kernel - Remove unneeded critical sections from VM code, add pmap asserts
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  *
71  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
72  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
73  */
74
75 /*
76  *      Page fault handling module.
77  */
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vkernel.h>
87 #include <sys/lock.h>
88 #include <sys/sysctl.h>
89
90 #include <cpu/lwbuf.h>
91
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vnode_pager.h>
102 #include <vm/vm_extern.h>
103
104 #include <sys/thread2.h>
105 #include <vm/vm_page2.h>
106
107 struct faultstate {
108         vm_page_t m;
109         vm_object_t object;
110         vm_pindex_t pindex;
111         vm_prot_t prot;
112         vm_page_t first_m;
113         vm_object_t first_object;
114         vm_prot_t first_prot;
115         vm_map_t map;
116         vm_map_entry_t entry;
117         int lookup_still_valid;
118         int didlimit;
119         int hardfault;
120         int fault_flags;
121         int map_generation;
122         boolean_t wired;
123         struct vnode *vp;
124 };
125
126 static int vm_fast_fault = 1;
127 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0, 
128            "Burst fault zero-fill regions");
129 static int debug_cluster = 0;
130 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
131
132 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
133 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
134 #if 0
135 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
136 #endif
137 static int vm_fault_ratelimit(struct vmspace *);
138 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
139 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry,
140                         int prot);
141
142 /*
143  * The caller must hold vm_token.
144  */
145 static __inline void
146 release_page(struct faultstate *fs)
147 {
148         vm_page_deactivate(fs->m);
149         vm_page_wakeup(fs->m);
150         fs->m = NULL;
151 }
152
153 /*
154  * The caller must hold vm_token.
155  */
156 static __inline void
157 unlock_map(struct faultstate *fs)
158 {
159         if (fs->lookup_still_valid && fs->map) {
160                 vm_map_lookup_done(fs->map, fs->entry, 0);
161                 fs->lookup_still_valid = FALSE;
162         }
163 }
164
165 /*
166  * Clean up after a successful call to vm_fault_object() so another call
167  * to vm_fault_object() can be made.
168  *
169  * The caller must hold vm_token.
170  */
171 static void
172 _cleanup_successful_fault(struct faultstate *fs, int relock)
173 {
174         if (fs->object != fs->first_object) {
175                 vm_page_free(fs->first_m);
176                 vm_object_pip_wakeup(fs->object);
177                 fs->first_m = NULL;
178         }
179         fs->object = fs->first_object;
180         if (relock && fs->lookup_still_valid == FALSE) {
181                 if (fs->map)
182                         vm_map_lock_read(fs->map);
183                 fs->lookup_still_valid = TRUE;
184         }
185 }
186
187 /*
188  * The caller must hold vm_token.
189  */
190 static void
191 _unlock_things(struct faultstate *fs, int dealloc)
192 {
193         vm_object_pip_wakeup(fs->first_object);
194         _cleanup_successful_fault(fs, 0);
195         if (dealloc) {
196                 vm_object_deallocate(fs->first_object);
197                 fs->first_object = NULL;
198         }
199         unlock_map(fs); 
200         if (fs->vp != NULL) { 
201                 vput(fs->vp);
202                 fs->vp = NULL;
203         }
204 }
205
206 #define unlock_things(fs) _unlock_things(fs, 0)
207 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
208 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
209
210 /*
211  * TRYPAGER 
212  *
213  * Determine if the pager for the current object *might* contain the page.
214  *
215  * We only need to try the pager if this is not a default object (default
216  * objects are zero-fill and have no real pager), and if we are not taking
217  * a wiring fault or if the FS entry is wired.
218  */
219 #define TRYPAGER(fs)    \
220                 (fs->object->type != OBJT_DEFAULT && \
221                 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
222
223 /*
224  * vm_fault:
225  *
226  * Handle a page fault occuring at the given address, requiring the given
227  * permissions, in the map specified.  If successful, the page is inserted
228  * into the associated physical map.
229  *
230  * NOTE: The given address should be truncated to the proper page address.
231  *
232  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
233  * a standard error specifying why the fault is fatal is returned.
234  *
235  * The map in question must be referenced, and remains so.
236  * The caller may hold no locks.
237  * No other requirements.
238  */
239 int
240 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
241 {
242         int result;
243         vm_pindex_t first_pindex;
244         struct faultstate fs;
245         int growstack;
246
247         mycpu->gd_cnt.v_vm_faults++;
248
249         fs.didlimit = 0;
250         fs.hardfault = 0;
251         fs.fault_flags = fault_flags;
252         growstack = 1;
253
254 RetryFault:
255         /*
256          * Find the vm_map_entry representing the backing store and resolve
257          * the top level object and page index.  This may have the side
258          * effect of executing a copy-on-write on the map entry and/or
259          * creating a shadow object, but will not COW any actual VM pages.
260          *
261          * On success fs.map is left read-locked and various other fields 
262          * are initialized but not otherwise referenced or locked.
263          *
264          * NOTE!  vm_map_lookup will try to upgrade the fault_type to
265          * VM_FAULT_WRITE if the map entry is a virtual page table and also
266          * writable, so we can set the 'A'accessed bit in the virtual page
267          * table entry.
268          */
269         fs.map = map;
270         result = vm_map_lookup(&fs.map, vaddr, fault_type,
271                                &fs.entry, &fs.first_object,
272                                &first_pindex, &fs.first_prot, &fs.wired);
273
274         /*
275          * If the lookup failed or the map protections are incompatible,
276          * the fault generally fails.  However, if the caller is trying
277          * to do a user wiring we have more work to do.
278          */
279         if (result != KERN_SUCCESS) {
280                 if (result != KERN_PROTECTION_FAILURE ||
281                     (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
282                 {
283                         if (result == KERN_INVALID_ADDRESS && growstack &&
284                             map != &kernel_map && curproc != NULL) {
285                                 result = vm_map_growstack(curproc, vaddr);
286                                 if (result != KERN_SUCCESS)
287                                         return (KERN_FAILURE);
288                                 growstack = 0;
289                                 goto RetryFault;
290                         }
291                         return (result);
292                 }
293
294                 /*
295                  * If we are user-wiring a r/w segment, and it is COW, then
296                  * we need to do the COW operation.  Note that we don't
297                  * currently COW RO sections now, because it is NOT desirable
298                  * to COW .text.  We simply keep .text from ever being COW'ed
299                  * and take the heat that one cannot debug wired .text sections.
300                  */
301                 result = vm_map_lookup(&fs.map, vaddr,
302                                        VM_PROT_READ|VM_PROT_WRITE|
303                                         VM_PROT_OVERRIDE_WRITE,
304                                        &fs.entry, &fs.first_object,
305                                        &first_pindex, &fs.first_prot,
306                                        &fs.wired);
307                 if (result != KERN_SUCCESS)
308                         return result;
309
310                 /*
311                  * If we don't COW now, on a user wire, the user will never
312                  * be able to write to the mapping.  If we don't make this
313                  * restriction, the bookkeeping would be nearly impossible.
314                  */
315                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
316                         fs.entry->max_protection &= ~VM_PROT_WRITE;
317         }
318
319         /*
320          * fs.map is read-locked
321          *
322          * Misc checks.  Save the map generation number to detect races.
323          */
324         fs.map_generation = fs.map->timestamp;
325
326         if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
327                 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
328                         panic("vm_fault: fault on nofault entry, addr: %p",
329                               (void *)vaddr);
330                 }
331                 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
332                     vaddr >= fs.entry->start &&
333                     vaddr < fs.entry->start + PAGE_SIZE) {
334                         panic("vm_fault: fault on stack guard, addr: %p",
335                               (void *)vaddr);
336                 }
337         }
338
339         /*
340          * A system map entry may return a NULL object.  No object means
341          * no pager means an unrecoverable kernel fault.
342          */
343         if (fs.first_object == NULL) {
344                 panic("vm_fault: unrecoverable fault at %p in entry %p",
345                         (void *)vaddr, fs.entry);
346         }
347
348         /*
349          * Make a reference to this object to prevent its disposal while we
350          * are messing with it.  Once we have the reference, the map is free
351          * to be diddled.  Since objects reference their shadows (and copies),
352          * they will stay around as well.
353          *
354          * Bump the paging-in-progress count to prevent size changes (e.g.
355          * truncation operations) during I/O.  This must be done after
356          * obtaining the vnode lock in order to avoid possible deadlocks.
357          *
358          * The vm_token is needed to manipulate the vm_object
359          */
360         lwkt_gettoken(&vm_token);
361         vm_object_reference(fs.first_object);
362         fs.vp = vnode_pager_lock(fs.first_object);
363         vm_object_pip_add(fs.first_object, 1);
364         lwkt_reltoken(&vm_token);
365
366         fs.lookup_still_valid = TRUE;
367         fs.first_m = NULL;
368         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
369
370         /*
371          * If the entry is wired we cannot change the page protection.
372          */
373         if (fs.wired)
374                 fault_type = fs.first_prot;
375
376         /*
377          * The page we want is at (first_object, first_pindex), but if the
378          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
379          * page table to figure out the actual pindex.
380          *
381          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
382          * ONLY
383          */
384         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
385                 result = vm_fault_vpagetable(&fs, &first_pindex,
386                                              fs.entry->aux.master_pde,
387                                              fault_type);
388                 if (result == KERN_TRY_AGAIN)
389                         goto RetryFault;
390                 if (result != KERN_SUCCESS)
391                         return (result);
392         }
393
394         /*
395          * Now we have the actual (object, pindex), fault in the page.  If
396          * vm_fault_object() fails it will unlock and deallocate the FS
397          * data.   If it succeeds everything remains locked and fs->object
398          * will have an additional PIP count if it is not equal to
399          * fs->first_object
400          *
401          * vm_fault_object will set fs->prot for the pmap operation.  It is
402          * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
403          * page can be safely written.  However, it will force a read-only
404          * mapping for a read fault if the memory is managed by a virtual
405          * page table.
406          */
407         result = vm_fault_object(&fs, first_pindex, fault_type);
408
409         if (result == KERN_TRY_AGAIN)
410                 goto RetryFault;
411         if (result != KERN_SUCCESS)
412                 return (result);
413
414         /*
415          * On success vm_fault_object() does not unlock or deallocate, and fs.m
416          * will contain a busied page.
417          *
418          * Enter the page into the pmap and do pmap-related adjustments.
419          */
420         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
421
422         /*
423          * Burst in a few more pages if possible.  The fs.map should still
424          * be locked.
425          */
426         if (fault_flags & VM_FAULT_BURST) {
427                 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
428                     fs.wired == 0) {
429                         vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot);
430                 }
431         }
432         unlock_things(&fs);
433
434         vm_page_flag_clear(fs.m, PG_ZERO);
435         vm_page_flag_set(fs.m, PG_REFERENCED);
436
437         /*
438          * If the page is not wired down, then put it where the pageout daemon
439          * can find it.
440          *
441          * We do not really need to get vm_token here but since all the
442          * vm_*() calls have to doing it here improves efficiency.
443          */
444         lwkt_gettoken(&vm_token);
445         if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
446                 if (fs.wired)
447                         vm_page_wire(fs.m);
448                 else
449                         vm_page_unwire(fs.m, 1);
450         } else {
451                 vm_page_activate(fs.m);
452         }
453
454         if (curthread->td_lwp) {
455                 if (fs.hardfault) {
456                         curthread->td_lwp->lwp_ru.ru_majflt++;
457                 } else {
458                         curthread->td_lwp->lwp_ru.ru_minflt++;
459                 }
460         }
461
462         /*
463          * Unlock everything, and return
464          */
465         vm_page_wakeup(fs.m);
466         vm_object_deallocate(fs.first_object);
467         lwkt_reltoken(&vm_token);
468
469         return (KERN_SUCCESS);
470 }
471
472 /*
473  * Fault in the specified virtual address in the current process map, 
474  * returning a held VM page or NULL.  See vm_fault_page() for more 
475  * information.
476  *
477  * No requirements.
478  */
479 vm_page_t
480 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
481 {
482         struct lwp *lp = curthread->td_lwp;
483         vm_page_t m;
484
485         m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 
486                           fault_type, VM_FAULT_NORMAL, errorp);
487         return(m);
488 }
489
490 /*
491  * Fault in the specified virtual address in the specified map, doing all
492  * necessary manipulation of the object store and all necessary I/O.  Return
493  * a held VM page or NULL, and set *errorp.  The related pmap is not
494  * updated.
495  *
496  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
497  * and marked PG_REFERENCED as well.
498  *
499  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
500  * error will be returned.
501  *
502  * No requirements.
503  */
504 vm_page_t
505 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
506               int fault_flags, int *errorp)
507 {
508         vm_pindex_t first_pindex;
509         struct faultstate fs;
510         int result;
511         vm_prot_t orig_fault_type = fault_type;
512
513         mycpu->gd_cnt.v_vm_faults++;
514
515         fs.didlimit = 0;
516         fs.hardfault = 0;
517         fs.fault_flags = fault_flags;
518         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
519
520 RetryFault:
521         /*
522          * Find the vm_map_entry representing the backing store and resolve
523          * the top level object and page index.  This may have the side
524          * effect of executing a copy-on-write on the map entry and/or
525          * creating a shadow object, but will not COW any actual VM pages.
526          *
527          * On success fs.map is left read-locked and various other fields 
528          * are initialized but not otherwise referenced or locked.
529          *
530          * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
531          * if the map entry is a virtual page table and also writable,
532          * so we can set the 'A'accessed bit in the virtual page table entry.
533          */
534         fs.map = map;
535         result = vm_map_lookup(&fs.map, vaddr, fault_type,
536                                &fs.entry, &fs.first_object,
537                                &first_pindex, &fs.first_prot, &fs.wired);
538
539         if (result != KERN_SUCCESS) {
540                 *errorp = result;
541                 return (NULL);
542         }
543
544         /*
545          * fs.map is read-locked
546          *
547          * Misc checks.  Save the map generation number to detect races.
548          */
549         fs.map_generation = fs.map->timestamp;
550
551         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
552                 panic("vm_fault: fault on nofault entry, addr: %lx",
553                     (u_long)vaddr);
554         }
555
556         /*
557          * A system map entry may return a NULL object.  No object means
558          * no pager means an unrecoverable kernel fault.
559          */
560         if (fs.first_object == NULL) {
561                 panic("vm_fault: unrecoverable fault at %p in entry %p",
562                         (void *)vaddr, fs.entry);
563         }
564
565         /*
566          * Make a reference to this object to prevent its disposal while we
567          * are messing with it.  Once we have the reference, the map is free
568          * to be diddled.  Since objects reference their shadows (and copies),
569          * they will stay around as well.
570          *
571          * Bump the paging-in-progress count to prevent size changes (e.g.
572          * truncation operations) during I/O.  This must be done after
573          * obtaining the vnode lock in order to avoid possible deadlocks.
574          *
575          * The vm_token is needed to manipulate the vm_object
576          */
577         lwkt_gettoken(&vm_token);
578         vm_object_reference(fs.first_object);
579         fs.vp = vnode_pager_lock(fs.first_object);
580         vm_object_pip_add(fs.first_object, 1);
581         lwkt_reltoken(&vm_token);
582
583         fs.lookup_still_valid = TRUE;
584         fs.first_m = NULL;
585         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
586
587         /*
588          * If the entry is wired we cannot change the page protection.
589          */
590         if (fs.wired)
591                 fault_type = fs.first_prot;
592
593         /*
594          * The page we want is at (first_object, first_pindex), but if the
595          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
596          * page table to figure out the actual pindex.
597          *
598          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
599          * ONLY
600          */
601         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
602                 result = vm_fault_vpagetable(&fs, &first_pindex,
603                                              fs.entry->aux.master_pde,
604                                              fault_type);
605                 if (result == KERN_TRY_AGAIN)
606                         goto RetryFault;
607                 if (result != KERN_SUCCESS) {
608                         *errorp = result;
609                         return (NULL);
610                 }
611         }
612
613         /*
614          * Now we have the actual (object, pindex), fault in the page.  If
615          * vm_fault_object() fails it will unlock and deallocate the FS
616          * data.   If it succeeds everything remains locked and fs->object
617          * will have an additinal PIP count if it is not equal to
618          * fs->first_object
619          */
620         result = vm_fault_object(&fs, first_pindex, fault_type);
621
622         if (result == KERN_TRY_AGAIN)
623                 goto RetryFault;
624         if (result != KERN_SUCCESS) {
625                 *errorp = result;
626                 return(NULL);
627         }
628
629         if ((orig_fault_type & VM_PROT_WRITE) &&
630             (fs.prot & VM_PROT_WRITE) == 0) {
631                 *errorp = KERN_PROTECTION_FAILURE;
632                 unlock_and_deallocate(&fs);
633                 return(NULL);
634         }
635
636         /*
637          * On success vm_fault_object() does not unlock or deallocate, and fs.m
638          * will contain a busied page.
639          */
640         unlock_things(&fs);
641
642         /*
643          * Return a held page.  We are not doing any pmap manipulation so do
644          * not set PG_MAPPED.  However, adjust the page flags according to
645          * the fault type because the caller may not use a managed pmapping
646          * (so we don't want to lose the fact that the page will be dirtied
647          * if a write fault was specified).
648          */
649         lwkt_gettoken(&vm_token);
650         vm_page_hold(fs.m);
651         vm_page_flag_clear(fs.m, PG_ZERO);
652         if (fault_type & VM_PROT_WRITE)
653                 vm_page_dirty(fs.m);
654
655         /*
656          * Update the pmap.  We really only have to do this if a COW
657          * occured to replace the read-only page with the new page.  For
658          * now just do it unconditionally. XXX
659          */
660         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
661         vm_page_flag_set(fs.m, PG_REFERENCED);
662
663         /*
664          * Unbusy the page by activating it.  It remains held and will not
665          * be reclaimed.
666          */
667         vm_page_activate(fs.m);
668
669         if (curthread->td_lwp) {
670                 if (fs.hardfault) {
671                         curthread->td_lwp->lwp_ru.ru_majflt++;
672                 } else {
673                         curthread->td_lwp->lwp_ru.ru_minflt++;
674                 }
675         }
676
677         /*
678          * Unlock everything, and return the held page.
679          */
680         vm_page_wakeup(fs.m);
681         vm_object_deallocate(fs.first_object);
682         lwkt_reltoken(&vm_token);
683
684         *errorp = 0;
685         return(fs.m);
686 }
687
688 /*
689  * Fault in the specified (object,offset), dirty the returned page as
690  * needed.  If the requested fault_type cannot be done NULL and an
691  * error is returned.
692  *
693  * A held (but not busied) page is returned.
694  *
695  * No requirements.
696  */
697 vm_page_t
698 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
699                      vm_prot_t fault_type, int fault_flags, int *errorp)
700 {
701         int result;
702         vm_pindex_t first_pindex;
703         struct faultstate fs;
704         struct vm_map_entry entry;
705
706         bzero(&entry, sizeof(entry));
707         entry.object.vm_object = object;
708         entry.maptype = VM_MAPTYPE_NORMAL;
709         entry.protection = entry.max_protection = fault_type;
710
711         fs.didlimit = 0;
712         fs.hardfault = 0;
713         fs.fault_flags = fault_flags;
714         fs.map = NULL;
715         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
716
717 RetryFault:
718         
719         fs.first_object = object;
720         first_pindex = OFF_TO_IDX(offset);
721         fs.entry = &entry;
722         fs.first_prot = fault_type;
723         fs.wired = 0;
724         /*fs.map_generation = 0; unused */
725
726         /*
727          * Make a reference to this object to prevent its disposal while we
728          * are messing with it.  Once we have the reference, the map is free
729          * to be diddled.  Since objects reference their shadows (and copies),
730          * they will stay around as well.
731          *
732          * Bump the paging-in-progress count to prevent size changes (e.g.
733          * truncation operations) during I/O.  This must be done after
734          * obtaining the vnode lock in order to avoid possible deadlocks.
735          */
736         lwkt_gettoken(&vm_token);
737         vm_object_reference(fs.first_object);
738         fs.vp = vnode_pager_lock(fs.first_object);
739         vm_object_pip_add(fs.first_object, 1);
740         lwkt_reltoken(&vm_token);
741
742         fs.lookup_still_valid = TRUE;
743         fs.first_m = NULL;
744         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
745
746 #if 0
747         /* XXX future - ability to operate on VM object using vpagetable */
748         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
749                 result = vm_fault_vpagetable(&fs, &first_pindex,
750                                              fs.entry->aux.master_pde,
751                                              fault_type);
752                 if (result == KERN_TRY_AGAIN)
753                         goto RetryFault;
754                 if (result != KERN_SUCCESS) {
755                         *errorp = result;
756                         return (NULL);
757                 }
758         }
759 #endif
760
761         /*
762          * Now we have the actual (object, pindex), fault in the page.  If
763          * vm_fault_object() fails it will unlock and deallocate the FS
764          * data.   If it succeeds everything remains locked and fs->object
765          * will have an additinal PIP count if it is not equal to
766          * fs->first_object
767          */
768         result = vm_fault_object(&fs, first_pindex, fault_type);
769
770         if (result == KERN_TRY_AGAIN)
771                 goto RetryFault;
772         if (result != KERN_SUCCESS) {
773                 *errorp = result;
774                 return(NULL);
775         }
776
777         if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
778                 *errorp = KERN_PROTECTION_FAILURE;
779                 unlock_and_deallocate(&fs);
780                 return(NULL);
781         }
782
783         /*
784          * On success vm_fault_object() does not unlock or deallocate, and fs.m
785          * will contain a busied page.
786          */
787         unlock_things(&fs);
788
789         /*
790          * Return a held page.  We are not doing any pmap manipulation so do
791          * not set PG_MAPPED.  However, adjust the page flags according to
792          * the fault type because the caller may not use a managed pmapping
793          * (so we don't want to lose the fact that the page will be dirtied
794          * if a write fault was specified).
795          */
796         lwkt_gettoken(&vm_token);
797         vm_page_hold(fs.m);
798         vm_page_flag_clear(fs.m, PG_ZERO);
799         if (fault_type & VM_PROT_WRITE)
800                 vm_page_dirty(fs.m);
801
802         if (fault_flags & VM_FAULT_DIRTY)
803                 vm_page_dirty(fs.m);
804         if (fault_flags & VM_FAULT_UNSWAP)
805                 swap_pager_unswapped(fs.m);
806
807         /*
808          * Indicate that the page was accessed.
809          */
810         vm_page_flag_set(fs.m, PG_REFERENCED);
811
812         /*
813          * Unbusy the page by activating it.  It remains held and will not
814          * be reclaimed.
815          */
816         vm_page_activate(fs.m);
817
818         if (curthread->td_lwp) {
819                 if (fs.hardfault) {
820                         mycpu->gd_cnt.v_vm_faults++;
821                         curthread->td_lwp->lwp_ru.ru_majflt++;
822                 } else {
823                         curthread->td_lwp->lwp_ru.ru_minflt++;
824                 }
825         }
826
827         /*
828          * Unlock everything, and return the held page.
829          */
830         vm_page_wakeup(fs.m);
831         vm_object_deallocate(fs.first_object);
832         lwkt_reltoken(&vm_token);
833
834         *errorp = 0;
835         return(fs.m);
836 }
837
838 /*
839  * Translate the virtual page number (first_pindex) that is relative
840  * to the address space into a logical page number that is relative to the
841  * backing object.  Use the virtual page table pointed to by (vpte).
842  *
843  * This implements an N-level page table.  Any level can terminate the
844  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
845  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
846  *
847  * No requirements (vm_token need not be held).
848  */
849 static
850 int
851 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
852                     vpte_t vpte, int fault_type)
853 {
854         struct lwbuf *lwb;
855         int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
856         int result = KERN_SUCCESS;
857         vpte_t *ptep;
858
859         for (;;) {
860                 /*
861                  * We cannot proceed if the vpte is not valid, not readable
862                  * for a read fault, or not writable for a write fault.
863                  */
864                 if ((vpte & VPTE_V) == 0) {
865                         unlock_and_deallocate(fs);
866                         return (KERN_FAILURE);
867                 }
868                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
869                         unlock_and_deallocate(fs);
870                         return (KERN_FAILURE);
871                 }
872                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
873                         unlock_and_deallocate(fs);
874                         return (KERN_FAILURE);
875                 }
876                 if ((vpte & VPTE_PS) || vshift == 0)
877                         break;
878                 KKASSERT(vshift >= VPTE_PAGE_BITS);
879
880                 /*
881                  * Get the page table page.  Nominally we only read the page
882                  * table, but since we are actively setting VPTE_M and VPTE_A,
883                  * tell vm_fault_object() that we are writing it. 
884                  *
885                  * There is currently no real need to optimize this.
886                  */
887                 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
888                                          VM_PROT_READ|VM_PROT_WRITE);
889                 if (result != KERN_SUCCESS)
890                         return (result);
891
892                 /*
893                  * Process the returned fs.m and look up the page table
894                  * entry in the page table page.
895                  */
896                 vshift -= VPTE_PAGE_BITS;
897                 lwb = lwbuf_alloc(fs->m);
898                 ptep = ((vpte_t *)lwbuf_kva(lwb) +
899                         ((*pindex >> vshift) & VPTE_PAGE_MASK));
900                 vpte = *ptep;
901
902                 /*
903                  * Page table write-back.  If the vpte is valid for the
904                  * requested operation, do a write-back to the page table.
905                  *
906                  * XXX VPTE_M is not set properly for page directory pages.
907                  * It doesn't get set in the page directory if the page table
908                  * is modified during a read access.
909                  */
910                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
911                     (vpte & VPTE_W)) {
912                         if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
913                                 atomic_set_long(ptep, VPTE_M | VPTE_A);
914                                 vm_page_dirty(fs->m);
915                         }
916                 }
917                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
918                     (vpte & VPTE_R)) {
919                         if ((vpte & VPTE_A) == 0) {
920                                 atomic_set_long(ptep, VPTE_A);
921                                 vm_page_dirty(fs->m);
922                         }
923                 }
924                 lwbuf_free(lwb);
925                 vm_page_flag_set(fs->m, PG_REFERENCED);
926                 vm_page_activate(fs->m);
927                 vm_page_wakeup(fs->m);
928                 cleanup_successful_fault(fs);
929         }
930         /*
931          * Combine remaining address bits with the vpte.
932          */
933         /* JG how many bits from each? */
934         *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
935                   (*pindex & ((1L << vshift) - 1));
936         return (KERN_SUCCESS);
937 }
938
939
940 /*
941  * This is the core of the vm_fault code.
942  *
943  * Do all operations required to fault-in (fs.first_object, pindex).  Run
944  * through the shadow chain as necessary and do required COW or virtual
945  * copy operations.  The caller has already fully resolved the vm_map_entry
946  * and, if appropriate, has created a copy-on-write layer.  All we need to
947  * do is iterate the object chain.
948  *
949  * On failure (fs) is unlocked and deallocated and the caller may return or
950  * retry depending on the failure code.  On success (fs) is NOT unlocked or
951  * deallocated, fs.m will contained a resolved, busied page, and fs.object
952  * will have an additional PIP count if it is not equal to fs.first_object.
953  *
954  * No requirements.
955  */
956 static
957 int
958 vm_fault_object(struct faultstate *fs,
959                 vm_pindex_t first_pindex, vm_prot_t fault_type)
960 {
961         vm_object_t next_object;
962         vm_pindex_t pindex;
963
964         fs->prot = fs->first_prot;
965         fs->object = fs->first_object;
966         pindex = first_pindex;
967
968         /* 
969          * If a read fault occurs we try to make the page writable if
970          * possible.  There are three cases where we cannot make the
971          * page mapping writable:
972          *
973          * (1) The mapping is read-only or the VM object is read-only,
974          *     fs->prot above will simply not have VM_PROT_WRITE set.
975          *
976          * (2) If the mapping is a virtual page table we need to be able
977          *     to detect writes so we can set VPTE_M in the virtual page
978          *     table.
979          *
980          * (3) If the VM page is read-only or copy-on-write, upgrading would
981          *     just result in an unnecessary COW fault.
982          *
983          * VM_PROT_VPAGED is set if faulting via a virtual page table and
984          * causes adjustments to the 'M'odify bit to also turn off write
985          * access to force a re-fault.
986          */
987         if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
988                 if ((fault_type & VM_PROT_WRITE) == 0)
989                         fs->prot &= ~VM_PROT_WRITE;
990         }
991
992         lwkt_gettoken(&vm_token);
993
994         for (;;) {
995                 /*
996                  * If the object is dead, we stop here
997                  */
998                 if (fs->object->flags & OBJ_DEAD) {
999                         unlock_and_deallocate(fs);
1000                         lwkt_reltoken(&vm_token);
1001                         return (KERN_PROTECTION_FAILURE);
1002                 }
1003
1004                 /*
1005                  * See if the page is resident.
1006                  */
1007                 fs->m = vm_page_lookup(fs->object, pindex);
1008                 if (fs->m != NULL) {
1009                         int queue;
1010                         /*
1011                          * Wait/Retry if the page is busy.  We have to do this
1012                          * if the page is busy via either PG_BUSY or 
1013                          * vm_page_t->busy because the vm_pager may be using
1014                          * vm_page_t->busy for pageouts ( and even pageins if
1015                          * it is the vnode pager ), and we could end up trying
1016                          * to pagein and pageout the same page simultaneously.
1017                          *
1018                          * We can theoretically allow the busy case on a read
1019                          * fault if the page is marked valid, but since such
1020                          * pages are typically already pmap'd, putting that
1021                          * special case in might be more effort then it is 
1022                          * worth.  We cannot under any circumstances mess
1023                          * around with a vm_page_t->busy page except, perhaps,
1024                          * to pmap it.
1025                          */
1026                         if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
1027                                 unlock_things(fs);
1028                                 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1029                                 mycpu->gd_cnt.v_intrans++;
1030                                 vm_object_deallocate(fs->first_object);
1031                                 fs->first_object = NULL;
1032                                 lwkt_reltoken(&vm_token);
1033                                 return (KERN_TRY_AGAIN);
1034                         }
1035
1036                         /*
1037                          * If reactivating a page from PQ_CACHE we may have
1038                          * to rate-limit.
1039                          */
1040                         queue = fs->m->queue;
1041                         vm_page_unqueue_nowakeup(fs->m);
1042
1043                         if ((queue - fs->m->pc) == PQ_CACHE && 
1044                             vm_page_count_severe()) {
1045                                 vm_page_activate(fs->m);
1046                                 unlock_and_deallocate(fs);
1047                                 vm_waitpfault();
1048                                 lwkt_reltoken(&vm_token);
1049                                 return (KERN_TRY_AGAIN);
1050                         }
1051
1052                         /*
1053                          * Mark page busy for other processes, and the 
1054                          * pagedaemon.  If it still isn't completely valid
1055                          * (readable), or if a read-ahead-mark is set on
1056                          * the VM page, jump to readrest, else we found the
1057                          * page and can return.
1058                          *
1059                          * We can release the spl once we have marked the
1060                          * page busy.
1061                          */
1062                         vm_page_busy(fs->m);
1063
1064                         if (fs->m->object != &kernel_object) {
1065                                 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1066                                     VM_PAGE_BITS_ALL) {
1067                                         goto readrest;
1068                                 }
1069                                 if (fs->m->flags & PG_RAM) {
1070                                         if (debug_cluster)
1071                                                 kprintf("R");
1072                                         vm_page_flag_clear(fs->m, PG_RAM);
1073                                         goto readrest;
1074                                 }
1075                         }
1076                         break; /* break to PAGE HAS BEEN FOUND */
1077                 }
1078
1079                 /*
1080                  * Page is not resident, If this is the search termination
1081                  * or the pager might contain the page, allocate a new page.
1082                  */
1083                 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1084                         /*
1085                          * If the page is beyond the object size we fail
1086                          */
1087                         if (pindex >= fs->object->size) {
1088                                 lwkt_reltoken(&vm_token);
1089                                 unlock_and_deallocate(fs);
1090                                 return (KERN_PROTECTION_FAILURE);
1091                         }
1092
1093                         /*
1094                          * Ratelimit.
1095                          */
1096                         if (fs->didlimit == 0 && curproc != NULL) {
1097                                 int limticks;
1098
1099                                 limticks = vm_fault_ratelimit(curproc->p_vmspace);
1100                                 if (limticks) {
1101                                         lwkt_reltoken(&vm_token);
1102                                         unlock_and_deallocate(fs);
1103                                         tsleep(curproc, 0, "vmrate", limticks);
1104                                         fs->didlimit = 1;
1105                                         return (KERN_TRY_AGAIN);
1106                                 }
1107                         }
1108
1109                         /*
1110                          * Allocate a new page for this object/offset pair.
1111                          */
1112                         fs->m = NULL;
1113                         if (!vm_page_count_severe()) {
1114                                 fs->m = vm_page_alloc(fs->object, pindex,
1115                                     (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1116                         }
1117                         if (fs->m == NULL) {
1118                                 lwkt_reltoken(&vm_token);
1119                                 unlock_and_deallocate(fs);
1120                                 vm_waitpfault();
1121                                 return (KERN_TRY_AGAIN);
1122                         }
1123                 }
1124
1125 readrest:
1126                 /*
1127                  * We have found an invalid or partially valid page, a
1128                  * page with a read-ahead mark which might be partially or
1129                  * fully valid (and maybe dirty too), or we have allocated
1130                  * a new page.
1131                  *
1132                  * Attempt to fault-in the page if there is a chance that the
1133                  * pager has it, and potentially fault in additional pages
1134                  * at the same time.
1135                  *
1136                  * We are NOT in splvm here and if TRYPAGER is true then
1137                  * fs.m will be non-NULL and will be PG_BUSY for us.
1138                  */
1139                 if (TRYPAGER(fs)) {
1140                         int rv;
1141                         int seqaccess;
1142                         u_char behavior = vm_map_entry_behavior(fs->entry);
1143
1144                         if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1145                                 seqaccess = 0;
1146                         else
1147                                 seqaccess = -1;
1148
1149                         /*
1150                          * If sequential access is detected then attempt
1151                          * to deactivate/cache pages behind the scan to
1152                          * prevent resource hogging.
1153                          *
1154                          * Use of PG_RAM to detect sequential access
1155                          * also simulates multi-zone sequential access
1156                          * detection for free.
1157                          *
1158                          * NOTE: Partially valid dirty pages cannot be
1159                          *       deactivated without causing NFS picemeal
1160                          *       writes to barf.
1161                          */
1162                         if ((fs->first_object->type != OBJT_DEVICE) &&
1163                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1164                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1165                                  (fs->m->flags & PG_RAM)))
1166                         ) {
1167                                 vm_pindex_t scan_pindex;
1168                                 int scan_count = 16;
1169
1170                                 if (first_pindex < 16) {
1171                                         scan_pindex = 0;
1172                                         scan_count = 0;
1173                                 } else {
1174                                         scan_pindex = first_pindex - 16;
1175                                         if (scan_pindex < 16)
1176                                                 scan_count = scan_pindex;
1177                                         else
1178                                                 scan_count = 16;
1179                                 }
1180
1181                                 while (scan_count) {
1182                                         vm_page_t mt;
1183
1184                                         mt = vm_page_lookup(fs->first_object,
1185                                                             scan_pindex);
1186                                         if (mt == NULL ||
1187                                             (mt->valid != VM_PAGE_BITS_ALL)) {
1188                                                 break;
1189                                         }
1190                                         if (mt->busy ||
1191                                             (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1192                                             mt->hold_count ||
1193                                             mt->wire_count)  {
1194                                                 goto skip;
1195                                         }
1196                                         if (mt->dirty == 0)
1197                                                 vm_page_test_dirty(mt);
1198                                         if (mt->dirty) {
1199                                                 vm_page_busy(mt);
1200                                                 vm_page_protect(mt,
1201                                                                 VM_PROT_NONE);
1202                                                 vm_page_deactivate(mt);
1203                                                 vm_page_wakeup(mt);
1204                                         } else {
1205                                                 vm_page_cache(mt);
1206                                         }
1207 skip:
1208                                         --scan_count;
1209                                         --scan_pindex;
1210                                 }
1211
1212                                 seqaccess = 1;
1213                         }
1214
1215                         /*
1216                          * Avoid deadlocking against the map when doing I/O.
1217                          * fs.object and the page is PG_BUSY'd.
1218                          */
1219                         unlock_map(fs);
1220
1221                         /*
1222                          * Acquire the page data.  We still hold a ref on
1223                          * fs.object and the page has been PG_BUSY's.
1224                          *
1225                          * The pager may replace the page (for example, in
1226                          * order to enter a fictitious page into the
1227                          * object).  If it does so it is responsible for
1228                          * cleaning up the passed page and properly setting
1229                          * the new page PG_BUSY.
1230                          *
1231                          * If we got here through a PG_RAM read-ahead
1232                          * mark the page may be partially dirty and thus
1233                          * not freeable.  Don't bother checking to see
1234                          * if the pager has the page because we can't free
1235                          * it anyway.  We have to depend on the get_page
1236                          * operation filling in any gaps whether there is
1237                          * backing store or not.
1238                          */
1239                         rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1240
1241                         if (rv == VM_PAGER_OK) {
1242                                 /*
1243                                  * Relookup in case pager changed page. Pager
1244                                  * is responsible for disposition of old page
1245                                  * if moved.
1246                                  *
1247                                  * XXX other code segments do relookups too.
1248                                  * It's a bad abstraction that needs to be
1249                                  * fixed/removed.
1250                                  */
1251                                 fs->m = vm_page_lookup(fs->object, pindex);
1252                                 if (fs->m == NULL) {
1253                                         lwkt_reltoken(&vm_token);
1254                                         unlock_and_deallocate(fs);
1255                                         return (KERN_TRY_AGAIN);
1256                                 }
1257
1258                                 ++fs->hardfault;
1259                                 break; /* break to PAGE HAS BEEN FOUND */
1260                         }
1261
1262                         /*
1263                          * Remove the bogus page (which does not exist at this
1264                          * object/offset); before doing so, we must get back
1265                          * our object lock to preserve our invariant.
1266                          *
1267                          * Also wake up any other process that may want to bring
1268                          * in this page.
1269                          *
1270                          * If this is the top-level object, we must leave the
1271                          * busy page to prevent another process from rushing
1272                          * past us, and inserting the page in that object at
1273                          * the same time that we are.
1274                          */
1275                         if (rv == VM_PAGER_ERROR) {
1276                                 if (curproc)
1277                                         kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1278                                 else
1279                                         kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1280                         }
1281
1282                         /*
1283                          * Data outside the range of the pager or an I/O error
1284                          *
1285                          * The page may have been wired during the pagein,
1286                          * e.g. by the buffer cache, and cannot simply be
1287                          * freed.  Call vnode_pager_freepage() to deal with it.
1288                          */
1289                         /*
1290                          * XXX - the check for kernel_map is a kludge to work
1291                          * around having the machine panic on a kernel space
1292                          * fault w/ I/O error.
1293                          */
1294                         if (((fs->map != &kernel_map) &&
1295                             (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1296                                 vnode_pager_freepage(fs->m);
1297                                 lwkt_reltoken(&vm_token);
1298                                 fs->m = NULL;
1299                                 unlock_and_deallocate(fs);
1300                                 if (rv == VM_PAGER_ERROR)
1301                                         return (KERN_FAILURE);
1302                                 else
1303                                         return (KERN_PROTECTION_FAILURE);
1304                                 /* NOT REACHED */
1305                         }
1306                         if (fs->object != fs->first_object) {
1307                                 vnode_pager_freepage(fs->m);
1308                                 fs->m = NULL;
1309                                 /*
1310                                  * XXX - we cannot just fall out at this
1311                                  * point, m has been freed and is invalid!
1312                                  */
1313                         }
1314                 }
1315
1316                 /*
1317                  * We get here if the object has a default pager (or unwiring) 
1318                  * or the pager doesn't have the page.
1319                  */
1320                 if (fs->object == fs->first_object)
1321                         fs->first_m = fs->m;
1322
1323                 /*
1324                  * Move on to the next object.  Lock the next object before
1325                  * unlocking the current one.
1326                  */
1327                 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1328                 next_object = fs->object->backing_object;
1329                 if (next_object == NULL) {
1330                         /*
1331                          * If there's no object left, fill the page in the top
1332                          * object with zeros.
1333                          */
1334                         if (fs->object != fs->first_object) {
1335                                 vm_object_pip_wakeup(fs->object);
1336
1337                                 fs->object = fs->first_object;
1338                                 pindex = first_pindex;
1339                                 fs->m = fs->first_m;
1340                         }
1341                         fs->first_m = NULL;
1342
1343                         /*
1344                          * Zero the page if necessary and mark it valid.
1345                          */
1346                         if ((fs->m->flags & PG_ZERO) == 0) {
1347                                 vm_page_zero_fill(fs->m);
1348                         } else {
1349 #ifdef PMAP_DEBUG
1350                                 pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1351 #endif
1352                                 vm_page_flag_clear(fs->m, PG_ZERO);
1353                                 mycpu->gd_cnt.v_ozfod++;
1354                         }
1355                         mycpu->gd_cnt.v_zfod++;
1356                         fs->m->valid = VM_PAGE_BITS_ALL;
1357                         break;  /* break to PAGE HAS BEEN FOUND */
1358                 }
1359                 if (fs->object != fs->first_object) {
1360                         vm_object_pip_wakeup(fs->object);
1361                 }
1362                 KASSERT(fs->object != next_object,
1363                         ("object loop %p", next_object));
1364                 fs->object = next_object;
1365                 vm_object_pip_add(fs->object, 1);
1366         }
1367
1368         /*
1369          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1370          * is held.]
1371          *
1372          * vm_token is still held
1373          *
1374          * If the page is being written, but isn't already owned by the
1375          * top-level object, we have to copy it into a new page owned by the
1376          * top-level object.
1377          */
1378         KASSERT((fs->m->flags & PG_BUSY) != 0,
1379                 ("vm_fault: not busy after main loop"));
1380
1381         if (fs->object != fs->first_object) {
1382                 /*
1383                  * We only really need to copy if we want to write it.
1384                  */
1385                 if (fault_type & VM_PROT_WRITE) {
1386                         /*
1387                          * This allows pages to be virtually copied from a 
1388                          * backing_object into the first_object, where the 
1389                          * backing object has no other refs to it, and cannot
1390                          * gain any more refs.  Instead of a bcopy, we just 
1391                          * move the page from the backing object to the 
1392                          * first object.  Note that we must mark the page 
1393                          * dirty in the first object so that it will go out 
1394                          * to swap when needed.
1395                          */
1396                         if (
1397                                 /*
1398                                  * Map, if present, has not changed
1399                                  */
1400                                 (fs->map == NULL ||
1401                                 fs->map_generation == fs->map->timestamp) &&
1402                                 /*
1403                                  * Only one shadow object
1404                                  */
1405                                 (fs->object->shadow_count == 1) &&
1406                                 /*
1407                                  * No COW refs, except us
1408                                  */
1409                                 (fs->object->ref_count == 1) &&
1410                                 /*
1411                                  * No one else can look this object up
1412                                  */
1413                                 (fs->object->handle == NULL) &&
1414                                 /*
1415                                  * No other ways to look the object up
1416                                  */
1417                                 ((fs->object->type == OBJT_DEFAULT) ||
1418                                  (fs->object->type == OBJT_SWAP)) &&
1419                                 /*
1420                                  * We don't chase down the shadow chain
1421                                  */
1422                                 (fs->object == fs->first_object->backing_object) &&
1423
1424                                 /*
1425                                  * grab the lock if we need to
1426                                  */
1427                                 (fs->lookup_still_valid ||
1428                                  fs->map == NULL ||
1429                                  lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1430                             ) {
1431                                 
1432                                 fs->lookup_still_valid = 1;
1433                                 /*
1434                                  * get rid of the unnecessary page
1435                                  */
1436                                 vm_page_protect(fs->first_m, VM_PROT_NONE);
1437                                 vm_page_free(fs->first_m);
1438                                 fs->first_m = NULL;
1439
1440                                 /*
1441                                  * grab the page and put it into the 
1442                                  * process'es object.  The page is 
1443                                  * automatically made dirty.
1444                                  */
1445                                 vm_page_rename(fs->m, fs->first_object, first_pindex);
1446                                 fs->first_m = fs->m;
1447                                 vm_page_busy(fs->first_m);
1448                                 fs->m = NULL;
1449                                 mycpu->gd_cnt.v_cow_optim++;
1450                         } else {
1451                                 /*
1452                                  * Oh, well, lets copy it.
1453                                  */
1454                                 vm_page_copy(fs->m, fs->first_m);
1455                                 vm_page_event(fs->m, VMEVENT_COW);
1456                         }
1457
1458                         if (fs->m) {
1459                                 /*
1460                                  * We no longer need the old page or object.
1461                                  */
1462                                 release_page(fs);
1463                         }
1464
1465                         /*
1466                          * fs->object != fs->first_object due to above 
1467                          * conditional
1468                          */
1469                         vm_object_pip_wakeup(fs->object);
1470
1471                         /*
1472                          * Only use the new page below...
1473                          */
1474
1475                         mycpu->gd_cnt.v_cow_faults++;
1476                         fs->m = fs->first_m;
1477                         fs->object = fs->first_object;
1478                         pindex = first_pindex;
1479                 } else {
1480                         /*
1481                          * If it wasn't a write fault avoid having to copy
1482                          * the page by mapping it read-only.
1483                          */
1484                         fs->prot &= ~VM_PROT_WRITE;
1485                 }
1486         }
1487
1488         /*
1489          * We may have had to unlock a map to do I/O.  If we did then
1490          * lookup_still_valid will be FALSE.  If the map generation count
1491          * also changed then all sorts of things could have happened while
1492          * we were doing the I/O and we need to retry.
1493          */
1494
1495         if (!fs->lookup_still_valid &&
1496             fs->map != NULL &&
1497             (fs->map->timestamp != fs->map_generation)) {
1498                 release_page(fs);
1499                 lwkt_reltoken(&vm_token);
1500                 unlock_and_deallocate(fs);
1501                 return (KERN_TRY_AGAIN);
1502         }
1503
1504         /*
1505          * If the fault is a write, we know that this page is being
1506          * written NOW so dirty it explicitly to save on pmap_is_modified()
1507          * calls later.
1508          *
1509          * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1510          * if the page is already dirty to prevent data written with
1511          * the expectation of being synced from not being synced.
1512          * Likewise if this entry does not request NOSYNC then make
1513          * sure the page isn't marked NOSYNC.  Applications sharing
1514          * data should use the same flags to avoid ping ponging.
1515          *
1516          * Also tell the backing pager, if any, that it should remove
1517          * any swap backing since the page is now dirty.
1518          */
1519         if (fs->prot & VM_PROT_WRITE) {
1520                 vm_object_set_writeable_dirty(fs->m->object);
1521                 vm_set_nosync(fs->m, fs->entry);
1522                 if (fs->fault_flags & VM_FAULT_DIRTY) {
1523                         vm_page_dirty(fs->m);
1524                         swap_pager_unswapped(fs->m);
1525                 }
1526         }
1527
1528         lwkt_reltoken(&vm_token);
1529
1530         /*
1531          * Page had better still be busy.  We are still locked up and 
1532          * fs->object will have another PIP reference if it is not equal
1533          * to fs->first_object.
1534          */
1535         KASSERT(fs->m->flags & PG_BUSY,
1536                 ("vm_fault: page %p not busy!", fs->m));
1537
1538         /*
1539          * Sanity check: page must be completely valid or it is not fit to
1540          * map into user space.  vm_pager_get_pages() ensures this.
1541          */
1542         if (fs->m->valid != VM_PAGE_BITS_ALL) {
1543                 vm_page_zero_invalid(fs->m, TRUE);
1544                 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1545         }
1546
1547         return (KERN_SUCCESS);
1548 }
1549
1550 /*
1551  * Wire down a range of virtual addresses in a map.  The entry in question
1552  * should be marked in-transition and the map must be locked.  We must
1553  * release the map temporarily while faulting-in the page to avoid a
1554  * deadlock.  Note that the entry may be clipped while we are blocked but
1555  * will never be freed.
1556  *
1557  * No requirements.
1558  */
1559 int
1560 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1561 {
1562         boolean_t fictitious;
1563         vm_offset_t start;
1564         vm_offset_t end;
1565         vm_offset_t va;
1566         vm_paddr_t pa;
1567         pmap_t pmap;
1568         int rv;
1569
1570         pmap = vm_map_pmap(map);
1571         start = entry->start;
1572         end = entry->end;
1573         fictitious = entry->object.vm_object &&
1574                         (entry->object.vm_object->type == OBJT_DEVICE);
1575         if (entry->eflags & MAP_ENTRY_KSTACK)
1576                 start += PAGE_SIZE;
1577         lwkt_gettoken(&vm_token);
1578         vm_map_unlock(map);
1579         map->timestamp++;
1580
1581         /*
1582          * We simulate a fault to get the page and enter it in the physical
1583          * map.
1584          */
1585         for (va = start; va < end; va += PAGE_SIZE) {
1586                 if (user_wire) {
1587                         rv = vm_fault(map, va, VM_PROT_READ, 
1588                                         VM_FAULT_USER_WIRE);
1589                 } else {
1590                         rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1591                                         VM_FAULT_CHANGE_WIRING);
1592                 }
1593                 if (rv) {
1594                         while (va > start) {
1595                                 va -= PAGE_SIZE;
1596                                 if ((pa = pmap_extract(pmap, va)) == 0)
1597                                         continue;
1598                                 pmap_change_wiring(pmap, va, FALSE);
1599                                 if (!fictitious)
1600                                         vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1601                         }
1602                         vm_map_lock(map);
1603                         lwkt_reltoken(&vm_token);
1604                         return (rv);
1605                 }
1606         }
1607         vm_map_lock(map);
1608         lwkt_reltoken(&vm_token);
1609         return (KERN_SUCCESS);
1610 }
1611
1612 /*
1613  * Unwire a range of virtual addresses in a map.  The map should be
1614  * locked.
1615  */
1616 void
1617 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1618 {
1619         boolean_t fictitious;
1620         vm_offset_t start;
1621         vm_offset_t end;
1622         vm_offset_t va;
1623         vm_paddr_t pa;
1624         pmap_t pmap;
1625
1626         pmap = vm_map_pmap(map);
1627         start = entry->start;
1628         end = entry->end;
1629         fictitious = entry->object.vm_object &&
1630                         (entry->object.vm_object->type == OBJT_DEVICE);
1631         if (entry->eflags & MAP_ENTRY_KSTACK)
1632                 start += PAGE_SIZE;
1633
1634         /*
1635          * Since the pages are wired down, we must be able to get their
1636          * mappings from the physical map system.
1637          */
1638         lwkt_gettoken(&vm_token);
1639         for (va = start; va < end; va += PAGE_SIZE) {
1640                 pa = pmap_extract(pmap, va);
1641                 if (pa != 0) {
1642                         pmap_change_wiring(pmap, va, FALSE);
1643                         if (!fictitious)
1644                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1645                 }
1646         }
1647         lwkt_reltoken(&vm_token);
1648 }
1649
1650 /*
1651  * Reduce the rate at which memory is allocated to a process based
1652  * on the perceived load on the VM system. As the load increases
1653  * the allocation burst rate goes down and the delay increases. 
1654  *
1655  * Rate limiting does not apply when faulting active or inactive
1656  * pages.  When faulting 'cache' pages, rate limiting only applies
1657  * if the system currently has a severe page deficit.
1658  *
1659  * XXX vm_pagesupply should be increased when a page is freed.
1660  *
1661  * We sleep up to 1/10 of a second.
1662  */
1663 static int
1664 vm_fault_ratelimit(struct vmspace *vmspace)
1665 {
1666         if (vm_load_enable == 0)
1667                 return(0);
1668         if (vmspace->vm_pagesupply > 0) {
1669                 --vmspace->vm_pagesupply;       /* SMP race ok */
1670                 return(0);
1671         }
1672 #ifdef INVARIANTS
1673         if (vm_load_debug) {
1674                 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1675                         vm_load, 
1676                         (1000 - vm_load ) / 10, vm_load * hz / 10000,
1677                         curproc->p_pid, curproc->p_comm);
1678         }
1679 #endif
1680         vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1681         return(vm_load * hz / 10000);
1682 }
1683
1684 /*
1685  * Copy all of the pages from a wired-down map entry to another.
1686  *
1687  * The source and destination maps must be locked for write.
1688  * The source map entry must be wired down (or be a sharing map
1689  * entry corresponding to a main map entry that is wired down).
1690  *
1691  * No other requirements.
1692  */
1693 void
1694 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1695                     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1696 {
1697         vm_object_t dst_object;
1698         vm_object_t src_object;
1699         vm_ooffset_t dst_offset;
1700         vm_ooffset_t src_offset;
1701         vm_prot_t prot;
1702         vm_offset_t vaddr;
1703         vm_page_t dst_m;
1704         vm_page_t src_m;
1705
1706 #ifdef  lint
1707         src_map++;
1708 #endif  /* lint */
1709
1710         src_object = src_entry->object.vm_object;
1711         src_offset = src_entry->offset;
1712
1713         /*
1714          * Create the top-level object for the destination entry. (Doesn't
1715          * actually shadow anything - we copy the pages directly.)
1716          */
1717         vm_map_entry_allocate_object(dst_entry);
1718         dst_object = dst_entry->object.vm_object;
1719
1720         prot = dst_entry->max_protection;
1721
1722         /*
1723          * Loop through all of the pages in the entry's range, copying each
1724          * one from the source object (it should be there) to the destination
1725          * object.
1726          */
1727         for (vaddr = dst_entry->start, dst_offset = 0;
1728             vaddr < dst_entry->end;
1729             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1730
1731                 /*
1732                  * Allocate a page in the destination object
1733                  */
1734                 do {
1735                         dst_m = vm_page_alloc(dst_object,
1736                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1737                         if (dst_m == NULL) {
1738                                 vm_wait(0);
1739                         }
1740                 } while (dst_m == NULL);
1741
1742                 /*
1743                  * Find the page in the source object, and copy it in.
1744                  * (Because the source is wired down, the page will be in
1745                  * memory.)
1746                  */
1747                 src_m = vm_page_lookup(src_object,
1748                                        OFF_TO_IDX(dst_offset + src_offset));
1749                 if (src_m == NULL)
1750                         panic("vm_fault_copy_wired: page missing");
1751
1752                 vm_page_copy(src_m, dst_m);
1753                 vm_page_event(src_m, VMEVENT_COW);
1754
1755                 /*
1756                  * Enter it in the pmap...
1757                  */
1758
1759                 vm_page_flag_clear(dst_m, PG_ZERO);
1760                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1761
1762                 /*
1763                  * Mark it no longer busy, and put it on the active list.
1764                  */
1765                 vm_page_activate(dst_m);
1766                 vm_page_wakeup(dst_m);
1767         }
1768 }
1769
1770 #if 0
1771
1772 /*
1773  * This routine checks around the requested page for other pages that
1774  * might be able to be faulted in.  This routine brackets the viable
1775  * pages for the pages to be paged in.
1776  *
1777  * Inputs:
1778  *      m, rbehind, rahead
1779  *
1780  * Outputs:
1781  *  marray (array of vm_page_t), reqpage (index of requested page)
1782  *
1783  * Return value:
1784  *  number of pages in marray
1785  */
1786 static int
1787 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1788                           vm_page_t *marray, int *reqpage)
1789 {
1790         int i,j;
1791         vm_object_t object;
1792         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1793         vm_page_t rtm;
1794         int cbehind, cahead;
1795
1796         object = m->object;
1797         pindex = m->pindex;
1798
1799         /*
1800          * we don't fault-ahead for device pager
1801          */
1802         if (object->type == OBJT_DEVICE) {
1803                 *reqpage = 0;
1804                 marray[0] = m;
1805                 return 1;
1806         }
1807
1808         /*
1809          * if the requested page is not available, then give up now
1810          */
1811         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1812                 *reqpage = 0;   /* not used by caller, fix compiler warn */
1813                 return 0;
1814         }
1815
1816         if ((cbehind == 0) && (cahead == 0)) {
1817                 *reqpage = 0;
1818                 marray[0] = m;
1819                 return 1;
1820         }
1821
1822         if (rahead > cahead) {
1823                 rahead = cahead;
1824         }
1825
1826         if (rbehind > cbehind) {
1827                 rbehind = cbehind;
1828         }
1829
1830         /*
1831          * Do not do any readahead if we have insufficient free memory.
1832          *
1833          * XXX code was broken disabled before and has instability
1834          * with this conditonal fixed, so shortcut for now.
1835          */
1836         if (burst_fault == 0 || vm_page_count_severe()) {
1837                 marray[0] = m;
1838                 *reqpage = 0;
1839                 return 1;
1840         }
1841
1842         /*
1843          * scan backward for the read behind pages -- in memory 
1844          *
1845          * Assume that if the page is not found an interrupt will not
1846          * create it.  Theoretically interrupts can only remove (busy)
1847          * pages, not create new associations.
1848          */
1849         if (pindex > 0) {
1850                 if (rbehind > pindex) {
1851                         rbehind = pindex;
1852                         startpindex = 0;
1853                 } else {
1854                         startpindex = pindex - rbehind;
1855                 }
1856
1857                 lwkt_gettoken(&vm_token);
1858                 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
1859                         if (vm_page_lookup(object, tpindex - 1))
1860                                 break;
1861                 }
1862
1863                 i = 0;
1864                 while (tpindex < pindex) {
1865                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1866                         if (rtm == NULL) {
1867                                 lwkt_reltoken(&vm_token);
1868                                 for (j = 0; j < i; j++) {
1869                                         vm_page_free(marray[j]);
1870                                 }
1871                                 marray[0] = m;
1872                                 *reqpage = 0;
1873                                 return 1;
1874                         }
1875                         marray[i] = rtm;
1876                         ++i;
1877                         ++tpindex;
1878                 }
1879                 lwkt_reltoken(&vm_token);
1880         } else {
1881                 i = 0;
1882         }
1883
1884         /*
1885          * Assign requested page
1886          */
1887         marray[i] = m;
1888         *reqpage = i;
1889         ++i;
1890
1891         /*
1892          * Scan forwards for read-ahead pages
1893          */
1894         tpindex = pindex + 1;
1895         endpindex = tpindex + rahead;
1896         if (endpindex > object->size)
1897                 endpindex = object->size;
1898
1899         lwkt_gettoken(&vm_token);
1900         while (tpindex < endpindex) {
1901                 if (vm_page_lookup(object, tpindex))
1902                         break;
1903                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1904                 if (rtm == NULL)
1905                         break;
1906                 marray[i] = rtm;
1907                 ++i;
1908                 ++tpindex;
1909         }
1910         lwkt_reltoken(&vm_token);
1911
1912         return (i);
1913 }
1914
1915 #endif
1916
1917 /*
1918  * vm_prefault() provides a quick way of clustering pagefaults into a
1919  * processes address space.  It is a "cousin" of pmap_object_init_pt,
1920  * except it runs at page fault time instead of mmap time.
1921  *
1922  * This code used to be per-platform pmap_prefault().  It is now
1923  * machine-independent and enhanced to also pre-fault zero-fill pages
1924  * (see vm.fast_fault) as well as make them writable, which greatly
1925  * reduces the number of page faults programs incur.
1926  *
1927  * Application performance when pre-faulting zero-fill pages is heavily
1928  * dependent on the application.  Very tiny applications like /bin/echo
1929  * lose a little performance while applications of any appreciable size
1930  * gain performance.  Prefaulting multiple pages also reduces SMP
1931  * congestion and can improve SMP performance significantly.
1932  *
1933  * NOTE!  prot may allow writing but this only applies to the top level
1934  *        object.  If we wind up mapping a page extracted from a backing
1935  *        object we have to make sure it is read-only.
1936  *
1937  * NOTE!  The caller has already handled any COW operations on the
1938  *        vm_map_entry via the normal fault code.  Do NOT call this
1939  *        shortcut unless the normal fault code has run on this entry.
1940  *
1941  * No other requirements.
1942  */
1943 #define PFBAK 4
1944 #define PFFOR 4
1945 #define PAGEORDER_SIZE (PFBAK+PFFOR)
1946
1947 static int vm_prefault_pageorder[] = {
1948         -PAGE_SIZE, PAGE_SIZE,
1949         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
1950         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
1951         -4 * PAGE_SIZE, 4 * PAGE_SIZE
1952 };
1953
1954 /*
1955  * Set PG_NOSYNC if the map entry indicates so, but only if the page
1956  * is not already dirty by other means.  This will prevent passive
1957  * filesystem syncing as well as 'sync' from writing out the page.
1958  */
1959 static void
1960 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
1961 {
1962         if (entry->eflags & MAP_ENTRY_NOSYNC) {
1963                 if (m->dirty == 0)
1964                         vm_page_flag_set(m, PG_NOSYNC);
1965         } else {
1966                 vm_page_flag_clear(m, PG_NOSYNC);
1967         }
1968 }
1969
1970 static void
1971 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot)
1972 {
1973         struct lwp *lp;
1974         vm_page_t m;
1975         vm_offset_t starta;
1976         vm_offset_t addr;
1977         vm_pindex_t index;
1978         vm_pindex_t pindex;
1979         vm_object_t object;
1980         int pprot;
1981         int i;
1982
1983         /*
1984          * We do not currently prefault mappings that use virtual page
1985          * tables.  We do not prefault foreign pmaps.
1986          */
1987         if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
1988                 return;
1989         lp = curthread->td_lwp;
1990         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
1991                 return;
1992
1993         object = entry->object.vm_object;
1994
1995         starta = addra - PFBAK * PAGE_SIZE;
1996         if (starta < entry->start)
1997                 starta = entry->start;
1998         else if (starta > addra)
1999                 starta = 0;
2000
2001         lwkt_gettoken(&vm_token);
2002         for (i = 0; i < PAGEORDER_SIZE; i++) {
2003                 vm_object_t lobject;
2004                 int allocated = 0;
2005
2006                 addr = addra + vm_prefault_pageorder[i];
2007                 if (addr > addra + (PFFOR * PAGE_SIZE))
2008                         addr = 0;
2009
2010                 if (addr < starta || addr >= entry->end)
2011                         continue;
2012
2013                 if (pmap_prefault_ok(pmap, addr) == 0)
2014                         continue;
2015
2016                 /*
2017                  * Follow the VM object chain to obtain the page to be mapped
2018                  * into the pmap.
2019                  *
2020                  * If we reach the terminal object without finding a page
2021                  * and we determine it would be advantageous, then allocate
2022                  * a zero-fill page for the base object.  The base object
2023                  * is guaranteed to be OBJT_DEFAULT for this case.
2024                  *
2025                  * In order to not have to check the pager via *haspage*()
2026                  * we stop if any non-default object is encountered.  e.g.
2027                  * a vnode or swap object would stop the loop.
2028                  */
2029                 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2030                 lobject = object;
2031                 pindex = index;
2032                 pprot = prot;
2033
2034                 while ((m = vm_page_lookup(lobject, pindex)) == NULL) {
2035                         if (lobject->type != OBJT_DEFAULT)
2036                                 break;
2037                         if (lobject->backing_object == NULL) {
2038                                 if (vm_fast_fault == 0)
2039                                         break;
2040                                 if (vm_prefault_pageorder[i] < 0 ||
2041                                     (prot & VM_PROT_WRITE) == 0 ||
2042                                     vm_page_count_min(0)) {
2043                                         break;
2044                                 }
2045                                 /* note: allocate from base object */
2046                                 m = vm_page_alloc(object, index,
2047                                               VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
2048
2049                                 if ((m->flags & PG_ZERO) == 0) {
2050                                         vm_page_zero_fill(m);
2051                                 } else {
2052 #ifdef PMAP_DEBUG
2053                                         pmap_page_assertzero(VM_PAGE_TO_PHYS(m));
2054 #endif
2055                                         vm_page_flag_clear(m, PG_ZERO);
2056                                         mycpu->gd_cnt.v_ozfod++;
2057                                 }
2058                                 mycpu->gd_cnt.v_zfod++;
2059                                 m->valid = VM_PAGE_BITS_ALL;
2060                                 allocated = 1;
2061                                 pprot = prot;
2062                                 /* lobject = object .. not needed */
2063                                 break;
2064                         }
2065                         if (lobject->backing_object_offset & PAGE_MASK)
2066                                 break;
2067                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2068                         lobject = lobject->backing_object;
2069                         pprot &= ~VM_PROT_WRITE;
2070                 }
2071                 /*
2072                  * NOTE: lobject now invalid (if we did a zero-fill we didn't
2073                  *       bother assigning lobject = object).
2074                  *
2075                  * Give-up if the page is not available.
2076                  */
2077                 if (m == NULL)
2078                         break;
2079
2080                 /*
2081                  * Do not conditionalize on PG_RAM.  If pages are present in
2082                  * the VM system we assume optimal caching.  If caching is
2083                  * not optimal the I/O gravy train will be restarted when we
2084                  * hit an unavailable page.  We do not want to try to restart
2085                  * the gravy train now because we really don't know how much
2086                  * of the object has been cached.  The cost for restarting
2087                  * the gravy train should be low (since accesses will likely
2088                  * be I/O bound anyway).
2089                  *
2090                  * The object must be marked dirty if we are mapping a
2091                  * writable page.
2092                  */
2093                 if (pprot & VM_PROT_WRITE)
2094                         vm_object_set_writeable_dirty(m->object);
2095
2096                 /*
2097                  * Enter the page into the pmap if appropriate.  If we had
2098                  * allocated the page we have to place it on a queue.  If not
2099                  * we just have to make sure it isn't on the cache queue
2100                  * (pages on the cache queue are not allowed to be mapped).
2101                  */
2102                 if (allocated) {
2103                         if (pprot & VM_PROT_WRITE)
2104                                 vm_set_nosync(m, entry);
2105                         pmap_enter(pmap, addr, m, pprot, 0);
2106                         vm_page_deactivate(m);
2107                         vm_page_wakeup(m);
2108                 } else if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2109                     (m->busy == 0) &&
2110                     (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2111
2112                         if ((m->queue - m->pc) == PQ_CACHE) {
2113                                 vm_page_deactivate(m);
2114                         }
2115                         vm_page_busy(m);
2116                         if (pprot & VM_PROT_WRITE)
2117                                 vm_set_nosync(m, entry);
2118                         pmap_enter(pmap, addr, m, pprot, 0);
2119                         vm_page_wakeup(m);
2120                 }
2121         }
2122         lwkt_reltoken(&vm_token);
2123 }