Merge branch 'vendor/LIBPCAP' and updated build for new version.
[dragonfly.git] / contrib / binutils-2.17 / libiberty / hashtab.c
1 /* An expandable hash tables datatype.  
2    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3    Free Software Foundation, Inc.
4    Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6 This file is part of the libiberty library.
7 Libiberty is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 Libiberty is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 Library General Public License for more details.
16
17 You should have received a copy of the GNU Library General Public
18 License along with libiberty; see the file COPYING.LIB.  If
19 not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA.  */
21
22 /* This package implements basic hash table functionality.  It is possible
23    to search for an entry, create an entry and destroy an entry.
24
25    Elements in the table are generic pointers.
26
27    The size of the table is not fixed; if the occupancy of the table
28    grows too high the hash table will be expanded.
29
30    The abstract data implementation is based on generalized Algorithm D
31    from Knuth's book "The art of computer programming".  Hash table is
32    expanded by creation of new hash table and transferring elements from
33    the old table to the new table. */
34
35 #ifdef HAVE_CONFIG_H
36 #include "config.h"
37 #endif
38
39 #include <sys/types.h>
40
41 #ifdef HAVE_STDLIB_H
42 #include <stdlib.h>
43 #endif
44 #ifdef HAVE_STRING_H
45 #include <string.h>
46 #endif
47 #ifdef HAVE_MALLOC_H
48 #include <malloc.h>
49 #endif
50 #ifdef HAVE_LIMITS_H
51 #include <limits.h>
52 #endif
53 #ifdef HAVE_STDINT_H
54 #include <stdint.h>
55 #endif
56
57 #include <stdio.h>
58
59 #include "libiberty.h"
60 #include "ansidecl.h"
61 #include "hashtab.h"
62
63 #ifndef CHAR_BIT
64 #define CHAR_BIT 8
65 #endif
66
67 static unsigned int higher_prime_index (unsigned long);
68 static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
69 static hashval_t htab_mod (hashval_t, htab_t);
70 static hashval_t htab_mod_m2 (hashval_t, htab_t);
71 static hashval_t hash_pointer (const void *);
72 static int eq_pointer (const void *, const void *);
73 static int htab_expand (htab_t);
74 static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
75
76 /* At some point, we could make these be NULL, and modify the
77    hash-table routines to handle NULL specially; that would avoid
78    function-call overhead for the common case of hashing pointers.  */
79 htab_hash htab_hash_pointer = hash_pointer;
80 htab_eq htab_eq_pointer = eq_pointer;
81
82 /* Table of primes and multiplicative inverses.
83
84    Note that these are not minimally reduced inverses.  Unlike when generating
85    code to divide by a constant, we want to be able to use the same algorithm
86    all the time.  All of these inverses (are implied to) have bit 32 set.
87
88    For the record, here's the function that computed the table; it's a 
89    vastly simplified version of the function of the same name from gcc.  */
90
91 #if 0
92 unsigned int
93 ceil_log2 (unsigned int x)
94 {
95   int i;
96   for (i = 31; i >= 0 ; --i)
97     if (x > (1u << i))
98       return i+1;
99   abort ();
100 }
101
102 unsigned int
103 choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
104 {
105   unsigned long long mhigh;
106   double nx;
107   int lgup, post_shift;
108   int pow, pow2;
109   int n = 32, precision = 32;
110
111   lgup = ceil_log2 (d);
112   pow = n + lgup;
113   pow2 = n + lgup - precision;
114
115   nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
116   mhigh = nx / d;
117
118   *shiftp = lgup - 1;
119   *mlp = mhigh;
120   return mhigh >> 32;
121 }
122 #endif
123
124 struct prime_ent
125 {
126   hashval_t prime;
127   hashval_t inv;
128   hashval_t inv_m2;     /* inverse of prime-2 */
129   hashval_t shift;
130 };
131
132 static struct prime_ent const prime_tab[] = {
133   {          7, 0x24924925, 0x9999999b, 2 },
134   {         13, 0x3b13b13c, 0x745d1747, 3 },
135   {         31, 0x08421085, 0x1a7b9612, 4 },
136   {         61, 0x0c9714fc, 0x15b1e5f8, 5 },
137   {        127, 0x02040811, 0x0624dd30, 6 },
138   {        251, 0x05197f7e, 0x073260a5, 7 },
139   {        509, 0x01824366, 0x02864fc8, 8 },
140   {       1021, 0x00c0906d, 0x014191f7, 9 },
141   {       2039, 0x0121456f, 0x0161e69e, 10 },
142   {       4093, 0x00300902, 0x00501908, 11 },
143   {       8191, 0x00080041, 0x00180241, 12 },
144   {      16381, 0x000c0091, 0x00140191, 13 },
145   {      32749, 0x002605a5, 0x002a06e6, 14 },
146   {      65521, 0x000f00e2, 0x00110122, 15 },
147   {     131071, 0x00008001, 0x00018003, 16 },
148   {     262139, 0x00014002, 0x0001c004, 17 },
149   {     524287, 0x00002001, 0x00006001, 18 },
150   {    1048573, 0x00003001, 0x00005001, 19 },
151   {    2097143, 0x00004801, 0x00005801, 20 },
152   {    4194301, 0x00000c01, 0x00001401, 21 },
153   {    8388593, 0x00001e01, 0x00002201, 22 },
154   {   16777213, 0x00000301, 0x00000501, 23 },
155   {   33554393, 0x00001381, 0x00001481, 24 },
156   {   67108859, 0x00000141, 0x000001c1, 25 },
157   {  134217689, 0x000004e1, 0x00000521, 26 },
158   {  268435399, 0x00000391, 0x000003b1, 27 },
159   {  536870909, 0x00000019, 0x00000029, 28 },
160   { 1073741789, 0x0000008d, 0x00000095, 29 },
161   { 2147483647, 0x00000003, 0x00000007, 30 },
162   /* Avoid "decimal constant so large it is unsigned" for 4294967291.  */
163   { 0xfffffffb, 0x00000006, 0x00000008, 31 }
164 };
165
166 /* The following function returns an index into the above table of the
167    nearest prime number which is greater than N, and near a power of two. */
168
169 static unsigned int
170 higher_prime_index (unsigned long n)
171 {
172   unsigned int low = 0;
173   unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
174
175   while (low != high)
176     {
177       unsigned int mid = low + (high - low) / 2;
178       if (n > prime_tab[mid].prime)
179         low = mid + 1;
180       else
181         high = mid;
182     }
183
184   /* If we've run out of primes, abort.  */
185   if (n > prime_tab[low].prime)
186     {
187       fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
188       abort ();
189     }
190
191   return low;
192 }
193
194 /* Returns a hash code for P.  */
195
196 static hashval_t
197 hash_pointer (const PTR p)
198 {
199   return (hashval_t) ((long)p >> 3);
200 }
201
202 /* Returns non-zero if P1 and P2 are equal.  */
203
204 static int
205 eq_pointer (const PTR p1, const PTR p2)
206 {
207   return p1 == p2;
208 }
209
210
211 /* The parens around the function names in the next two definitions
212    are essential in order to prevent macro expansions of the name.
213    The bodies, however, are expanded as expected, so they are not
214    recursive definitions.  */
215
216 /* Return the current size of given hash table.  */
217
218 #define htab_size(htab)  ((htab)->size)
219
220 size_t
221 (htab_size) (htab_t htab)
222 {
223   return htab_size (htab);
224 }
225
226 /* Return the current number of elements in given hash table. */
227
228 #define htab_elements(htab)  ((htab)->n_elements - (htab)->n_deleted)
229
230 size_t
231 (htab_elements) (htab_t htab)
232 {
233   return htab_elements (htab);
234 }
235
236 /* Return X % Y.  */
237
238 static inline hashval_t
239 htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
240 {
241   /* The multiplicative inverses computed above are for 32-bit types, and
242      requires that we be able to compute a highpart multiply.  */
243 #ifdef UNSIGNED_64BIT_TYPE
244   __extension__ typedef UNSIGNED_64BIT_TYPE ull;
245   if (sizeof (hashval_t) * CHAR_BIT <= 32)
246     {
247       hashval_t t1, t2, t3, t4, q, r;
248
249       t1 = ((ull)x * inv) >> 32;
250       t2 = x - t1;
251       t3 = t2 >> 1;
252       t4 = t1 + t3;
253       q  = t4 >> shift;
254       r  = x - (q * y);
255
256       return r;
257     }
258 #endif
259
260   /* Otherwise just use the native division routines.  */
261   return x % y;
262 }
263
264 /* Compute the primary hash for HASH given HTAB's current size.  */
265
266 static inline hashval_t
267 htab_mod (hashval_t hash, htab_t htab)
268 {
269   const struct prime_ent *p = &prime_tab[htab->size_prime_index];
270   return htab_mod_1 (hash, p->prime, p->inv, p->shift);
271 }
272
273 /* Compute the secondary hash for HASH given HTAB's current size.  */
274
275 static inline hashval_t
276 htab_mod_m2 (hashval_t hash, htab_t htab)
277 {
278   const struct prime_ent *p = &prime_tab[htab->size_prime_index];
279   return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
280 }
281
282 /* This function creates table with length slightly longer than given
283    source length.  Created hash table is initiated as empty (all the
284    hash table entries are HTAB_EMPTY_ENTRY).  The function returns the
285    created hash table, or NULL if memory allocation fails.  */
286
287 htab_t
288 htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
289                    htab_del del_f, htab_alloc alloc_f, htab_free free_f)
290 {
291   htab_t result;
292   unsigned int size_prime_index;
293
294   size_prime_index = higher_prime_index (size);
295   size = prime_tab[size_prime_index].prime;
296
297   result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
298   if (result == NULL)
299     return NULL;
300   result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
301   if (result->entries == NULL)
302     {
303       if (free_f != NULL)
304         (*free_f) (result);
305       return NULL;
306     }
307   result->size = size;
308   result->size_prime_index = size_prime_index;
309   result->hash_f = hash_f;
310   result->eq_f = eq_f;
311   result->del_f = del_f;
312   result->alloc_f = alloc_f;
313   result->free_f = free_f;
314   return result;
315 }
316
317 /* As above, but use the variants of alloc_f and free_f which accept
318    an extra argument.  */
319
320 htab_t
321 htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
322                       htab_del del_f, void *alloc_arg,
323                       htab_alloc_with_arg alloc_f,
324                       htab_free_with_arg free_f)
325 {
326   htab_t result;
327   unsigned int size_prime_index;
328
329   size_prime_index = higher_prime_index (size);
330   size = prime_tab[size_prime_index].prime;
331
332   result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
333   if (result == NULL)
334     return NULL;
335   result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
336   if (result->entries == NULL)
337     {
338       if (free_f != NULL)
339         (*free_f) (alloc_arg, result);
340       return NULL;
341     }
342   result->size = size;
343   result->size_prime_index = size_prime_index;
344   result->hash_f = hash_f;
345   result->eq_f = eq_f;
346   result->del_f = del_f;
347   result->alloc_arg = alloc_arg;
348   result->alloc_with_arg_f = alloc_f;
349   result->free_with_arg_f = free_f;
350   return result;
351 }
352
353 /* Update the function pointers and allocation parameter in the htab_t.  */
354
355 void
356 htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
357                        htab_del del_f, PTR alloc_arg,
358                        htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
359 {
360   htab->hash_f = hash_f;
361   htab->eq_f = eq_f;
362   htab->del_f = del_f;
363   htab->alloc_arg = alloc_arg;
364   htab->alloc_with_arg_f = alloc_f;
365   htab->free_with_arg_f = free_f;
366 }
367
368 /* These functions exist solely for backward compatibility.  */
369
370 #undef htab_create
371 htab_t
372 htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
373 {
374   return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
375 }
376
377 htab_t
378 htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
379 {
380   return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
381 }
382
383 /* This function frees all memory allocated for given hash table.
384    Naturally the hash table must already exist. */
385
386 void
387 htab_delete (htab_t htab)
388 {
389   size_t size = htab_size (htab);
390   PTR *entries = htab->entries;
391   int i;
392
393   if (htab->del_f)
394     for (i = size - 1; i >= 0; i--)
395       if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
396         (*htab->del_f) (entries[i]);
397
398   if (htab->free_f != NULL)
399     {
400       (*htab->free_f) (entries);
401       (*htab->free_f) (htab);
402     }
403   else if (htab->free_with_arg_f != NULL)
404     {
405       (*htab->free_with_arg_f) (htab->alloc_arg, entries);
406       (*htab->free_with_arg_f) (htab->alloc_arg, htab);
407     }
408 }
409
410 /* This function clears all entries in the given hash table.  */
411
412 void
413 htab_empty (htab_t htab)
414 {
415   size_t size = htab_size (htab);
416   PTR *entries = htab->entries;
417   int i;
418
419   if (htab->del_f)
420     for (i = size - 1; i >= 0; i--)
421       if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
422         (*htab->del_f) (entries[i]);
423
424   memset (entries, 0, size * sizeof (PTR));
425 }
426
427 /* Similar to htab_find_slot, but without several unwanted side effects:
428     - Does not call htab->eq_f when it finds an existing entry.
429     - Does not change the count of elements/searches/collisions in the
430       hash table.
431    This function also assumes there are no deleted entries in the table.
432    HASH is the hash value for the element to be inserted.  */
433
434 static PTR *
435 find_empty_slot_for_expand (htab_t htab, hashval_t hash)
436 {
437   hashval_t index = htab_mod (hash, htab);
438   size_t size = htab_size (htab);
439   PTR *slot = htab->entries + index;
440   hashval_t hash2;
441
442   if (*slot == HTAB_EMPTY_ENTRY)
443     return slot;
444   else if (*slot == HTAB_DELETED_ENTRY)
445     abort ();
446
447   hash2 = htab_mod_m2 (hash, htab);
448   for (;;)
449     {
450       index += hash2;
451       if (index >= size)
452         index -= size;
453
454       slot = htab->entries + index;
455       if (*slot == HTAB_EMPTY_ENTRY)
456         return slot;
457       else if (*slot == HTAB_DELETED_ENTRY)
458         abort ();
459     }
460 }
461
462 /* The following function changes size of memory allocated for the
463    entries and repeatedly inserts the table elements.  The occupancy
464    of the table after the call will be about 50%.  Naturally the hash
465    table must already exist.  Remember also that the place of the
466    table entries is changed.  If memory allocation failures are allowed,
467    this function will return zero, indicating that the table could not be
468    expanded.  If all goes well, it will return a non-zero value.  */
469
470 static int
471 htab_expand (htab_t htab)
472 {
473   PTR *oentries;
474   PTR *olimit;
475   PTR *p;
476   PTR *nentries;
477   size_t nsize, osize, elts;
478   unsigned int oindex, nindex;
479
480   oentries = htab->entries;
481   oindex = htab->size_prime_index;
482   osize = htab->size;
483   olimit = oentries + osize;
484   elts = htab_elements (htab);
485
486   /* Resize only when table after removal of unused elements is either
487      too full or too empty.  */
488   if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
489     {
490       nindex = higher_prime_index (elts * 2);
491       nsize = prime_tab[nindex].prime;
492     }
493   else
494     {
495       nindex = oindex;
496       nsize = osize;
497     }
498
499   if (htab->alloc_with_arg_f != NULL)
500     nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
501                                                   sizeof (PTR *));
502   else
503     nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
504   if (nentries == NULL)
505     return 0;
506   htab->entries = nentries;
507   htab->size = nsize;
508   htab->size_prime_index = nindex;
509   htab->n_elements -= htab->n_deleted;
510   htab->n_deleted = 0;
511
512   p = oentries;
513   do
514     {
515       PTR x = *p;
516
517       if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
518         {
519           PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
520
521           *q = x;
522         }
523
524       p++;
525     }
526   while (p < olimit);
527
528   if (htab->free_f != NULL)
529     (*htab->free_f) (oentries);
530   else if (htab->free_with_arg_f != NULL)
531     (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
532   return 1;
533 }
534
535 /* This function searches for a hash table entry equal to the given
536    element.  It cannot be used to insert or delete an element.  */
537
538 PTR
539 htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
540 {
541   hashval_t index, hash2;
542   size_t size;
543   PTR entry;
544
545   htab->searches++;
546   size = htab_size (htab);
547   index = htab_mod (hash, htab);
548
549   entry = htab->entries[index];
550   if (entry == HTAB_EMPTY_ENTRY
551       || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
552     return entry;
553
554   hash2 = htab_mod_m2 (hash, htab);
555   for (;;)
556     {
557       htab->collisions++;
558       index += hash2;
559       if (index >= size)
560         index -= size;
561
562       entry = htab->entries[index];
563       if (entry == HTAB_EMPTY_ENTRY
564           || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
565         return entry;
566     }
567 }
568
569 /* Like htab_find_slot_with_hash, but compute the hash value from the
570    element.  */
571
572 PTR
573 htab_find (htab_t htab, const PTR element)
574 {
575   return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
576 }
577
578 /* This function searches for a hash table slot containing an entry
579    equal to the given element.  To delete an entry, call this with
580    insert=NO_INSERT, then call htab_clear_slot on the slot returned
581    (possibly after doing some checks).  To insert an entry, call this
582    with insert=INSERT, then write the value you want into the returned
583    slot.  When inserting an entry, NULL may be returned if memory
584    allocation fails.  */
585
586 PTR *
587 htab_find_slot_with_hash (htab_t htab, const PTR element,
588                           hashval_t hash, enum insert_option insert)
589 {
590   PTR *first_deleted_slot;
591   hashval_t index, hash2;
592   size_t size;
593   PTR entry;
594
595   size = htab_size (htab);
596   if (insert == INSERT && size * 3 <= htab->n_elements * 4)
597     {
598       if (htab_expand (htab) == 0)
599         return NULL;
600       size = htab_size (htab);
601     }
602
603   index = htab_mod (hash, htab);
604
605   htab->searches++;
606   first_deleted_slot = NULL;
607
608   entry = htab->entries[index];
609   if (entry == HTAB_EMPTY_ENTRY)
610     goto empty_entry;
611   else if (entry == HTAB_DELETED_ENTRY)
612     first_deleted_slot = &htab->entries[index];
613   else if ((*htab->eq_f) (entry, element))
614     return &htab->entries[index];
615       
616   hash2 = htab_mod_m2 (hash, htab);
617   for (;;)
618     {
619       htab->collisions++;
620       index += hash2;
621       if (index >= size)
622         index -= size;
623       
624       entry = htab->entries[index];
625       if (entry == HTAB_EMPTY_ENTRY)
626         goto empty_entry;
627       else if (entry == HTAB_DELETED_ENTRY)
628         {
629           if (!first_deleted_slot)
630             first_deleted_slot = &htab->entries[index];
631         }
632       else if ((*htab->eq_f) (entry, element))
633         return &htab->entries[index];
634     }
635
636  empty_entry:
637   if (insert == NO_INSERT)
638     return NULL;
639
640   if (first_deleted_slot)
641     {
642       htab->n_deleted--;
643       *first_deleted_slot = HTAB_EMPTY_ENTRY;
644       return first_deleted_slot;
645     }
646
647   htab->n_elements++;
648   return &htab->entries[index];
649 }
650
651 /* Like htab_find_slot_with_hash, but compute the hash value from the
652    element.  */
653
654 PTR *
655 htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
656 {
657   return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
658                                    insert);
659 }
660
661 /* This function deletes an element with the given value from hash
662    table (the hash is computed from the element).  If there is no matching
663    element in the hash table, this function does nothing.  */
664
665 void
666 htab_remove_elt (htab_t htab, PTR element)
667 {
668   htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
669 }
670
671
672 /* This function deletes an element with the given value from hash
673    table.  If there is no matching element in the hash table, this
674    function does nothing.  */
675
676 void
677 htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
678 {
679   PTR *slot;
680
681   slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
682   if (*slot == HTAB_EMPTY_ENTRY)
683     return;
684
685   if (htab->del_f)
686     (*htab->del_f) (*slot);
687
688   *slot = HTAB_DELETED_ENTRY;
689   htab->n_deleted++;
690 }
691
692 /* This function clears a specified slot in a hash table.  It is
693    useful when you've already done the lookup and don't want to do it
694    again.  */
695
696 void
697 htab_clear_slot (htab_t htab, PTR *slot)
698 {
699   if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
700       || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
701     abort ();
702
703   if (htab->del_f)
704     (*htab->del_f) (*slot);
705
706   *slot = HTAB_DELETED_ENTRY;
707   htab->n_deleted++;
708 }
709
710 /* This function scans over the entire hash table calling
711    CALLBACK for each live entry.  If CALLBACK returns false,
712    the iteration stops.  INFO is passed as CALLBACK's second
713    argument.  */
714
715 void
716 htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
717 {
718   PTR *slot;
719   PTR *limit;
720   
721   slot = htab->entries;
722   limit = slot + htab_size (htab);
723
724   do
725     {
726       PTR x = *slot;
727
728       if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
729         if (!(*callback) (slot, info))
730           break;
731     }
732   while (++slot < limit);
733 }
734
735 /* Like htab_traverse_noresize, but does resize the table when it is
736    too empty to improve effectivity of subsequent calls.  */
737
738 void
739 htab_traverse (htab_t htab, htab_trav callback, PTR info)
740 {
741   if (htab_elements (htab) * 8 < htab_size (htab))
742     htab_expand (htab);
743
744   htab_traverse_noresize (htab, callback, info);
745 }
746
747 /* Return the fraction of fixed collisions during all work with given
748    hash table. */
749
750 double
751 htab_collisions (htab_t htab)
752 {
753   if (htab->searches == 0)
754     return 0.0;
755
756   return (double) htab->collisions / (double) htab->searches;
757 }
758
759 /* Hash P as a null-terminated string.
760
761    Copied from gcc/hashtable.c.  Zack had the following to say with respect
762    to applicability, though note that unlike hashtable.c, this hash table
763    implementation re-hashes rather than chain buckets.
764
765    http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
766    From: Zack Weinberg <zackw@panix.com>
767    Date: Fri, 17 Aug 2001 02:15:56 -0400
768
769    I got it by extracting all the identifiers from all the source code
770    I had lying around in mid-1999, and testing many recurrences of
771    the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
772    prime numbers or the appropriate identity.  This was the best one.
773    I don't remember exactly what constituted "best", except I was
774    looking at bucket-length distributions mostly.
775    
776    So it should be very good at hashing identifiers, but might not be
777    as good at arbitrary strings.
778    
779    I'll add that it thoroughly trounces the hash functions recommended
780    for this use at http://burtleburtle.net/bob/hash/index.html, both
781    on speed and bucket distribution.  I haven't tried it against the
782    function they just started using for Perl's hashes.  */
783
784 hashval_t
785 htab_hash_string (const PTR p)
786 {
787   const unsigned char *str = (const unsigned char *) p;
788   hashval_t r = 0;
789   unsigned char c;
790
791   while ((c = *str++) != 0)
792     r = r * 67 + c - 113;
793
794   return r;
795 }
796
797 /* DERIVED FROM:
798 --------------------------------------------------------------------
799 lookup2.c, by Bob Jenkins, December 1996, Public Domain.
800 hash(), hash2(), hash3, and mix() are externally useful functions.
801 Routines to test the hash are included if SELF_TEST is defined.
802 You can use this free for any purpose.  It has no warranty.
803 --------------------------------------------------------------------
804 */
805
806 /*
807 --------------------------------------------------------------------
808 mix -- mix 3 32-bit values reversibly.
809 For every delta with one or two bit set, and the deltas of all three
810   high bits or all three low bits, whether the original value of a,b,c
811   is almost all zero or is uniformly distributed,
812 * If mix() is run forward or backward, at least 32 bits in a,b,c
813   have at least 1/4 probability of changing.
814 * If mix() is run forward, every bit of c will change between 1/3 and
815   2/3 of the time.  (Well, 22/100 and 78/100 for some 2-bit deltas.)
816 mix() was built out of 36 single-cycle latency instructions in a 
817   structure that could supported 2x parallelism, like so:
818       a -= b; 
819       a -= c; x = (c>>13);
820       b -= c; a ^= x;
821       b -= a; x = (a<<8);
822       c -= a; b ^= x;
823       c -= b; x = (b>>13);
824       ...
825   Unfortunately, superscalar Pentiums and Sparcs can't take advantage 
826   of that parallelism.  They've also turned some of those single-cycle
827   latency instructions into multi-cycle latency instructions.  Still,
828   this is the fastest good hash I could find.  There were about 2^^68
829   to choose from.  I only looked at a billion or so.
830 --------------------------------------------------------------------
831 */
832 /* same, but slower, works on systems that might have 8 byte hashval_t's */
833 #define mix(a,b,c) \
834 { \
835   a -= b; a -= c; a ^= (c>>13); \
836   b -= c; b -= a; b ^= (a<< 8); \
837   c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
838   a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
839   b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
840   c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
841   a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
842   b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
843   c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
844 }
845
846 /*
847 --------------------------------------------------------------------
848 hash() -- hash a variable-length key into a 32-bit value
849   k     : the key (the unaligned variable-length array of bytes)
850   len   : the length of the key, counting by bytes
851   level : can be any 4-byte value
852 Returns a 32-bit value.  Every bit of the key affects every bit of
853 the return value.  Every 1-bit and 2-bit delta achieves avalanche.
854 About 36+6len instructions.
855
856 The best hash table sizes are powers of 2.  There is no need to do
857 mod a prime (mod is sooo slow!).  If you need less than 32 bits,
858 use a bitmask.  For example, if you need only 10 bits, do
859   h = (h & hashmask(10));
860 In which case, the hash table should have hashsize(10) elements.
861
862 If you are hashing n strings (ub1 **)k, do it like this:
863   for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
864
865 By Bob Jenkins, 1996.  bob_jenkins@burtleburtle.net.  You may use this
866 code any way you wish, private, educational, or commercial.  It's free.
867
868 See http://burtleburtle.net/bob/hash/evahash.html
869 Use for hash table lookup, or anything where one collision in 2^32 is
870 acceptable.  Do NOT use for cryptographic purposes.
871 --------------------------------------------------------------------
872 */
873
874 hashval_t
875 iterative_hash (const PTR k_in /* the key */,
876                 register size_t  length /* the length of the key */,
877                 register hashval_t initval /* the previous hash, or
878                                               an arbitrary value */)
879 {
880   register const unsigned char *k = (const unsigned char *)k_in;
881   register hashval_t a,b,c,len;
882
883   /* Set up the internal state */
884   len = length;
885   a = b = 0x9e3779b9;  /* the golden ratio; an arbitrary value */
886   c = initval;           /* the previous hash value */
887
888   /*---------------------------------------- handle most of the key */
889 #ifndef WORDS_BIGENDIAN
890   /* On a little-endian machine, if the data is 4-byte aligned we can hash
891      by word for better speed.  This gives nondeterministic results on
892      big-endian machines.  */
893   if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
894     while (len >= 12)    /* aligned */
895       {
896         a += *(hashval_t *)(k+0);
897         b += *(hashval_t *)(k+4);
898         c += *(hashval_t *)(k+8);
899         mix(a,b,c);
900         k += 12; len -= 12;
901       }
902   else /* unaligned */
903 #endif
904     while (len >= 12)
905       {
906         a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
907         b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
908         c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
909         mix(a,b,c);
910         k += 12; len -= 12;
911       }
912
913   /*------------------------------------- handle the last 11 bytes */
914   c += length;
915   switch(len)              /* all the case statements fall through */
916     {
917     case 11: c+=((hashval_t)k[10]<<24);
918     case 10: c+=((hashval_t)k[9]<<16);
919     case 9 : c+=((hashval_t)k[8]<<8);
920       /* the first byte of c is reserved for the length */
921     case 8 : b+=((hashval_t)k[7]<<24);
922     case 7 : b+=((hashval_t)k[6]<<16);
923     case 6 : b+=((hashval_t)k[5]<<8);
924     case 5 : b+=k[4];
925     case 4 : a+=((hashval_t)k[3]<<24);
926     case 3 : a+=((hashval_t)k[2]<<16);
927     case 2 : a+=((hashval_t)k[1]<<8);
928     case 1 : a+=k[0];
929       /* case 0: nothing left to add */
930     }
931   mix(a,b,c);
932   /*-------------------------------------------- report the result */
933   return c;
934 }