kernel - MPSAFE work - add vmspace_token
[dragonfly.git] / sys / vm / vm_map.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65 * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
66 */
67
68/*
69 * Virtual memory mapping module.
70 */
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/kernel.h>
75#include <sys/proc.h>
76#include <sys/lock.h>
77#include <sys/vmmeter.h>
78#include <sys/mman.h>
79#include <sys/vnode.h>
80#include <sys/resourcevar.h>
81#include <sys/shm.h>
82#include <sys/tree.h>
83#include <sys/malloc.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/pmap.h>
88#include <vm/vm_map.h>
89#include <vm/vm_page.h>
90#include <vm/vm_object.h>
91#include <vm/vm_pager.h>
92#include <vm/vm_kern.h>
93#include <vm/vm_extern.h>
94#include <vm/swap_pager.h>
95#include <vm/vm_zone.h>
96
97#include <sys/thread2.h>
98#include <sys/sysref2.h>
99
100/*
101 * Virtual memory maps provide for the mapping, protection,
102 * and sharing of virtual memory objects. In addition,
103 * this module provides for an efficient virtual copy of
104 * memory from one map to another.
105 *
106 * Synchronization is required prior to most operations.
107 *
108 * Maps consist of an ordered doubly-linked list of simple
109 * entries; a single hint is used to speed up lookups.
110 *
111 * Since portions of maps are specified by start/end addresses,
112 * which may not align with existing map entries, all
113 * routines merely "clip" entries to these start/end values.
114 * [That is, an entry is split into two, bordering at a
115 * start or end value.] Note that these clippings may not
116 * always be necessary (as the two resulting entries are then
117 * not changed); however, the clipping is done for convenience.
118 *
119 * As mentioned above, virtual copy operations are performed
120 * by copying VM object references from one map to
121 * another, and then marking both regions as copy-on-write.
122 */
123
124static void vmspace_terminate(struct vmspace *vm);
125static void vmspace_lock(struct vmspace *vm);
126static void vmspace_unlock(struct vmspace *vm);
127static void vmspace_dtor(void *obj, void *private);
128
129MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
130
131struct sysref_class vmspace_sysref_class = {
132 .name = "vmspace",
133 .mtype = M_VMSPACE,
134 .proto = SYSREF_PROTO_VMSPACE,
135 .offset = offsetof(struct vmspace, vm_sysref),
136 .objsize = sizeof(struct vmspace),
137 .mag_capacity = 32,
138 .flags = SRC_MANAGEDINIT,
139 .dtor = vmspace_dtor,
140 .ops = {
141 .terminate = (sysref_terminate_func_t)vmspace_terminate,
142 .lock = (sysref_lock_func_t)vmspace_lock,
143 .unlock = (sysref_lock_func_t)vmspace_unlock
144 }
145};
146
147#define VMEPERCPU 2
148
149static struct vm_zone mapentzone_store, mapzone_store;
150static vm_zone_t mapentzone, mapzone;
151static struct vm_object mapentobj, mapobj;
152
153static struct vm_map_entry map_entry_init[MAX_MAPENT];
154static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
155static struct vm_map map_init[MAX_KMAP];
156
157static void vm_map_entry_shadow(vm_map_entry_t entry);
158static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
159static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
160static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
161static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
162static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
163static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
164static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
165 vm_map_entry_t);
166static void vm_map_split (vm_map_entry_t);
167static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
168
169/*
170 * vm_map_startup:
171 *
172 * Initialize the vm_map module. Must be called before
173 * any other vm_map routines.
174 *
175 * Map and entry structures are allocated from the general
176 * purpose memory pool with some exceptions:
177 *
178 * - The kernel map and kmem submap are allocated statically.
179 * - Kernel map entries are allocated out of a static pool.
180 *
181 * These restrictions are necessary since malloc() uses the
182 * maps and requires map entries.
183 */
184void
185vm_map_startup(void)
186{
187 mapzone = &mapzone_store;
188 zbootinit(mapzone, "MAP", sizeof (struct vm_map),
189 map_init, MAX_KMAP);
190 mapentzone = &mapentzone_store;
191 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
192 map_entry_init, MAX_MAPENT);
193}
194
195/*
196 * vm_init2 - called prior to any vmspace allocations
197 */
198void
199vm_init2(void)
200{
201 zinitna(mapentzone, &mapentobj, NULL, 0, 0,
202 ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
203 zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
204 pmap_init2();
205 vm_object_init2();
206}
207
208
209/*
210 * Red black tree functions
211 */
212static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
213RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
214
215/* a->start is address, and the only field has to be initialized */
216static int
217rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
218{
219 if (a->start < b->start)
220 return(-1);
221 else if (a->start > b->start)
222 return(1);
223 return(0);
224}
225
226/*
227 * Allocate a vmspace structure, including a vm_map and pmap.
228 * Initialize numerous fields. While the initial allocation is zerod,
229 * subsequence reuse from the objcache leaves elements of the structure
230 * intact (particularly the pmap), so portions must be zerod.
231 *
232 * The structure is not considered activated until we call sysref_activate().
233 */
234struct vmspace *
235vmspace_alloc(vm_offset_t min, vm_offset_t max)
236{
237 struct vmspace *vm;
238
239 vm = sysref_alloc(&vmspace_sysref_class);
240 bzero(&vm->vm_startcopy,
241 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
242 vm_map_init(&vm->vm_map, min, max, NULL);
243 pmap_pinit(vmspace_pmap(vm)); /* (some fields reused) */
244 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */
245 vm->vm_shm = NULL;
246 vm->vm_exitingcnt = 0;
247 cpu_vmspace_alloc(vm);
248 sysref_activate(&vm->vm_sysref);
249 return (vm);
250}
251
252/*
253 * dtor function - Some elements of the pmap are retained in the
254 * free-cached vmspaces to improve performance. We have to clean them up
255 * here before returning the vmspace to the memory pool.
256 */
257static void
258vmspace_dtor(void *obj, void *private)
259{
260 struct vmspace *vm = obj;
261
262 pmap_puninit(vmspace_pmap(vm));
263}
264
265/*
266 * Called in two cases:
267 *
268 * (1) When the last sysref is dropped, but exitingcnt might still be
269 * non-zero.
270 *
271 * (2) When there are no sysrefs (i.e. refcnt is negative) left and the
272 * exitingcnt becomes zero
273 *
274 * sysref will not scrap the object until we call sysref_put() once more
275 * after the last ref has been dropped.
276 */
277static void
278vmspace_terminate(struct vmspace *vm)
279{
280 int count;
281
282 /*
283 * If exitingcnt is non-zero we can't get rid of the entire vmspace
284 * yet, but we can scrap user memory.
285 */
286 if (vm->vm_exitingcnt) {
287 shmexit(vm);
288 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
289 VM_MAX_USER_ADDRESS);
290 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
291 VM_MAX_USER_ADDRESS);
292
293 return;
294 }
295 cpu_vmspace_free(vm);
296
297 /*
298 * Make sure any SysV shm is freed, it might not have in
299 * exit1()
300 */
301 shmexit(vm);
302
303 KKASSERT(vm->vm_upcalls == NULL);
304
305 /*
306 * Lock the map, to wait out all other references to it.
307 * Delete all of the mappings and pages they hold, then call
308 * the pmap module to reclaim anything left.
309 */
310 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
311 vm_map_lock(&vm->vm_map);
312 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
313 vm->vm_map.max_offset, &count);
314 vm_map_unlock(&vm->vm_map);
315 vm_map_entry_release(count);
316
317 pmap_release(vmspace_pmap(vm));
318 sysref_put(&vm->vm_sysref);
319}
320
321static void
322vmspace_lock(struct vmspace *vm __unused)
323{
324}
325
326static void
327vmspace_unlock(struct vmspace *vm __unused)
328{
329}
330
331/*
332 * This is called in the wait*() handling code. The vmspace can be terminated
333 * after the last wait is finished using it.
334 */
335void
336vmspace_exitfree(struct proc *p)
337{
338 struct vmspace *vm;
339
340 vm = p->p_vmspace;
341 p->p_vmspace = NULL;
342
343 if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
344 vmspace_terminate(vm);
345}
346
347/*
348 * vmspace_swap_count()
349 *
350 * Swap useage is determined by taking the proportional swap used by
351 * VM objects backing the VM map. To make up for fractional losses,
352 * if the VM object has any swap use at all the associated map entries
353 * count for at least 1 swap page.
354 */
355int
356vmspace_swap_count(struct vmspace *vmspace)
357{
358 vm_map_t map = &vmspace->vm_map;
359 vm_map_entry_t cur;
360 vm_object_t object;
361 int count = 0;
362 int n;
363
364 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
365 switch(cur->maptype) {
366 case VM_MAPTYPE_NORMAL:
367 case VM_MAPTYPE_VPAGETABLE:
368 if ((object = cur->object.vm_object) == NULL)
369 break;
370 if (object->swblock_count) {
371 n = (cur->end - cur->start) / PAGE_SIZE;
372 count += object->swblock_count *
373 SWAP_META_PAGES * n / object->size + 1;
374 }
375 break;
376 default:
377 break;
378 }
379 }
380 return(count);
381}
382
383/*
384 * vmspace_anonymous_count()
385 *
386 * Calculate the approximate number of anonymous pages in use by
387 * this vmspace. To make up for fractional losses, we count each
388 * VM object as having at least 1 anonymous page.
389 */
390int
391vmspace_anonymous_count(struct vmspace *vmspace)
392{
393 vm_map_t map = &vmspace->vm_map;
394 vm_map_entry_t cur;
395 vm_object_t object;
396 int count = 0;
397
398 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
399 switch(cur->maptype) {
400 case VM_MAPTYPE_NORMAL:
401 case VM_MAPTYPE_VPAGETABLE:
402 if ((object = cur->object.vm_object) == NULL)
403 break;
404 if (object->type != OBJT_DEFAULT &&
405 object->type != OBJT_SWAP) {
406 break;
407 }
408 count += object->resident_page_count;
409 break;
410 default:
411 break;
412 }
413 }
414 return(count);
415}
416
417
418
419
420/*
421 * vm_map_create:
422 *
423 * Creates and returns a new empty VM map with
424 * the given physical map structure, and having
425 * the given lower and upper address bounds.
426 */
427vm_map_t
428vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
429{
430 if (result == NULL)
431 result = zalloc(mapzone);
432 vm_map_init(result, min, max, pmap);
433 return (result);
434}
435
436/*
437 * Initialize an existing vm_map structure
438 * such as that in the vmspace structure.
439 * The pmap is set elsewhere.
440 */
441void
442vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
443{
444 map->header.next = map->header.prev = &map->header;
445 RB_INIT(&map->rb_root);
446 map->nentries = 0;
447 map->size = 0;
448 map->system_map = 0;
449 map->infork = 0;
450 map->min_offset = min;
451 map->max_offset = max;
452 map->pmap = pmap;
453 map->first_free = &map->header;
454 map->hint = &map->header;
455 map->timestamp = 0;
456 lockinit(&map->lock, "thrd_sleep", 0, 0);
457}
458
459/*
460 * Shadow the vm_map_entry's object. This typically needs to be done when
461 * a write fault is taken on an entry which had previously been cloned by
462 * fork(). The shared object (which might be NULL) must become private so
463 * we add a shadow layer above it.
464 *
465 * Object allocation for anonymous mappings is defered as long as possible.
466 * When creating a shadow, however, the underlying object must be instantiated
467 * so it can be shared.
468 *
469 * If the map segment is governed by a virtual page table then it is
470 * possible to address offsets beyond the mapped area. Just allocate
471 * a maximally sized object for this case.
472 */
473static
474void
475vm_map_entry_shadow(vm_map_entry_t entry)
476{
477 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
478 vm_object_shadow(&entry->object.vm_object, &entry->offset,
479 0x7FFFFFFF); /* XXX */
480 } else {
481 vm_object_shadow(&entry->object.vm_object, &entry->offset,
482 atop(entry->end - entry->start));
483 }
484 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
485}
486
487/*
488 * Allocate an object for a vm_map_entry.
489 *
490 * Object allocation for anonymous mappings is defered as long as possible.
491 * This function is called when we can defer no longer, generally when a map
492 * entry might be split or forked or takes a page fault.
493 *
494 * If the map segment is governed by a virtual page table then it is
495 * possible to address offsets beyond the mapped area. Just allocate
496 * a maximally sized object for this case.
497 */
498void
499vm_map_entry_allocate_object(vm_map_entry_t entry)
500{
501 vm_object_t obj;
502
503 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
504 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
505 } else {
506 obj = vm_object_allocate(OBJT_DEFAULT,
507 atop(entry->end - entry->start));
508 }
509 entry->object.vm_object = obj;
510 entry->offset = 0;
511}
512
513/*
514 * vm_map_entry_reserve_cpu_init:
515 *
516 * Set an initial negative count so the first attempt to reserve
517 * space preloads a bunch of vm_map_entry's for this cpu. Also
518 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
519 * map a new page for vm_map_entry structures. SMP systems are
520 * particularly sensitive.
521 *
522 * This routine is called in early boot so we cannot just call
523 * vm_map_entry_reserve().
524 *
525 * May be called for a gd other then mycpu, but may only be called
526 * during early boot.
527 */
528void
529vm_map_entry_reserve_cpu_init(globaldata_t gd)
530{
531 vm_map_entry_t entry;
532 int i;
533
534 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
535 entry = &cpu_map_entry_init[gd->gd_cpuid][0];
536 for (i = 0; i < VMEPERCPU; ++i, ++entry) {
537 entry->next = gd->gd_vme_base;
538 gd->gd_vme_base = entry;
539 }
540}
541
542/*
543 * vm_map_entry_reserve:
544 *
545 * Reserves vm_map_entry structures so code later on can manipulate
546 * map_entry structures within a locked map without blocking trying
547 * to allocate a new vm_map_entry.
548 */
549int
550vm_map_entry_reserve(int count)
551{
552 struct globaldata *gd = mycpu;
553 vm_map_entry_t entry;
554
555 crit_enter();
556
557 /*
558 * Make sure we have enough structures in gd_vme_base to handle
559 * the reservation request.
560 */
561 while (gd->gd_vme_avail < count) {
562 entry = zalloc(mapentzone);
563 entry->next = gd->gd_vme_base;
564 gd->gd_vme_base = entry;
565 ++gd->gd_vme_avail;
566 }
567 gd->gd_vme_avail -= count;
568 crit_exit();
569 return(count);
570}
571
572/*
573 * vm_map_entry_release:
574 *
575 * Releases previously reserved vm_map_entry structures that were not
576 * used. If we have too much junk in our per-cpu cache clean some of
577 * it out.
578 */
579void
580vm_map_entry_release(int count)
581{
582 struct globaldata *gd = mycpu;
583 vm_map_entry_t entry;
584
585 crit_enter();
586 gd->gd_vme_avail += count;
587 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
588 entry = gd->gd_vme_base;
589 KKASSERT(entry != NULL);
590 gd->gd_vme_base = entry->next;
591 --gd->gd_vme_avail;
592 crit_exit();
593 zfree(mapentzone, entry);
594 crit_enter();
595 }
596 crit_exit();
597}
598
599/*
600 * vm_map_entry_kreserve:
601 *
602 * Reserve map entry structures for use in kernel_map itself. These
603 * entries have *ALREADY* been reserved on a per-cpu basis when the map
604 * was inited. This function is used by zalloc() to avoid a recursion
605 * when zalloc() itself needs to allocate additional kernel memory.
606 *
607 * This function works like the normal reserve but does not load the
608 * vm_map_entry cache (because that would result in an infinite
609 * recursion). Note that gd_vme_avail may go negative. This is expected.
610 *
611 * Any caller of this function must be sure to renormalize after
612 * potentially eating entries to ensure that the reserve supply
613 * remains intact.
614 */
615int
616vm_map_entry_kreserve(int count)
617{
618 struct globaldata *gd = mycpu;
619
620 crit_enter();
621 gd->gd_vme_avail -= count;
622 crit_exit();
623 KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail));
624 return(count);
625}
626
627/*
628 * vm_map_entry_krelease:
629 *
630 * Release previously reserved map entries for kernel_map. We do not
631 * attempt to clean up like the normal release function as this would
632 * cause an unnecessary (but probably not fatal) deep procedure call.
633 */
634void
635vm_map_entry_krelease(int count)
636{
637 struct globaldata *gd = mycpu;
638
639 crit_enter();
640 gd->gd_vme_avail += count;
641 crit_exit();
642}
643
644/*
645 * vm_map_entry_create: [ internal use only ]
646 *
647 * Allocates a VM map entry for insertion. No entry fields are filled
648 * in.
649 *
650 * This routine may be called from an interrupt thread but not a FAST
651 * interrupt. This routine may recurse the map lock.
652 */
653static vm_map_entry_t
654vm_map_entry_create(vm_map_t map, int *countp)
655{
656 struct globaldata *gd = mycpu;
657 vm_map_entry_t entry;
658
659 KKASSERT(*countp > 0);
660 --*countp;
661 crit_enter();
662 entry = gd->gd_vme_base;
663 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
664 gd->gd_vme_base = entry->next;
665 crit_exit();
666 return(entry);
667}
668
669/*
670 * vm_map_entry_dispose: [ internal use only ]
671 *
672 * Dispose of a vm_map_entry that is no longer being referenced. This
673 * function may be called from an interrupt.
674 */
675static void
676vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
677{
678 struct globaldata *gd = mycpu;
679
680 KKASSERT(map->hint != entry);
681 KKASSERT(map->first_free != entry);
682
683 ++*countp;
684 crit_enter();
685 entry->next = gd->gd_vme_base;
686 gd->gd_vme_base = entry;
687 crit_exit();
688}
689
690
691/*
692 * vm_map_entry_{un,}link:
693 *
694 * Insert/remove entries from maps.
695 */
696static __inline void
697vm_map_entry_link(vm_map_t map,
698 vm_map_entry_t after_where,
699 vm_map_entry_t entry)
700{
701 map->nentries++;
702 entry->prev = after_where;
703 entry->next = after_where->next;
704 entry->next->prev = entry;
705 after_where->next = entry;
706 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
707 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
708}
709
710static __inline void
711vm_map_entry_unlink(vm_map_t map,
712 vm_map_entry_t entry)
713{
714 vm_map_entry_t prev;
715 vm_map_entry_t next;
716
717 if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
718 panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
719 prev = entry->prev;
720 next = entry->next;
721 next->prev = prev;
722 prev->next = next;
723 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
724 map->nentries--;
725}
726
727/*
728 * vm_map_lookup_entry: [ internal use only ]
729 *
730 * Finds the map entry containing (or
731 * immediately preceding) the specified address
732 * in the given map; the entry is returned
733 * in the "entry" parameter. The boolean
734 * result indicates whether the address is
735 * actually contained in the map.
736 */
737boolean_t
738vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
739 vm_map_entry_t *entry /* OUT */)
740{
741 vm_map_entry_t tmp;
742 vm_map_entry_t last;
743
744#if 0
745 /*
746 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive
747 * the hint code with the red-black lookup meets with system crashes
748 * and lockups. We do not yet know why.
749 *
750 * It is possible that the problem is related to the setting
751 * of the hint during map_entry deletion, in the code specified
752 * at the GGG comment later on in this file.
753 */
754 /*
755 * Quickly check the cached hint, there's a good chance of a match.
756 */
757 if (map->hint != &map->header) {
758 tmp = map->hint;
759 if (address >= tmp->start && address < tmp->end) {
760 *entry = tmp;
761 return(TRUE);
762 }
763 }
764#endif
765
766 /*
767 * Locate the record from the top of the tree. 'last' tracks the
768 * closest prior record and is returned if no match is found, which
769 * in binary tree terms means tracking the most recent right-branch
770 * taken. If there is no prior record, &map->header is returned.
771 */
772 last = &map->header;
773 tmp = RB_ROOT(&map->rb_root);
774
775 while (tmp) {
776 if (address >= tmp->start) {
777 if (address < tmp->end) {
778 *entry = tmp;
779 map->hint = tmp;
780 return(TRUE);
781 }
782 last = tmp;
783 tmp = RB_RIGHT(tmp, rb_entry);
784 } else {
785 tmp = RB_LEFT(tmp, rb_entry);
786 }
787 }
788 *entry = last;
789 return (FALSE);
790}
791
792/*
793 * vm_map_insert:
794 *
795 * Inserts the given whole VM object into the target
796 * map at the specified address range. The object's
797 * size should match that of the address range.
798 *
799 * Requires that the map be locked, and leaves it so. Requires that
800 * sufficient vm_map_entry structures have been reserved and tracks
801 * the use via countp.
802 *
803 * If object is non-NULL, ref count must be bumped by caller
804 * prior to making call to account for the new entry.
805 */
806int
807vm_map_insert(vm_map_t map, int *countp,
808 vm_object_t object, vm_ooffset_t offset,
809 vm_offset_t start, vm_offset_t end,
810 vm_maptype_t maptype,
811 vm_prot_t prot, vm_prot_t max,
812 int cow)
813{
814 vm_map_entry_t new_entry;
815 vm_map_entry_t prev_entry;
816 vm_map_entry_t temp_entry;
817 vm_eflags_t protoeflags;
818
819 /*
820 * Check that the start and end points are not bogus.
821 */
822
823 if ((start < map->min_offset) || (end > map->max_offset) ||
824 (start >= end))
825 return (KERN_INVALID_ADDRESS);
826
827 /*
828 * Find the entry prior to the proposed starting address; if it's part
829 * of an existing entry, this range is bogus.
830 */
831
832 if (vm_map_lookup_entry(map, start, &temp_entry))
833 return (KERN_NO_SPACE);
834
835 prev_entry = temp_entry;
836
837 /*
838 * Assert that the next entry doesn't overlap the end point.
839 */
840
841 if ((prev_entry->next != &map->header) &&
842 (prev_entry->next->start < end))
843 return (KERN_NO_SPACE);
844
845 protoeflags = 0;
846
847 if (cow & MAP_COPY_ON_WRITE)
848 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
849
850 if (cow & MAP_NOFAULT) {
851 protoeflags |= MAP_ENTRY_NOFAULT;
852
853 KASSERT(object == NULL,
854 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
855 }
856 if (cow & MAP_DISABLE_SYNCER)
857 protoeflags |= MAP_ENTRY_NOSYNC;
858 if (cow & MAP_DISABLE_COREDUMP)
859 protoeflags |= MAP_ENTRY_NOCOREDUMP;
860 if (cow & MAP_IS_STACK)
861 protoeflags |= MAP_ENTRY_STACK;
862
863 if (object) {
864 /*
865 * When object is non-NULL, it could be shared with another
866 * process. We have to set or clear OBJ_ONEMAPPING
867 * appropriately.
868 */
869 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
870 vm_object_clear_flag(object, OBJ_ONEMAPPING);
871 }
872 }
873 else if ((prev_entry != &map->header) &&
874 (prev_entry->eflags == protoeflags) &&
875 (prev_entry->end == start) &&
876 (prev_entry->wired_count == 0) &&
877 prev_entry->maptype == maptype &&
878 ((prev_entry->object.vm_object == NULL) ||
879 vm_object_coalesce(prev_entry->object.vm_object,
880 OFF_TO_IDX(prev_entry->offset),
881 (vm_size_t)(prev_entry->end - prev_entry->start),
882 (vm_size_t)(end - prev_entry->end)))) {
883 /*
884 * We were able to extend the object. Determine if we
885 * can extend the previous map entry to include the
886 * new range as well.
887 */
888 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
889 (prev_entry->protection == prot) &&
890 (prev_entry->max_protection == max)) {
891 map->size += (end - prev_entry->end);
892 prev_entry->end = end;
893 vm_map_simplify_entry(map, prev_entry, countp);
894 return (KERN_SUCCESS);
895 }
896
897 /*
898 * If we can extend the object but cannot extend the
899 * map entry, we have to create a new map entry. We
900 * must bump the ref count on the extended object to
901 * account for it. object may be NULL.
902 */
903 object = prev_entry->object.vm_object;
904 offset = prev_entry->offset +
905 (prev_entry->end - prev_entry->start);
906 vm_object_reference(object);
907 }
908
909 /*
910 * NOTE: if conditionals fail, object can be NULL here. This occurs
911 * in things like the buffer map where we manage kva but do not manage
912 * backing objects.
913 */
914
915 /*
916 * Create a new entry
917 */
918
919 new_entry = vm_map_entry_create(map, countp);
920 new_entry->start = start;
921 new_entry->end = end;
922
923 new_entry->maptype = maptype;
924 new_entry->eflags = protoeflags;
925 new_entry->object.vm_object = object;
926 new_entry->offset = offset;
927 new_entry->aux.master_pde = 0;
928
929 new_entry->inheritance = VM_INHERIT_DEFAULT;
930 new_entry->protection = prot;
931 new_entry->max_protection = max;
932 new_entry->wired_count = 0;
933
934 /*
935 * Insert the new entry into the list
936 */
937
938 vm_map_entry_link(map, prev_entry, new_entry);
939 map->size += new_entry->end - new_entry->start;
940
941 /*
942 * Update the free space hint. Entries cannot overlap.
943 * An exact comparison is needed to avoid matching
944 * against the map->header.
945 */
946 if ((map->first_free == prev_entry) &&
947 (prev_entry->end == new_entry->start)) {
948 map->first_free = new_entry;
949 }
950
951#if 0
952 /*
953 * Temporarily removed to avoid MAP_STACK panic, due to
954 * MAP_STACK being a huge hack. Will be added back in
955 * when MAP_STACK (and the user stack mapping) is fixed.
956 */
957 /*
958 * It may be possible to simplify the entry
959 */
960 vm_map_simplify_entry(map, new_entry, countp);
961#endif
962
963 /*
964 * Try to pre-populate the page table. Mappings governed by virtual
965 * page tables cannot be prepopulated without a lot of work, so
966 * don't try.
967 */
968 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
969 maptype != VM_MAPTYPE_VPAGETABLE) {
970 pmap_object_init_pt(map->pmap, start, prot,
971 object, OFF_TO_IDX(offset), end - start,
972 cow & MAP_PREFAULT_PARTIAL);
973 }
974
975 return (KERN_SUCCESS);
976}
977
978/*
979 * Find sufficient space for `length' bytes in the given map, starting at
980 * `start'. The map must be locked. Returns 0 on success, 1 on no space.
981 *
982 * This function will returned an arbitrarily aligned pointer. If no
983 * particular alignment is required you should pass align as 1. Note that
984 * the map may return PAGE_SIZE aligned pointers if all the lengths used in
985 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
986 * argument.
987 *
988 * 'align' should be a power of 2 but is not required to be.
989 */
990int
991vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
992 vm_size_t align, int flags, vm_offset_t *addr)
993{
994 vm_map_entry_t entry, next;
995 vm_offset_t end;
996 vm_offset_t align_mask;
997
998 if (start < map->min_offset)
999 start = map->min_offset;
1000 if (start > map->max_offset)
1001 return (1);
1002
1003 /*
1004 * If the alignment is not a power of 2 we will have to use
1005 * a mod/division, set align_mask to a special value.
1006 */
1007 if ((align | (align - 1)) + 1 != (align << 1))
1008 align_mask = (vm_offset_t)-1;
1009 else
1010 align_mask = align - 1;
1011
1012retry:
1013 /*
1014 * Look for the first possible address; if there's already something
1015 * at this address, we have to start after it.
1016 */
1017 if (start == map->min_offset) {
1018 if ((entry = map->first_free) != &map->header)
1019 start = entry->end;
1020 } else {
1021 vm_map_entry_t tmp;
1022
1023 if (vm_map_lookup_entry(map, start, &tmp))
1024 start = tmp->end;
1025 entry = tmp;
1026 }
1027
1028 /*
1029 * Look through the rest of the map, trying to fit a new region in the
1030 * gap between existing regions, or after the very last region.
1031 */
1032 for (;; start = (entry = next)->end) {
1033 /*
1034 * Adjust the proposed start by the requested alignment,
1035 * be sure that we didn't wrap the address.
1036 */
1037 if (align_mask == (vm_offset_t)-1)
1038 end = ((start + align - 1) / align) * align;
1039 else
1040 end = (start + align_mask) & ~align_mask;
1041 if (end < start)
1042 return (1);
1043 start = end;
1044 /*
1045 * Find the end of the proposed new region. Be sure we didn't
1046 * go beyond the end of the map, or wrap around the address.
1047 * Then check to see if this is the last entry or if the
1048 * proposed end fits in the gap between this and the next
1049 * entry.
1050 */
1051 end = start + length;
1052 if (end > map->max_offset || end < start)
1053 return (1);
1054 next = entry->next;
1055
1056 /*
1057 * If the next entry's start address is beyond the desired
1058 * end address we may have found a good entry.
1059 *
1060 * If the next entry is a stack mapping we do not map into
1061 * the stack's reserved space.
1062 *
1063 * XXX continue to allow mapping into the stack's reserved
1064 * space if doing a MAP_STACK mapping inside a MAP_STACK
1065 * mapping, for backwards compatibility. But the caller
1066 * really should use MAP_STACK | MAP_TRYFIXED if they
1067 * want to do that.
1068 */
1069 if (next == &map->header)
1070 break;
1071 if (next->start >= end) {
1072 if ((next->eflags & MAP_ENTRY_STACK) == 0)
1073 break;
1074 if (flags & MAP_STACK)
1075 break;
1076 if (next->start - next->aux.avail_ssize >= end)
1077 break;
1078 }
1079 }
1080 map->hint = entry;
1081 if (map == &kernel_map) {
1082 vm_offset_t ksize;
1083 if ((ksize = round_page(start + length)) > kernel_vm_end) {
1084 pmap_growkernel(ksize);
1085 goto retry;
1086 }
1087 }
1088 *addr = start;
1089 return (0);
1090}
1091
1092/*
1093 * vm_map_find finds an unallocated region in the target address
1094 * map with the given length. The search is defined to be
1095 * first-fit from the specified address; the region found is
1096 * returned in the same parameter.
1097 *
1098 * If object is non-NULL, ref count must be bumped by caller
1099 * prior to making call to account for the new entry.
1100 */
1101int
1102vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1103 vm_offset_t *addr, vm_size_t length, vm_size_t align,
1104 boolean_t fitit,
1105 vm_maptype_t maptype,
1106 vm_prot_t prot, vm_prot_t max,
1107 int cow)
1108{
1109 vm_offset_t start;
1110 int result;
1111 int count;
1112
1113 start = *addr;
1114
1115 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1116 vm_map_lock(map);
1117 if (fitit) {
1118 if (vm_map_findspace(map, start, length, align, 0, addr)) {
1119 vm_map_unlock(map);
1120 vm_map_entry_release(count);
1121 return (KERN_NO_SPACE);
1122 }
1123 start = *addr;
1124 }
1125 result = vm_map_insert(map, &count, object, offset,
1126 start, start + length,
1127 maptype,
1128 prot, max,
1129 cow);
1130 vm_map_unlock(map);
1131 vm_map_entry_release(count);
1132
1133 return (result);
1134}
1135
1136/*
1137 * vm_map_simplify_entry:
1138 *
1139 * Simplify the given map entry by merging with either neighbor. This
1140 * routine also has the ability to merge with both neighbors.
1141 *
1142 * The map must be locked.
1143 *
1144 * This routine guarentees that the passed entry remains valid (though
1145 * possibly extended). When merging, this routine may delete one or
1146 * both neighbors. No action is taken on entries which have their
1147 * in-transition flag set.
1148 */
1149void
1150vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1151{
1152 vm_map_entry_t next, prev;
1153 vm_size_t prevsize, esize;
1154
1155 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1156 ++mycpu->gd_cnt.v_intrans_coll;
1157 return;
1158 }
1159
1160 if (entry->maptype == VM_MAPTYPE_SUBMAP)
1161 return;
1162
1163 prev = entry->prev;
1164 if (prev != &map->header) {
1165 prevsize = prev->end - prev->start;
1166 if ( (prev->end == entry->start) &&
1167 (prev->maptype == entry->maptype) &&
1168 (prev->object.vm_object == entry->object.vm_object) &&
1169 (!prev->object.vm_object ||
1170 (prev->offset + prevsize == entry->offset)) &&
1171 (prev->eflags == entry->eflags) &&
1172 (prev->protection == entry->protection) &&
1173 (prev->max_protection == entry->max_protection) &&
1174 (prev->inheritance == entry->inheritance) &&
1175 (prev->wired_count == entry->wired_count)) {
1176 if (map->first_free == prev)
1177 map->first_free = entry;
1178 if (map->hint == prev)
1179 map->hint = entry;
1180 vm_map_entry_unlink(map, prev);
1181 entry->start = prev->start;
1182 entry->offset = prev->offset;
1183 if (prev->object.vm_object)
1184 vm_object_deallocate(prev->object.vm_object);
1185 vm_map_entry_dispose(map, prev, countp);
1186 }
1187 }
1188
1189 next = entry->next;
1190 if (next != &map->header) {
1191 esize = entry->end - entry->start;
1192 if ((entry->end == next->start) &&
1193 (next->maptype == entry->maptype) &&
1194 (next->object.vm_object == entry->object.vm_object) &&
1195 (!entry->object.vm_object ||
1196 (entry->offset + esize == next->offset)) &&
1197 (next->eflags == entry->eflags) &&
1198 (next->protection == entry->protection) &&
1199 (next->max_protection == entry->max_protection) &&
1200 (next->inheritance == entry->inheritance) &&
1201 (next->wired_count == entry->wired_count)) {
1202 if (map->first_free == next)
1203 map->first_free = entry;
1204 if (map->hint == next)
1205 map->hint = entry;
1206 vm_map_entry_unlink(map, next);
1207 entry->end = next->end;
1208 if (next->object.vm_object)
1209 vm_object_deallocate(next->object.vm_object);
1210 vm_map_entry_dispose(map, next, countp);
1211 }
1212 }
1213}
1214/*
1215 * vm_map_clip_start: [ internal use only ]
1216 *
1217 * Asserts that the given entry begins at or after
1218 * the specified address; if necessary,
1219 * it splits the entry into two.
1220 */
1221#define vm_map_clip_start(map, entry, startaddr, countp) \
1222{ \
1223 if (startaddr > entry->start) \
1224 _vm_map_clip_start(map, entry, startaddr, countp); \
1225}
1226
1227/*
1228 * This routine is called only when it is known that
1229 * the entry must be split.
1230 */
1231static void
1232_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1233{
1234 vm_map_entry_t new_entry;
1235
1236 /*
1237 * Split off the front portion -- note that we must insert the new
1238 * entry BEFORE this one, so that this entry has the specified
1239 * starting address.
1240 */
1241
1242 vm_map_simplify_entry(map, entry, countp);
1243
1244 /*
1245 * If there is no object backing this entry, we might as well create
1246 * one now. If we defer it, an object can get created after the map
1247 * is clipped, and individual objects will be created for the split-up
1248 * map. This is a bit of a hack, but is also about the best place to
1249 * put this improvement.
1250 */
1251 if (entry->object.vm_object == NULL && !map->system_map) {
1252 vm_map_entry_allocate_object(entry);
1253 }
1254
1255 new_entry = vm_map_entry_create(map, countp);
1256 *new_entry = *entry;
1257
1258 new_entry->end = start;
1259 entry->offset += (start - entry->start);
1260 entry->start = start;
1261
1262 vm_map_entry_link(map, entry->prev, new_entry);
1263
1264 switch(entry->maptype) {
1265 case VM_MAPTYPE_NORMAL:
1266 case VM_MAPTYPE_VPAGETABLE:
1267 vm_object_reference(new_entry->object.vm_object);
1268 break;
1269 default:
1270 break;
1271 }
1272}
1273
1274/*
1275 * vm_map_clip_end: [ internal use only ]
1276 *
1277 * Asserts that the given entry ends at or before
1278 * the specified address; if necessary,
1279 * it splits the entry into two.
1280 */
1281
1282#define vm_map_clip_end(map, entry, endaddr, countp) \
1283{ \
1284 if (endaddr < entry->end) \
1285 _vm_map_clip_end(map, entry, endaddr, countp); \
1286}
1287
1288/*
1289 * This routine is called only when it is known that
1290 * the entry must be split.
1291 */
1292static void
1293_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1294{
1295 vm_map_entry_t new_entry;
1296
1297 /*
1298 * If there is no object backing this entry, we might as well create
1299 * one now. If we defer it, an object can get created after the map
1300 * is clipped, and individual objects will be created for the split-up
1301 * map. This is a bit of a hack, but is also about the best place to
1302 * put this improvement.
1303 */
1304
1305 if (entry->object.vm_object == NULL && !map->system_map) {
1306 vm_map_entry_allocate_object(entry);
1307 }
1308
1309 /*
1310 * Create a new entry and insert it AFTER the specified entry
1311 */
1312
1313 new_entry = vm_map_entry_create(map, countp);
1314 *new_entry = *entry;
1315
1316 new_entry->start = entry->end = end;
1317 new_entry->offset += (end - entry->start);
1318
1319 vm_map_entry_link(map, entry, new_entry);
1320
1321 switch(entry->maptype) {
1322 case VM_MAPTYPE_NORMAL:
1323 case VM_MAPTYPE_VPAGETABLE:
1324 vm_object_reference(new_entry->object.vm_object);
1325 break;
1326 default:
1327 break;
1328 }
1329}
1330
1331/*
1332 * VM_MAP_RANGE_CHECK: [ internal use only ]
1333 *
1334 * Asserts that the starting and ending region
1335 * addresses fall within the valid range of the map.
1336 */
1337#define VM_MAP_RANGE_CHECK(map, start, end) \
1338 { \
1339 if (start < vm_map_min(map)) \
1340 start = vm_map_min(map); \
1341 if (end > vm_map_max(map)) \
1342 end = vm_map_max(map); \
1343 if (start > end) \
1344 start = end; \
1345 }
1346
1347/*
1348 * vm_map_transition_wait: [ kernel use only ]
1349 *
1350 * Used to block when an in-transition collison occurs. The map
1351 * is unlocked for the sleep and relocked before the return.
1352 */
1353static
1354void
1355vm_map_transition_wait(vm_map_t map)
1356{
1357 vm_map_unlock(map);
1358 tsleep(map, 0, "vment", 0);
1359 vm_map_lock(map);
1360}
1361
1362/*
1363 * CLIP_CHECK_BACK
1364 * CLIP_CHECK_FWD
1365 *
1366 * When we do blocking operations with the map lock held it is
1367 * possible that a clip might have occured on our in-transit entry,
1368 * requiring an adjustment to the entry in our loop. These macros
1369 * help the pageable and clip_range code deal with the case. The
1370 * conditional costs virtually nothing if no clipping has occured.
1371 */
1372
1373#define CLIP_CHECK_BACK(entry, save_start) \
1374 do { \
1375 while (entry->start != save_start) { \
1376 entry = entry->prev; \
1377 KASSERT(entry != &map->header, ("bad entry clip")); \
1378 } \
1379 } while(0)
1380
1381#define CLIP_CHECK_FWD(entry, save_end) \
1382 do { \
1383 while (entry->end != save_end) { \
1384 entry = entry->next; \
1385 KASSERT(entry != &map->header, ("bad entry clip")); \
1386 } \
1387 } while(0)
1388
1389
1390/*
1391 * vm_map_clip_range: [ kernel use only ]
1392 *
1393 * Clip the specified range and return the base entry. The
1394 * range may cover several entries starting at the returned base
1395 * and the first and last entry in the covering sequence will be
1396 * properly clipped to the requested start and end address.
1397 *
1398 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1399 * flag.
1400 *
1401 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1402 * covered by the requested range.
1403 *
1404 * The map must be exclusively locked on entry and will remain locked
1405 * on return. If no range exists or the range contains holes and you
1406 * specified that no holes were allowed, NULL will be returned. This
1407 * routine may temporarily unlock the map in order avoid a deadlock when
1408 * sleeping.
1409 */
1410static
1411vm_map_entry_t
1412vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1413 int *countp, int flags)
1414{
1415 vm_map_entry_t start_entry;
1416 vm_map_entry_t entry;
1417
1418 /*
1419 * Locate the entry and effect initial clipping. The in-transition
1420 * case does not occur very often so do not try to optimize it.
1421 */
1422again:
1423 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1424 return (NULL);
1425 entry = start_entry;
1426 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1427 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1428 ++mycpu->gd_cnt.v_intrans_coll;
1429 ++mycpu->gd_cnt.v_intrans_wait;
1430 vm_map_transition_wait(map);
1431 /*
1432 * entry and/or start_entry may have been clipped while
1433 * we slept, or may have gone away entirely. We have
1434 * to restart from the lookup.
1435 */
1436 goto again;
1437 }
1438 /*
1439 * Since we hold an exclusive map lock we do not have to restart
1440 * after clipping, even though clipping may block in zalloc.
1441 */
1442 vm_map_clip_start(map, entry, start, countp);
1443 vm_map_clip_end(map, entry, end, countp);
1444 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1445
1446 /*
1447 * Scan entries covered by the range. When working on the next
1448 * entry a restart need only re-loop on the current entry which
1449 * we have already locked, since 'next' may have changed. Also,
1450 * even though entry is safe, it may have been clipped so we
1451 * have to iterate forwards through the clip after sleeping.
1452 */
1453 while (entry->next != &map->header && entry->next->start < end) {
1454 vm_map_entry_t next = entry->next;
1455
1456 if (flags & MAP_CLIP_NO_HOLES) {
1457 if (next->start > entry->end) {
1458 vm_map_unclip_range(map, start_entry,
1459 start, entry->end, countp, flags);
1460 return(NULL);
1461 }
1462 }
1463
1464 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1465 vm_offset_t save_end = entry->end;
1466 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1467 ++mycpu->gd_cnt.v_intrans_coll;
1468 ++mycpu->gd_cnt.v_intrans_wait;
1469 vm_map_transition_wait(map);
1470
1471 /*
1472 * clips might have occured while we blocked.
1473 */
1474 CLIP_CHECK_FWD(entry, save_end);
1475 CLIP_CHECK_BACK(start_entry, start);
1476 continue;
1477 }
1478 /*
1479 * No restart necessary even though clip_end may block, we
1480 * are holding the map lock.
1481 */
1482 vm_map_clip_end(map, next, end, countp);
1483 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1484 entry = next;
1485 }
1486 if (flags & MAP_CLIP_NO_HOLES) {
1487 if (entry->end != end) {
1488 vm_map_unclip_range(map, start_entry,
1489 start, entry->end, countp, flags);
1490 return(NULL);
1491 }
1492 }
1493 return(start_entry);
1494}
1495
1496/*
1497 * vm_map_unclip_range: [ kernel use only ]
1498 *
1499 * Undo the effect of vm_map_clip_range(). You should pass the same
1500 * flags and the same range that you passed to vm_map_clip_range().
1501 * This code will clear the in-transition flag on the entries and
1502 * wake up anyone waiting. This code will also simplify the sequence
1503 * and attempt to merge it with entries before and after the sequence.
1504 *
1505 * The map must be locked on entry and will remain locked on return.
1506 *
1507 * Note that you should also pass the start_entry returned by
1508 * vm_map_clip_range(). However, if you block between the two calls
1509 * with the map unlocked please be aware that the start_entry may
1510 * have been clipped and you may need to scan it backwards to find
1511 * the entry corresponding with the original start address. You are
1512 * responsible for this, vm_map_unclip_range() expects the correct
1513 * start_entry to be passed to it and will KASSERT otherwise.
1514 */
1515static
1516void
1517vm_map_unclip_range(
1518 vm_map_t map,
1519 vm_map_entry_t start_entry,
1520 vm_offset_t start,
1521 vm_offset_t end,
1522 int *countp,
1523 int flags)
1524{
1525 vm_map_entry_t entry;
1526
1527 entry = start_entry;
1528
1529 KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1530 while (entry != &map->header && entry->start < end) {
1531 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1532 KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1533 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1534 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1535 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1536 wakeup(map);
1537 }
1538 entry = entry->next;
1539 }
1540
1541 /*
1542 * Simplification does not block so there is no restart case.
1543 */
1544 entry = start_entry;
1545 while (entry != &map->header && entry->start < end) {
1546 vm_map_simplify_entry(map, entry, countp);
1547 entry = entry->next;
1548 }
1549}
1550
1551/*
1552 * vm_map_submap: [ kernel use only ]
1553 *
1554 * Mark the given range as handled by a subordinate map.
1555 *
1556 * This range must have been created with vm_map_find,
1557 * and no other operations may have been performed on this
1558 * range prior to calling vm_map_submap.
1559 *
1560 * Only a limited number of operations can be performed
1561 * within this rage after calling vm_map_submap:
1562 * vm_fault
1563 * [Don't try vm_map_copy!]
1564 *
1565 * To remove a submapping, one must first remove the
1566 * range from the superior map, and then destroy the
1567 * submap (if desired). [Better yet, don't try it.]
1568 */
1569int
1570vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1571{
1572 vm_map_entry_t entry;
1573 int result = KERN_INVALID_ARGUMENT;
1574 int count;
1575
1576 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1577 vm_map_lock(map);
1578
1579 VM_MAP_RANGE_CHECK(map, start, end);
1580
1581 if (vm_map_lookup_entry(map, start, &entry)) {
1582 vm_map_clip_start(map, entry, start, &count);
1583 } else {
1584 entry = entry->next;
1585 }
1586
1587 vm_map_clip_end(map, entry, end, &count);
1588
1589 if ((entry->start == start) && (entry->end == end) &&
1590 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1591 (entry->object.vm_object == NULL)) {
1592 entry->object.sub_map = submap;
1593 entry->maptype = VM_MAPTYPE_SUBMAP;
1594 result = KERN_SUCCESS;
1595 }
1596 vm_map_unlock(map);
1597 vm_map_entry_release(count);
1598
1599 return (result);
1600}
1601
1602/*
1603 * vm_map_protect:
1604 *
1605 * Sets the protection of the specified address region in the target map.
1606 * If "set_max" is specified, the maximum protection is to be set;
1607 * otherwise, only the current protection is affected.
1608 *
1609 * The protection is not applicable to submaps, but is applicable to normal
1610 * maps and maps governed by virtual page tables. For example, when operating
1611 * on a virtual page table our protection basically controls how COW occurs
1612 * on the backing object, whereas the virtual page table abstraction itself
1613 * is an abstraction for userland.
1614 */
1615int
1616vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1617 vm_prot_t new_prot, boolean_t set_max)
1618{
1619 vm_map_entry_t current;
1620 vm_map_entry_t entry;
1621 int count;
1622
1623 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1624 vm_map_lock(map);
1625
1626 VM_MAP_RANGE_CHECK(map, start, end);
1627
1628 if (vm_map_lookup_entry(map, start, &entry)) {
1629 vm_map_clip_start(map, entry, start, &count);
1630 } else {
1631 entry = entry->next;
1632 }
1633
1634 /*
1635 * Make a first pass to check for protection violations.
1636 */
1637 current = entry;
1638 while ((current != &map->header) && (current->start < end)) {
1639 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1640 vm_map_unlock(map);
1641 vm_map_entry_release(count);
1642 return (KERN_INVALID_ARGUMENT);
1643 }
1644 if ((new_prot & current->max_protection) != new_prot) {
1645 vm_map_unlock(map);
1646 vm_map_entry_release(count);
1647 return (KERN_PROTECTION_FAILURE);
1648 }
1649 current = current->next;
1650 }
1651
1652 /*
1653 * Go back and fix up protections. [Note that clipping is not
1654 * necessary the second time.]
1655 */
1656 current = entry;
1657
1658 while ((current != &map->header) && (current->start < end)) {
1659 vm_prot_t old_prot;
1660
1661 vm_map_clip_end(map, current, end, &count);
1662
1663 old_prot = current->protection;
1664 if (set_max) {
1665 current->protection =
1666 (current->max_protection = new_prot) &
1667 old_prot;
1668 } else {
1669 current->protection = new_prot;
1670 }
1671
1672 /*
1673 * Update physical map if necessary. Worry about copy-on-write
1674 * here -- CHECK THIS XXX
1675 */
1676
1677 if (current->protection != old_prot) {
1678#define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1679 VM_PROT_ALL)
1680
1681 pmap_protect(map->pmap, current->start,
1682 current->end,
1683 current->protection & MASK(current));
1684#undef MASK
1685 }
1686
1687 vm_map_simplify_entry(map, current, &count);
1688
1689 current = current->next;
1690 }
1691
1692 vm_map_unlock(map);
1693 vm_map_entry_release(count);
1694 return (KERN_SUCCESS);
1695}
1696
1697/*
1698 * vm_map_madvise:
1699 *
1700 * This routine traverses a processes map handling the madvise
1701 * system call. Advisories are classified as either those effecting
1702 * the vm_map_entry structure, or those effecting the underlying
1703 * objects.
1704 *
1705 * The <value> argument is used for extended madvise calls.
1706 */
1707int
1708vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1709 int behav, off_t value)
1710{
1711 vm_map_entry_t current, entry;
1712 int modify_map = 0;
1713 int error = 0;
1714 int count;
1715
1716 /*
1717 * Some madvise calls directly modify the vm_map_entry, in which case
1718 * we need to use an exclusive lock on the map and we need to perform
1719 * various clipping operations. Otherwise we only need a read-lock
1720 * on the map.
1721 */
1722
1723 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1724
1725 switch(behav) {
1726 case MADV_NORMAL:
1727 case MADV_SEQUENTIAL:
1728 case MADV_RANDOM:
1729 case MADV_NOSYNC:
1730 case MADV_AUTOSYNC:
1731 case MADV_NOCORE:
1732 case MADV_CORE:
1733 case MADV_SETMAP:
1734 case MADV_INVAL:
1735 modify_map = 1;
1736 vm_map_lock(map);
1737 break;
1738 case MADV_WILLNEED:
1739 case MADV_DONTNEED:
1740 case MADV_FREE:
1741 vm_map_lock_read(map);
1742 break;
1743 default:
1744 vm_map_entry_release(count);
1745 return (EINVAL);
1746 }
1747
1748 /*
1749 * Locate starting entry and clip if necessary.
1750 */
1751
1752 VM_MAP_RANGE_CHECK(map, start, end);
1753
1754 if (vm_map_lookup_entry(map, start, &entry)) {
1755 if (modify_map)
1756 vm_map_clip_start(map, entry, start, &count);
1757 } else {
1758 entry = entry->next;
1759 }
1760
1761 if (modify_map) {
1762 /*
1763 * madvise behaviors that are implemented in the vm_map_entry.
1764 *
1765 * We clip the vm_map_entry so that behavioral changes are
1766 * limited to the specified address range.
1767 */
1768 for (current = entry;
1769 (current != &map->header) && (current->start < end);
1770 current = current->next
1771 ) {
1772 if (current->maptype == VM_MAPTYPE_SUBMAP)
1773 continue;
1774
1775 vm_map_clip_end(map, current, end, &count);
1776
1777 switch (behav) {
1778 case MADV_NORMAL:
1779 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1780 break;
1781 case MADV_SEQUENTIAL:
1782 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1783 break;
1784 case MADV_RANDOM:
1785 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1786 break;
1787 case MADV_NOSYNC:
1788 current->eflags |= MAP_ENTRY_NOSYNC;
1789 break;
1790 case MADV_AUTOSYNC:
1791 current->eflags &= ~MAP_ENTRY_NOSYNC;
1792 break;
1793 case MADV_NOCORE:
1794 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1795 break;
1796 case MADV_CORE:
1797 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1798 break;
1799 case MADV_INVAL:
1800 /*
1801 * Invalidate the related pmap entries, used
1802 * to flush portions of the real kernel's
1803 * pmap when the caller has removed or
1804 * modified existing mappings in a virtual
1805 * page table.
1806 */
1807 pmap_remove(map->pmap,
1808 current->start, current->end);
1809 break;
1810 case MADV_SETMAP:
1811 /*
1812 * Set the page directory page for a map
1813 * governed by a virtual page table. Mark
1814 * the entry as being governed by a virtual
1815 * page table if it is not.
1816 *
1817 * XXX the page directory page is stored
1818 * in the avail_ssize field if the map_entry.
1819 *
1820 * XXX the map simplification code does not
1821 * compare this field so weird things may
1822 * happen if you do not apply this function
1823 * to the entire mapping governed by the
1824 * virtual page table.
1825 */
1826 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1827 error = EINVAL;
1828 break;
1829 }
1830 current->aux.master_pde = value;
1831 pmap_remove(map->pmap,
1832 current->start, current->end);
1833 break;
1834 default:
1835 error = EINVAL;
1836 break;
1837 }
1838 vm_map_simplify_entry(map, current, &count);
1839 }
1840 vm_map_unlock(map);
1841 } else {
1842 vm_pindex_t pindex;
1843 int count;
1844
1845 /*
1846 * madvise behaviors that are implemented in the underlying
1847 * vm_object.
1848 *
1849 * Since we don't clip the vm_map_entry, we have to clip
1850 * the vm_object pindex and count.
1851 *
1852 * NOTE! We currently do not support these functions on
1853 * virtual page tables.
1854 */
1855 for (current = entry;
1856 (current != &map->header) && (current->start < end);
1857 current = current->next
1858 ) {
1859 vm_offset_t useStart;
1860
1861 if (current->maptype != VM_MAPTYPE_NORMAL)
1862 continue;
1863
1864 pindex = OFF_TO_IDX(current->offset);
1865 count = atop(current->end - current->start);
1866 useStart = current->start;
1867
1868 if (current->start < start) {
1869 pindex += atop(start - current->start);
1870 count -= atop(start - current->start);
1871 useStart = start;
1872 }
1873 if (current->end > end)
1874 count -= atop(current->end - end);
1875
1876 if (count <= 0)
1877 continue;
1878
1879 vm_object_madvise(current->object.vm_object,
1880 pindex, count, behav);
1881
1882 /*
1883 * Try to populate the page table. Mappings governed
1884 * by virtual page tables cannot be pre-populated
1885 * without a lot of work so don't try.
1886 */
1887 if (behav == MADV_WILLNEED &&
1888 current->maptype != VM_MAPTYPE_VPAGETABLE) {
1889 pmap_object_init_pt(
1890 map->pmap,
1891 useStart,
1892 current->protection,
1893 current->object.vm_object,
1894 pindex,
1895 (count << PAGE_SHIFT),
1896 MAP_PREFAULT_MADVISE
1897 );
1898 }
1899 }
1900 vm_map_unlock_read(map);
1901 }
1902 vm_map_entry_release(count);
1903 return(error);
1904}
1905
1906
1907/*
1908 * vm_map_inherit:
1909 *
1910 * Sets the inheritance of the specified address
1911 * range in the target map. Inheritance
1912 * affects how the map will be shared with
1913 * child maps at the time of vm_map_fork.
1914 */
1915int
1916vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1917 vm_inherit_t new_inheritance)
1918{
1919 vm_map_entry_t entry;
1920 vm_map_entry_t temp_entry;
1921 int count;
1922
1923 switch (new_inheritance) {
1924 case VM_INHERIT_NONE:
1925 case VM_INHERIT_COPY:
1926 case VM_INHERIT_SHARE:
1927 break;
1928 default:
1929 return (KERN_INVALID_ARGUMENT);
1930 }
1931
1932 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1933 vm_map_lock(map);
1934
1935 VM_MAP_RANGE_CHECK(map, start, end);
1936
1937 if (vm_map_lookup_entry(map, start, &temp_entry)) {
1938 entry = temp_entry;
1939 vm_map_clip_start(map, entry, start, &count);
1940 } else
1941 entry = temp_entry->next;
1942
1943 while ((entry != &map->header) && (entry->start < end)) {
1944 vm_map_clip_end(map, entry, end, &count);
1945
1946 entry->inheritance = new_inheritance;
1947
1948 vm_map_simplify_entry(map, entry, &count);
1949
1950 entry = entry->next;
1951 }
1952 vm_map_unlock(map);
1953 vm_map_entry_release(count);
1954 return (KERN_SUCCESS);
1955}
1956
1957/*
1958 * Implement the semantics of mlock
1959 */
1960int
1961vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1962 boolean_t new_pageable)
1963{
1964 vm_map_entry_t entry;
1965 vm_map_entry_t start_entry;
1966 vm_offset_t end;
1967 int rv = KERN_SUCCESS;
1968 int count;
1969
1970 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1971 vm_map_lock(map);
1972 VM_MAP_RANGE_CHECK(map, start, real_end);
1973 end = real_end;
1974
1975 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1976 if (start_entry == NULL) {
1977 vm_map_unlock(map);
1978 vm_map_entry_release(count);
1979 return (KERN_INVALID_ADDRESS);
1980 }
1981
1982 if (new_pageable == 0) {
1983 entry = start_entry;
1984 while ((entry != &map->header) && (entry->start < end)) {
1985 vm_offset_t save_start;
1986 vm_offset_t save_end;
1987
1988 /*
1989 * Already user wired or hard wired (trivial cases)
1990 */
1991 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1992 entry = entry->next;
1993 continue;
1994 }
1995 if (entry->wired_count != 0) {
1996 entry->wired_count++;
1997 entry->eflags |= MAP_ENTRY_USER_WIRED;
1998 entry = entry->next;
1999 continue;
2000 }
2001
2002 /*
2003 * A new wiring requires instantiation of appropriate
2004 * management structures and the faulting in of the
2005 * page.
2006 */
2007 if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2008 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
2009 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
2010 vm_map_entry_shadow(entry);
2011 } else if (entry->object.vm_object == NULL &&
2012 !map->system_map) {
2013 vm_map_entry_allocate_object(entry);
2014 }
2015 }
2016 entry->wired_count++;
2017 entry->eflags |= MAP_ENTRY_USER_WIRED;
2018
2019 /*
2020 * Now fault in the area. Note that vm_fault_wire()
2021 * may release the map lock temporarily, it will be
2022 * relocked on return. The in-transition
2023 * flag protects the entries.
2024 */
2025 save_start = entry->start;
2026 save_end = entry->end;
2027 rv = vm_fault_wire(map, entry, TRUE);
2028 if (rv) {
2029 CLIP_CHECK_BACK(entry, save_start);
2030 for (;;) {
2031 KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2032 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2033 entry->wired_count = 0;
2034 if (entry->end == save_end)
2035 break;
2036 entry = entry->next;
2037 KASSERT(entry != &map->header, ("bad entry clip during backout"));
2038 }
2039 end = save_start; /* unwire the rest */
2040 break;
2041 }
2042 /*
2043 * note that even though the entry might have been
2044 * clipped, the USER_WIRED flag we set prevents
2045 * duplication so we do not have to do a
2046 * clip check.
2047 */
2048 entry = entry->next;
2049 }
2050
2051 /*
2052 * If we failed fall through to the unwiring section to
2053 * unwire what we had wired so far. 'end' has already
2054 * been adjusted.
2055 */
2056 if (rv)
2057 new_pageable = 1;
2058
2059 /*
2060 * start_entry might have been clipped if we unlocked the
2061 * map and blocked. No matter how clipped it has gotten
2062 * there should be a fragment that is on our start boundary.
2063 */
2064 CLIP_CHECK_BACK(start_entry, start);
2065 }
2066
2067 /*
2068 * Deal with the unwiring case.
2069 */
2070 if (new_pageable) {
2071 /*
2072 * This is the unwiring case. We must first ensure that the
2073 * range to be unwired is really wired down. We know there
2074 * are no holes.
2075 */
2076 entry = start_entry;
2077 while ((entry != &map->header) && (entry->start < end)) {
2078 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2079 rv = KERN_INVALID_ARGUMENT;
2080 goto done;
2081 }
2082 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2083 entry = entry->next;
2084 }
2085
2086 /*
2087 * Now decrement the wiring count for each region. If a region
2088 * becomes completely unwired, unwire its physical pages and
2089 * mappings.
2090 */
2091 /*
2092 * The map entries are processed in a loop, checking to
2093 * make sure the entry is wired and asserting it has a wired
2094 * count. However, another loop was inserted more-or-less in
2095 * the middle of the unwiring path. This loop picks up the
2096 * "entry" loop variable from the first loop without first
2097 * setting it to start_entry. Naturally, the secound loop
2098 * is never entered and the pages backing the entries are
2099 * never unwired. This can lead to a leak of wired pages.
2100 */
2101 entry = start_entry;
2102 while ((entry != &map->header) && (entry->start < end)) {
2103 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2104 ("expected USER_WIRED on entry %p", entry));
2105 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2106 entry->wired_count--;
2107 if (entry->wired_count == 0)
2108 vm_fault_unwire(map, entry);
2109 entry = entry->next;
2110 }
2111 }
2112done:
2113 vm_map_unclip_range(map, start_entry, start, real_end, &count,
2114 MAP_CLIP_NO_HOLES);
2115 map->timestamp++;
2116 vm_map_unlock(map);
2117 vm_map_entry_release(count);
2118 return (rv);
2119}
2120
2121/*
2122 * vm_map_wire:
2123 *
2124 * Sets the pageability of the specified address
2125 * range in the target map. Regions specified
2126 * as not pageable require locked-down physical
2127 * memory and physical page maps.
2128 *
2129 * The map must not be locked, but a reference
2130 * must remain to the map throughout the call.
2131 *
2132 * This function may be called via the zalloc path and must properly
2133 * reserve map entries for kernel_map.
2134 */
2135int
2136vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2137{
2138 vm_map_entry_t entry;
2139 vm_map_entry_t start_entry;
2140 vm_offset_t end;
2141 int rv = KERN_SUCCESS;
2142 int count;
2143
2144 if (kmflags & KM_KRESERVE)
2145 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2146 else
2147 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2148 vm_map_lock(map);
2149 VM_MAP_RANGE_CHECK(map, start, real_end);
2150 end = real_end;
2151
2152 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
2153 if (start_entry == NULL) {
2154 vm_map_unlock(map);
2155 rv = KERN_INVALID_ADDRESS;
2156 goto failure;
2157 }
2158 if ((kmflags & KM_PAGEABLE) == 0) {
2159 /*
2160 * Wiring.
2161 *
2162 * 1. Holding the write lock, we create any shadow or zero-fill
2163 * objects that need to be created. Then we clip each map
2164 * entry to the region to be wired and increment its wiring
2165 * count. We create objects before clipping the map entries
2166 * to avoid object proliferation.
2167 *
2168 * 2. We downgrade to a read lock, and call vm_fault_wire to
2169 * fault in the pages for any newly wired area (wired_count is
2170 * 1).
2171 *
2172 * Downgrading to a read lock for vm_fault_wire avoids a
2173 * possible deadlock with another process that may have faulted
2174 * on one of the pages to be wired (it would mark the page busy,
2175 * blocking us, then in turn block on the map lock that we
2176 * hold). Because of problems in the recursive lock package,
2177 * we cannot upgrade to a write lock in vm_map_lookup. Thus,
2178 * any actions that require the write lock must be done
2179 * beforehand. Because we keep the read lock on the map, the
2180 * copy-on-write status of the entries we modify here cannot
2181 * change.
2182 */
2183
2184 entry = start_entry;
2185 while ((entry != &map->header) && (entry->start < end)) {
2186 /*
2187 * Trivial case if the entry is already wired
2188 */
2189 if (entry->wired_count) {
2190 entry->wired_count++;
2191 entry = entry->next;
2192 continue;
2193 }
2194
2195 /*
2196 * The entry is being newly wired, we have to setup
2197 * appropriate management structures. A shadow
2198 * object is required for a copy-on-write region,
2199 * or a normal object for a zero-fill region. We
2200 * do not have to do this for entries that point to sub
2201 * maps because we won't hold the lock on the sub map.
2202 */
2203 if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2204 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
2205 if (copyflag &&
2206 ((entry->protection & VM_PROT_WRITE) != 0)) {
2207 vm_map_entry_shadow(entry);
2208 } else if (entry->object.vm_object == NULL &&
2209 !map->system_map) {
2210 vm_map_entry_allocate_object(entry);
2211 }
2212 }
2213
2214 entry->wired_count++;
2215 entry = entry->next;
2216 }
2217
2218 /*
2219 * Pass 2.
2220 */
2221
2222 /*
2223 * HACK HACK HACK HACK
2224 *
2225 * Unlock the map to avoid deadlocks. The in-transit flag
2226 * protects us from most changes but note that
2227 * clipping may still occur. To prevent clipping from
2228 * occuring after the unlock, except for when we are
2229 * blocking in vm_fault_wire, we must run in a critical
2230 * section, otherwise our accesses to entry->start and
2231 * entry->end could be corrupted. We have to enter the
2232 * critical section prior to unlocking so start_entry does
2233 * not change out from under us at the very beginning of the
2234 * loop.
2235 *
2236 * HACK HACK HACK HACK
2237 */
2238
2239 crit_enter();
2240
2241 entry = start_entry;
2242 while (entry != &map->header && entry->start < end) {
2243 /*
2244 * If vm_fault_wire fails for any page we need to undo
2245 * what has been done. We decrement the wiring count
2246 * for those pages which have not yet been wired (now)
2247 * and unwire those that have (later).
2248 */
2249 vm_offset_t save_start = entry->start;
2250 vm_offset_t save_end = entry->end;
2251
2252 if (entry->wired_count == 1)
2253 rv = vm_fault_wire(map, entry, FALSE);
2254 if (rv) {
2255 CLIP_CHECK_BACK(entry, save_start);
2256 for (;;) {
2257 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2258 entry->wired_count = 0;
2259 if (entry->end == save_end)
2260 break;
2261 entry = entry->next;
2262 KASSERT(entry != &map->header, ("bad entry clip during backout"));
2263 }
2264 end = save_start;
2265 break;
2266 }
2267 CLIP_CHECK_FWD(entry, save_end);
2268 entry = entry->next;
2269 }
2270 crit_exit();
2271
2272 /*
2273 * If a failure occured undo everything by falling through
2274 * to the unwiring code. 'end' has already been adjusted
2275 * appropriately.
2276 */
2277 if (rv)
2278 kmflags |= KM_PAGEABLE;
2279
2280 /*
2281 * start_entry is still IN_TRANSITION but may have been
2282 * clipped since vm_fault_wire() unlocks and relocks the
2283 * map. No matter how clipped it has gotten there should
2284 * be a fragment that is on our start boundary.
2285 */
2286 CLIP_CHECK_BACK(start_entry, start);
2287 }
2288
2289 if (kmflags & KM_PAGEABLE) {
2290 /*
2291 * This is the unwiring case. We must first ensure that the
2292 * range to be unwired is really wired down. We know there
2293 * are no holes.
2294 */
2295 entry = start_entry;
2296 while ((entry != &map->header) && (entry->start < end)) {
2297 if (entry->wired_count == 0) {
2298 rv = KERN_INVALID_ARGUMENT;
2299 goto done;
2300 }
2301 entry = entry->next;
2302 }
2303
2304 /*
2305 * Now decrement the wiring count for each region. If a region
2306 * becomes completely unwired, unwire its physical pages and
2307 * mappings.
2308 */
2309 entry = start_entry;
2310 while ((entry != &map->header) && (entry->start < end)) {
2311 entry->wired_count--;
2312 if (entry->wired_count == 0)
2313 vm_fault_unwire(map, entry);
2314 entry = entry->next;
2315 }
2316 }
2317done:
2318 vm_map_unclip_range(map, start_entry, start, real_end, &count,
2319 MAP_CLIP_NO_HOLES);
2320 map->timestamp++;
2321 vm_map_unlock(map);
2322failure:
2323 if (kmflags & KM_KRESERVE)
2324 vm_map_entry_krelease(count);
2325 else
2326 vm_map_entry_release(count);
2327 return (rv);
2328}
2329
2330/*
2331 * vm_map_set_wired_quick()
2332 *
2333 * Mark a newly allocated address range as wired but do not fault in
2334 * the pages. The caller is expected to load the pages into the object.
2335 *
2336 * The map must be locked on entry and will remain locked on return.
2337 */
2338void
2339vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2340{
2341 vm_map_entry_t scan;
2342 vm_map_entry_t entry;
2343
2344 entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2345 for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2346 KKASSERT(entry->wired_count == 0);
2347 entry->wired_count = 1;
2348 }
2349 vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2350}
2351
2352/*
2353 * vm_map_clean
2354 *
2355 * Push any dirty cached pages in the address range to their pager.
2356 * If syncio is TRUE, dirty pages are written synchronously.
2357 * If invalidate is TRUE, any cached pages are freed as well.
2358 *
2359 * This routine is called by sys_msync()
2360 *
2361 * Returns an error if any part of the specified range is not mapped.
2362 */
2363int
2364vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2365 boolean_t syncio, boolean_t invalidate)
2366{
2367 vm_map_entry_t current;
2368 vm_map_entry_t entry;
2369 vm_size_t size;
2370 vm_object_t object;
2371 vm_ooffset_t offset;
2372
2373 vm_map_lock_read(map);
2374 VM_MAP_RANGE_CHECK(map, start, end);
2375 if (!vm_map_lookup_entry(map, start, &entry)) {
2376 vm_map_unlock_read(map);
2377 return (KERN_INVALID_ADDRESS);
2378 }
2379 /*
2380 * Make a first pass to check for holes.
2381 */
2382 for (current = entry; current->start < end; current = current->next) {
2383 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2384 vm_map_unlock_read(map);
2385 return (KERN_INVALID_ARGUMENT);
2386 }
2387 if (end > current->end &&
2388 (current->next == &map->header ||
2389 current->end != current->next->start)) {
2390 vm_map_unlock_read(map);
2391 return (KERN_INVALID_ADDRESS);
2392 }
2393 }
2394
2395 if (invalidate)
2396 pmap_remove(vm_map_pmap(map), start, end);
2397 /*
2398 * Make a second pass, cleaning/uncaching pages from the indicated
2399 * objects as we go.
2400 */
2401 for (current = entry; current->start < end; current = current->next) {
2402 offset = current->offset + (start - current->start);
2403 size = (end <= current->end ? end : current->end) - start;
2404 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2405 vm_map_t smap;
2406 vm_map_entry_t tentry;
2407 vm_size_t tsize;
2408
2409 smap = current->object.sub_map;
2410 vm_map_lock_read(smap);
2411 vm_map_lookup_entry(smap, offset, &tentry);
2412 tsize = tentry->end - offset;
2413 if (tsize < size)
2414 size = tsize;
2415 object = tentry->object.vm_object;
2416 offset = tentry->offset + (offset - tentry->start);
2417 vm_map_unlock_read(smap);
2418 } else {
2419 object = current->object.vm_object;
2420 }
2421 /*
2422 * Note that there is absolutely no sense in writing out
2423 * anonymous objects, so we track down the vnode object
2424 * to write out.
2425 * We invalidate (remove) all pages from the address space
2426 * anyway, for semantic correctness.
2427 *
2428 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2429 * may start out with a NULL object.
2430 */
2431 while (object && object->backing_object) {
2432 offset += object->backing_object_offset;
2433 object = object->backing_object;
2434 if (object->size < OFF_TO_IDX( offset + size))
2435 size = IDX_TO_OFF(object->size) - offset;
2436 }
2437 if (object && (object->type == OBJT_VNODE) &&
2438 (current->protection & VM_PROT_WRITE) &&
2439 (object->flags & OBJ_NOMSYNC) == 0) {
2440 /*
2441 * Flush pages if writing is allowed, invalidate them
2442 * if invalidation requested. Pages undergoing I/O
2443 * will be ignored by vm_object_page_remove().
2444 *
2445 * We cannot lock the vnode and then wait for paging
2446 * to complete without deadlocking against vm_fault.
2447 * Instead we simply call vm_object_page_remove() and
2448 * allow it to block internally on a page-by-page
2449 * basis when it encounters pages undergoing async
2450 * I/O.
2451 */
2452 int flags;
2453
2454 vm_object_reference(object);
2455 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2456 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2457 flags |= invalidate ? OBJPC_INVAL : 0;
2458
2459 /*
2460 * When operating on a virtual page table just
2461 * flush the whole object. XXX we probably ought
2462 * to
2463 */
2464 switch(current->maptype) {
2465 case VM_MAPTYPE_NORMAL:
2466 vm_object_page_clean(object,
2467 OFF_TO_IDX(offset),
2468 OFF_TO_IDX(offset + size + PAGE_MASK),
2469 flags);
2470 break;
2471 case VM_MAPTYPE_VPAGETABLE:
2472 vm_object_page_clean(object, 0, 0, flags);
2473 break;
2474 }
2475 vn_unlock(((struct vnode *)object->handle));
2476 vm_object_deallocate(object);
2477 }
2478 if (object && invalidate &&
2479 ((object->type == OBJT_VNODE) ||
2480 (object->type == OBJT_DEVICE))) {
2481 int clean_only =
2482 (object->type == OBJT_DEVICE) ? FALSE : TRUE;
2483 vm_object_reference(object);
2484 switch(current->maptype) {
2485 case VM_MAPTYPE_NORMAL:
2486 vm_object_page_remove(object,
2487 OFF_TO_IDX(offset),
2488 OFF_TO_IDX(offset + size + PAGE_MASK),
2489 clean_only);
2490 break;
2491 case VM_MAPTYPE_VPAGETABLE:
2492 vm_object_page_remove(object, 0, 0, clean_only);
2493 break;
2494 }
2495 vm_object_deallocate(object);
2496 }
2497 start += size;
2498 }
2499
2500 vm_map_unlock_read(map);
2501 return (KERN_SUCCESS);
2502}
2503
2504/*
2505 * vm_map_entry_unwire: [ internal use only ]
2506 *
2507 * Make the region specified by this entry pageable.
2508 *
2509 * The map in question should be locked.
2510 * [This is the reason for this routine's existence.]
2511 */
2512static void
2513vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2514{
2515 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2516 entry->wired_count = 0;
2517 vm_fault_unwire(map, entry);
2518}
2519
2520/*
2521 * vm_map_entry_delete: [ internal use only ]
2522 *
2523 * Deallocate the given entry from the target map.
2524 */
2525static void
2526vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2527{
2528 vm_map_entry_unlink(map, entry);
2529 map->size -= entry->end - entry->start;
2530
2531 switch(entry->maptype) {
2532 case VM_MAPTYPE_NORMAL:
2533 case VM_MAPTYPE_VPAGETABLE:
2534 vm_object_deallocate(entry->object.vm_object);
2535 break;
2536 default:
2537 break;
2538 }
2539
2540 vm_map_entry_dispose(map, entry, countp);
2541}
2542
2543/*
2544 * vm_map_delete: [ internal use only ]
2545 *
2546 * Deallocates the given address range from the target
2547 * map.
2548 */
2549int
2550vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2551{
2552 vm_object_t object;
2553 vm_map_entry_t entry;
2554 vm_map_entry_t first_entry;
2555
2556again:
2557 /*
2558 * Find the start of the region, and clip it. Set entry to point
2559 * at the first record containing the requested address or, if no
2560 * such record exists, the next record with a greater address. The
2561 * loop will run from this point until a record beyond the termination
2562 * address is encountered.
2563 *
2564 * map->hint must be adjusted to not point to anything we delete,
2565 * so set it to the entry prior to the one being deleted.
2566 *
2567 * GGG see other GGG comment.
2568 */
2569 if (vm_map_lookup_entry(map, start, &first_entry)) {
2570 entry = first_entry;
2571 vm_map_clip_start(map, entry, start, countp);
2572 map->hint = entry->prev; /* possible problem XXX */
2573 } else {
2574 map->hint = first_entry; /* possible problem XXX */
2575 entry = first_entry->next;
2576 }
2577
2578 /*
2579 * If a hole opens up prior to the current first_free then
2580 * adjust first_free. As with map->hint, map->first_free
2581 * cannot be left set to anything we might delete.
2582 */
2583 if (entry == &map->header) {
2584 map->first_free = &map->header;
2585 } else if (map->first_free->start >= start) {
2586 map->first_free = entry->prev;
2587 }
2588
2589 /*
2590 * Step through all entries in this region
2591 */
2592
2593 while ((entry != &map->header) && (entry->start < end)) {
2594 vm_map_entry_t next;
2595 vm_offset_t s, e;
2596 vm_pindex_t offidxstart, offidxend, count;
2597
2598 /*
2599 * If we hit an in-transition entry we have to sleep and
2600 * retry. It's easier (and not really slower) to just retry
2601 * since this case occurs so rarely and the hint is already
2602 * pointing at the right place. We have to reset the
2603 * start offset so as not to accidently delete an entry
2604 * another process just created in vacated space.
2605 */
2606 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2607 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2608 start = entry->start;
2609 ++mycpu->gd_cnt.v_intrans_coll;
2610 ++mycpu->gd_cnt.v_intrans_wait;
2611 vm_map_transition_wait(map);
2612 goto again;
2613 }
2614 vm_map_clip_end(map, entry, end, countp);
2615
2616 s = entry->start;
2617 e = entry->end;
2618 next = entry->next;
2619
2620 offidxstart = OFF_TO_IDX(entry->offset);
2621 count = OFF_TO_IDX(e - s);
2622 object = entry->object.vm_object;
2623
2624 /*
2625 * Unwire before removing addresses from the pmap; otherwise,
2626 * unwiring will put the entries back in the pmap.
2627 */
2628 if (entry->wired_count != 0)
2629 vm_map_entry_unwire(map, entry);
2630
2631 offidxend = offidxstart + count;
2632
2633 if (object == &kernel_object) {
2634 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2635 } else {
2636 pmap_remove(map->pmap, s, e);
2637 if (object != NULL &&
2638 object->ref_count != 1 &&
2639 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2640 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2641 vm_object_collapse(object);
2642 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2643 if (object->type == OBJT_SWAP) {
2644 swap_pager_freespace(object, offidxstart, count);
2645 }
2646 if (offidxend >= object->size &&
2647 offidxstart < object->size) {
2648 object->size = offidxstart;
2649 }
2650 }
2651 }
2652
2653 /*
2654 * Delete the entry (which may delete the object) only after
2655 * removing all pmap entries pointing to its pages.
2656 * (Otherwise, its page frames may be reallocated, and any
2657 * modify bits will be set in the wrong object!)
2658 */
2659 vm_map_entry_delete(map, entry, countp);
2660 entry = next;
2661 }
2662 return (KERN_SUCCESS);
2663}
2664
2665/*
2666 * vm_map_remove:
2667 *
2668 * Remove the given address range from the target map.
2669 * This is the exported form of vm_map_delete.
2670 */
2671int
2672vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2673{
2674 int result;
2675 int count;
2676
2677 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2678 vm_map_lock(map);
2679 VM_MAP_RANGE_CHECK(map, start, end);
2680 result = vm_map_delete(map, start, end, &count);
2681 vm_map_unlock(map);
2682 vm_map_entry_release(count);
2683
2684 return (result);
2685}
2686
2687/*
2688 * vm_map_check_protection:
2689 *
2690 * Assert that the target map allows the specified
2691 * privilege on the entire address region given.
2692 * The entire region must be allocated.
2693 */
2694boolean_t
2695vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2696 vm_prot_t protection)
2697{
2698 vm_map_entry_t entry;
2699 vm_map_entry_t tmp_entry;
2700
2701 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2702 return (FALSE);
2703 }
2704 entry = tmp_entry;
2705
2706 while (start < end) {
2707 if (entry == &map->header) {
2708 return (FALSE);
2709 }
2710 /*
2711 * No holes allowed!
2712 */
2713
2714 if (start < entry->start) {
2715 return (FALSE);
2716 }
2717 /*
2718 * Check protection associated with entry.
2719 */
2720
2721 if ((entry->protection & protection) != protection) {
2722 return (FALSE);
2723 }
2724 /* go to next entry */
2725
2726 start = entry->end;
2727 entry = entry->next;
2728 }
2729 return (TRUE);
2730}
2731
2732/*
2733 * Split the pages in a map entry into a new object. This affords
2734 * easier removal of unused pages, and keeps object inheritance from
2735 * being a negative impact on memory usage.
2736 */
2737static void
2738vm_map_split(vm_map_entry_t entry)
2739{
2740 vm_page_t m;
2741 vm_object_t orig_object, new_object, source;
2742 vm_offset_t s, e;
2743 vm_pindex_t offidxstart, offidxend, idx;
2744 vm_size_t size;
2745 vm_ooffset_t offset;
2746
2747 orig_object = entry->object.vm_object;
2748 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2749 return;
2750 if (orig_object->ref_count <= 1)
2751 return;
2752
2753 offset = entry->offset;
2754 s = entry->start;
2755 e = entry->end;
2756
2757 offidxstart = OFF_TO_IDX(offset);
2758 offidxend = offidxstart + OFF_TO_IDX(e - s);
2759 size = offidxend - offidxstart;
2760
2761 switch(orig_object->type) {
2762 case OBJT_DEFAULT:
2763 new_object = default_pager_alloc(NULL, IDX_TO_OFF(size),
2764 VM_PROT_ALL, 0);
2765 break;
2766 case OBJT_SWAP:
2767 new_object = swap_pager_alloc(NULL, IDX_TO_OFF(size),
2768 VM_PROT_ALL, 0);
2769 break;
2770 default:
2771 /* not reached */
2772 new_object = NULL;
2773 KKASSERT(0);
2774 }
2775 if (new_object == NULL)
2776 return;
2777
2778 source = orig_object->backing_object;
2779 if (source != NULL) {
2780 vm_object_reference(source); /* Referenced by new_object */
2781 LIST_INSERT_HEAD(&source->shadow_head,
2782 new_object, shadow_list);
2783 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2784 new_object->backing_object_offset =
2785 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2786 new_object->backing_object = source;
2787 source->shadow_count++;
2788 source->generation++;
2789 }
2790
2791 for (idx = 0; idx < size; idx++) {
2792 vm_page_t m;
2793
2794 /*
2795 * A critical section is required to avoid a race between
2796 * the lookup and an interrupt/unbusy/free and our busy
2797 * check.
2798 */
2799 crit_enter();
2800 retry:
2801 m = vm_page_lookup(orig_object, offidxstart + idx);
2802 if (m == NULL) {
2803 crit_exit();
2804 continue;
2805 }
2806
2807 /*
2808 * We must wait for pending I/O to complete before we can
2809 * rename the page.
2810 *
2811 * We do not have to VM_PROT_NONE the page as mappings should
2812 * not be changed by this operation.
2813 */
2814 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2815 goto retry;
2816 vm_page_busy(m);
2817 vm_page_rename(m, new_object, idx);
2818 /* page automatically made dirty by rename and cache handled */
2819 vm_page_busy(m);
2820 crit_exit();
2821 }
2822
2823 if (orig_object->type == OBJT_SWAP) {
2824 vm_object_pip_add(orig_object, 1);
2825 /*
2826 * copy orig_object pages into new_object
2827 * and destroy unneeded pages in
2828 * shadow object.
2829 */
2830 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2831 vm_object_pip_wakeup(orig_object);
2832 }
2833
2834 /*
2835 * Wakeup the pages we played with. No spl protection is needed
2836 * for a simple wakeup.
2837 */
2838 for (idx = 0; idx < size; idx++) {
2839 m = vm_page_lookup(new_object, idx);
2840 if (m)
2841 vm_page_wakeup(m);
2842 }
2843
2844 entry->object.vm_object = new_object;
2845 entry->offset = 0LL;
2846 vm_object_deallocate(orig_object);
2847}
2848
2849/*
2850 * vm_map_copy_entry:
2851 *
2852 * Copies the contents of the source entry to the destination
2853 * entry. The entries *must* be aligned properly.
2854 */
2855static void
2856vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2857 vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2858{
2859 vm_object_t src_object;
2860
2861 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2862 return;
2863 if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2864 return;
2865
2866 if (src_entry->wired_count == 0) {
2867 /*
2868 * If the source entry is marked needs_copy, it is already
2869 * write-protected.
2870 */
2871 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2872 pmap_protect(src_map->pmap,
2873 src_entry->start,
2874 src_entry->end,
2875 src_entry->protection & ~VM_PROT_WRITE);
2876 }
2877
2878 /*
2879 * Make a copy of the object.
2880 */
2881 if ((src_object = src_entry->object.vm_object) != NULL) {
2882 if ((src_object->handle == NULL) &&
2883 (src_object->type == OBJT_DEFAULT ||
2884 src_object->type == OBJT_SWAP)) {
2885 vm_object_collapse(src_object);
2886 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2887 vm_map_split(src_entry);
2888 src_object = src_entry->object.vm_object;
2889 }
2890 }
2891
2892 vm_object_reference(src_object);
2893 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2894 dst_entry->object.vm_object = src_object;
2895 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2896 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2897 dst_entry->offset = src_entry->offset;
2898 } else {
2899 dst_entry->object.vm_object = NULL;
2900 dst_entry->offset = 0;
2901 }
2902
2903 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2904 dst_entry->end - dst_entry->start, src_entry->start);
2905 } else {
2906 /*
2907 * Of course, wired down pages can't be set copy-on-write.
2908 * Cause wired pages to be copied into the new map by
2909 * simulating faults (the new pages are pageable)
2910 */
2911 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2912 }
2913}
2914
2915/*
2916 * vmspace_fork:
2917 * Create a new process vmspace structure and vm_map
2918 * based on those of an existing process. The new map
2919 * is based on the old map, according to the inheritance
2920 * values on the regions in that map.
2921 *
2922 * The source map must not be locked.
2923 */
2924struct vmspace *
2925vmspace_fork(struct vmspace *vm1)
2926{
2927 struct vmspace *vm2;
2928 vm_map_t old_map = &vm1->vm_map;
2929 vm_map_t new_map;
2930 vm_map_entry_t old_entry;
2931 vm_map_entry_t new_entry;
2932 vm_object_t object;
2933 int count;
2934
2935 vm_map_lock(old_map);
2936 old_map->infork = 1;
2937
2938 /*
2939 * XXX Note: upcalls are not copied.
2940 */
2941 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2942 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2943 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2944 new_map = &vm2->vm_map; /* XXX */
2945 new_map->timestamp = 1;
2946
2947 count = 0;
2948 old_entry = old_map->header.next;
2949 while (old_entry != &old_map->header) {
2950 ++count;
2951 old_entry = old_entry->next;
2952 }
2953
2954 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2955
2956 old_entry = old_map->header.next;
2957 while (old_entry != &old_map->header) {
2958 if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
2959 panic("vm_map_fork: encountered a submap");
2960
2961 switch (old_entry->inheritance) {
2962 case VM_INHERIT_NONE:
2963 break;
2964
2965 case VM_INHERIT_SHARE:
2966 /*
2967 * Clone the entry, creating the shared object if
2968 * necessary.
2969 */
2970 object = old_entry->object.vm_object;
2971 if (object == NULL) {
2972 vm_map_entry_allocate_object(old_entry);
2973 object = old_entry->object.vm_object;
2974 }
2975
2976 /*
2977 * Add the reference before calling vm_map_entry_shadow
2978 * to insure that a shadow object is created.
2979 */
2980 vm_object_reference(object);
2981 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2982 vm_map_entry_shadow(old_entry);
2983 /* Transfer the second reference too. */
2984 vm_object_reference(
2985 old_entry->object.vm_object);
2986 vm_object_deallocate(object);
2987 object = old_entry->object.vm_object;
2988 }
2989 vm_object_clear_flag(object, OBJ_ONEMAPPING);
2990
2991 /*
2992 * Clone the entry, referencing the shared object.
2993 */
2994 new_entry = vm_map_entry_create(new_map, &count);
2995 *new_entry = *old_entry;
2996 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2997 new_entry->wired_count = 0;
2998
2999 /*
3000 * Insert the entry into the new map -- we know we're
3001 * inserting at the end of the new map.
3002 */
3003
3004 vm_map_entry_link(new_map, new_map->header.prev,
3005 new_entry);
3006
3007 /*
3008 * Update the physical map
3009 */
3010
3011 pmap_copy(new_map->pmap, old_map->pmap,
3012 new_entry->start,
3013 (old_entry->end - old_entry->start),
3014 old_entry->start);
3015 break;
3016
3017 case VM_INHERIT_COPY:
3018 /*
3019 * Clone the entry and link into the map.
3020 */
3021 new_entry = vm_map_entry_create(new_map, &count);
3022 *new_entry = *old_entry;
3023 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3024 new_entry->wired_count = 0;
3025 new_entry->object.vm_object = NULL;
3026 vm_map_entry_link(new_map, new_map->header.prev,
3027 new_entry);
3028 vm_map_copy_entry(old_map, new_map, old_entry,
3029 new_entry);
3030 break;
3031 }
3032 old_entry = old_entry->next;
3033 }
3034
3035 new_map->size = old_map->size;
3036 old_map->infork = 0;
3037 vm_map_unlock(old_map);
3038 vm_map_entry_release(count);
3039
3040 return (vm2);
3041}
3042
3043int
3044vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3045 int flags, vm_prot_t prot, vm_prot_t max, int cow)
3046{
3047 vm_map_entry_t prev_entry;
3048 vm_map_entry_t new_stack_entry;
3049 vm_size_t init_ssize;
3050 int rv;
3051 int count;
3052 vm_offset_t tmpaddr;
3053
3054 cow |= MAP_IS_STACK;
3055
3056 if (max_ssize < sgrowsiz)
3057 init_ssize = max_ssize;
3058 else
3059 init_ssize = sgrowsiz;
3060
3061 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3062 vm_map_lock(map);
3063
3064 /*
3065 * Find space for the mapping
3066 */
3067 if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3068 if (vm_map_findspace(map, addrbos, max_ssize, 1,
3069 flags, &tmpaddr)) {
3070 vm_map_unlock(map);
3071 vm_map_entry_release(count);
3072 return (KERN_NO_SPACE);
3073 }
3074 addrbos = tmpaddr;
3075 }
3076
3077 /* If addr is already mapped, no go */
3078 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3079 vm_map_unlock(map);
3080 vm_map_entry_release(count);
3081 return (KERN_NO_SPACE);
3082 }
3083
3084#if 0
3085 /* XXX already handled by kern_mmap() */
3086 /* If we would blow our VMEM resource limit, no go */
3087 if (map->size + init_ssize >
3088 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3089 vm_map_unlock(map);
3090 vm_map_entry_release(count);
3091 return (KERN_NO_SPACE);
3092 }
3093#endif
3094
3095 /*
3096 * If we can't accomodate max_ssize in the current mapping,
3097 * no go. However, we need to be aware that subsequent user
3098 * mappings might map into the space we have reserved for
3099 * stack, and currently this space is not protected.
3100 *
3101 * Hopefully we will at least detect this condition
3102 * when we try to grow the stack.
3103 */
3104 if ((prev_entry->next != &map->header) &&
3105 (prev_entry->next->start < addrbos + max_ssize)) {
3106 vm_map_unlock(map);
3107 vm_map_entry_release(count);
3108 return (KERN_NO_SPACE);
3109 }
3110
3111 /*
3112 * We initially map a stack of only init_ssize. We will
3113 * grow as needed later. Since this is to be a grow
3114 * down stack, we map at the top of the range.
3115 *
3116 * Note: we would normally expect prot and max to be
3117 * VM_PROT_ALL, and cow to be 0. Possibly we should
3118 * eliminate these as input parameters, and just
3119 * pass these values here in the insert call.
3120 */
3121 rv = vm_map_insert(map, &count,
3122 NULL, 0, addrbos + max_ssize - init_ssize,
3123 addrbos + max_ssize,
3124 VM_MAPTYPE_NORMAL,
3125 prot, max,
3126 cow);
3127
3128 /* Now set the avail_ssize amount */
3129 if (rv == KERN_SUCCESS) {
3130 if (prev_entry != &map->header)
3131 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3132 new_stack_entry = prev_entry->next;
3133 if (new_stack_entry->end != addrbos + max_ssize ||
3134 new_stack_entry->start != addrbos + max_ssize - init_ssize)
3135 panic ("Bad entry start/end for new stack entry");
3136 else
3137 new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3138 }
3139
3140 vm_map_unlock(map);
3141 vm_map_entry_release(count);
3142 return (rv);
3143}
3144
3145/* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
3146 * desired address is already mapped, or if we successfully grow
3147 * the stack. Also returns KERN_SUCCESS if addr is outside the
3148 * stack range (this is strange, but preserves compatibility with
3149 * the grow function in vm_machdep.c).
3150 */
3151int
3152vm_map_growstack (struct proc *p, vm_offset_t addr)
3153{
3154 vm_map_entry_t prev_entry;
3155 vm_map_entry_t stack_entry;
3156 vm_map_entry_t new_stack_entry;
3157 struct vmspace *vm = p->p_vmspace;
3158 vm_map_t map = &vm->vm_map;
3159 vm_offset_t end;
3160 int grow_amount;
3161 int rv = KERN_SUCCESS;
3162 int is_procstack;
3163 int use_read_lock = 1;
3164 int count;
3165
3166 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3167Retry:
3168 if (use_read_lock)
3169 vm_map_lock_read(map);
3170 else
3171 vm_map_lock(map);
3172
3173 /* If addr is already in the entry range, no need to grow.*/
3174 if (vm_map_lookup_entry(map, addr, &prev_entry))
3175 goto done;
3176
3177 if ((stack_entry = prev_entry->next) == &map->header)
3178 goto done;
3179 if (prev_entry == &map->header)
3180 end = stack_entry->start - stack_entry->aux.avail_ssize;
3181 else
3182 end = prev_entry->end;
3183
3184 /*
3185 * This next test mimics the old grow function in vm_machdep.c.
3186 * It really doesn't quite make sense, but we do it anyway
3187 * for compatibility.
3188 *
3189 * If not growable stack, return success. This signals the
3190 * caller to proceed as he would normally with normal vm.
3191 */
3192 if (stack_entry->aux.avail_ssize < 1 ||
3193 addr >= stack_entry->start ||
3194 addr < stack_entry->start - stack_entry->aux.avail_ssize) {
3195 goto done;
3196 }
3197
3198 /* Find the minimum grow amount */
3199 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3200 if (grow_amount > stack_entry->aux.avail_ssize) {
3201 rv = KERN_NO_SPACE;
3202 goto done;
3203 }
3204
3205 /*
3206 * If there is no longer enough space between the entries
3207 * nogo, and adjust the available space. Note: this
3208 * should only happen if the user has mapped into the
3209 * stack area after the stack was created, and is
3210 * probably an error.
3211 *
3212 * This also effectively destroys any guard page the user
3213 * might have intended by limiting the stack size.
3214 */
3215 if (grow_amount > stack_entry->start - end) {
3216 if (use_read_lock && vm_map_lock_upgrade(map)) {
3217 use_read_lock = 0;
3218 goto Retry;
3219 }
3220 use_read_lock = 0;
3221 stack_entry->aux.avail_ssize = stack_entry->start - end;
3222 rv = KERN_NO_SPACE;
3223 goto done;
3224 }
3225
3226 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3227
3228 /* If this is the main process stack, see if we're over the
3229 * stack limit.
3230 */
3231 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3232 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3233 rv = KERN_NO_SPACE;
3234 goto done;
3235 }
3236
3237 /* Round up the grow amount modulo SGROWSIZ */
3238 grow_amount = roundup (grow_amount, sgrowsiz);
3239 if (grow_amount > stack_entry->aux.avail_ssize) {
3240 grow_amount = stack_entry->aux.avail_ssize;
3241 }
3242 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3243 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3244 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3245 ctob(vm->vm_ssize);
3246 }
3247
3248 /* If we would blow our VMEM resource limit, no go */
3249 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3250 rv = KERN_NO_SPACE;
3251 goto done;
3252 }
3253
3254 if (use_read_lock && vm_map_lock_upgrade(map)) {
3255 use_read_lock = 0;
3256 goto Retry;
3257 }
3258 use_read_lock = 0;
3259
3260 /* Get the preliminary new entry start value */
3261 addr = stack_entry->start - grow_amount;
3262
3263 /* If this puts us into the previous entry, cut back our growth
3264 * to the available space. Also, see the note above.
3265 */
3266 if (addr < end) {
3267 stack_entry->aux.avail_ssize = stack_entry->start - end;
3268 addr = end;
3269 }
3270
3271 rv = vm_map_insert(map, &count,
3272 NULL, 0, addr, stack_entry->start,
3273 VM_MAPTYPE_NORMAL,
3274 VM_PROT_ALL, VM_PROT_ALL,
3275 0);
3276
3277 /* Adjust the available stack space by the amount we grew. */
3278 if (rv == KERN_SUCCESS) {
3279 if (prev_entry != &map->header)
3280 vm_map_clip_end(map, prev_entry, addr, &count);
3281 new_stack_entry = prev_entry->next;
3282 if (new_stack_entry->end != stack_entry->start ||
3283 new_stack_entry->start != addr)
3284 panic ("Bad stack grow start/end in new stack entry");
3285 else {
3286 new_stack_entry->aux.avail_ssize =
3287 stack_entry->aux.avail_ssize -
3288 (new_stack_entry->end - new_stack_entry->start);
3289 if (is_procstack)
3290 vm->vm_ssize += btoc(new_stack_entry->end -
3291 new_stack_entry->start);
3292 }
3293 }
3294
3295done:
3296 if (use_read_lock)
3297 vm_map_unlock_read(map);
3298 else
3299 vm_map_unlock(map);
3300 vm_map_entry_release(count);
3301 return (rv);
3302}
3303
3304/*
3305 * Unshare the specified VM space for exec. If other processes are
3306 * mapped to it, then create a new one. The new vmspace is null.
3307 */
3308void
3309vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3310{
3311 struct vmspace *oldvmspace = p->p_vmspace;
3312 struct vmspace *newvmspace;
3313 vm_map_t map = &p->p_vmspace->vm_map;
3314
3315 /*
3316 * If we are execing a resident vmspace we fork it, otherwise
3317 * we create a new vmspace. Note that exitingcnt and upcalls
3318 * are not copied to the new vmspace.
3319 */
3320 if (vmcopy) {
3321 newvmspace = vmspace_fork(vmcopy);
3322 } else {
3323 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3324 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3325 (caddr_t)&oldvmspace->vm_endcopy -
3326 (caddr_t)&oldvmspace->vm_startcopy);
3327 }
3328
3329 /*
3330 * Finish initializing the vmspace before assigning it
3331 * to the process. The vmspace will become the current vmspace
3332 * if p == curproc.
3333 */
3334 pmap_pinit2(vmspace_pmap(newvmspace));
3335 pmap_replacevm(p, newvmspace, 0);
3336 sysref_put(&oldvmspace->vm_sysref);
3337}
3338
3339/*
3340 * Unshare the specified VM space for forcing COW. This
3341 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3342 *
3343 * The exitingcnt test is not strictly necessary but has been
3344 * included for code sanity (to make the code a bit more deterministic).
3345 */
3346
3347void
3348vmspace_unshare(struct proc *p)
3349{
3350 struct vmspace *oldvmspace = p->p_vmspace;
3351 struct vmspace *newvmspace;
3352
3353 if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3354 return;
3355 newvmspace = vmspace_fork(oldvmspace);
3356 pmap_pinit2(vmspace_pmap(newvmspace));
3357 pmap_replacevm(p, newvmspace, 0);
3358 sysref_put(&oldvmspace->vm_sysref);
3359}
3360
3361/*
3362 * vm_map_lookup:
3363 *
3364 * Finds the VM object, offset, and
3365 * protection for a given virtual address in the
3366 * specified map, assuming a page fault of the
3367 * type specified.
3368 *
3369 * Leaves the map in question locked for read; return
3370 * values are guaranteed until a vm_map_lookup_done
3371 * call is performed. Note that the map argument
3372 * is in/out; the returned map must be used in
3373 * the call to vm_map_lookup_done.
3374 *
3375 * A handle (out_entry) is returned for use in
3376 * vm_map_lookup_done, to make that fast.
3377 *
3378 * If a lookup is requested with "write protection"
3379 * specified, the map may be changed to perform virtual
3380 * copying operations, although the data referenced will
3381 * remain the same.
3382 */
3383int
3384vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
3385 vm_offset_t vaddr,
3386 vm_prot_t fault_typea,
3387 vm_map_entry_t *out_entry, /* OUT */
3388 vm_object_t *object, /* OUT */
3389 vm_pindex_t *pindex, /* OUT */
3390 vm_prot_t *out_prot, /* OUT */
3391 boolean_t *wired) /* OUT */
3392{
3393 vm_map_entry_t entry;
3394 vm_map_t map = *var_map;
3395 vm_prot_t prot;
3396 vm_prot_t fault_type = fault_typea;
3397 int use_read_lock = 1;
3398 int rv = KERN_SUCCESS;
3399
3400RetryLookup:
3401 if (use_read_lock)
3402 vm_map_lock_read(map);
3403 else
3404 vm_map_lock(map);
3405
3406 /*
3407 * If the map has an interesting hint, try it before calling full
3408 * blown lookup routine.
3409 */
3410 entry = map->hint;
3411 *out_entry = entry;
3412
3413 if ((entry == &map->header) ||
3414 (vaddr < entry->start) || (vaddr >= entry->end)) {
3415 vm_map_entry_t tmp_entry;
3416
3417 /*
3418 * Entry was either not a valid hint, or the vaddr was not
3419 * contained in the entry, so do a full lookup.
3420 */
3421 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3422 rv = KERN_INVALID_ADDRESS;
3423 goto done;
3424 }
3425
3426 entry = tmp_entry;
3427 *out_entry = entry;
3428 }
3429
3430 /*
3431 * Handle submaps.
3432 */
3433 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3434 vm_map_t old_map = map;
3435
3436 *var_map = map = entry->object.sub_map;
3437 if (use_read_lock)
3438 vm_map_unlock_read(old_map);
3439 else
3440 vm_map_unlock(old_map);
3441 use_read_lock = 1;
3442 goto RetryLookup;
3443 }
3444
3445 /*
3446 * Check whether this task is allowed to have this page.
3447 * Note the special case for MAP_ENTRY_COW
3448 * pages with an override. This is to implement a forced
3449 * COW for debuggers.
3450 */
3451
3452 if (fault_type & VM_PROT_OVERRIDE_WRITE)
3453 prot = entry->max_protection;
3454 else
3455 prot = entry->protection;
3456
3457 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3458 if ((fault_type & prot) != fault_type) {
3459 rv = KERN_PROTECTION_FAILURE;
3460 goto done;
3461 }
3462
3463 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3464 (entry->eflags & MAP_ENTRY_COW) &&
3465 (fault_type & VM_PROT_WRITE) &&
3466 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3467 rv = KERN_PROTECTION_FAILURE;
3468 goto done;
3469 }
3470
3471 /*
3472 * If this page is not pageable, we have to get it for all possible
3473 * accesses.
3474 */
3475 *wired = (entry->wired_count != 0);
3476 if (*wired)
3477 prot = fault_type = entry->protection;
3478
3479 /*
3480 * Virtual page tables may need to update the accessed (A) bit
3481 * in a page table entry. Upgrade the fault to a write fault for
3482 * that case if the map will support it. If the map does not support
3483 * it the page table entry simply will not be updated.
3484 */
3485 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3486 if (prot & VM_PROT_WRITE)
3487 fault_type |= VM_PROT_WRITE;
3488 }
3489
3490 /*
3491 * If the entry was copy-on-write, we either ...
3492 */
3493 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3494 /*
3495 * If we want to write the page, we may as well handle that
3496 * now since we've got the map locked.
3497 *
3498 * If we don't need to write the page, we just demote the
3499 * permissions allowed.
3500 */
3501
3502 if (fault_type & VM_PROT_WRITE) {
3503 /*
3504 * Make a new object, and place it in the object
3505 * chain. Note that no new references have appeared
3506 * -- one just moved from the map to the new
3507 * object.
3508 */
3509
3510 if (use_read_lock && vm_map_lock_upgrade(map)) {
3511 use_read_lock = 0;
3512 goto RetryLookup;
3513 }
3514 use_read_lock = 0;
3515
3516 vm_map_entry_shadow(entry);
3517 } else {
3518 /*
3519 * We're attempting to read a copy-on-write page --
3520 * don't allow writes.
3521 */
3522
3523 prot &= ~VM_PROT_WRITE;
3524 }
3525 }
3526
3527 /*
3528 * Create an object if necessary.
3529 */
3530 if (entry->object.vm_object == NULL &&
3531 !map->system_map) {
3532 if (use_read_lock && vm_map_lock_upgrade(map)) {
3533 use_read_lock = 0;
3534 goto RetryLookup;
3535 }
3536 use_read_lock = 0;
3537 vm_map_entry_allocate_object(entry);
3538 }
3539
3540 /*
3541 * Return the object/offset from this entry. If the entry was
3542 * copy-on-write or empty, it has been fixed up.
3543 */
3544
3545 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3546 *object = entry->object.vm_object;
3547
3548 /*
3549 * Return whether this is the only map sharing this data. On
3550 * success we return with a read lock held on the map. On failure
3551 * we return with the map unlocked.
3552 */
3553 *out_prot = prot;
3554done:
3555 if (rv == KERN_SUCCESS) {
3556 if (use_read_lock == 0)
3557 vm_map_lock_downgrade(map);
3558 } else if (use_read_lock) {
3559 vm_map_unlock_read(map);
3560 } else {
3561 vm_map_unlock(map);
3562 }
3563 return (rv);
3564}
3565
3566/*
3567 * vm_map_lookup_done:
3568 *
3569 * Releases locks acquired by a vm_map_lookup
3570 * (according to the handle returned by that lookup).
3571 */
3572
3573void
3574vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3575{
3576 /*
3577 * Unlock the main-level map
3578 */
3579 vm_map_unlock_read(map);
3580 if (count)
3581 vm_map_entry_release(count);
3582}
3583
3584#include "opt_ddb.h"
3585#ifdef DDB
3586#include <sys/kernel.h>
3587
3588#include <ddb/ddb.h>
3589
3590/*
3591 * vm_map_print: [ debug ]
3592 */
3593DB_SHOW_COMMAND(map, vm_map_print)
3594{
3595 static int nlines;
3596 /* XXX convert args. */
3597 vm_map_t map = (vm_map_t)addr;
3598 boolean_t full = have_addr;
3599
3600 vm_map_entry_t entry;
3601
3602 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3603 (void *)map,
3604 (void *)map->pmap, map->nentries, map->timestamp);
3605 nlines++;
3606
3607 if (!full && db_indent)
3608 return;
3609
3610 db_indent += 2;
3611 for (entry = map->header.next; entry != &map->header;
3612 entry = entry->next) {
3613 db_iprintf("map entry %p: start=%p, end=%p\n",
3614 (void *)entry, (void *)entry->start, (void *)entry->end);
3615 nlines++;
3616 {
3617 static char *inheritance_name[4] =
3618 {"share", "copy", "none", "donate_copy"};
3619
3620 db_iprintf(" prot=%x/%x/%s",
3621 entry->protection,
3622 entry->max_protection,
3623 inheritance_name[(int)(unsigned char)entry->inheritance]);
3624 if (entry->wired_count != 0)
3625 db_printf(", wired");
3626 }
3627 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3628 /* XXX no %qd in kernel. Truncate entry->offset. */
3629 db_printf(", share=%p, offset=0x%lx\n",
3630 (void *)entry->object.sub_map,
3631 (long)entry->offset);
3632 nlines++;
3633 if ((entry->prev == &map->header) ||
3634 (entry->prev->object.sub_map !=
3635 entry->object.sub_map)) {
3636 db_indent += 2;
3637 vm_map_print((db_expr_t)(intptr_t)
3638 entry->object.sub_map,
3639 full, 0, NULL);
3640 db_indent -= 2;
3641 }
3642 } else {
3643 /* XXX no %qd in kernel. Truncate entry->offset. */
3644 db_printf(", object=%p, offset=0x%lx",
3645 (void *)entry->object.vm_object,
3646 (long)entry->offset);
3647 if (entry->eflags & MAP_ENTRY_COW)
3648 db_printf(", copy (%s)",
3649 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3650 db_printf("\n");
3651 nlines++;
3652
3653 if ((entry->prev == &map->header) ||
3654 (entry->prev->object.vm_object !=
3655 entry->object.vm_object)) {
3656 db_indent += 2;
3657 vm_object_print((db_expr_t)(intptr_t)
3658 entry->object.vm_object,
3659 full, 0, NULL);
3660 nlines += 4;
3661 db_indent -= 2;
3662 }
3663 }
3664 }
3665 db_indent -= 2;
3666 if (db_indent == 0)
3667 nlines = 0;
3668}
3669
3670
3671DB_SHOW_COMMAND(procvm, procvm)
3672{
3673 struct proc *p;
3674
3675 if (have_addr) {
3676 p = (struct proc *) addr;
3677 } else {
3678 p = curproc;
3679 }
3680
3681 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3682 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3683 (void *)vmspace_pmap(p->p_vmspace));
3684
3685 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3686}
3687
3688#endif /* DDB */