1 /* @(#)s_log1p.c 5.1 93/09/24 */
2 /* \$FreeBSD: head/lib/msun/src/s_log1p.c 251292 2013-06-03 09:14:31Z das \$ */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunPro, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
14 /* double log1p(double x)
15  *
16  * Method :
17  *   1. Argument Reduction: find k and f such that
18  *                      1+x = 2^k * (1+f),
19  *         where  sqrt(2)/2 < 1+f < sqrt(2) .
20  *
21  *      Note. If k=0, then f=x is exact. However, if k!=0, then f
22  *      may not be representable exactly. In that case, a correction
23  *      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
24  *      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
25  *      and add back the correction term c/u.
26  *      (Note: when x > 2**53, one can simply return log(x))
27  *
28  *   2. Approximation of log1p(f).
29  *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
30  *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
31  *               = 2s + s*R
32  *      We use a special Reme algorithm on [0,0.1716] to generate
33  *      a polynomial of degree 14 to approximate R The maximum error
34  *      of this polynomial approximation is bounded by 2**-58.45. In
35  *      other words,
36  *                      2      4      6      8      10      12      14
37  *          R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
38  *      (the values of Lp1 to Lp7 are listed in the program)
39  *      and
40  *          |      2          14          |     -58.45
41  *          | Lp1*s +...+Lp7*s    -  R(z) | <= 2
42  *          |                             |
43  *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
44  *      In order to guarantee error in log below 1ulp, we compute log
45  *      by
46  *              log1p(f) = f - (hfsq - s*(hfsq+R)).
47  *
48  *      3. Finally, log1p(x) = k*ln2 + log1p(f).
49  *                           = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
50  *         Here ln2 is split into two floating point number:
51  *                      ln2_hi + ln2_lo,
52  *         where n*ln2_hi is always exact for |n| < 2000.
53  *
54  * Special cases:
55  *      log1p(x) is NaN with signal if x < -1 (including -INF) ;
56  *      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
57  *      log1p(NaN) is that NaN with no signal.
58  *
59  * Accuracy:
60  *      according to an error analysis, the error is always less than
61  *      1 ulp (unit in the last place).
62  *
63  * Constants:
64  * The hexadecimal values are the intended ones for the following
65  * constants. The decimal values may be used, provided that the
66  * compiler will convert from decimal to binary accurately enough
67  * to produce the hexadecimal values shown.
68  *
69  * Note: Assuming log() return accurate answer, the following
70  *       algorithm can be used to compute log1p(x) to within a few ULP:
71  *
72  *              u = 1+x;
73  *              if(u==1.0) return x ; else
74  *                         return log(u)*(x/(u-1.0));
75  *
76  *       See HP-15C Advanced Functions Handbook, p.193.
77  */
79 #include <float.h>
81 #include "math.h"
82 #include "math_private.h"
84 static const double
85 ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
86 ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
87 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
88 Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
89 Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
90 Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
91 Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
92 Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
93 Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
94 Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
96 static const double zero = 0.0;
97 static volatile double vzero = 0.0;
99 double
100 log1p(double x)
101 {
102         double hfsq,f,c,s,z,R,u;
103         int32_t k,hx,hu,ax;
105         GET_HIGH_WORD(hx,x);
106         ax = hx&0x7fffffff;
108         k = 1;
109         if (hx < 0x3FDA827A) {                  /* 1+x < sqrt(2)+ */
110             if(ax>=0x3ff00000) {                /* x <= -1.0 */
111                 if(x==-1.0) return -two54/vzero; /* log1p(-1)=+inf */
112                 else return (x-x)/(x-x);        /* log1p(x<-1)=NaN */
113             }
114             if(ax<0x3e200000) {                 /* |x| < 2**-29 */
115                 if(two54+x>zero                 /* raise inexact */
116                     &&ax<0x3c900000)            /* |x| < 2**-54 */
117                     return x;
118                 else
119                     return x - x*x*0.5;
120             }
121             if(hx>0||hx<=((int32_t)0xbfd2bec4)) {
122                 k=0;f=x;hu=1;}          /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
123         }
124         if (hx >= 0x7ff00000) return x+x;
125         if(k!=0) {
126             if(hx<0x43400000) {
127                 STRICT_ASSIGN(double,u,1.0+x);
128                 GET_HIGH_WORD(hu,u);
129                 k  = (hu>>20)-1023;
130                 c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
131                 c /= u;
132             } else {
133                 u  = x;
134                 GET_HIGH_WORD(hu,u);
135                 k  = (hu>>20)-1023;
136                 c  = 0;
137             }
138             hu &= 0x000fffff;
139             /*
140              * The approximation to sqrt(2) used in thresholds is not
141              * critical.  However, the ones used above must give less
142              * strict bounds than the one here so that the k==0 case is
143              * never reached from here, since here we have committed to
144              * using the correction term but don't use it if k==0.
145              */
146             if(hu<0x6a09e) {                    /* u ~< sqrt(2) */
147                 SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
148             } else {
149                 k += 1;
150                 SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
151                 hu = (0x00100000-hu)>>2;
152             }
153             f = u-1.0;
154         }
155         hfsq=0.5*f*f;
156         if(hu==0) {     /* |f| < 2**-20 */
157             if(f==zero) {
158                 if(k==0) {
159                     return zero;
160                 } else {
161                     c += k*ln2_lo;
162                     return k*ln2_hi+c;
163                 }
164             }
165             R = hfsq*(1.0-0.66666666666666666*f);
166             if(k==0) return f-R; else
167                      return k*ln2_hi-((R-(k*ln2_lo+c))-f);
168         }
169         s = f/(2.0+f);
170         z = s*s;
171         R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
172         if(k==0) return f-(hfsq-s*(hfsq+R)); else
173                  return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
174 }
176 #if (LDBL_MANT_DIG == 53)
177 __weak_reference(log1p, log1pl);
178 #endif