->nc_vp;
2091 ncp->nc_head = NULL;
2092 ncp->nc_parent = NULL;
2093 spin_unlock_wr(&nchpp->spin);
2094 _cache_unlock(par);
2095 } else {
2096 KKASSERT(ncp->nc_head == NULL);
2097 }
2098
2099 /*
2100 * ncp should not have picked up any refs. Physically
2101 * destroy the ncp.
2102 */
2103 KKASSERT(ncp->nc_refs == 1);
2104 /* _cache_unlock(ncp) not required */
2105 ncp->nc_refs = -1; /* safety */
2106 if (ncp->nc_name)
2107 kfree(ncp->nc_name, M_VFSCACHE);
2108 kfree(ncp, M_VFSCACHE);
2109
2110 /*
2111 * Delayed drop (we had to release our spinlocks)
2112 *
2113 * The refed parent (if not NULL) must be dropped. The
2114 * caller is responsible for looping.
2115 */
2116 if (dropvp)
2117 vdrop(dropvp);
2118 return(par);
2119}
2120
2121/*
2122 * Clean up dangling negative cache and defered-drop entries in the
2123 * namecache.
2124 */
2125static enum { CHI_LOW, CHI_HIGH } cache_hysteresis_state = CHI_LOW;
2126
2127void
2128cache_hysteresis(void)
2129{
2130 /*
2131 * Don't cache too many negative hits. We use hysteresis to reduce
2132 * the impact on the critical path.
2133 */
2134 switch(cache_hysteresis_state) {
2135 case CHI_LOW:
2136 if (numneg > MINNEG && numneg * ncnegfactor > numcache) {
2137 _cache_cleanneg(10);
2138 cache_hysteresis_state = CHI_HIGH;
2139 }
2140 break;
2141 case CHI_HIGH:
2142 if (numneg > MINNEG * 9 / 10 &&
2143 numneg * ncnegfactor * 9 / 10 > numcache
2144 ) {
2145 _cache_cleanneg(10);
2146 } else {
2147 cache_hysteresis_state = CHI_LOW;
2148 }
2149 break;
2150 }
2151
2152 /*
2153 * Clean out dangling defered-zap ncps which could not
2154 * be cleanly dropped if too many build up. Note
2155 * that numdefered is not an exact number as such ncps
2156 * can be reused and the counter is not handled in a MP
2157 * safe manner by design.
2158 */
2159 if (numdefered * ncnegfactor > numcache) {
2160 _cache_cleandefered();
2161 }
2162}
2163
2164/*
2165 * NEW NAMECACHE LOOKUP API
2166 *
2167 * Lookup an entry in the namecache. The passed par_nch must be referenced
2168 * and unlocked. A referenced and locked nchandle with a non-NULL nch.ncp
2169 * is ALWAYS returned, eve if the supplied component is illegal.
2170 *
2171 * The resulting namecache entry should be returned to the system with
2172 * cache_put() or cache_unlock() + cache_drop().
2173 *
2174 * namecache locks are recursive but care must be taken to avoid lock order
2175 * reversals (hence why the passed par_nch must be unlocked). Locking
2176 * rules are to order for parent traversals, not for child traversals.
2177 *
2178 * Nobody else will be able to manipulate the associated namespace (e.g.
2179 * create, delete, rename, rename-target) until the caller unlocks the
2180 * entry.
2181 *
2182 * The returned entry will be in one of three states: positive hit (non-null
2183 * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
2184 * Unresolved entries must be resolved through the filesystem to associate the
2185 * vnode and/or determine whether a positive or negative hit has occured.
2186 *
2187 * It is not necessary to lock a directory in order to lock namespace under
2188 * that directory. In fact, it is explicitly not allowed to do that. A
2189 * directory is typically only locked when being created, renamed, or
2190 * destroyed.
2191 *
2192 * The directory (par) may be unresolved, in which case any returned child
2193 * will likely also be marked unresolved. Likely but not guarenteed. Since
2194 * the filesystem lookup requires a resolved directory vnode the caller is
2195 * responsible for resolving the namecache chain top-down. This API
2196 * specifically allows whole chains to be created in an unresolved state.
2197 */
2198struct nchandle
2199cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
2200{
2201 struct nchandle nch;
2202 struct namecache *ncp;
2203 struct namecache *new_ncp;
2204 struct nchash_head *nchpp;
2205 struct mount *mp;
2206 u_int32_t hash;
2207 globaldata_t gd;
2208 int par_locked;
2209
2210 numcalls++;
2211 gd = mycpu;
2212 mp = par_nch->mount;
2213 par_locked = 0;
2214
2215 /*
2216 * This is a good time to call it, no ncp's are locked by
2217 * the caller or us.
2218 */
2219 cache_hysteresis();
2220
2221 /*
2222 * Try to locate an existing entry
2223 */
2224 hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2225 hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2226 new_ncp = NULL;
2227 nchpp = NCHHASH(hash);
2228restart:
2229 spin_lock_wr(&nchpp->spin);
2230 LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2231 numchecks++;
2232
2233 /*
2234 * Break out if we find a matching entry. Note that
2235 * UNRESOLVED entries may match, but DESTROYED entries
2236 * do not.
2237 */
2238 if (ncp->nc_parent == par_nch->ncp &&
2239 ncp->nc_nlen == nlc->nlc_namelen &&
2240 bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2241 (ncp->nc_flag & NCF_DESTROYED) == 0
2242 ) {
2243 _cache_hold(ncp);
2244 spin_unlock_wr(&nchpp->spin);
2245 if (par_locked) {
2246 _cache_unlock(par_nch->ncp);
2247 par_locked = 0;
2248 }
2249 if (_cache_lock_special(ncp) == 0) {
2250 _cache_auto_unresolve(mp, ncp);
2251 if (new_ncp)
2252 _cache_free(new_ncp);
2253 goto found;
2254 }
2255 _cache_get(ncp);
2256 _cache_put(ncp);
2257 _cache_drop(ncp);
2258 goto restart;
2259 }
2260 }
2261
2262 /*
2263 * We failed to locate an entry, create a new entry and add it to
2264 * the cache. The parent ncp must also be locked so we
2265 * can link into it.
2266 *
2267 * We have to relookup after possibly blocking in kmalloc or
2268 * when locking par_nch.
2269 *
2270 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2271 * mount case, in which case nc_name will be NULL.
2272 */
2273 if (new_ncp == NULL) {
2274 spin_unlock_wr(&nchpp->spin);
2275 new_ncp = cache_alloc(nlc->nlc_namelen);
2276 if (nlc->nlc_namelen) {
2277 bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2278 nlc->nlc_namelen);
2279 new_ncp->nc_name[nlc->nlc_namelen] = 0;
2280 }
2281 goto restart;
2282 }
2283 if (par_locked == 0) {
2284 spin_unlock_wr(&nchpp->spin);
2285 _cache_lock(par_nch->ncp);
2286 par_locked = 1;
2287 goto restart;
2288 }
2289
2290 /*
2291 * WARNING! We still hold the spinlock. We have to set the hash
2292 * table entry atomically.
2293 */
2294 ncp = new_ncp;
2295 _cache_link_parent(ncp, par_nch->ncp, nchpp);
2296 spin_unlock_wr(&nchpp->spin);
2297 _cache_unlock(par_nch->ncp);
2298 /* par_locked = 0 - not used */
2299found:
2300 /*
2301 * stats and namecache size management
2302 */
2303 if (ncp->nc_flag & NCF_UNRESOLVED)
2304 ++gd->gd_nchstats->ncs_miss;
2305 else if (ncp->nc_vp)
2306 ++gd->gd_nchstats->ncs_goodhits;
2307 else
2308 ++gd->gd_nchstats->ncs_neghits;
2309 nch.mount = mp;
2310 nch.ncp = ncp;
2311 atomic_add_int(&nch.mount->mnt_refs, 1);
2312 return(nch);
2313}
2314
2315/*
2316 * This is a non-blocking verison of cache_nlookup() used by
2317 * nfs_readdirplusrpc_uio(). It can fail for any reason and
2318 * will return nch.ncp == NULL in that case.
2319 */
2320struct nchandle
2321cache_nlookup_nonblock(struct nchandle *par_nch, struct nlcomponent *nlc)
2322{
2323 struct nchandle nch;
2324 struct namecache *ncp;
2325 struct namecache *new_ncp;
2326 struct nchash_head *nchpp;
2327 struct mount *mp;
2328 u_int32_t hash;
2329 globaldata_t gd;
2330 int par_locked;
2331
2332 numcalls++;
2333 gd = mycpu;
2334 mp = par_nch->mount;
2335 par_locked = 0;
2336
2337 /*
2338 * Try to locate an existing entry
2339 */
2340 hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2341 hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2342 new_ncp = NULL;
2343 nchpp = NCHHASH(hash);
2344restart:
2345 spin_lock_wr(&nchpp->spin);
2346 LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2347 numchecks++;
2348
2349 /*
2350 * Break out if we find a matching entry. Note that
2351 * UNRESOLVED entries may match, but DESTROYED entries
2352 * do not.
2353 */
2354 if (ncp->nc_parent == par_nch->ncp &&
2355 ncp->nc_nlen == nlc->nlc_namelen &&
2356 bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2357 (ncp->nc_flag & NCF_DESTROYED) == 0
2358 ) {
2359 _cache_hold(ncp);
2360 spin_unlock_wr(&nchpp->spin);
2361 if (par_locked) {
2362 _cache_unlock(par_nch->ncp);
2363 par_locked = 0;
2364 }
2365 if (_cache_lock_special(ncp) == 0) {
2366 _cache_auto_unresolve(mp, ncp);
2367 if (new_ncp) {
2368 _cache_free(new_ncp);
2369 new_ncp = NULL;
2370 }
2371 goto found;
2372 }
2373 _cache_drop(ncp);
2374 goto failed;
2375 }
2376 }
2377
2378 /*
2379 * We failed to locate an entry, create a new entry and add it to
2380 * the cache. The parent ncp must also be locked so we
2381 * can link into it.
2382 *
2383 * We have to relookup after possibly blocking in kmalloc or
2384 * when locking par_nch.
2385 *
2386 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2387 * mount case, in which case nc_name will be NULL.
2388 */
2389 if (new_ncp == NULL) {
2390 spin_unlock_wr(&nchpp->spin);
2391 new_ncp = cache_alloc(nlc->nlc_namelen);
2392 if (nlc->nlc_namelen) {
2393 bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2394 nlc->nlc_namelen);
2395 new_ncp->nc_name[nlc->nlc_namelen] = 0;
2396 }
2397 goto restart;
2398 }
2399 if (par_locked == 0) {
2400 spin_unlock_wr(&nchpp->spin);
2401 if (_cache_lock_nonblock(par_nch->ncp) == 0) {
2402 par_locked = 1;
2403 goto restart;
2404 }
2405 goto failed;
2406 }
2407
2408 /*
2409 * WARNING! We still hold the spinlock. We have to set the hash
2410 * table entry atomically.
2411 */
2412 ncp = new_ncp;
2413 _cache_link_parent(ncp, par_nch->ncp, nchpp);
2414 spin_unlock_wr(&nchpp->spin);
2415 _cache_unlock(par_nch->ncp);
2416 /* par_locked = 0 - not used */
2417found:
2418 /*
2419 * stats and namecache size management
2420 */
2421 if (ncp->nc_flag & NCF_UNRESOLVED)
2422 ++gd->gd_nchstats->ncs_miss;
2423 else if (ncp->nc_vp)
2424 ++gd->gd_nchstats->ncs_goodhits;
2425 else
2426 ++gd->gd_nchstats->ncs_neghits;
2427 nch.mount = mp;
2428 nch.ncp = ncp;
2429 atomic_add_int(&nch.mount->mnt_refs, 1);
2430 return(nch);
2431failed:
2432 if (new_ncp) {
2433 _cache_free(new_ncp);
2434 new_ncp = NULL;
2435 }
2436 nch.mount = NULL;
2437 nch.ncp = NULL;
2438 return(nch);
2439}
2440
2441/*
2442 * The namecache entry is marked as being used as a mount point.
2443 * Locate the mount if it is visible to the caller.
2444 */
2445struct findmount_info {
2446 struct mount *result;
2447 struct mount *nch_mount;
2448 struct namecache *nch_ncp;
2449};
2450
2451static
2452int
2453cache_findmount_callback(struct mount *mp, void *data)
2454{
2455 struct findmount_info *info = data;
2456
2457 /*
2458 * Check the mount's mounted-on point against the passed nch.
2459 */
2460 if (mp->mnt_ncmounton.mount == info->nch_mount &&
2461 mp->mnt_ncmounton.ncp == info->nch_ncp
2462 ) {
2463 info->result = mp;
2464 return(-1);
2465 }
2466 return(0);
2467}
2468
2469struct mount *
2470cache_findmount(struct nchandle *nch)
2471{
2472 struct findmount_info info;
2473
2474 info.result = NULL;
2475 info.nch_mount = nch->mount;
2476 info.nch_ncp = nch->ncp;
2477 mountlist_scan(cache_findmount_callback, &info,
2478 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
2479 return(info.result);
2480}
2481
2482/*
2483 * Resolve an unresolved namecache entry, generally by looking it up.
2484 * The passed ncp must be locked and refd.
2485 *
2486 * Theoretically since a vnode cannot be recycled while held, and since
2487 * the nc_parent chain holds its vnode as long as children exist, the
2488 * direct parent of the cache entry we are trying to resolve should
2489 * have a valid vnode. If not then generate an error that we can
2490 * determine is related to a resolver bug.
2491 *
2492 * However, if a vnode was in the middle of a recyclement when the NCP
2493 * got locked, ncp->nc_vp might point to a vnode that is about to become
2494 * invalid. cache_resolve() handles this case by unresolving the entry
2495 * and then re-resolving it.
2496 *
2497 * Note that successful resolution does not necessarily return an error
2498 * code of 0. If the ncp resolves to a negative cache hit then ENOENT
2499 * will be returned.
2500 *
2501 * MPSAFE
2502 */
2503int
2504cache_resolve(struct nchandle *nch, struct ucred *cred)
2505{
2506 struct namecache *par_tmp;
2507 struct namecache *par;
2508 struct namecache *ncp;
2509 struct nchandle nctmp;
2510 struct mount *mp;
2511 struct vnode *dvp;
2512 int error;
2513
2514 ncp = nch->ncp;
2515 mp = nch->mount;
2516restart:
2517 /*
2518 * If the ncp is already resolved we have nothing to do. However,
2519 * we do want to guarentee that a usable vnode is returned when
2520 * a vnode is present, so make sure it hasn't been reclaimed.
2521 */
2522 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2523 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2524 _cache_setunresolved(ncp);
2525 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
2526 return (ncp->nc_error);
2527 }
2528
2529 /*
2530 * Mount points need special handling because the parent does not
2531 * belong to the same filesystem as the ncp.
2532 */
2533 if (ncp == mp->mnt_ncmountpt.ncp)
2534 return (cache_resolve_mp(mp));
2535
2536 /*
2537 * We expect an unbroken chain of ncps to at least the mount point,
2538 * and even all the way to root (but this code doesn't have to go
2539 * past the mount point).
2540 */
2541 if (ncp->nc_parent == NULL) {
2542 kprintf("EXDEV case 1 %p %*.*s\n", ncp,
2543 ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2544 ncp->nc_error = EXDEV;
2545 return(ncp->nc_error);
2546 }
2547
2548 /*
2549 * The vp's of the parent directories in the chain are held via vhold()
2550 * due to the existance of the child, and should not disappear.
2551 * However, there are cases where they can disappear:
2552 *
2553 * - due to filesystem I/O errors.
2554 * - due to NFS being stupid about tracking the namespace and
2555 * destroys the namespace for entire directories quite often.
2556 * - due to forced unmounts.
2557 * - due to an rmdir (parent will be marked DESTROYED)
2558 *
2559 * When this occurs we have to track the chain backwards and resolve
2560 * it, looping until the resolver catches up to the current node. We
2561 * could recurse here but we might run ourselves out of kernel stack
2562 * so we do it in a more painful manner. This situation really should
2563 * not occur all that often, or if it does not have to go back too
2564 * many nodes to resolve the ncp.
2565 */
2566 while ((dvp = cache_dvpref(ncp)) == NULL) {
2567 /*
2568 * This case can occur if a process is CD'd into a
2569 * directory which is then rmdir'd. If the parent is marked
2570 * destroyed there is no point trying to resolve it.
2571 */
2572 if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
2573 return(ENOENT);
2574 par = ncp->nc_parent;
2575 _cache_hold(par);
2576 _cache_lock(par);
2577 while ((par_tmp = par->nc_parent) != NULL &&
2578 par_tmp->nc_vp == NULL) {
2579 _cache_hold(par_tmp);
2580 _cache_lock(par_tmp);
2581 _cache_put(par);
2582 par = par_tmp;
2583 }
2584 if (par->nc_parent == NULL) {
2585 kprintf("EXDEV case 2 %*.*s\n",
2586 par->nc_nlen, par->nc_nlen, par->nc_name);
2587 _cache_put(par);
2588 return (EXDEV);
2589 }
2590 kprintf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
2591 par->nc_nlen, par->nc_nlen, par->nc_name);
2592 /*
2593 * The parent is not set in stone, ref and lock it to prevent
2594 * it from disappearing. Also note that due to renames it
2595 * is possible for our ncp to move and for par to no longer
2596 * be one of its parents. We resolve it anyway, the loop
2597 * will handle any moves.
2598 */
2599 _cache_get(par); /* additional hold/lock */
2600 _cache_put(par); /* from earlier hold/lock */
2601 if (par == nch->mount->mnt_ncmountpt.ncp) {
2602 cache_resolve_mp(nch->mount);
2603 } else if ((dvp = cache_dvpref(par)) == NULL) {
2604 kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
2605 _cache_put(par);
2606 continue;
2607 } else {
2608 if (par->nc_flag & NCF_UNRESOLVED) {
2609 nctmp.mount = mp;
2610 nctmp.ncp = par;
2611 par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2612 }
2613 vrele(dvp);
2614 }
2615 if ((error = par->nc_error) != 0) {
2616 if (par->nc_error != EAGAIN) {
2617 kprintf("EXDEV case 3 %*.*s error %d\n",
2618 par->nc_nlen, par->nc_nlen, par->nc_name,
2619 par->nc_error);
2620 _cache_put(par);
2621 return(error);
2622 }
2623 kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
2624 par, par->nc_nlen, par->nc_nlen, par->nc_name);
2625 }
2626 _cache_put(par);
2627 /* loop */
2628 }
2629
2630 /*
2631 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
2632 * ncp's and reattach them. If this occurs the original ncp is marked
2633 * EAGAIN to force a relookup.
2634 *
2635 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
2636 * ncp must already be resolved.
2637 */
2638 if (dvp) {
2639 nctmp.mount = mp;
2640 nctmp.ncp = ncp;
2641 ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2642 vrele(dvp);
2643 } else {
2644 ncp->nc_error = EPERM;
2645 }
2646 if (ncp->nc_error == EAGAIN) {
2647 kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
2648 ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2649 goto restart;
2650 }
2651 return(ncp->nc_error);
2652}
2653
2654/*
2655 * Resolve the ncp associated with a mount point. Such ncp's almost always
2656 * remain resolved and this routine is rarely called. NFS MPs tends to force
2657 * re-resolution more often due to its mac-truck-smash-the-namecache
2658 * method of tracking namespace changes.
2659 *
2660 * The semantics for this call is that the passed ncp must be locked on
2661 * entry and will be locked on return. However, if we actually have to
2662 * resolve the mount point we temporarily unlock the entry in order to
2663 * avoid race-to-root deadlocks due to e.g. dead NFS mounts. Because of
2664 * the unlock we have to recheck the flags after we relock.
2665 */
2666static int
2667cache_resolve_mp(struct mount *mp)
2668{
2669 struct namecache *ncp = mp->mnt_ncmountpt.ncp;
2670 struct vnode *vp;
2671 int error;
2672
2673 KKASSERT(mp != NULL);
2674
2675 /*
2676 * If the ncp is already resolved we have nothing to do. However,
2677 * we do want to guarentee that a usable vnode is returned when
2678 * a vnode is present, so make sure it hasn't been reclaimed.
2679 */
2680 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2681 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2682 _cache_setunresolved(ncp);
2683 }
2684
2685 if (ncp->nc_flag & NCF_UNRESOLVED) {
2686 _cache_unlock(ncp);
2687 while (vfs_busy(mp, 0))
2688 ;
2689 error = VFS_ROOT(mp, &vp);
2690 _cache_lock(ncp);
2691
2692 /*
2693 * recheck the ncp state after relocking.
2694 */
2695 if (ncp->nc_flag & NCF_UNRESOLVED) {
2696 ncp->nc_error = error;
2697 if (error == 0) {
2698 _cache_setvp(mp, ncp, vp);
2699 vput(vp);
2700 } else {
2701 kprintf("[diagnostic] cache_resolve_mp: failed"
2702 " to resolve mount %p err=%d ncp=%p\n",
2703 mp, error, ncp);
2704 _cache_setvp(mp, ncp, NULL);
2705 }
2706 } else if (error == 0) {
2707 vput(vp);
2708 }
2709 vfs_unbusy(mp);
2710 }
2711 return(ncp->nc_error);
2712}
2713
2714/*
2715 * Clean out negative cache entries when too many have accumulated.
2716 *
2717 * MPSAFE
2718 */
2719static void
2720_cache_cleanneg(int count)
2721{
2722 struct namecache *ncp;
2723
2724 /*
2725 * Automode from the vnlru proc - clean out 10% of the negative cache
2726 * entries.
2727 */
2728 if (count == 0)
2729 count = numneg / 10 + 1;
2730
2731 /*
2732 * Attempt to clean out the specified number of negative cache
2733 * entries.
2734 */
2735 while (count) {
2736 spin_lock_wr(&ncspin);
2737 ncp = TAILQ_FIRST(&ncneglist);
2738 if (ncp == NULL) {
2739 spin_unlock_wr(&ncspin);
2740 break;
2741 }
2742 TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
2743 TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
2744 _cache_hold(ncp);
2745 spin_unlock_wr(&ncspin);
2746 if (_cache_lock_special(ncp) == 0) {
2747 ncp = cache_zap(ncp, 0);
2748 if (ncp)
2749 _cache_drop(ncp);
2750 } else {
2751 _cache_drop(ncp);
2752 }
2753 --count;
2754 }
2755}
2756
2757/*
2758 * This is a kitchen sink function to clean out ncps which we
2759 * tried to zap from cache_drop() but failed because we were
2760 * unable to acquire the parent lock.
2761 *
2762 * Such entries can also be removed via cache_inval_vp(), such
2763 * as when unmounting.
2764 *
2765 * MPSAFE
2766 */
2767static void
2768_cache_cleandefered(void)
2769{
2770 struct nchash_head *nchpp;
2771 struct namecache *ncp;
2772 struct namecache dummy;
2773 int i;
2774
2775 numdefered = 0;
2776 bzero(&dummy, sizeof(dummy));
2777 dummy.nc_flag = NCF_DESTROYED;
2778
2779 for (i = 0; i <= nchash; ++i) {
2780 nchpp = &nchashtbl[i];
2781
2782 spin_lock_wr(&nchpp->spin);
2783 LIST_INSERT_HEAD(&nchpp->list, &dummy, nc_hash);
2784 ncp = &dummy;
2785 while ((ncp = LIST_NEXT(ncp, nc_hash)) != NULL) {
2786 if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0)
2787 continue;
2788 LIST_REMOVE(&dummy, nc_hash);
2789 LIST_INSERT_AFTER(ncp, &dummy, nc_hash);
2790 _cache_hold(ncp);
2791 spin_unlock_wr(&nchpp->spin);
2792 if (_cache_lock_nonblock(ncp) == 0) {
2793 ncp->nc_flag &= ~NCF_DEFEREDZAP;
2794 _cache_unlock(ncp);
2795 }
2796 _cache_drop(ncp);
2797 spin_lock_wr(&nchpp->spin);
2798 ncp = &dummy;
2799 }
2800 LIST_REMOVE(&dummy, nc_hash);
2801 spin_unlock_wr(&nchpp->spin);
2802 }
2803}
2804
2805/*
2806 * Name cache initialization, from vfsinit() when we are booting
2807 */
2808void
2809nchinit(void)
2810{
2811 int i;
2812 globaldata_t gd;
2813
2814 /* initialise per-cpu namecache effectiveness statistics. */
2815 for (i = 0; i < ncpus; ++i) {
2816 gd = globaldata_find(i);
2817 gd->gd_nchstats = &nchstats[i];
2818 }
2819 TAILQ_INIT(&ncneglist);
2820 spin_init(&ncspin);
2821 nchashtbl = hashinit_ext(desiredvnodes*2, sizeof(struct nchash_head),
2822 M_VFSCACHE, &nchash);
2823 for (i = 0; i <= (int)nchash; ++i) {
2824 LIST_INIT(&nchashtbl[i].list);
2825 spin_init(&nchashtbl[i].spin);
2826 }
2827 nclockwarn = 5 * hz;
2828}
2829
2830/*
2831 * Called from start_init() to bootstrap the root filesystem. Returns
2832 * a referenced, unlocked namecache record.
2833 */
2834void
2835cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
2836{
2837 nch->ncp = cache_alloc(0);
2838 nch->mount = mp;
2839 atomic_add_int(&mp->mnt_refs, 1);
2840 if (vp)
2841 _cache_setvp(nch->mount, nch->ncp, vp);
2842}
2843
2844/*
2845 * vfs_cache_setroot()
2846 *
2847 * Create an association between the root of our namecache and
2848 * the root vnode. This routine may be called several times during
2849 * booting.
2850 *
2851 * If the caller intends to save the returned namecache pointer somewhere
2852 * it must cache_hold() it.
2853 */
2854void
2855vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
2856{
2857 struct vnode *ovp;
2858 struct nchandle onch;
2859
2860 ovp = rootvnode;
2861 onch = rootnch;
2862 rootvnode = nvp;
2863 if (nch)
2864 rootnch = *nch;
2865 else
2866 cache_zero(&rootnch);
2867 if (ovp)
2868 vrele(ovp);
2869 if (onch.ncp)
2870 cache_drop(&onch);
2871}
2872
2873/*
2874 * XXX OLD API COMPAT FUNCTION. This really messes up the new namecache
2875 * topology and is being removed as quickly as possible. The new VOP_N*()
2876 * API calls are required to make specific adjustments using the supplied
2877 * ncp pointers rather then just bogusly purging random vnodes.
2878 *
2879 * Invalidate all namecache entries to a particular vnode as well as
2880 * any direct children of that vnode in the namecache. This is a
2881 * 'catch all' purge used by filesystems that do not know any better.
2882 *
2883 * Note that the linkage between the vnode and its namecache entries will
2884 * be removed, but the namecache entries themselves might stay put due to
2885 * active references from elsewhere in the system or due to the existance of
2886 * the children. The namecache topology is left intact even if we do not
2887 * know what the vnode association is. Such entries will be marked
2888 * NCF_UNRESOLVED.
2889 */
2890void
2891cache_purge(struct vnode *vp)
2892{
2893 cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
2894}
2895
2896/*
2897 * Flush all entries referencing a particular filesystem.
2898 *
2899 * Since we need to check it anyway, we will flush all the invalid
2900 * entries at the same time.
2901 */
2902#if 0
2903
2904void
2905cache_purgevfs(struct mount *mp)
2906{
2907 struct nchash_head *nchpp;
2908 struct namecache *ncp, *nnp;
2909
2910 /*
2911 * Scan hash tables for applicable entries.
2912 */
2913 for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
2914 spin_lock_wr(&nchpp->spin); XXX
2915 ncp = LIST_FIRST(&nchpp->list);
2916 if (ncp)
2917 _cache_hold(ncp);
2918 while (ncp) {
2919 nnp = LIST_NEXT(ncp, nc_hash);
2920 if (nnp)
2921 _cache_hold(nnp);
2922 if (ncp->nc_mount == mp) {
2923 _cache_lock(ncp);
2924 ncp = cache_zap(ncp, 0);
2925 if (ncp)
2926 _cache_drop(ncp);
2927 } else {
2928 _cache_drop(ncp);
2929 }
2930 ncp = nnp;
2931 }
2932 spin_unlock_wr(&nchpp->spin); XXX
2933 }
2934}
2935
2936#endif
2937
2938static int disablecwd;
2939SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0, "");
2940
2941static u_long numcwdcalls; STATNODE(CTLFLAG_RD, numcwdcalls, &numcwdcalls);
2942static u_long numcwdfail1; STATNODE(CTLFLAG_RD, numcwdfail1, &numcwdfail1);
2943static u_long numcwdfail2; STATNODE(CTLFLAG_RD, numcwdfail2, &numcwdfail2);
2944static u_long numcwdfail3; STATNODE(CTLFLAG_RD, numcwdfail3, &numcwdfail3);
2945static u_long numcwdfail4; STATNODE(CTLFLAG_RD, numcwdfail4, &numcwdfail4);
2946static u_long numcwdfound; STATNODE(CTLFLAG_RD, numcwdfound, &numcwdfound);
2947
2948/*
2949 * MPALMOSTSAFE
2950 */
2951int
2952sys___getcwd(struct __getcwd_args *uap)
2953{
2954 int buflen;
2955 int error;
2956 char *buf;
2957 char *bp;
2958
2959 if (disablecwd)
2960 return (ENODEV);
2961
2962 buflen = uap->buflen;
2963 if (buflen == 0)
2964 return (EINVAL);
2965 if (buflen > MAXPATHLEN)
2966 buflen = MAXPATHLEN;
2967
2968 buf = kmalloc(buflen, M_TEMP, M_WAITOK);
2969 get_mplock();
2970 bp = kern_getcwd(buf, buflen, &error);
2971 rel_mplock();
2972 if (error == 0)
2973 error = copyout(bp, uap->buf, strlen(bp) + 1);
2974 kfree(buf, M_TEMP);
2975 return (error);
2976}
2977
2978char *
2979kern_getcwd(char *buf, size_t buflen, int *error)
2980{
2981 struct proc *p = curproc;
2982 char *bp;
2983 int i, slash_prefixed;
2984 struct filedesc *fdp;
2985 struct nchandle nch;
2986 struct namecache *ncp;
2987
2988 numcwdcalls++;
2989 bp = buf;
2990 bp += buflen - 1;
2991 *bp = '\0';
2992 fdp = p->p_fd;
2993 slash_prefixed = 0;
2994
2995 nch = fdp->fd_ncdir;
2996 ncp = nch.ncp;
2997 if (ncp)
2998 _cache_hold(ncp);
2999
3000 while (ncp && (ncp != fdp->fd_nrdir.ncp ||
3001 nch.mount != fdp->fd_nrdir.mount)
3002 ) {
3003 /*
3004 * While traversing upwards if we encounter the root
3005 * of the current mount we have to skip to the mount point
3006 * in the underlying filesystem.
3007 */
3008 if (ncp == nch.mount->mnt_ncmountpt.ncp) {
3009 nch = nch.mount->mnt_ncmounton;
3010 _cache_drop(ncp);
3011 ncp = nch.ncp;
3012 if (ncp)
3013 _cache_hold(ncp);
3014 continue;
3015 }
3016
3017 /*
3018 * Prepend the path segment
3019 */
3020 for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3021 if (bp == buf) {
3022 numcwdfail4++;
3023 *error = ERANGE;
3024 bp = NULL;
3025 goto done;
3026 }
3027 *--bp = ncp->nc_name[i];
3028 }
3029 if (bp == buf) {
3030 numcwdfail4++;
3031 *error = ERANGE;
3032 bp = NULL;
3033 goto done;
3034 }
3035 *--bp = '/';
3036 slash_prefixed = 1;
3037
3038 /*
3039 * Go up a directory. This isn't a mount point so we don't
3040 * have to check again.
3041 */
3042 while ((nch.ncp = ncp->nc_parent) != NULL) {
3043 _cache_lock(ncp);
3044 if (nch.ncp != ncp->nc_parent) {
3045 _cache_unlock(ncp);
3046 continue;
3047 }
3048 _cache_hold(nch.ncp);
3049 _cache_unlock(ncp);
3050 break;
3051 }
3052 _cache_drop(ncp);
3053 ncp = nch.ncp;
3054 }
3055 if (ncp == NULL) {
3056 numcwdfail2++;
3057 *error = ENOENT;
3058 bp = NULL;
3059 goto done;
3060 }
3061 if (!slash_prefixed) {
3062 if (bp == buf) {
3063 numcwdfail4++;
3064 *error = ERANGE;
3065 bp = NULL;
3066 goto done;
3067 }
3068 *--bp = '/';
3069 }
3070 numcwdfound++;
3071 *error = 0;
3072done:
3073 if (ncp)
3074 _cache_drop(ncp);
3075 return (bp);
3076}
3077
3078/*
3079 * Thus begins the fullpath magic.
3080 *
3081 * The passed nchp is referenced but not locked.
3082 */
3083#undef STATNODE
3084#define STATNODE(name) \
3085 static u_int name; \
3086 SYSCTL_UINT(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, 0, "")
3087
3088static int disablefullpath;
3089SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
3090 &disablefullpath, 0, "");
3091
3092STATNODE(numfullpathcalls);
3093STATNODE(numfullpathfail1);
3094STATNODE(numfullpathfail2);
3095STATNODE(numfullpathfail3);
3096STATNODE(numfullpathfail4);
3097STATNODE(numfullpathfound);
3098
3099int
3100cache_fullpath(struct proc *p, struct nchandle *nchp,
3101 char **retbuf, char **freebuf)
3102{
3103 struct nchandle fd_nrdir;
3104 struct nchandle nch;
3105 struct namecache *ncp;
3106 struct mount *mp;
3107 char *bp, *buf;
3108 int slash_prefixed;
3109 int error = 0;
3110 int i;
3111
3112 atomic_add_int(&numfullpathcalls, -1);
3113
3114 *retbuf = NULL;
3115 *freebuf = NULL;
3116
3117 buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
3118 bp = buf + MAXPATHLEN - 1;
3119 *bp = '\0';
3120 if (p != NULL)
3121 fd_nrdir = p->p_fd->fd_nrdir;
3122 else
3123 fd_nrdir = rootnch;
3124 slash_prefixed = 0;
3125 nch = *nchp;
3126 ncp = nch.ncp;
3127 if (ncp)
3128 _cache_hold(ncp);
3129 mp = nch.mount;
3130
3131 while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) {
3132 /*
3133 * While traversing upwards if we encounter the root
3134 * of the current mount we have to skip to the mount point.
3135 */
3136 if (ncp == mp->mnt_ncmountpt.ncp) {
3137 nch = mp->mnt_ncmounton;
3138 _cache_drop(ncp);
3139 ncp = nch.ncp;
3140 if (ncp)
3141 _cache_hold(ncp);
3142 mp = nch.mount;
3143 continue;
3144 }
3145
3146 /*
3147 * Prepend the path segment
3148 */
3149 for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3150 if (bp == buf) {
3151 numfullpathfail4++;
3152 kfree(buf, M_TEMP);
3153 error = ENOMEM;
3154 goto done;
3155 }
3156 *--bp = ncp->nc_name[i];
3157 }
3158 if (bp == buf) {
3159 numfullpathfail4++;
3160 kfree(buf, M_TEMP);
3161 error = ENOMEM;
3162 goto done;
3163 }
3164 *--bp = '/';
3165 slash_prefixed = 1;
3166
3167 /*
3168 * Go up a directory. This isn't a mount point so we don't
3169 * have to check again.
3170 *
3171 * We can only safely access nc_parent with ncp held locked.
3172 */
3173 while ((nch.ncp = ncp->nc_parent) != NULL) {
3174 _cache_lock(ncp);
3175 if (nch.ncp != ncp->nc_parent) {
3176 _cache_unlock(ncp);
3177 continue;
3178 }
3179 _cache_hold(nch.ncp);
3180 _cache_unlock(ncp);
3181 break;
3182 }
3183 _cache_drop(ncp);
3184 ncp = nch.ncp;
3185 }
3186 if (ncp == NULL) {
3187 numfullpathfail2++;
3188 kfree(buf, M_TEMP);
3189 error = ENOENT;
3190 goto done;
3191 }
3192
3193 if (!slash_prefixed) {
3194 if (bp == buf) {
3195 numfullpathfail4++;
3196 kfree(buf, M_TEMP);
3197 error = ENOMEM;
3198 goto done;
3199 }
3200 *--bp = '/';
3201 }
3202 numfullpathfound++;
3203 *retbuf = bp;
3204 *freebuf = buf;
3205 error = 0;
3206done:
3207 if (ncp)
3208 _cache_drop(ncp);
3209 return(error);
3210}
3211
3212int
3213vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, char **freebuf)
3214{
3215 struct namecache *ncp;
3216 struct nchandle nch;
3217 int error;
3218
3219 atomic_add_int(&numfullpathcalls, 1);
3220 if (disablefullpath)
3221 return (ENODEV);
3222
3223 if (p == NULL)
3224 return (EINVAL);
3225
3226 /* vn is NULL, client wants us to use p->p_textvp */
3227 if (vn == NULL) {
3228 if ((vn = p->p_textvp) == NULL)
3229 return (EINVAL);
3230 }
3231 spin_lock_wr(&vn->v_spinlock);
3232 TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
3233 if (ncp->nc_nlen)
3234 break;
3235 }
3236 if (ncp == NULL) {
3237 spin_unlock_wr(&vn->v_spinlock);
3238 return (EINVAL);
3239 }
3240 _cache_hold(ncp);
3241 spin_unlock_wr(&vn->v_spinlock);
3242
3243 atomic_add_int(&numfullpathcalls, -1);
3244 nch.ncp = ncp;;
3245 nch.mount = vn->v_mount;
3246 error = cache_fullpath(p, &nch, retbuf, freebuf);
3247 _cache_drop(ncp);
3248 return (error);
3249}