Collapse some bits of repetitive code into their own procedures and
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70  * $DragonFly: src/sys/vm/vm_fault.c,v 1.30 2006/09/13 22:25:00 dillon Exp $
71  */
72
73 /*
74  *      Page fault handling module.
75  */
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vkernel.h>
85 #include <sys/sfbuf.h>
86 #include <sys/lock.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99
100 #include <sys/thread2.h>
101 #include <vm/vm_page2.h>
102
103 #define VM_FAULT_READ_AHEAD 8
104 #define VM_FAULT_READ_BEHIND 7
105 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
106
107 struct faultstate {
108         vm_page_t m;
109         vm_object_t object;
110         vm_pindex_t pindex;
111         vm_prot_t prot;
112         vm_page_t first_m;
113         vm_object_t first_object;
114         vm_prot_t first_prot;
115         vm_map_t map;
116         vm_map_entry_t entry;
117         int lookup_still_valid;
118         int didlimit;
119         int hardfault;
120         int fault_flags;
121         int map_generation;
122         boolean_t wired;
123         struct vnode *vp;
124 };
125
126 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
127 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t);
128 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
129 static int vm_fault_ratelimit(struct vmspace *);
130
131 static __inline void
132 release_page(struct faultstate *fs)
133 {
134         vm_page_wakeup(fs->m);
135         vm_page_deactivate(fs->m);
136         fs->m = NULL;
137 }
138
139 static __inline void
140 unlock_map(struct faultstate *fs)
141 {
142         if (fs->lookup_still_valid) {
143                 vm_map_lookup_done(fs->map, fs->entry, 0);
144                 fs->lookup_still_valid = FALSE;
145         }
146 }
147
148 /*
149  * Clean up after a successful call to vm_fault_object() so another call
150  * to vm_fault_object() can be made.
151  */
152 static void
153 _cleanup_successful_fault(struct faultstate *fs, int relock)
154 {
155         if (fs->object != fs->first_object) {
156                 vm_page_free(fs->first_m);
157                 vm_object_pip_wakeup(fs->object);
158                 fs->first_m = NULL;
159         }
160         fs->object = fs->first_object;
161         if (relock && fs->lookup_still_valid == FALSE) {
162                 vm_map_lock_read(fs->map);
163                 fs->lookup_still_valid = TRUE;
164         }
165 }
166
167 static void
168 _unlock_things(struct faultstate *fs, int dealloc)
169 {
170         vm_object_pip_wakeup(fs->first_object);
171         _cleanup_successful_fault(fs, 0);
172         if (dealloc) {
173                 vm_object_deallocate(fs->first_object);
174         }
175         unlock_map(fs); 
176         if (fs->vp != NULL) { 
177                 vput(fs->vp);
178                 fs->vp = NULL;
179         }
180 }
181
182 #define unlock_things(fs) _unlock_things(fs, 0)
183 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
184 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
185
186 /*
187  * TRYPAGER 
188  *
189  * Determine if the pager for the current object *might* contain the page.
190  *
191  * We only need to try the pager if this is not a default object (default
192  * objects are zero-fill and have no real pager), and if we are not taking
193  * a wiring fault or if the FS entry is wired.
194  */
195 #define TRYPAGER(fs)    \
196                 (fs->object->type != OBJT_DEFAULT && \
197                 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
198
199 /*
200  * vm_fault:
201  *
202  * Handle a page fault occuring at the given address, requiring the given
203  * permissions, in the map specified.  If successful, the page is inserted
204  * into the associated physical map.
205  *
206  * NOTE: The given address should be truncated to the proper page address.
207  *
208  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
209  * a standard error specifying why the fault is fatal is returned.
210  *
211  * The map in question must be referenced, and remains so.
212  * The caller may hold no locks.
213  */
214 int
215 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
216 {
217         int result;
218         vm_pindex_t first_pindex;
219         struct faultstate fs;
220
221         mycpu->gd_cnt.v_vm_faults++;
222
223         fs.didlimit = 0;
224         fs.hardfault = 0;
225         fs.fault_flags = fault_flags;
226
227 RetryFault:
228         /*
229          * Find the vm_map_entry representing the backing store and resolve
230          * the top level object and page index.  This may have the side
231          * effect of executing a copy-on-write on the map entry and/or
232          * creating a shadow object, but will not COW any actual VM pages.
233          *
234          * On success fs.map is left read-locked and various other fields 
235          * are initialized but not otherwise referenced or locked.
236          *
237          * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
238          * if the map entry is a virtual page table and also writable,
239          * so we can set the 'A'accessed bit in the virtual page table entry.
240          */
241         fs.map = map;
242         result = vm_map_lookup(&fs.map, vaddr, fault_type,
243                                &fs.entry, &fs.first_object,
244                                &first_pindex, &fs.first_prot, &fs.wired);
245
246         /*
247          * If the lookup failed or the map protections are incompatible,
248          * the fault generally fails.  However, if the caller is trying
249          * to do a user wiring we have more work to do.
250          */
251         if (result != KERN_SUCCESS) {
252                 if (result != KERN_PROTECTION_FAILURE)
253                         return result;
254                 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
255                         return result;
256
257                 /*
258                  * If we are user-wiring a r/w segment, and it is COW, then
259                  * we need to do the COW operation.  Note that we don't
260                  * currently COW RO sections now, because it is NOT desirable
261                  * to COW .text.  We simply keep .text from ever being COW'ed
262                  * and take the heat that one cannot debug wired .text sections.
263                  */
264                 result = vm_map_lookup(&fs.map, vaddr,
265                                        VM_PROT_READ|VM_PROT_WRITE|
266                                         VM_PROT_OVERRIDE_WRITE,
267                                        &fs.entry, &fs.first_object,
268                                        &first_pindex, &fs.first_prot,
269                                        &fs.wired);
270                 if (result != KERN_SUCCESS)
271                         return result;
272
273                 /*
274                  * If we don't COW now, on a user wire, the user will never
275                  * be able to write to the mapping.  If we don't make this
276                  * restriction, the bookkeeping would be nearly impossible.
277                  */
278                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
279                         fs.entry->max_protection &= ~VM_PROT_WRITE;
280         }
281
282         /*
283          * fs.map is read-locked
284          *
285          * Misc checks.  Save the map generation number to detect races.
286          */
287         fs.map_generation = fs.map->timestamp;
288
289         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
290                 panic("vm_fault: fault on nofault entry, addr: %lx",
291                     (u_long)vaddr);
292         }
293
294         /*
295          * A system map entry may return a NULL object.  No object means
296          * no pager means an unrecoverable kernel fault.
297          */
298         if (fs.first_object == NULL) {
299                 panic("vm_fault: unrecoverable fault at %p in entry %p",
300                         (void *)vaddr, fs.entry);
301         }
302
303         /*
304          * Make a reference to this object to prevent its disposal while we
305          * are messing with it.  Once we have the reference, the map is free
306          * to be diddled.  Since objects reference their shadows (and copies),
307          * they will stay around as well.
308          *
309          * Bump the paging-in-progress count to prevent size changes (e.g.
310          * truncation operations) during I/O.  This must be done after
311          * obtaining the vnode lock in order to avoid possible deadlocks.
312          */
313         vm_object_reference(fs.first_object);
314         fs.vp = vnode_pager_lock(fs.first_object);
315         vm_object_pip_add(fs.first_object, 1);
316
317         fs.lookup_still_valid = TRUE;
318         fs.first_m = NULL;
319         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
320
321         /*
322          * If the entry is wired we cannot change the page protection.
323          */
324         if (fs.wired)
325                 fault_type = fs.first_prot;
326
327         /*
328          * The page we want is at (first_object, first_pindex), but if the
329          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
330          * page table to figure out the actual pindex.
331          *
332          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
333          * ONLY
334          */
335         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
336                 result = vm_fault_vpagetable(&fs, &first_pindex,
337                                              fs.entry->aux.master_pde);
338                 if (result == KERN_TRY_AGAIN)
339                         goto RetryFault;
340                 if (result != KERN_SUCCESS)
341                         return (result);
342         }
343
344         /*
345          * Now we have the actual (object, pindex), fault in the page.  If
346          * vm_fault_object() fails it will unlock and deallocate the FS
347          * data.   If it succeeds everything remains locked and fs->object
348          * will have an additinal PIP count if it is not equal to
349          * fs->first_object
350          */
351         result = vm_fault_object(&fs, first_pindex, fault_type);
352
353         if (result == KERN_TRY_AGAIN)
354                 goto RetryFault;
355         if (result != KERN_SUCCESS)
356                 return (result);
357
358         /*
359          * On success vm_fault_object() does not unlock or deallocate, and fs.m
360          * will contain a busied page.
361          *
362          * Enter the page into the pmap and do pmap-related adjustments.
363          */
364         unlock_things(&fs);
365         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
366
367         if (((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0) && (fs.wired == 0)) {
368                 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
369         }
370
371         vm_page_flag_clear(fs.m, PG_ZERO);
372         vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
373         if (fs.fault_flags & VM_FAULT_HOLD)
374                 vm_page_hold(fs.m);
375
376         /*
377          * If the page is not wired down, then put it where the pageout daemon
378          * can find it.
379          */
380         if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
381                 if (fs.wired)
382                         vm_page_wire(fs.m);
383                 else
384                         vm_page_unwire(fs.m, 1);
385         } else {
386                 vm_page_activate(fs.m);
387         }
388
389         if (curproc && (curproc->p_flag & P_SWAPPEDOUT) == 0 &&
390             curproc->p_stats) {
391                 if (fs.hardfault) {
392                         curproc->p_stats->p_ru.ru_majflt++;
393                 } else {
394                         curproc->p_stats->p_ru.ru_minflt++;
395                 }
396         }
397
398         /*
399          * Unlock everything, and return
400          */
401         vm_page_wakeup(fs.m);
402         vm_object_deallocate(fs.first_object);
403
404         return (KERN_SUCCESS);
405 }
406
407 /*
408  * Translate the virtual page number (first_pindex) that is relative
409  * to the address space into a logical page number that is relative to the
410  * backing object.  Use the virtual page table pointed to by (vpte).
411  *
412  * This implements an N-level page table.  Any level can terminate the
413  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
414  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
415  */
416 static
417 int
418 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex, vpte_t vpte)
419 {
420         struct sf_buf *sf;
421         int vshift = 32 - PAGE_SHIFT;   /* page index bits remaining */
422         int result = KERN_SUCCESS;
423
424         for (;;) {
425                 if ((vpte & VPTE_V) == 0) {
426                         unlock_and_deallocate(fs);
427                         return (KERN_FAILURE);
428                 }
429                 if ((vpte & VPTE_PS) || vshift == 0)
430                         break;
431                 KKASSERT(vshift >= VPTE_PAGE_BITS);
432
433                 /*
434                  * Get the page table page
435                  */
436                 result = vm_fault_object(fs, vpte >> PAGE_SHIFT, VM_PROT_READ);
437                 if (result != KERN_SUCCESS)
438                         return (result);
439
440                 /*
441                  * Process the returned fs.m and look up the page table
442                  * entry in the page table page.
443                  */
444                 vshift -= VPTE_PAGE_BITS;
445                 sf = sf_buf_alloc(fs->m, SFB_CPUPRIVATE);
446                 vpte = *((vpte_t *)sf_buf_kva(sf) +
447                        ((*pindex >> vshift) & VPTE_PAGE_MASK));
448                 sf_buf_free(sf);
449                 vm_page_flag_set(fs->m, PG_REFERENCED);
450                 vm_page_activate(fs->m);
451                 vm_page_wakeup(fs->m);
452                 cleanup_successful_fault(fs);
453         }
454         /*
455          * Combine remaining address bits with the vpte.
456          */
457         *pindex = (vpte >> PAGE_SHIFT) +
458                   (*pindex & ((1 << vshift) - 1));
459         return (KERN_SUCCESS);
460 }
461
462
463 /*
464  * Do all operations required to fault-in (fs.first_object, pindex).  Run
465  * through the shadow chain as necessary and do required COW or virtual
466  * copy operations.  The caller has already fully resolved the vm_map_entry
467  * and, if appropriate, has created a copy-on-write layer.  All we need to
468  * do is iterate the object chain.
469  *
470  * On failure (fs) is unlocked and deallocated and the caller may return or
471  * retry depending on the failure code.  On success (fs) is NOT unlocked or
472  * deallocated, fs.m will contained a resolved, busied page, and fs.object
473  * will have an additional PIP count if it is not equal to fs.first_object.
474  */
475 static
476 int
477 vm_fault_object(struct faultstate *fs,
478                 vm_pindex_t first_pindex, vm_prot_t fault_type)
479 {
480         vm_object_t next_object;
481         vm_page_t marray[VM_FAULT_READ];
482         vm_pindex_t pindex;
483         int faultcount;
484
485         fs->prot = fs->first_prot;
486         fs->object = fs->first_object;
487         pindex = first_pindex;
488
489         for (;;) {
490                 /*
491                  * If the object is dead, we stop here
492                  */
493                 if (fs->object->flags & OBJ_DEAD) {
494                         unlock_and_deallocate(fs);
495                         return (KERN_PROTECTION_FAILURE);
496                 }
497
498                 /*
499                  * See if page is resident.  spl protection is required
500                  * to avoid an interrupt unbusy/free race against our
501                  * lookup.  We must hold the protection through a page
502                  * allocation or busy.
503                  */
504                 crit_enter();
505                 fs->m = vm_page_lookup(fs->object, pindex);
506                 if (fs->m != NULL) {
507                         int queue;
508                         /*
509                          * Wait/Retry if the page is busy.  We have to do this
510                          * if the page is busy via either PG_BUSY or 
511                          * vm_page_t->busy because the vm_pager may be using
512                          * vm_page_t->busy for pageouts ( and even pageins if
513                          * it is the vnode pager ), and we could end up trying
514                          * to pagein and pageout the same page simultaneously.
515                          *
516                          * We can theoretically allow the busy case on a read
517                          * fault if the page is marked valid, but since such
518                          * pages are typically already pmap'd, putting that
519                          * special case in might be more effort then it is 
520                          * worth.  We cannot under any circumstances mess
521                          * around with a vm_page_t->busy page except, perhaps,
522                          * to pmap it.
523                          */
524                         if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
525                                 unlock_things(fs);
526                                 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
527                                 mycpu->gd_cnt.v_intrans++;
528                                 vm_object_deallocate(fs->first_object);
529                                 crit_exit();
530                                 return (KERN_TRY_AGAIN);
531                         }
532
533                         /*
534                          * If reactivating a page from PQ_CACHE we may have
535                          * to rate-limit.
536                          */
537                         queue = fs->m->queue;
538                         vm_page_unqueue_nowakeup(fs->m);
539
540                         if ((queue - fs->m->pc) == PQ_CACHE && 
541                             vm_page_count_severe()) {
542                                 vm_page_activate(fs->m);
543                                 unlock_and_deallocate(fs);
544                                 vm_waitpfault();
545                                 crit_exit();
546                                 return (KERN_TRY_AGAIN);
547                         }
548
549                         /*
550                          * Mark page busy for other processes, and the 
551                          * pagedaemon.  If it still isn't completely valid
552                          * (readable), jump to readrest, else we found the
553                          * page and can return.
554                          *
555                          * We can release the spl once we have marked the
556                          * page busy.
557                          */
558                         vm_page_busy(fs->m);
559                         crit_exit();
560
561                         if (((fs->m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
562                             fs->m->object != kernel_object &&
563                             fs->m->object != kmem_object) {
564                                 goto readrest;
565                         }
566                         break; /* break to PAGE HAS BEEN FOUND */
567                 }
568
569                 /*
570                  * Page is not resident, If this is the search termination
571                  * or the pager might contain the page, allocate a new page.
572                  *
573                  * NOTE: We are still in a critical section.
574                  */
575                 if (TRYPAGER(fs) || fs->object == fs->first_object) {
576                         /*
577                          * If the page is beyond the object size we fail
578                          */
579                         if (pindex >= fs->object->size) {
580                                 crit_exit();
581                                 unlock_and_deallocate(fs);
582                                 return (KERN_PROTECTION_FAILURE);
583                         }
584
585                         /*
586                          * Ratelimit.
587                          */
588                         if (fs->didlimit == 0 && curproc != NULL) {
589                                 int limticks;
590
591                                 limticks = vm_fault_ratelimit(curproc->p_vmspace);
592                                 if (limticks) {
593                                         crit_exit();
594                                         unlock_and_deallocate(fs);
595                                         tsleep(curproc, 0, "vmrate", limticks);
596                                         fs->didlimit = 1;
597                                         return (KERN_TRY_AGAIN);
598                                 }
599                         }
600
601                         /*
602                          * Allocate a new page for this object/offset pair.
603                          */
604                         fs->m = NULL;
605                         if (!vm_page_count_severe()) {
606                                 fs->m = vm_page_alloc(fs->object, pindex,
607                                     (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
608                         }
609                         if (fs->m == NULL) {
610                                 crit_exit();
611                                 unlock_and_deallocate(fs);
612                                 vm_waitpfault();
613                                 return (KERN_TRY_AGAIN);
614                         }
615                 }
616                 crit_exit();
617
618 readrest:
619                 /*
620                  * We have found a valid page or we have allocated a new page.
621                  * The page thus may not be valid or may not be entirely 
622                  * valid.
623                  *
624                  * Attempt to fault-in the page if there is a chance that the
625                  * pager has it, and potentially fault in additional pages
626                  * at the same time.
627                  *
628                  * We are NOT in splvm here and if TRYPAGER is true then
629                  * fs.m will be non-NULL and will be PG_BUSY for us.
630                  */
631
632                 if (TRYPAGER(fs)) {
633                         int rv;
634                         int reqpage;
635                         int ahead, behind;
636                         u_char behavior = vm_map_entry_behavior(fs->entry);
637
638                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
639                                 ahead = 0;
640                                 behind = 0;
641                         } else {
642                                 behind = pindex;
643                                 if (behind > VM_FAULT_READ_BEHIND)
644                                         behind = VM_FAULT_READ_BEHIND;
645
646                                 ahead = fs->object->size - pindex;
647                                 if (ahead < 1)
648                                         ahead = 1;
649                                 if (ahead > VM_FAULT_READ_AHEAD)
650                                         ahead = VM_FAULT_READ_AHEAD;
651                         }
652
653                         if ((fs->first_object->type != OBJT_DEVICE) &&
654                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
655                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
656                                 pindex >= fs->entry->lastr &&
657                                 pindex < fs->entry->lastr + VM_FAULT_READ))
658                         ) {
659                                 vm_pindex_t firstpindex, tmppindex;
660
661                                 if (first_pindex < 2 * VM_FAULT_READ)
662                                         firstpindex = 0;
663                                 else
664                                         firstpindex = first_pindex - 2 * VM_FAULT_READ;
665
666                                 /*
667                                  * note: partially valid pages cannot be 
668                                  * included in the lookahead - NFS piecemeal
669                                  * writes will barf on it badly.
670                                  *
671                                  * spl protection is required to avoid races
672                                  * between the lookup and an interrupt
673                                  * unbusy/free sequence occuring prior to
674                                  * our busy check.
675                                  */
676                                 crit_enter();
677                                 for (tmppindex = first_pindex - 1;
678                                     tmppindex >= firstpindex;
679                                     --tmppindex
680                                 ) {
681                                         vm_page_t mt;
682
683                                         mt = vm_page_lookup(fs->first_object, tmppindex);
684                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
685                                                 break;
686                                         if (mt->busy ||
687                                                 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
688                                                 mt->hold_count ||
689                                                 mt->wire_count) 
690                                                 continue;
691                                         if (mt->dirty == 0)
692                                                 vm_page_test_dirty(mt);
693                                         if (mt->dirty) {
694                                                 vm_page_protect(mt, VM_PROT_NONE);
695                                                 vm_page_deactivate(mt);
696                                         } else {
697                                                 vm_page_cache(mt);
698                                         }
699                                 }
700                                 crit_exit();
701
702                                 ahead += behind;
703                                 behind = 0;
704                         }
705
706                         /*
707                          * now we find out if any other pages should be paged
708                          * in at this time this routine checks to see if the
709                          * pages surrounding this fault reside in the same
710                          * object as the page for this fault.  If they do,
711                          * then they are faulted in also into the object.  The
712                          * array "marray" returned contains an array of
713                          * vm_page_t structs where one of them is the
714                          * vm_page_t passed to the routine.  The reqpage
715                          * return value is the index into the marray for the
716                          * vm_page_t passed to the routine.
717                          *
718                          * fs.m plus the additional pages are PG_BUSY'd.
719                          */
720                         faultcount = vm_fault_additional_pages(
721                             fs->m, behind, ahead, marray, &reqpage);
722
723                         /*
724                          * update lastr imperfectly (we do not know how much
725                          * getpages will actually read), but good enough.
726                          */
727                         fs->entry->lastr = pindex + faultcount - behind;
728
729                         /*
730                          * Call the pager to retrieve the data, if any, after
731                          * releasing the lock on the map.  We hold a ref on
732                          * fs.object and the pages are PG_BUSY'd.
733                          */
734                         unlock_map(fs);
735
736                         if (faultcount) {
737                                 rv = vm_pager_get_pages(fs->object, marray, 
738                                                         faultcount, reqpage);
739                         } else {
740                                 rv = VM_PAGER_FAIL;
741                         }
742
743                         if (rv == VM_PAGER_OK) {
744                                 /*
745                                  * Found the page. Leave it busy while we play
746                                  * with it.
747                                  */
748
749                                 /*
750                                  * Relookup in case pager changed page. Pager
751                                  * is responsible for disposition of old page
752                                  * if moved.
753                                  *
754                                  * XXX other code segments do relookups too.
755                                  * It's a bad abstraction that needs to be
756                                  * fixed/removed.
757                                  */
758                                 fs->m = vm_page_lookup(fs->object, pindex);
759                                 if (fs->m == NULL) {
760                                         unlock_and_deallocate(fs);
761                                         return (KERN_TRY_AGAIN);
762                                 }
763
764                                 ++fs->hardfault;
765                                 break; /* break to PAGE HAS BEEN FOUND */
766                         }
767
768                         /*
769                          * Remove the bogus page (which does not exist at this
770                          * object/offset); before doing so, we must get back
771                          * our object lock to preserve our invariant.
772                          *
773                          * Also wake up any other process that may want to bring
774                          * in this page.
775                          *
776                          * If this is the top-level object, we must leave the
777                          * busy page to prevent another process from rushing
778                          * past us, and inserting the page in that object at
779                          * the same time that we are.
780                          */
781                         if (rv == VM_PAGER_ERROR) {
782                                 if (curproc)
783                                         printf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
784                                 else
785                                         printf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
786                         }
787                         /*
788                          * Data outside the range of the pager or an I/O error
789                          */
790                         /*
791                          * XXX - the check for kernel_map is a kludge to work
792                          * around having the machine panic on a kernel space
793                          * fault w/ I/O error.
794                          */
795                         if (((fs->map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
796                                 (rv == VM_PAGER_BAD)) {
797                                 vm_page_free(fs->m);
798                                 fs->m = NULL;
799                                 unlock_and_deallocate(fs);
800                                 if (rv == VM_PAGER_ERROR)
801                                         return (KERN_FAILURE);
802                                 else
803                                         return (KERN_PROTECTION_FAILURE);
804                                 /* NOT REACHED */
805                         }
806                         if (fs->object != fs->first_object) {
807                                 vm_page_free(fs->m);
808                                 fs->m = NULL;
809                                 /*
810                                  * XXX - we cannot just fall out at this
811                                  * point, m has been freed and is invalid!
812                                  */
813                         }
814                 }
815
816                 /*
817                  * We get here if the object has a default pager (or unwiring) 
818                  * or the pager doesn't have the page.
819                  */
820                 if (fs->object == fs->first_object)
821                         fs->first_m = fs->m;
822
823                 /*
824                  * Move on to the next object.  Lock the next object before
825                  * unlocking the current one.
826                  */
827                 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
828                 next_object = fs->object->backing_object;
829                 if (next_object == NULL) {
830                         /*
831                          * If there's no object left, fill the page in the top
832                          * object with zeros.
833                          */
834                         if (fs->object != fs->first_object) {
835                                 vm_object_pip_wakeup(fs->object);
836
837                                 fs->object = fs->first_object;
838                                 pindex = first_pindex;
839                                 fs->m = fs->first_m;
840                         }
841                         fs->first_m = NULL;
842
843                         /*
844                          * Zero the page if necessary and mark it valid.
845                          */
846                         if ((fs->m->flags & PG_ZERO) == 0) {
847                                 vm_page_zero_fill(fs->m);
848                         } else {
849                                 mycpu->gd_cnt.v_ozfod++;
850                         }
851                         mycpu->gd_cnt.v_zfod++;
852                         fs->m->valid = VM_PAGE_BITS_ALL;
853                         break;  /* break to PAGE HAS BEEN FOUND */
854                 } else {
855                         if (fs->object != fs->first_object) {
856                                 vm_object_pip_wakeup(fs->object);
857                         }
858                         KASSERT(fs->object != next_object, ("object loop %p", next_object));
859                         fs->object = next_object;
860                         vm_object_pip_add(fs->object, 1);
861                 }
862         }
863
864         KASSERT((fs->m->flags & PG_BUSY) != 0,
865                 ("vm_fault: not busy after main loop"));
866
867         /*
868          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
869          * is held.]
870          */
871
872         /*
873          * If the page is being written, but isn't already owned by the
874          * top-level object, we have to copy it into a new page owned by the
875          * top-level object.
876          */
877         if (fs->object != fs->first_object) {
878                 /*
879                  * We only really need to copy if we want to write it.
880                  */
881                 if (fault_type & VM_PROT_WRITE) {
882                         /*
883                          * This allows pages to be virtually copied from a 
884                          * backing_object into the first_object, where the 
885                          * backing object has no other refs to it, and cannot
886                          * gain any more refs.  Instead of a bcopy, we just 
887                          * move the page from the backing object to the 
888                          * first object.  Note that we must mark the page 
889                          * dirty in the first object so that it will go out 
890                          * to swap when needed.
891                          */
892                         if (fs->map_generation == fs->map->timestamp &&
893                                 /*
894                                  * Only one shadow object
895                                  */
896                                 (fs->object->shadow_count == 1) &&
897                                 /*
898                                  * No COW refs, except us
899                                  */
900                                 (fs->object->ref_count == 1) &&
901                                 /*
902                                  * No one else can look this object up
903                                  */
904                                 (fs->object->handle == NULL) &&
905                                 /*
906                                  * No other ways to look the object up
907                                  */
908                                 ((fs->object->type == OBJT_DEFAULT) ||
909                                  (fs->object->type == OBJT_SWAP)) &&
910                                 /*
911                                  * We don't chase down the shadow chain
912                                  */
913                                 (fs->object == fs->first_object->backing_object) &&
914
915                                 /*
916                                  * grab the lock if we need to
917                                  */
918                                 (fs->lookup_still_valid ||
919                                  lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
920                             ) {
921                                 
922                                 fs->lookup_still_valid = 1;
923                                 /*
924                                  * get rid of the unnecessary page
925                                  */
926                                 vm_page_protect(fs->first_m, VM_PROT_NONE);
927                                 vm_page_free(fs->first_m);
928                                 fs->first_m = NULL;
929
930                                 /*
931                                  * grab the page and put it into the 
932                                  * process'es object.  The page is 
933                                  * automatically made dirty.
934                                  */
935                                 vm_page_rename(fs->m, fs->first_object, first_pindex);
936                                 fs->first_m = fs->m;
937                                 vm_page_busy(fs->first_m);
938                                 fs->m = NULL;
939                                 mycpu->gd_cnt.v_cow_optim++;
940                         } else {
941                                 /*
942                                  * Oh, well, lets copy it.
943                                  */
944                                 vm_page_copy(fs->m, fs->first_m);
945                         }
946
947                         if (fs->m) {
948                                 /*
949                                  * We no longer need the old page or object.
950                                  */
951                                 release_page(fs);
952                         }
953
954                         /*
955                          * fs->object != fs->first_object due to above 
956                          * conditional
957                          */
958                         vm_object_pip_wakeup(fs->object);
959
960                         /*
961                          * Only use the new page below...
962                          */
963
964                         mycpu->gd_cnt.v_cow_faults++;
965                         fs->m = fs->first_m;
966                         fs->object = fs->first_object;
967                         pindex = first_pindex;
968                 } else {
969                         /*
970                          * If it wasn't a write fault avoid having to copy
971                          * the page by mapping it read-only.
972                          */
973                         fs->prot &= ~VM_PROT_WRITE;
974                 }
975         }
976
977         /*
978          * We may have had to unlock a map to do I/O.  If we did then
979          * lookup_still_valid will be FALSE.  If the map generation count
980          * also changed then all sorts of things could have happened while
981          * we were doing the I/O and we need to retry.
982          */
983
984         if (!fs->lookup_still_valid &&
985             (fs->map->timestamp != fs->map_generation)) {
986                 release_page(fs);
987                 unlock_and_deallocate(fs);
988                 return (KERN_TRY_AGAIN);
989         }
990
991         /*
992          * Put this page into the physical map. We had to do the unlock above
993          * because pmap_enter may cause other faults.   We don't put the page
994          * back on the active queue until later so that the page-out daemon
995          * won't find us (yet).
996          */
997         if (fs->prot & VM_PROT_WRITE) {
998                 vm_page_flag_set(fs->m, PG_WRITEABLE);
999                 vm_object_set_writeable_dirty(fs->m->object);
1000
1001                 /*
1002                  * If the fault is a write, we know that this page is being
1003                  * written NOW so dirty it explicitly to save on 
1004                  * pmap_is_modified() calls later.
1005                  *
1006                  * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1007                  * if the page is already dirty to prevent data written with
1008                  * the expectation of being synced from not being synced.
1009                  * Likewise if this entry does not request NOSYNC then make
1010                  * sure the page isn't marked NOSYNC.  Applications sharing
1011                  * data should use the same flags to avoid ping ponging.
1012                  *
1013                  * Also tell the backing pager, if any, that it should remove
1014                  * any swap backing since the page is now dirty.
1015                  */
1016                 if (fs->entry->eflags & MAP_ENTRY_NOSYNC) {
1017                         if (fs->m->dirty == 0)
1018                                 vm_page_flag_set(fs->m, PG_NOSYNC);
1019                 } else {
1020                         vm_page_flag_clear(fs->m, PG_NOSYNC);
1021                 }
1022                 if (fs->fault_flags & VM_FAULT_DIRTY) {
1023                         crit_enter();
1024                         vm_page_dirty(fs->m);
1025                         vm_pager_page_unswapped(fs->m);
1026                         crit_exit();
1027                 }
1028         }
1029
1030         /*
1031          * Page had better still be busy.  We are still locked up and 
1032          * fs->object will have another PIP reference if it is not equal
1033          * to fs->first_object.
1034          */
1035         KASSERT(fs->m->flags & PG_BUSY,
1036                 ("vm_fault: page %p not busy!", fs->m));
1037
1038         /*
1039          * Sanity check: page must be completely valid or it is not fit to
1040          * map into user space.  vm_pager_get_pages() ensures this.
1041          */
1042         if (fs->m->valid != VM_PAGE_BITS_ALL) {
1043                 vm_page_zero_invalid(fs->m, TRUE);
1044                 printf("Warning: page %p partially invalid on fault\n", fs->m);
1045         }
1046
1047         return (KERN_SUCCESS);
1048 }
1049
1050 /*
1051  * quick version of vm_fault
1052  */
1053 int
1054 vm_fault_quick(caddr_t v, int prot)
1055 {
1056         int r;
1057
1058         if (prot & VM_PROT_WRITE)
1059                 r = subyte(v, fubyte(v));
1060         else
1061                 r = fubyte(v);
1062         return(r);
1063 }
1064
1065 /*
1066  * Wire down a range of virtual addresses in a map.  The entry in question
1067  * should be marked in-transition and the map must be locked.  We must
1068  * release the map temporarily while faulting-in the page to avoid a
1069  * deadlock.  Note that the entry may be clipped while we are blocked but
1070  * will never be freed.
1071  */
1072 int
1073 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1074 {
1075         boolean_t fictitious;
1076         vm_offset_t start;
1077         vm_offset_t end;
1078         vm_offset_t va;
1079         vm_paddr_t pa;
1080         pmap_t pmap;
1081         int rv;
1082
1083         pmap = vm_map_pmap(map);
1084         start = entry->start;
1085         end = entry->end;
1086         fictitious = entry->object.vm_object &&
1087                         (entry->object.vm_object->type == OBJT_DEVICE);
1088
1089         vm_map_unlock(map);
1090         map->timestamp++;
1091
1092         /*
1093          * We simulate a fault to get the page and enter it in the physical
1094          * map.
1095          */
1096         for (va = start; va < end; va += PAGE_SIZE) {
1097                 if (user_wire) {
1098                         rv = vm_fault(map, va, VM_PROT_READ, 
1099                                         VM_FAULT_USER_WIRE);
1100                 } else {
1101                         rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1102                                         VM_FAULT_CHANGE_WIRING);
1103                 }
1104                 if (rv) {
1105                         while (va > start) {
1106                                 va -= PAGE_SIZE;
1107                                 if ((pa = pmap_extract(pmap, va)) == 0)
1108                                         continue;
1109                                 pmap_change_wiring(pmap, va, FALSE);
1110                                 if (!fictitious)
1111                                         vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1112                         }
1113                         vm_map_lock(map);
1114                         return (rv);
1115                 }
1116         }
1117         vm_map_lock(map);
1118         return (KERN_SUCCESS);
1119 }
1120
1121 /*
1122  * Unwire a range of virtual addresses in a map.  The map should be
1123  * locked.
1124  */
1125 void
1126 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1127 {
1128         boolean_t fictitious;
1129         vm_offset_t start;
1130         vm_offset_t end;
1131         vm_offset_t va;
1132         vm_paddr_t pa;
1133         pmap_t pmap;
1134
1135         pmap = vm_map_pmap(map);
1136         start = entry->start;
1137         end = entry->end;
1138         fictitious = entry->object.vm_object &&
1139                         (entry->object.vm_object->type == OBJT_DEVICE);
1140
1141         /*
1142          * Since the pages are wired down, we must be able to get their
1143          * mappings from the physical map system.
1144          */
1145         for (va = start; va < end; va += PAGE_SIZE) {
1146                 pa = pmap_extract(pmap, va);
1147                 if (pa != 0) {
1148                         pmap_change_wiring(pmap, va, FALSE);
1149                         if (!fictitious)
1150                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1151                 }
1152         }
1153 }
1154
1155 /*
1156  * Reduce the rate at which memory is allocated to a process based
1157  * on the perceived load on the VM system. As the load increases
1158  * the allocation burst rate goes down and the delay increases. 
1159  *
1160  * Rate limiting does not apply when faulting active or inactive
1161  * pages.  When faulting 'cache' pages, rate limiting only applies
1162  * if the system currently has a severe page deficit.
1163  *
1164  * XXX vm_pagesupply should be increased when a page is freed.
1165  *
1166  * We sleep up to 1/10 of a second.
1167  */
1168 static int
1169 vm_fault_ratelimit(struct vmspace *vmspace)
1170 {
1171         if (vm_load_enable == 0)
1172                 return(0);
1173         if (vmspace->vm_pagesupply > 0) {
1174                 --vmspace->vm_pagesupply;
1175                 return(0);
1176         }
1177 #ifdef INVARIANTS
1178         if (vm_load_debug) {
1179                 printf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1180                         vm_load, 
1181                         (1000 - vm_load ) / 10, vm_load * hz / 10000,
1182                         curproc->p_pid, curproc->p_comm);
1183         }
1184 #endif
1185         vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1186         return(vm_load * hz / 10000);
1187 }
1188
1189 /*
1190  *      Routine:
1191  *              vm_fault_copy_entry
1192  *      Function:
1193  *              Copy all of the pages from a wired-down map entry to another.
1194  *
1195  *      In/out conditions:
1196  *              The source and destination maps must be locked for write.
1197  *              The source map entry must be wired down (or be a sharing map
1198  *              entry corresponding to a main map entry that is wired down).
1199  */
1200
1201 void
1202 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1203     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1204 {
1205         vm_object_t dst_object;
1206         vm_object_t src_object;
1207         vm_ooffset_t dst_offset;
1208         vm_ooffset_t src_offset;
1209         vm_prot_t prot;
1210         vm_offset_t vaddr;
1211         vm_page_t dst_m;
1212         vm_page_t src_m;
1213
1214 #ifdef  lint
1215         src_map++;
1216 #endif  /* lint */
1217
1218         src_object = src_entry->object.vm_object;
1219         src_offset = src_entry->offset;
1220
1221         /*
1222          * Create the top-level object for the destination entry. (Doesn't
1223          * actually shadow anything - we copy the pages directly.)
1224          */
1225         vm_map_entry_allocate_object(dst_entry);
1226         dst_object = dst_entry->object.vm_object;
1227
1228         prot = dst_entry->max_protection;
1229
1230         /*
1231          * Loop through all of the pages in the entry's range, copying each
1232          * one from the source object (it should be there) to the destination
1233          * object.
1234          */
1235         for (vaddr = dst_entry->start, dst_offset = 0;
1236             vaddr < dst_entry->end;
1237             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1238
1239                 /*
1240                  * Allocate a page in the destination object
1241                  */
1242                 do {
1243                         dst_m = vm_page_alloc(dst_object,
1244                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1245                         if (dst_m == NULL) {
1246                                 vm_wait();
1247                         }
1248                 } while (dst_m == NULL);
1249
1250                 /*
1251                  * Find the page in the source object, and copy it in.
1252                  * (Because the source is wired down, the page will be in
1253                  * memory.)
1254                  */
1255                 src_m = vm_page_lookup(src_object,
1256                         OFF_TO_IDX(dst_offset + src_offset));
1257                 if (src_m == NULL)
1258                         panic("vm_fault_copy_wired: page missing");
1259
1260                 vm_page_copy(src_m, dst_m);
1261
1262                 /*
1263                  * Enter it in the pmap...
1264                  */
1265
1266                 vm_page_flag_clear(dst_m, PG_ZERO);
1267                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1268                 vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1269
1270                 /*
1271                  * Mark it no longer busy, and put it on the active list.
1272                  */
1273                 vm_page_activate(dst_m);
1274                 vm_page_wakeup(dst_m);
1275         }
1276 }
1277
1278
1279 /*
1280  * This routine checks around the requested page for other pages that
1281  * might be able to be faulted in.  This routine brackets the viable
1282  * pages for the pages to be paged in.
1283  *
1284  * Inputs:
1285  *      m, rbehind, rahead
1286  *
1287  * Outputs:
1288  *  marray (array of vm_page_t), reqpage (index of requested page)
1289  *
1290  * Return value:
1291  *  number of pages in marray
1292  */
1293 static int
1294 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1295     vm_page_t *marray, int *reqpage)
1296 {
1297         int i,j;
1298         vm_object_t object;
1299         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1300         vm_page_t rtm;
1301         int cbehind, cahead;
1302
1303         object = m->object;
1304         pindex = m->pindex;
1305
1306         /*
1307          * we don't fault-ahead for device pager
1308          */
1309         if (object->type == OBJT_DEVICE) {
1310                 *reqpage = 0;
1311                 marray[0] = m;
1312                 return 1;
1313         }
1314
1315         /*
1316          * if the requested page is not available, then give up now
1317          */
1318
1319         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1320                 return 0;
1321         }
1322
1323         if ((cbehind == 0) && (cahead == 0)) {
1324                 *reqpage = 0;
1325                 marray[0] = m;
1326                 return 1;
1327         }
1328
1329         if (rahead > cahead) {
1330                 rahead = cahead;
1331         }
1332
1333         if (rbehind > cbehind) {
1334                 rbehind = cbehind;
1335         }
1336
1337         /*
1338          * try to do any readahead that we might have free pages for.
1339          */
1340         if ((rahead + rbehind) >
1341                 ((vmstats.v_free_count + vmstats.v_cache_count) - vmstats.v_free_reserved)) {
1342                 pagedaemon_wakeup();
1343                 marray[0] = m;
1344                 *reqpage = 0;
1345                 return 1;
1346         }
1347
1348         /*
1349          * scan backward for the read behind pages -- in memory 
1350          *
1351          * Assume that if the page is not found an interrupt will not
1352          * create it.  Theoretically interrupts can only remove (busy)
1353          * pages, not create new associations.
1354          */
1355         if (pindex > 0) {
1356                 if (rbehind > pindex) {
1357                         rbehind = pindex;
1358                         startpindex = 0;
1359                 } else {
1360                         startpindex = pindex - rbehind;
1361                 }
1362
1363                 crit_enter();
1364                 for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1365                         if (vm_page_lookup( object, tpindex)) {
1366                                 startpindex = tpindex + 1;
1367                                 break;
1368                         }
1369                         if (tpindex == 0)
1370                                 break;
1371                 }
1372
1373                 for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1374
1375                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1376                         if (rtm == NULL) {
1377                                 crit_exit();
1378                                 for (j = 0; j < i; j++) {
1379                                         vm_page_free(marray[j]);
1380                                 }
1381                                 marray[0] = m;
1382                                 *reqpage = 0;
1383                                 return 1;
1384                         }
1385
1386                         marray[i] = rtm;
1387                 }
1388                 crit_exit();
1389         } else {
1390                 startpindex = 0;
1391                 i = 0;
1392         }
1393
1394         marray[i] = m;
1395         /* page offset of the required page */
1396         *reqpage = i;
1397
1398         tpindex = pindex + 1;
1399         i++;
1400
1401         /*
1402          * scan forward for the read ahead pages
1403          */
1404         endpindex = tpindex + rahead;
1405         if (endpindex > object->size)
1406                 endpindex = object->size;
1407
1408         crit_enter();
1409         for( ; tpindex < endpindex; i++, tpindex++) {
1410
1411                 if (vm_page_lookup(object, tpindex)) {
1412                         break;
1413                 }
1414
1415                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1416                 if (rtm == NULL) {
1417                         break;
1418                 }
1419
1420                 marray[i] = rtm;
1421         }
1422         crit_exit();
1423
1424         /* return number of bytes of pages */
1425         return i;
1426 }