Merge branch 'vendor/LIBPCAP'
[dragonfly.git] / sys / platform / pc64 / isa / clock.c
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * Copyright (c) 2008 The DragonFly Project.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * William Jolitz and Don Ahn.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
38  * $FreeBSD: src/sys/i386/isa/clock.c,v 1.149.2.6 2002/11/02 04:41:50 iwasaki Exp $
39  */
40
41 /*
42  * Routines to handle clock hardware.
43  */
44
45 /*
46  * inittodr, settodr and support routines written
47  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
48  *
49  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
50  */
51
52 #if 0
53 #include "opt_clock.h"
54 #endif
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/eventhandler.h>
59 #include <sys/time.h>
60 #include <sys/kernel.h>
61 #include <sys/bus.h>
62 #include <sys/sysctl.h>
63 #include <sys/cons.h>
64 #include <sys/systimer.h>
65 #include <sys/globaldata.h>
66 #include <sys/thread2.h>
67 #include <sys/machintr.h>
68 #include <sys/interrupt.h>
69
70 #include <machine/clock.h>
71 #include <machine/cputypes.h>
72 #include <machine/frame.h>
73 #include <machine/ipl.h>
74 #include <machine/limits.h>
75 #include <machine/md_var.h>
76 #include <machine/psl.h>
77 #include <machine/segments.h>
78 #include <machine/smp.h>
79 #include <machine/specialreg.h>
80 #include <machine/intr_machdep.h>
81
82 #include <machine_base/apic/ioapic.h>
83 #include <machine_base/apic/ioapic_abi.h>
84 #include <machine_base/icu/icu.h>
85 #include <bus/isa/isa.h>
86 #include <bus/isa/rtc.h>
87 #include <machine_base/isa/timerreg.h>
88
89 static void i8254_restore(void);
90 static void resettodr_on_shutdown(void *arg __unused);
91
92 /*
93  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
94  * can use a simple formula for leap years.
95  */
96 #define LEAPYEAR(y) ((u_int)(y) % 4 == 0)
97 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
98
99 #ifndef TIMER_FREQ
100 #define TIMER_FREQ   1193182
101 #endif
102
103 static uint8_t i8254_walltimer_sel;
104 static uint16_t i8254_walltimer_cntr;
105
106 int     adjkerntz;              /* local offset from GMT in seconds */
107 int     disable_rtc_set;        /* disable resettodr() if != 0 */
108 int     tsc_present;
109 int     tsc_invariant;
110 int     tsc_mpsync;
111 int64_t tsc_frequency;
112 int     tsc_is_broken;
113 int     wall_cmos_clock;        /* wall CMOS clock assumed if != 0 */
114 int     timer0_running;
115 enum tstate { RELEASED, ACQUIRED };
116 enum tstate timer0_state;
117 enum tstate timer1_state;
118 enum tstate timer2_state;
119
120 static  int     beeping = 0;
121 static  const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
122 static  u_char  rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
123 static  u_char  rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
124 static  int     rtc_loaded;
125
126 static int i8254_cputimer_div;
127
128 static int i8254_nointr;
129 static int i8254_intr_disable = 1;
130 TUNABLE_INT("hw.i8254.intr_disable", &i8254_intr_disable);
131
132 static struct callout sysbeepstop_ch;
133
134 static sysclock_t i8254_cputimer_count(void);
135 static void i8254_cputimer_construct(struct cputimer *cputimer, sysclock_t last);
136 static void i8254_cputimer_destruct(struct cputimer *cputimer);
137
138 static struct cputimer  i8254_cputimer = {
139     SLIST_ENTRY_INITIALIZER,
140     "i8254",
141     CPUTIMER_PRI_8254,
142     0,
143     i8254_cputimer_count,
144     cputimer_default_fromhz,
145     cputimer_default_fromus,
146     i8254_cputimer_construct,
147     i8254_cputimer_destruct,
148     TIMER_FREQ,
149     0, 0, 0
150 };
151
152 static sysclock_t tsc_cputimer_count(void);
153 static void tsc_cputimer_construct(struct cputimer *, sysclock_t);
154
155 static struct cputimer  tsc_cputimer = {
156     SLIST_ENTRY_INITIALIZER,
157     "TSC",
158     CPUTIMER_PRI_TSC,
159     CPUTIMER_TSC,
160     tsc_cputimer_count,
161     cputimer_default_fromhz,
162     cputimer_default_fromus,
163     tsc_cputimer_construct,
164     cputimer_default_destruct,
165     0,
166     0, 0, 0
167 };
168
169 static void i8254_intr_reload(struct cputimer_intr *, sysclock_t);
170 static void i8254_intr_config(struct cputimer_intr *, const struct cputimer *);
171 static void i8254_intr_initclock(struct cputimer_intr *, boolean_t);
172
173 static struct cputimer_intr i8254_cputimer_intr = {
174     .freq = TIMER_FREQ,
175     .reload = i8254_intr_reload,
176     .enable = cputimer_intr_default_enable,
177     .config = i8254_intr_config,
178     .restart = cputimer_intr_default_restart,
179     .pmfixup = cputimer_intr_default_pmfixup,
180     .initclock = i8254_intr_initclock,
181     .next = SLIST_ENTRY_INITIALIZER,
182     .name = "i8254",
183     .type = CPUTIMER_INTR_8254,
184     .prio = CPUTIMER_INTR_PRIO_8254,
185     .caps = CPUTIMER_INTR_CAP_PS
186 };
187
188 /*
189  * timer0 clock interrupt.  Timer0 is in one-shot mode and has stopped
190  * counting as of this interrupt.  We use timer1 in free-running mode (not
191  * generating any interrupts) as our main counter.  Each cpu has timeouts
192  * pending.
193  *
194  * This code is INTR_MPSAFE and may be called without the BGL held.
195  */
196 static void
197 clkintr(void *dummy, void *frame_arg)
198 {
199         static sysclock_t sysclock_count;       /* NOTE! Must be static */
200         struct globaldata *gd = mycpu;
201         struct globaldata *gscan;
202         int n;
203
204         /*
205          * SWSTROBE mode is a one-shot, the timer is no longer running
206          */
207         timer0_running = 0;
208
209         /*
210          * XXX the dispatcher needs work.  right now we call systimer_intr()
211          * directly or via IPI for any cpu with systimers queued, which is
212          * usually *ALL* of them.  We need to use the LAPIC timer for this.
213          */
214         sysclock_count = sys_cputimer->count();
215         for (n = 0; n < ncpus; ++n) {
216             gscan = globaldata_find(n);
217             if (TAILQ_FIRST(&gscan->gd_systimerq) == NULL)
218                 continue;
219             if (gscan != gd) {
220                 lwkt_send_ipiq3(gscan, (ipifunc3_t)systimer_intr, 
221                                 &sysclock_count, 1);
222             } else {
223                 systimer_intr(&sysclock_count, 0, frame_arg);
224             }
225         }
226 }
227
228
229 /*
230  * NOTE! not MP safe.
231  */
232 int
233 acquire_timer2(int mode)
234 {
235         if (timer2_state != RELEASED)
236                 return (-1);
237         timer2_state = ACQUIRED;
238
239         /*
240          * This access to the timer registers is as atomic as possible
241          * because it is a single instruction.  We could do better if we
242          * knew the rate.
243          */
244         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
245         return (0);
246 }
247
248 int
249 release_timer2(void)
250 {
251         if (timer2_state != ACQUIRED)
252                 return (-1);
253         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
254         timer2_state = RELEASED;
255         return (0);
256 }
257
258 #include "opt_ddb.h"
259 #ifdef DDB
260 #include <ddb/ddb.h>
261
262 DB_SHOW_COMMAND(rtc, rtc)
263 {
264         kprintf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
265                rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
266                rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
267                rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
268 }
269 #endif /* DDB */
270
271 /*
272  * Return the current cpu timer count as a 32 bit integer.
273  */
274 static
275 sysclock_t
276 i8254_cputimer_count(void)
277 {
278         static __uint16_t cputimer_last;
279         __uint16_t count;
280         sysclock_t ret;
281
282         clock_lock();
283         outb(TIMER_MODE, i8254_walltimer_sel | TIMER_LATCH);
284         count = (__uint8_t)inb(i8254_walltimer_cntr);           /* get countdown */
285         count |= ((__uint8_t)inb(i8254_walltimer_cntr) << 8);
286         count = -count;                                 /* -> countup */
287         if (count < cputimer_last)                      /* rollover */
288                 i8254_cputimer.base += 0x00010000;
289         ret = i8254_cputimer.base | count;
290         cputimer_last = count;
291         clock_unlock();
292         return(ret);
293 }
294
295 /*
296  * This function is called whenever the system timebase changes, allowing
297  * us to calculate what is needed to convert a system timebase tick 
298  * into an 8254 tick for the interrupt timer.  If we can convert to a
299  * simple shift, multiplication, or division, we do so.  Otherwise 64
300  * bit arithmatic is required every time the interrupt timer is reloaded.
301  */
302 static void
303 i8254_intr_config(struct cputimer_intr *cti, const struct cputimer *timer)
304 {
305     int freq;
306     int div;
307
308     /*
309      * Will a simple divide do the trick?
310      */
311     div = (timer->freq + (cti->freq / 2)) / cti->freq;
312     freq = cti->freq * div;
313
314     if (freq >= timer->freq - 1 && freq <= timer->freq + 1)
315         i8254_cputimer_div = div;
316     else
317         i8254_cputimer_div = 0;
318 }
319
320 /*
321  * Reload for the next timeout.  It is possible for the reload value
322  * to be 0 or negative, indicating that an immediate timer interrupt
323  * is desired.  For now make the minimum 2 ticks.
324  *
325  * We may have to convert from the system timebase to the 8254 timebase.
326  */
327 static void
328 i8254_intr_reload(struct cputimer_intr *cti, sysclock_t reload)
329 {
330     __uint16_t count;
331
332     if (i8254_cputimer_div)
333         reload /= i8254_cputimer_div;
334     else
335         reload = (int64_t)reload * cti->freq / sys_cputimer->freq;
336
337     if ((int)reload < 2)
338         reload = 2;
339
340     clock_lock();
341     if (timer0_running) {
342         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);     /* count-down timer */
343         count = (__uint8_t)inb(TIMER_CNTR0);            /* lsb */
344         count |= ((__uint8_t)inb(TIMER_CNTR0) << 8);    /* msb */
345         if (reload < count) {
346             outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
347             outb(TIMER_CNTR0, (__uint8_t)reload);       /* lsb */
348             outb(TIMER_CNTR0, (__uint8_t)(reload >> 8)); /* msb */
349         }
350     } else {
351         timer0_running = 1;
352         if (reload > 0xFFFF)
353             reload = 0;         /* full count */
354         outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
355         outb(TIMER_CNTR0, (__uint8_t)reload);           /* lsb */
356         outb(TIMER_CNTR0, (__uint8_t)(reload >> 8));    /* msb */
357     }
358     clock_unlock();
359 }
360
361 /*
362  * DELAY(usec)       - Spin for the specified number of microseconds.
363  * DRIVERSLEEP(usec) - Spin for the specified number of microseconds,
364  *                     but do a thread switch in the loop
365  *
366  * Relies on timer 1 counting down from (cputimer_freq / hz)
367  * Note: timer had better have been programmed before this is first used!
368  */
369 static void
370 DODELAY(int n, int doswitch)
371 {
372         ssysclock_t delta, ticks_left;
373         sysclock_t prev_tick, tick;
374
375 #ifdef DELAYDEBUG
376         int getit_calls = 1;
377         int n1;
378         static int state = 0;
379
380         if (state == 0) {
381                 state = 1;
382                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
383                         DELAY(n1);
384                 state = 2;
385         }
386         if (state == 1)
387                 kprintf("DELAY(%d)...", n);
388 #endif
389         /*
390          * Guard against the timer being uninitialized if we are called
391          * early for console i/o.
392          */
393         if (timer0_state == RELEASED)
394                 i8254_restore();
395
396         /*
397          * Read the counter first, so that the rest of the setup overhead is
398          * counted.  Then calculate the number of hardware timer ticks
399          * required, rounding up to be sure we delay at least the requested
400          * number of microseconds.
401          */
402         prev_tick = sys_cputimer->count();
403         ticks_left = ((u_int)n * (int64_t)sys_cputimer->freq + 999999) /
404                      1000000;
405
406         /*
407          * Loop until done.
408          */
409         while (ticks_left > 0) {
410                 tick = sys_cputimer->count();
411 #ifdef DELAYDEBUG
412                 ++getit_calls;
413 #endif
414                 delta = tick - prev_tick;
415                 prev_tick = tick;
416                 if (delta < 0)
417                         delta = 0;
418                 ticks_left -= delta;
419                 if (doswitch && ticks_left > 0)
420                         lwkt_switch();
421                 cpu_pause();
422         }
423 #ifdef DELAYDEBUG
424         if (state == 1)
425                 kprintf(" %d calls to getit() at %d usec each\n",
426                        getit_calls, (n + 5) / getit_calls);
427 #endif
428 }
429
430 /*
431  * DELAY() never switches.
432  */
433 void
434 DELAY(int n)
435 {
436         DODELAY(n, 0);
437 }
438
439 /*
440  * Returns non-zero if the specified time period has elapsed.  Call
441  * first with last_clock set to 0.
442  */
443 int
444 CHECKTIMEOUT(TOTALDELAY *tdd)
445 {
446         sysclock_t delta;
447         int us;
448
449         if (tdd->started == 0) {
450                 if (timer0_state == RELEASED)
451                         i8254_restore();
452                 tdd->last_clock = sys_cputimer->count();
453                 tdd->started = 1;
454                 return(0);
455         }
456         delta = sys_cputimer->count() - tdd->last_clock;
457         us = (u_int64_t)delta * (u_int64_t)1000000 /
458              (u_int64_t)sys_cputimer->freq;
459         tdd->last_clock += (u_int64_t)us * (u_int64_t)sys_cputimer->freq /
460                            1000000;
461         tdd->us -= us;
462         return (tdd->us < 0);
463 }
464
465
466 /*
467  * DRIVERSLEEP() does not switch if called with a spinlock held or
468  * from a hard interrupt.
469  */
470 void
471 DRIVERSLEEP(int usec)
472 {
473         globaldata_t gd = mycpu;
474
475         if (gd->gd_intr_nesting_level || gd->gd_spinlocks) {
476                 DODELAY(usec, 0);
477         } else {
478                 DODELAY(usec, 1);
479         }
480 }
481
482 static void
483 sysbeepstop(void *chan)
484 {
485         outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
486         beeping = 0;
487         release_timer2();
488 }
489
490 int
491 sysbeep(int pitch, int period)
492 {
493         if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
494                 return(-1);
495         if (sysbeep_enable == 0)
496                 return(-1);
497         /*
498          * Nobody else is using timer2, we do not need the clock lock
499          */
500         outb(TIMER_CNTR2, pitch);
501         outb(TIMER_CNTR2, (pitch>>8));
502         if (!beeping) {
503                 /* enable counter2 output to speaker */
504                 outb(IO_PPI, inb(IO_PPI) | 3);
505                 beeping = period;
506                 callout_reset(&sysbeepstop_ch, period, sysbeepstop, NULL);
507         }
508         return (0);
509 }
510
511 /*
512  * RTC support routines
513  */
514
515 int
516 rtcin(int reg)
517 {
518         u_char val;
519
520         crit_enter();
521         outb(IO_RTC, reg);
522         inb(0x84);
523         val = inb(IO_RTC + 1);
524         inb(0x84);
525         crit_exit();
526         return (val);
527 }
528
529 static __inline void
530 writertc(u_char reg, u_char val)
531 {
532         crit_enter();
533         inb(0x84);
534         outb(IO_RTC, reg);
535         inb(0x84);
536         outb(IO_RTC + 1, val);
537         inb(0x84);              /* XXX work around wrong order in rtcin() */
538         crit_exit();
539 }
540
541 static __inline int
542 readrtc(int port)
543 {
544         return(bcd2bin(rtcin(port)));
545 }
546
547 static u_int
548 calibrate_clocks(void)
549 {
550         u_int64_t old_tsc;
551         u_int tot_count;
552         sysclock_t count, prev_count;
553         int sec, start_sec, timeout;
554
555         if (bootverbose)
556                 kprintf("Calibrating clock(s) ...\n");
557         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
558                 goto fail;
559         timeout = 100000000;
560
561         /* Read the mc146818A seconds counter. */
562         for (;;) {
563                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
564                         sec = rtcin(RTC_SEC);
565                         break;
566                 }
567                 if (--timeout == 0)
568                         goto fail;
569         }
570
571         /* Wait for the mC146818A seconds counter to change. */
572         start_sec = sec;
573         for (;;) {
574                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
575                         sec = rtcin(RTC_SEC);
576                         if (sec != start_sec)
577                                 break;
578                 }
579                 if (--timeout == 0)
580                         goto fail;
581         }
582
583         /* Start keeping track of the i8254 counter. */
584         prev_count = sys_cputimer->count();
585         tot_count = 0;
586
587         if (tsc_present) 
588                 old_tsc = rdtsc();
589         else
590                 old_tsc = 0;            /* shut up gcc */
591
592         /*
593          * Wait for the mc146818A seconds counter to change.  Read the i8254
594          * counter for each iteration since this is convenient and only
595          * costs a few usec of inaccuracy. The timing of the final reads
596          * of the counters almost matches the timing of the initial reads,
597          * so the main cause of inaccuracy is the varying latency from 
598          * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
599          * rtcin(RTC_SEC) that returns a changed seconds count.  The
600          * maximum inaccuracy from this cause is < 10 usec on 486's.
601          */
602         start_sec = sec;
603         for (;;) {
604                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
605                         sec = rtcin(RTC_SEC);
606                 count = sys_cputimer->count();
607                 tot_count += (int)(count - prev_count);
608                 prev_count = count;
609                 if (sec != start_sec)
610                         break;
611                 if (--timeout == 0)
612                         goto fail;
613         }
614
615         /*
616          * Read the cpu cycle counter.  The timing considerations are
617          * similar to those for the i8254 clock.
618          */
619         if (tsc_present) {
620                 tsc_frequency = rdtsc() - old_tsc;
621         }
622
623         if (tsc_present) {
624                 kprintf("TSC%s clock: %llu Hz, ",
625                     tsc_invariant ? " invariant" : "",
626                     (long long)tsc_frequency);
627         }
628         kprintf("i8254 clock: %u Hz\n", tot_count);
629         return (tot_count);
630
631 fail:
632         kprintf("failed, using default i8254 clock of %u Hz\n",
633                 i8254_cputimer.freq);
634         return (i8254_cputimer.freq);
635 }
636
637 static void
638 i8254_restore(void)
639 {
640         timer0_state = ACQUIRED;
641
642         clock_lock();
643
644         /*
645          * Timer0 is our fine-grained variable clock interrupt
646          */
647         outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
648         outb(TIMER_CNTR0, 2);   /* lsb */
649         outb(TIMER_CNTR0, 0);   /* msb */
650         clock_unlock();
651
652         if (!i8254_nointr) {
653                 cputimer_intr_register(&i8254_cputimer_intr);
654                 cputimer_intr_select(&i8254_cputimer_intr, 0);
655         }
656
657         /*
658          * Timer1 or timer2 is our free-running clock, but only if another
659          * has not been selected.
660          */
661         cputimer_register(&i8254_cputimer);
662         cputimer_select(&i8254_cputimer, 0);
663 }
664
665 static void
666 i8254_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
667 {
668         int which;
669
670         /*
671          * Should we use timer 1 or timer 2 ?
672          */
673         which = 0;
674         TUNABLE_INT_FETCH("hw.i8254.walltimer", &which);
675         if (which != 1 && which != 2)
676                 which = 2;
677
678         switch(which) {
679         case 1:
680                 timer->name = "i8254_timer1";
681                 timer->type = CPUTIMER_8254_SEL1;
682                 i8254_walltimer_sel = TIMER_SEL1;
683                 i8254_walltimer_cntr = TIMER_CNTR1;
684                 timer1_state = ACQUIRED;
685                 break;
686         case 2:
687                 timer->name = "i8254_timer2";
688                 timer->type = CPUTIMER_8254_SEL2;
689                 i8254_walltimer_sel = TIMER_SEL2;
690                 i8254_walltimer_cntr = TIMER_CNTR2;
691                 timer2_state = ACQUIRED;
692                 break;
693         }
694
695         timer->base = (oldclock + 0xFFFF) & ~0xFFFF;
696
697         clock_lock();
698         outb(TIMER_MODE, i8254_walltimer_sel | TIMER_RATEGEN | TIMER_16BIT);
699         outb(i8254_walltimer_cntr, 0);  /* lsb */
700         outb(i8254_walltimer_cntr, 0);  /* msb */
701         outb(IO_PPI, inb(IO_PPI) | 1);  /* bit 0: enable gate, bit 1: spkr */
702         clock_unlock();
703 }
704
705 static void
706 i8254_cputimer_destruct(struct cputimer *timer)
707 {
708         switch(timer->type) {
709         case CPUTIMER_8254_SEL1:
710             timer1_state = RELEASED;
711             break;
712         case CPUTIMER_8254_SEL2:
713             timer2_state = RELEASED;
714             break;
715         default:
716             break;
717         }
718         timer->type = 0;
719 }
720
721 static void
722 rtc_restore(void)
723 {
724         /* Restore all of the RTC's "status" (actually, control) registers. */
725         writertc(RTC_STATUSB, RTCSB_24HR);
726         writertc(RTC_STATUSA, rtc_statusa);
727         writertc(RTC_STATUSB, rtc_statusb);
728 }
729
730 /*
731  * Restore all the timers.
732  *
733  * This function is called to resynchronize our core timekeeping after a
734  * long halt, e.g. from apm_default_resume() and friends.  It is also 
735  * called if after a BIOS call we have detected munging of the 8254.
736  * It is necessary because cputimer_count() counter's delta may have grown
737  * too large for nanouptime() and friends to handle, or (in the case of 8254
738  * munging) might cause the SYSTIMER code to prematurely trigger.
739  */
740 void
741 timer_restore(void)
742 {
743         crit_enter();
744         i8254_restore();                /* restore timer_freq and hz */
745         rtc_restore();                  /* reenable RTC interrupts */
746         crit_exit();
747 }
748
749 /*
750  * Initialize 8254 timer 0 early so that it can be used in DELAY().
751  */
752 void
753 startrtclock(void)
754 {
755         u_int delta, freq;
756
757         /* 
758          * Can we use the TSC?
759          */
760         if (cpu_feature & CPUID_TSC) {
761                 tsc_present = 1;
762                 if ((cpu_vendor_id == CPU_VENDOR_INTEL ||
763                      cpu_vendor_id == CPU_VENDOR_AMD) &&
764                     cpu_exthigh >= 0x80000007) {
765                         u_int regs[4];
766
767                         do_cpuid(0x80000007, regs);
768                         if (regs[3] & 0x100)
769                                 tsc_invariant = 1;
770                 }
771         } else {
772                 tsc_present = 0;
773         }
774
775         /*
776          * Initial RTC state, don't do anything unexpected
777          */
778         writertc(RTC_STATUSA, rtc_statusa);
779         writertc(RTC_STATUSB, RTCSB_24HR);
780
781         /*
782          * Set the 8254 timer0 in TIMER_SWSTROBE mode and cause it to 
783          * generate an interrupt, which we will ignore for now.
784          *
785          * Set the 8254 timer1 in TIMER_RATEGEN mode and load 0x0000
786          * (so it counts a full 2^16 and repeats).  We will use this timer
787          * for our counting.
788          */
789         i8254_restore();
790         freq = calibrate_clocks();
791 #ifdef CLK_CALIBRATION_LOOP
792         if (bootverbose) {
793                 kprintf(
794                 "Press a key on the console to abort clock calibration\n");
795                 while (cncheckc() == -1)
796                         calibrate_clocks();
797         }
798 #endif
799
800         /*
801          * Use the calibrated i8254 frequency if it seems reasonable.
802          * Otherwise use the default, and don't use the calibrated i586
803          * frequency.
804          */
805         delta = freq > i8254_cputimer.freq ? 
806                         freq - i8254_cputimer.freq : i8254_cputimer.freq - freq;
807         if (delta < i8254_cputimer.freq / 100) {
808 #ifndef CLK_USE_I8254_CALIBRATION
809                 if (bootverbose)
810                         kprintf(
811 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
812                 freq = i8254_cputimer.freq;
813 #endif
814                 /*
815                  * NOTE:
816                  * Interrupt timer's freq must be adjusted
817                  * before we change the cuptimer's frequency.
818                  */
819                 i8254_cputimer_intr.freq = freq;
820                 cputimer_set_frequency(&i8254_cputimer, freq);
821         } else {
822                 if (bootverbose)
823                         kprintf(
824                     "%d Hz differs from default of %d Hz by more than 1%%\n",
825                                freq, i8254_cputimer.freq);
826                 tsc_frequency = 0;
827         }
828
829 #ifndef CLK_USE_TSC_CALIBRATION
830         if (tsc_frequency != 0) {
831                 if (bootverbose)
832                         kprintf(
833 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
834                 tsc_frequency = 0;
835         }
836 #endif
837         if (tsc_present && tsc_frequency == 0) {
838                 /*
839                  * Calibration of the i586 clock relative to the mc146818A
840                  * clock failed.  Do a less accurate calibration relative
841                  * to the i8254 clock.
842                  */
843                 u_int64_t old_tsc = rdtsc();
844
845                 DELAY(1000000);
846                 tsc_frequency = rdtsc() - old_tsc;
847 #ifdef CLK_USE_TSC_CALIBRATION
848                 if (bootverbose) {
849                         kprintf("TSC clock: %llu Hz (Method B)\n",
850                                 tsc_frequency);
851                 }
852 #endif
853         }
854
855         EVENTHANDLER_REGISTER(shutdown_post_sync, resettodr_on_shutdown, NULL, SHUTDOWN_PRI_LAST);
856 }
857
858 /*
859  * Sync the time of day back to the RTC on shutdown, but only if
860  * we have already loaded it and have not crashed.
861  */
862 static void
863 resettodr_on_shutdown(void *arg __unused)
864 {
865         if (rtc_loaded && panicstr == NULL) {
866                 resettodr();
867         }
868 }
869
870 /*
871  * Initialize the time of day register, based on the time base which is, e.g.
872  * from a filesystem.
873  */
874 void
875 inittodr(time_t base)
876 {
877         unsigned long   sec, days;
878         int             year, month;
879         int             y, m;
880         struct timespec ts;
881
882         if (base) {
883                 ts.tv_sec = base;
884                 ts.tv_nsec = 0;
885                 set_timeofday(&ts);
886         }
887
888         /* Look if we have a RTC present and the time is valid */
889         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
890                 goto wrong_time;
891
892         /* wait for time update to complete */
893         /* If RTCSA_TUP is zero, we have at least 244us before next update */
894         crit_enter();
895         while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
896                 crit_exit();
897                 crit_enter();
898         }
899
900         days = 0;
901 #ifdef USE_RTC_CENTURY
902         year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
903 #else
904         year = readrtc(RTC_YEAR) + 1900;
905         if (year < 1970)
906                 year += 100;
907 #endif
908         if (year < 1970) {
909                 crit_exit();
910                 goto wrong_time;
911         }
912         month = readrtc(RTC_MONTH);
913         for (m = 1; m < month; m++)
914                 days += daysinmonth[m-1];
915         if ((month > 2) && LEAPYEAR(year))
916                 days ++;
917         days += readrtc(RTC_DAY) - 1;
918         for (y = 1970; y < year; y++)
919                 days += DAYSPERYEAR + LEAPYEAR(y);
920         sec = ((( days * 24 +
921                   readrtc(RTC_HRS)) * 60 +
922                   readrtc(RTC_MIN)) * 60 +
923                   readrtc(RTC_SEC));
924         /* sec now contains the number of seconds, since Jan 1 1970,
925            in the local time zone */
926
927         sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
928
929         y = (int)(time_second - sec);
930         if (y <= -2 || y >= 2) {
931                 /* badly off, adjust it */
932                 ts.tv_sec = sec;
933                 ts.tv_nsec = 0;
934                 set_timeofday(&ts);
935         }
936         rtc_loaded = 1;
937         crit_exit();
938         return;
939
940 wrong_time:
941         kprintf("Invalid time in real time clock.\n");
942         kprintf("Check and reset the date immediately!\n");
943 }
944
945 /*
946  * Write system time back to RTC
947  */
948 void
949 resettodr(void)
950 {
951         struct timeval tv;
952         unsigned long tm;
953         int m;
954         int y;
955
956         if (disable_rtc_set)
957                 return;
958
959         microtime(&tv);
960         tm = tv.tv_sec;
961
962         crit_enter();
963         /* Disable RTC updates and interrupts. */
964         writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
965
966         /* Calculate local time to put in RTC */
967
968         tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
969
970         writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;    /* Write back Seconds */
971         writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;    /* Write back Minutes */
972         writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;    /* Write back Hours   */
973
974         /* We have now the days since 01-01-1970 in tm */
975         writertc(RTC_WDAY, (tm+4)%7);                   /* Write back Weekday */
976         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
977              tm >= m;
978              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
979              tm -= m;
980
981         /* Now we have the years in y and the day-of-the-year in tm */
982         writertc(RTC_YEAR, bin2bcd(y%100));             /* Write back Year    */
983 #ifdef USE_RTC_CENTURY
984         writertc(RTC_CENTURY, bin2bcd(y/100));          /* ... and Century    */
985 #endif
986         for (m = 0; ; m++) {
987                 int ml;
988
989                 ml = daysinmonth[m];
990                 if (m == 1 && LEAPYEAR(y))
991                         ml++;
992                 if (tm < ml)
993                         break;
994                 tm -= ml;
995         }
996
997         writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
998         writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
999
1000         /* Reenable RTC updates and interrupts. */
1001         writertc(RTC_STATUSB, rtc_statusb);
1002         crit_exit();
1003 }
1004
1005 static int
1006 i8254_ioapic_trial(int irq, struct cputimer_intr *cti)
1007 {
1008         sysclock_t base;
1009         long lastcnt;
1010
1011         /*
1012          * Following code assumes the 8254 is the cpu timer,
1013          * so make sure it is.
1014          */
1015         KKASSERT(sys_cputimer == &i8254_cputimer);
1016         KKASSERT(cti == &i8254_cputimer_intr);
1017
1018         lastcnt = get_interrupt_counter(irq, mycpuid);
1019
1020         /*
1021          * Force an 8254 Timer0 interrupt and wait 1/100s for
1022          * it to happen, then see if we got it.
1023          */
1024         kprintf("IOAPIC: testing 8254 interrupt delivery\n");
1025
1026         i8254_intr_reload(cti, 2);
1027         base = sys_cputimer->count();
1028         while (sys_cputimer->count() - base < sys_cputimer->freq / 100)
1029                 ; /* nothing */
1030
1031         if (get_interrupt_counter(irq, mycpuid) - lastcnt == 0)
1032                 return ENOENT;
1033         return 0;
1034 }
1035
1036 /*
1037  * Start both clocks running.  DragonFly note: the stat clock is no longer
1038  * used.  Instead, 8254 based systimers are used for all major clock
1039  * interrupts.
1040  */
1041 static void
1042 i8254_intr_initclock(struct cputimer_intr *cti, boolean_t selected)
1043 {
1044         void *clkdesc = NULL;
1045         int irq = 0, mixed_mode = 0, error;
1046
1047         KKASSERT(mycpuid == 0);
1048         callout_init_mp(&sysbeepstop_ch);
1049
1050         if (!selected && i8254_intr_disable)
1051                 goto nointr;
1052
1053         /*
1054          * The stat interrupt mask is different without the
1055          * statistics clock.  Also, don't set the interrupt
1056          * flag which would normally cause the RTC to generate
1057          * interrupts.
1058          */
1059         rtc_statusb = RTCSB_24HR;
1060
1061         /* Finish initializing 8254 timer 0. */
1062         if (ioapic_enable) {
1063                 irq = machintr_legacy_intr_find(0, INTR_TRIGGER_EDGE,
1064                         INTR_POLARITY_HIGH);
1065                 if (irq < 0) {
1066 mixed_mode_setup:
1067                         error = ioapic_conf_legacy_extint(0);
1068                         if (!error) {
1069                                 irq = machintr_legacy_intr_find(0,
1070                                     INTR_TRIGGER_EDGE, INTR_POLARITY_HIGH);
1071                                 if (irq < 0)
1072                                         error = ENOENT;
1073                         }
1074
1075                         if (error) {
1076                                 if (!selected) {
1077                                         kprintf("IOAPIC: setup mixed mode for "
1078                                                 "irq 0 failed: %d\n", error);
1079                                         goto nointr;
1080                                 } else {
1081                                         panic("IOAPIC: setup mixed mode for "
1082                                               "irq 0 failed: %d\n", error);
1083                                 }
1084                         }
1085                         mixed_mode = 1;
1086                 }
1087                 clkdesc = register_int(irq, clkintr, NULL, "clk",
1088                                        NULL,
1089                                        INTR_EXCL | INTR_CLOCK |
1090                                        INTR_NOPOLL | INTR_MPSAFE |
1091                                        INTR_NOENTROPY, 0);
1092         } else {
1093                 register_int(0, clkintr, NULL, "clk", NULL,
1094                              INTR_EXCL | INTR_CLOCK |
1095                              INTR_NOPOLL | INTR_MPSAFE |
1096                              INTR_NOENTROPY, 0);
1097         }
1098
1099         /* Initialize RTC. */
1100         writertc(RTC_STATUSA, rtc_statusa);
1101         writertc(RTC_STATUSB, RTCSB_24HR);
1102
1103         if (ioapic_enable) {
1104                 error = i8254_ioapic_trial(irq, cti);
1105                 if (error) {
1106                         if (mixed_mode) {
1107                                 if (!selected) {
1108                                         kprintf("IOAPIC: mixed mode for irq %d "
1109                                                 "trial failed: %d\n",
1110                                                 irq, error);
1111                                         goto nointr;
1112                                 } else {
1113                                         panic("IOAPIC: mixed mode for irq %d "
1114                                               "trial failed: %d\n", irq, error);
1115                                 }
1116                         } else {
1117                                 kprintf("IOAPIC: warning 8254 is not connected "
1118                                         "to the correct pin, try mixed mode\n");
1119                                 unregister_int(clkdesc, 0);
1120                                 goto mixed_mode_setup;
1121                         }
1122                 }
1123         }
1124         return;
1125
1126 nointr:
1127         i8254_nointr = 1; /* don't try to register again */
1128         cputimer_intr_deregister(cti);
1129 }
1130
1131 void
1132 setstatclockrate(int newhz)
1133 {
1134         if (newhz == RTC_PROFRATE)
1135                 rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1136         else
1137                 rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1138         writertc(RTC_STATUSA, rtc_statusa);
1139 }
1140
1141 #if 0
1142 static unsigned
1143 tsc_get_timecount(struct timecounter *tc)
1144 {
1145         return (rdtsc());
1146 }
1147 #endif
1148
1149 #ifdef KERN_TIMESTAMP
1150 #define KERN_TIMESTAMP_SIZE 16384
1151 static u_long tsc[KERN_TIMESTAMP_SIZE] ;
1152 SYSCTL_OPAQUE(_debug, OID_AUTO, timestamp, CTLFLAG_RD, tsc,
1153         sizeof(tsc), "LU", "Kernel timestamps");
1154 void  
1155 _TSTMP(u_int32_t x)
1156 {
1157         static int i;
1158
1159         tsc[i] = (u_int32_t)rdtsc();
1160         tsc[i+1] = x;
1161         i = i + 2;
1162         if (i >= KERN_TIMESTAMP_SIZE)
1163                 i = 0;
1164         tsc[i] = 0; /* mark last entry */
1165 }
1166 #endif /* KERN_TIMESTAMP */
1167
1168 /*
1169  *
1170  */
1171
1172 static int
1173 hw_i8254_timestamp(SYSCTL_HANDLER_ARGS)
1174 {
1175     sysclock_t count;
1176     __uint64_t tscval;
1177     char buf[32];
1178
1179     crit_enter();
1180     if (sys_cputimer == &i8254_cputimer)
1181         count = sys_cputimer->count();
1182     else
1183         count = 0;
1184     if (tsc_present)
1185         tscval = rdtsc();
1186     else
1187         tscval = 0;
1188     crit_exit();
1189     ksnprintf(buf, sizeof(buf), "%08x %016llx", count, (long long)tscval);
1190     return(SYSCTL_OUT(req, buf, strlen(buf) + 1));
1191 }
1192
1193 static uint64_t         tsc_mpsync_target;
1194
1195 static void
1196 tsc_mpsync_test_remote(void *arg __unused)
1197 {
1198         uint64_t tsc;
1199
1200         tsc = rdtsc();
1201         if (tsc < tsc_mpsync_target)
1202                 tsc_mpsync = 0;
1203 }
1204
1205 static void
1206 tsc_mpsync_test(void)
1207 {
1208         struct globaldata *gd = mycpu;
1209         uint64_t test_end, test_begin;
1210         u_int i;
1211
1212         if (!tsc_invariant) {
1213                 /* Not even invariant TSC */
1214                 return;
1215         }
1216
1217         if (ncpus == 1) {
1218                 /* Only one CPU */
1219                 tsc_mpsync = 1;
1220                 return;
1221         }
1222
1223         if (cpu_vendor_id != CPU_VENDOR_INTEL) {
1224                 /* XXX only Intel works */
1225                 return;
1226         }
1227
1228         kprintf("TSC testing MP synchronization ...\n");
1229         tsc_mpsync = 1;
1230
1231         /* Run test for 100ms */
1232         test_begin = rdtsc();
1233         test_end = test_begin + (tsc_frequency / 10);
1234
1235 #define TSC_TEST_TRYMAX         1000000 /* Make sure we could stop */
1236
1237         for (i = 0; i < TSC_TEST_TRYMAX; ++i) {
1238                 struct lwkt_cpusync cs;
1239
1240                 crit_enter();
1241                 lwkt_cpusync_init(&cs, gd->gd_other_cpus,
1242                     tsc_mpsync_test_remote, NULL);
1243                 lwkt_cpusync_interlock(&cs);
1244                 tsc_mpsync_target = rdtsc();
1245                 cpu_mfence();
1246                 lwkt_cpusync_deinterlock(&cs);
1247                 crit_exit();
1248
1249                 if (!tsc_mpsync) {
1250                         kprintf("TSC is not MP synchronized @%u\n", i);
1251                         break;
1252                 }
1253                 if (tsc_mpsync_target > test_end)
1254                         break;
1255         }
1256
1257 #undef TSC_TEST_TRYMAX
1258
1259         if (tsc_mpsync) {
1260                 if (tsc_mpsync_target == test_begin) {
1261                         kprintf("TSC does not tick?!");
1262                         /* XXX disable TSC? */
1263                         tsc_invariant = 0;
1264                         tsc_mpsync = 0;
1265                         return;
1266                 }
1267
1268                 kprintf("TSC is MP synchronized");
1269                 if (bootverbose)
1270                         kprintf(", after %u tries", i);
1271                 kprintf("\n");
1272         }
1273 }
1274 SYSINIT(tsc_mpsync, SI_BOOT2_FINISH_SMP, SI_ORDER_ANY, tsc_mpsync_test, NULL);
1275
1276 #define TSC_CPUTIMER_FREQMAX    128000000       /* 128Mhz */
1277
1278 static int tsc_cputimer_shift;
1279
1280 static void
1281 tsc_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
1282 {
1283         timer->base = 0;
1284         timer->base = oldclock - tsc_cputimer_count();
1285 }
1286
1287 static sysclock_t
1288 tsc_cputimer_count(void)
1289 {
1290         uint64_t tsc;
1291
1292         tsc = rdtsc();
1293         tsc >>= tsc_cputimer_shift;
1294
1295         return (tsc + tsc_cputimer.base);
1296 }
1297
1298 static void
1299 tsc_cputimer_register(void)
1300 {
1301         uint64_t freq;
1302         int enable = 1;
1303
1304         if (!tsc_mpsync)
1305                 return;
1306
1307         TUNABLE_INT_FETCH("hw.tsc_cputimer_enable", &enable);
1308         if (!enable)
1309                 return;
1310
1311         freq = tsc_frequency;
1312         while (freq > TSC_CPUTIMER_FREQMAX) {
1313                 freq >>= 1;
1314                 ++tsc_cputimer_shift;
1315         }
1316         kprintf("TSC: cputimer freq %ju, shift %d\n",
1317             (uintmax_t)freq, tsc_cputimer_shift);
1318
1319         tsc_cputimer.freq = freq;
1320
1321         cputimer_register(&tsc_cputimer);
1322         cputimer_select(&tsc_cputimer, 0);
1323 }
1324 SYSINIT(tsc_cputimer_reg, SI_BOOT2_MACHDEP, SI_ORDER_ANY,
1325     tsc_cputimer_register, NULL);
1326
1327 SYSCTL_NODE(_hw, OID_AUTO, i8254, CTLFLAG_RW, 0, "I8254");
1328 SYSCTL_UINT(_hw_i8254, OID_AUTO, freq, CTLFLAG_RD, &i8254_cputimer.freq, 0,
1329             "frequency");
1330 SYSCTL_PROC(_hw_i8254, OID_AUTO, timestamp, CTLTYPE_STRING|CTLFLAG_RD,
1331             0, 0, hw_i8254_timestamp, "A", "");
1332
1333 SYSCTL_INT(_hw, OID_AUTO, tsc_present, CTLFLAG_RD,
1334             &tsc_present, 0, "TSC Available");
1335 SYSCTL_INT(_hw, OID_AUTO, tsc_invariant, CTLFLAG_RD,
1336             &tsc_invariant, 0, "Invariant TSC");
1337 SYSCTL_INT(_hw, OID_AUTO, tsc_mpsync, CTLFLAG_RD,
1338             &tsc_mpsync, 0, "TSC is synchronized across CPUs");
1339 SYSCTL_QUAD(_hw, OID_AUTO, tsc_frequency, CTLFLAG_RD,
1340             &tsc_frequency, 0, "TSC Frequency");